
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROVABLE ROBUSTNESS OF (GRAPH) NEURAL NET-
WORKS AGAINST DATA POISONING AND BACKDOORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generalization of machine learning models can be severely compromised by data
poisoning, where adversarial changes are applied to the training data. This vulnera-
bility has led to interest in certifying (i.e., proving) that such changes up to a certain
magnitude do not affect test predictions. We, for the first time, certify Graph Neural
Networks (GNNs) against poisoning attacks, including backdoors, targeting the
node features of a given graph. Our certificates are white-box and based upon (i)
the neural tangent kernel, which characterizes the training dynamics of sufficiently
wide networks; and (ii) a novel reformulation of the bilevel optimization problem
describing poisoning as a mixed-integer linear program. Consequently, we leverage
our framework to provide fundamental insights into the role of graph structure
and its connectivity on the worst-case robustness behavior of convolution-based
and PageRank-based GNNs. We note that our framework is more general and
constitutes the first approach to derive white-box poisoning certificates for NNs,
which can be of independent interest beyond graph-related tasks.

1 INTRODUCTION

Numerous works showcase the vulnerability of modern machine learning models to data poisoning,
where adversarial changes are made to the training data (Biggio et al., 2012; Muñoz-González et al.,
2017; Zügner & Günnemann, 2019a; Wan et al., 2023), as well as backdoor attacks affecting both
training and test sets (Goldblum et al., 2023). Empirical defenses against such threats are continually
at risk of being compromised by future attacks (Koh et al., 2022; Suciu et al., 2018). This motivates
the development of robustness certificates, which provide formal guarantees that the prediction for a
given test data point remains unchanged under an assumed perturbation model.

Robustness certificates can be categorized as providing deterministic or probabilistic guarantees, and
as being white box, i.e. developed for a particular model, or black box (model-agnostic). While each
approach has its strengths and applications (Li et al., 2023), we focus on white-box certificates as
they can provide a more direct understanding into the worst-case robustness behavior of commonly
used models and architectural choices (Tjeng et al., 2019; Mao et al., 2024; Banerjee et al., 2024).
The literature on poisoning certificates is less developed than certifying against test-time (evasion)
attacks and we provide an overview and categorization in Table 1. Notably, white-box certificates are
currently available only for decision trees (Drews et al., 2020), nearest neighbor algorithms (Jia et al.,
2022), and naive Bayes classification (Bian et al., 2024). In the case of Neural Networks (NNs), the
main challenge in white-box poisoning certification comes from capturing their complex training
dynamics. As a result, the current literature reveals that deriving white-box poisoning certificates
for NNs, and by extension Graph Neural Networks (GNNs), is still an unsolved problem, raising the
question if such certificates can at all be practically computed.

In this work, we give a positive answer to this question by developing the first approach towards white-
box certification of NNs against data poisoning and backdoor attacks, and instantiate it for common
convolution-based and PageRank-based GNNs. Concretely, poisoning can be modeled as a bilevel
optimization problem over the training data D that includes training on D as its inner subproblem.
To overcome the challenge of capturing the complex training dynamics of NNs, we consider the
Neural Tangent Kernel (NTK) that characterizes the training dynamics of sufficiently wide NNs under
gradient flow (Jacot et al., 2018; Arora et al., 2019). In particular, we leverage the equivalence between
NNs trained using the soft-margin loss and standard soft-margin Support Vector Machines (SVMs)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Representative selection of data poisoning and backdoor attack certificates. To the best of
our knowledge, it contains all white-box works. Our work presents the first white-box certificate
applicable to (graph) neural networks and Support Vector Machines (SVMs). Poisoning refers
to (purely) training-time attacks. A backdoor attack refers to joint training-time and test-time
perturbations. Certificates apply to different attack types: (i) Clean-label: modifies the features of
the training data; (ii) Label-flipping: modifies the labels of the training data; (iii) Joint: modifies
both features and labels; (iv) General attack: allows (arbitrary) insertion/deletion, i.e., like (iii) but
dataset size doesn’t need to be constant; (v) Node injection: particular to graph learning, refers to
adding nodes with arbitrary features and malicious edges into the graph. It is most related to (iv)
but does not allow deletion and can’t be compared with (i) and (ii). Note that certificates that only
certify against (iii)− (v) cannot certify against clean-label or label-flipping attacks individually.

Deterministic Certified Models Perturbation Model Applies to ApproachPois. Backd. Attack Type Node Cls.
(Ma et al., 2019)

B
la

ck
B

ox

✗ Diff. Private Learners ✓ ✗ Joint ✗ Differential Privacy
(Liu et al., 2023) ✗ Diff. Private Learners ✓ ✗ General ✗ Differential Privacy
(Wang et al., 2020) ✗ Smoothed Classifier ✗ ✓ Joint ✗ Randomized Smoothing
(Weber et al., 2023) ✗ Smoothed Classifier ✗ ✓ Clean-label ✗ Randomized Smoothing
(Zhang et al., 2022) ✗ Smoothed Classifier ✓ ✓ Joint ✗ Randomized Smoothing
(Lai et al., 2024) ✗ Smoothed Classifier ✓ ✗ Node Injection ✓ Randomized Smoothing
(Jia et al., 2021) ✗ Ensemble Classifier ✓ ✗ General ✗ Ensemble (Majority Vote)

(Rosenfeld et al., 2020) ✓ Smoothed Classifier ✓ ✗ Label Flip. ✗ Randomized Smoothing
(Levine & Feizi, 2021) ✓ Ensemble Classifier ✓ ✗ Label Flip./General ✗ Ensemble (Majority Vote)
(Wang et al., 2022) ✓ Ensemble Classifier ✓ ✗ General ✗ Ensemble (Majority Vote)
(Rezaei et al., 2023) ✓ Ensemble Classifier ✓ ✗ General ✗ Ensemble (Run-Off Election)

(Drews et al., 2020) ✓ Decision Trees ✓ ✗ General ✗ Abstract Interpretation
(Meyer et al., 2021) ✓ Decision Trees ✓ ✗ General ✗ Abstract Interpretation
(Jia et al., 2022) ✓ k-Nearest Neighbors ✓ ✗ General ✗ Majority Vote
(Bian et al., 2024) ✓ Naive Bayes Classifier ✓ ✗ Clean-label ✗ Algorithmic
Ours W

hi
te

B
ox

✓ NNs & SVMs ✓ ✓ Clean-label ✓ NTK & Linear Programming

with the NN’s NTKs as kernel matrix (Chen et al., 2021). Using this equivalence, we introduce a
novel reformulation of the bilevel optimization problem as a mixed-integer linear program (MILP)
that allows to certify test datapoints against poisoning as well as backdoor attacks for sufficiently wide

Figure 1: Illustration of
our poisoning certificate.

NNs (see Fig. 1). Although our framework applies to wide NNs in
general, solving the MILP scales with the number of labeled training
samples. Thus, it is a natural fit for semi-supervised learning tasks, where
one can take advantage of the low labeling rate. In this context, we
focus on semi-supervised node classification in graphs, where certifying
against node feature perturbations is particularly challenging due to the
interconnectivity between nodes (Zügner & Günnemann, 2019b; Scholten
et al., 2023). Here, our framework provides a general and elegant way
to handle this interconnectivity inherent to graph learning, by using the
corresponding graph NTKs (Sabanayagam et al., 2023) of various GNNs.
Our contributions are:

(i) We are the first to certify GNNs in node-classification tasks against poisoning and backdoor
attacks targeting node features. Our certification framework called QPCert is introduced in Sec. 3 and
leverages the NTK to capture the complex training-dynamics of GNNs. Further, it can be applied to
NNs in general and thus, it represents the first approach on white-box poisoning certificates for NNs.

(ii) Enabled by the white-box nature of our certificate, we conduct the first study into the role of graph
data and architectural choices on the worst-case robustness of many widely used GNNs against data
poisoning and backdoor attacks (see Sec. 4). We focus on convolution-based and PageRank-based
architectures and contribute the derivation of the closed-form NTK for APPNP (Gasteiger et al.,
2019), GIN (Xu et al., 2018), and GraphSAGE (Hamilton et al., 2017) in App. B.

(iii) We contribute a reformulation of the bilevel optimization problem describing poisoning as a
MILP when instantiated with kernelized SVMs, allowing for white-box certification of SVMs. While
we focus on the NTK as kernel, our strategy can be transferred to arbitrary kernel choices.

Notation. We represent matrices and vectors with boldfaced upper and lowercase letters, respectively.
vi and Mij denote i-th and ij-th entries of v and M, respectively. i-th row of M is Mi. In is the
identity matrix and 1n×n is the matrix of all 1s of size n×n. We use ⟨., .⟩ for scalar product, ∥.∥2 for
vector Euclidean norm and matrix Frobenius norm, 1[.] for indicator function, ⊙ for the Hadamard
product, E [.] for expectation, and ⌈z⌉ for the smallest integer ≥ z (ceil). [n] denotes {1, 2, . . . , n}.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES

We are given a partially-labeled graph G = (S,X) with n nodes and a graph structure matrix
S ∈ Rn×n

≥0 , representing for example, a normalized adjacency matrix. Each node i ∈ [n] has
features xi ∈ Rd of dimension d collected in a node feature matrix X ∈ Rn×d. We assume labels
yi ∈ {1, . . . ,K} are given for the first m ≤ n nodes. Our goal is to perform node classification,
either in a transductive setting where the labels of the remaining n−m nodes should be inferred, or
in an inductive setting where newly added nodes at test time should be classified. The set of labeled
nodes is denoted VL and the set of unlabeled nodes VU .

Perturbation model. We assume that at training time the adversary A has control over the features
of an ϵ-fraction of nodes and that ⌈(1− ϵ)n⌉ nodes are clean. For backdoor attacks, the adversary
can also change the features of a test node of interest. Following the semi-verified learning setup
introduced in (Charikar et al., 2017), we assume that k < n nodes are known to be uncorrupted.
We denote the verified nodes by set VV and the nodes that can be potentially corrupted as set U .
We further assume that the strength of A to poison training or modify test nodes is bounded by a
budget δ ∈ R+. More formally, A can choose a perturbed x̃i ∈ Bp(xi) := {x̃ | ∥x̃ − xi∥p ≤ δ}
for each node i under control. We denote the set of all perturbed node feature matrices constructible
by A from X as A(X) and A(G) = {(S, X̃) | X̃ ∈ A(X)}. In data poisoning, the goal of A is to
maximize misclassification in the test nodes. For backdoor attacks A aims to induce misclassification
only in test nodes that it controls.

Learning setup. GNNs are functions fθ with (learnable) parameters θ ∈ Rq and L number of layers
taking the graph G = (S,X) as input and outputting a prediction for each node. We consider linear
output layers with weights WL+1 and denote by fθ(G)i ∈ RK the (unnormalized) logit output
associated to node i. Note for binary classification fθ(G)i ∈ R. We define the architectures such as
MLP, GCN (Kipf & Welling, 2017), SGC (Wu et al., 2019), (A)PPNP (Gasteiger et al., 2019) and
others in App. A. We focus on binary classes yi ∈ {±1} and refer to App. E for the multi-class case.
Following Chen et al. (2021), the parameters θ are learned using the soft-margin loss

L(θ,G) = min
θ

1

2
∥W(L+1)∥22 + C

m∑
i=1

max(0, 1− yifθ(G)i) (1)

where the second term is the Hinge loss weighted by a regularization C ∈ R+. Note that due
to its non-differentiability, the NN is trained by subgradient descent. Furthermore, we consider
NTK parameterization (Jacot et al., 2018) in which parameters θ are initialized from a standard
Gaussian N (0, 1/width). Under NTK parameterization and sufficiently large width limit, the training
dynamics of fθ(G) are precisely characterized by the NTK defined between nodes i and j as
Qij = Q(xi,xj) = Eθ[⟨∇θfθ(G)i,∇θfθ(G)j⟩] ∈ R.

Equivalence of NN to soft-margin SVM with NTK. Chen et al. (2021) show that training NNs in
the infinite-width limit with Eq. (1) is equivalent to training a soft-margin SVM with (sub)gradient
descent using the NN’s NTK as kernel. Thus, both methods converge to the same solution. We
extend this equivalence to GNNs, as detailed in App. C. More formally, let the SVM be defined as
fθ(G)i = fSVM

θ (xi) = ⟨β,Φ(xi)⟩ where Φ(·) is the feature transformation associated to the used
kernel and θ = β are the learnable parameters obtained by minimizing L(θ,G). Following Chen
et al. (2021), we do not include a bias term. To find the optimal β∗, instead of minimizing Eq. (1)
with (sub)gradient descent, we work with the equivalent dual

P1(Q) : min
α

−
m∑
i=1

αi +
1

2

m∑
i=1

m∑
j=1

yiyjαiαjQij s.t. 0 ≤ αi ≤ C ∀i ∈ [m] (2)

with the Lagrange multipliers α ∈ Rm and kernel Qij = Q(xi,xj) ∈ R computed between all
labeled nodes i ∈ [m]. and j ∈ [m]. The optimal dual solution may not be unique and we denote
by S(Q) the set of α solving P1(Q). However, any α∗ ∈ S(Q) corresponds to the same unique
β∗ =

∑m
i=1 yiα

∗
iΦ(G)i minimizing Eq. (1) (Burges & Crisp, 1999). Thus, the prediction of the SVM

for a test node t using the dual is given by fSVM
θ (xt) =

∑m
i=1 yiα

∗
iQti for any α∗ ∈ S(Q), where

Qti is the kernel between a test node t and training node i. By choosing Q to be the NTK of a GNN
fθ, the prediction equals fθ(G)t if the width of the GNN’s hidden layers goes to infinity. Thus, a
certificate for the SVM directly translates to a certificate for infinitely-wide GNNs. In the finite-width

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

case, where the smallest GNN’s layer width is h, the output difference between both methods can
be bounded with high probability by O(lnh√

h
) (the probability → 1 as h → ∞). Thus, the certificate

translates to a high probability guarantee for sufficiently wide finite networks.

3 QPCERT: OUR CERTIFICATION FRAMEWORK

Poisoning a clean training graph G can be described as a bilevel problem where an adversary A tries
to find a perturbed G̃ ∈ A(G) that results in a model θ minimizing an attack objective Latt(θ, G̃):

min
G̃,θ

Latt(θ, G̃) s. t. G̃ ∈ A(G) ∧ θ ∈ argmin
θ′

L(θ′, G̃) (3)

Eq. (3) is called an upper-level problem and minθ′ L(θ′, G̃) the lower-level problem. Now, a sample-
wise poisoning certificate can be obtained by solving Eq. (3) with an Latt(θ, G̃) chosen to describe
if the prediction for a test node t changes compared to the prediction of a model trained on the
clean graph. However, this approach is challenging as even the simplest bilevel problems given by a
linear lower-level problem embedded in an upper-level linear problem are NP-hard (Jeroslow, 1985).
Thus, in this section, we develop a general methodology to reformulate the bilevel (sample-wise)
certification problem for kernelized SVMs as a mixed-integer linear program, making certification
tractable through the use of highly efficient modern MILP solvers such as Gurobi (Gurobi Optimiza-
tion, LLC, 2023) or CPLEX (Cplex, 2009). Our approach can be divided into three steps: (1) The
bilevel problem is reduced to a single-level problem by exploiting properties of the quadratic dual
P1(Q); (2) We model G̃ ∈ A(G) by assuming a bound on the effect any G̃ can have on the elements
of the kernel Q. This introduces a relaxation of the bilevel problem from Eq. (3) and allows us to
fully express certification as a MILP; (3) In Sec. 3.1, we choose the NTK of different GNNs as kernel
and develop bounds on the kernel elements to use in the certificate. In the following, we present our
certificate for binary classification where yi ∈ {±1} ∀i ∈ [n] and transductive learning, where the
test node is already part of G. We generalize it to a multi-class and inductive setting in App. E.

A single-level reformulation. Given an SVM fSVM
θ trained on the clean graph G, its class prediction

for a test node t is given by sgn(p̂t) = sgn(fSVM
θ (xt)). If for all G̃ ∈ A(G) the sign of the prediction

does not change if the SVM should be retrained on G̃, then we know that the prediction for t is
certifiably robust. Thus, the attack objective reads Latt(θ, G̃) = sgn(p̂t)

∑m
i=1 yiαiQ̃ti, where Q̃ti

denotes the kernel computed between nodes t and i on the perturbed graph G̃, and indicates robustness
if greater than zero. Now, notice that the perturbed graph G̃ only enters the training objective Eq. (2)
through values of the kernel matrix Q̃ ∈ Rn×n. Thus, we introduce the set A(Q) of all kernel
matrices Q̃, constructable from G̃ ∈ A(G). Furthermore, we denote with S(Q̃) the optimal solution
set to P1(Q̃). As a result, we can rewrite Eq. (3) for kernelized SVMs as

P2(Q) : min
α,Q̃

sgn(p̂t)

m∑
i=1

yiαiQ̃ti s.t. Q̃ ∈ A(Q) ∧ α ∈ S(Q̃) (4)

and certify robustness if the optimal solution to P2(Q) is greater than zero. Crucial in reformulating
P2(Q) into a single-level problem are the Karush–Kuhn–Tucker (KKT) conditions of the lower-level
problem P1(Q̃). Concretely, the KKT conditions of P1(Q̃) are

∀i ∈ [m] :

m∑
j=1

yiyjαjQ̃ij − 1− ui + vi = 0 (Stationarity) (5)

αi ≥ 0, C − αi ≥ 0, ui ≥ 0, vi ≥ 0 (Primal and Dual feasibility) (6)
uiαi = 0, vi(C − αi) = 0 (Complementary slackness) (7)

where u ∈ Rm and v ∈ Rm are Lagrange multipliers. Now, we can state (see App. F for the proof):

Proposition 1. Problem P1(Q̃) given by Eq. (2) is convex and satisfies strong Slater’s constraint.
Consequently, the single-level optimization problem P3(Q) arising from P2(Q) by replacing α ∈
S(Q̃) with Eqs. (5) to (7) has the same globally optimal solutions as P2(Q).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

A mixed-integer linear reformulation. The computational bottleneck of P3(Q̃) are the non-linear
product terms between continuous variables in the attack objective as well as in Eqs. (5) and (7),
making P3(Q̃) a bilinear problem. Thus, we describe in the following how P3(Q̃) can be transformed
into a MILP. First, the complementary slackness constraints can be linearized by recognizing that
they have a combinatorial structure. In particular, ui = 0 if αi > 0 and vi = 0 if αi < C. Thus,
introducing binary integer variables s and t ∈ {0, 1}m, we reformulate the constraints in Eq. (7) with
big-M constraints as

∀i ∈ [m] : ui ≤ Mui
si, αi ≤ C(1− si), si ∈ {0, 1}, (8)

vi ≤ Mviti, C − αi ≤ C(1− ti), ti ∈ {0, 1}

where Mui and Mvi are positive constants. In general, verifying that a certain choice of big-Ms
results in a valid (mixed-integer) reformulation of the complementary constraints Eq. (7), i.e., such
that no optimal solution to the original bilevel problem is cut off, is at least as hard as solving the
bilevel problem itself (Kleinert et al., 2020). This is problematic as heuristic choices can lead to
suboptimal solutions to the original problem (Pineda & Morales, 2019). However, additional structure
provided by P1(Q̃) and P3(Q) together with insights into the optimal solution set allows us to derive
valid and small Mui and Mvi for all i ∈ [m].

Concretely, the adversary A can only make a bounded change to G. Thus, the element-wise difference
of any Q̃ ∈ A(Q) to Q will be bounded. As a result, there exist element-wise upper and lower
bounds Q̃L

ij ≤ Q̃ij ≤ Q̃U
ij for all i, j ∈ [m]∪ {t} and valid for any Q̃ ∈ A(Q). In Sec. 3.1 we derive

concrete lower and upper bounds for the NTKs corresponding to different common GNNs. This,
together with 0 ≤ αi ≤ C, allows us to lower and upper bound

∑m
j=1 yiyjαjQ̃ij in Eq. (5). Now,

given an optimal solution (α∗, Q̃∗,u∗,v∗) to P3(Q), observe that either u∗
i or v∗i are zero, or can be

freely varied between any positive values as long as Eq. (5) is satisfied without changing the objective
value or any other variable. As a result, one can use the lower and upper bounds on

∑m
j=1 yiyjαjQ̃ij

to find the minimal value range necessary and sufficient for ui and vi, such that Eq. (5) can always be
satisfied for any α∗ and Q̃∗. Consequently, only redundant solutions regarding large u∗

i and v∗i will
be cut off and the optimal solution value stays the same as for P3(Q), not affecting the certification.
The exact Mui

and Mvi depend on the signs of the involved yi and yj and are derived in App. G.

Now, the remaining non-linearities come from the product terms αiQ̃ij . We approach this by first
introducing new variables Zij for all i, j ∈ [m] ∪ {t} and set Zij = αjQ̃ij . Then, we replace all
product terms αjQ̃ij in Eq. (5) and in the objective in Eq. (4) with Zij . This alone has not changed
the fact that the problem is bilinear, only that the bilinear terms have now moved to the definition of
Zij . However, we have access to lower and upper bounds on Q̃ij . Thus, replacing Zij = αjQ̃ij with
linear constraints Zij ≤ αjQ̃

U
ij and Zij ≥ αjQ̃

L
ij results in a relaxation to P3(Q). This resolved all

non-linearities and we can write the following theorem.
Theorem 1 (MILP Formulation). Node t is certifiably robust against adversary A if the optimal
solution to the following MILP denoted by P (Q) is greater than zero

min
α,u,v,s,t,Z

sgn(p̂t)

m∑
i=1

yiZti s.t.

Zij ≤ αjQ̃
U
ij , Zij ≥ αjQ̃

L
ij ∀i ∈ [m] ∪ {t}, j ∈ [m]

∀i ∈ [m] :

m∑
j=1

yiyjZij − 1− ui + vi = 0, ui ≤ Musi, αi ≤ C(1− si), si ∈ {0, 1},

αi ≥ 0, C − αi ≥ 0, ui ≥ 0, vi ≥ 0, vi ≤ Mvti, C − αi ≤ C(1− ti), ti ∈ {0, 1}

P(Q) includes backdoor attacks through the bounds Q̃L
tj and Q̃U

tj for all j ∈ [m], which for an
adversary A who can manipulate t will be set different. On computational aspects, P(Q) involves
(m+1)2+5m variables out of which 2m are binary. Thus, the number of binary variables, which for
a particular problem type mainly defines how long it takes MILP-solvers to solve a problem, scales
with the number of labeled samples.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.1 QPCERT FOR GNNS THROUGH THEIR CORRESPONDING NTKS

Table 2: The NTKs of GNNs have the general form Q =
M(Σ⊙ Ė)MT +MEMT for L = 1. The definitions of
M,Σ, E and Ė are given in the table. Z = S + In and
T = ((1 + ϵ)In +A)X. κ0(z) = 1

π (π − arccos (z))
and κ1(z) =

1
π

(
z (π − arccos (z)) +

√
1− z2

)
.

GNN M Σ Eij Ėij

GCN S SXXTST
√
ΣiiΣjjκ1

(
Σij√
ΣiiΣjj

)
κ0

(
Σij√
ΣiiΣjj

)
SGC S SXXTST Σij 1

GraphSAGE Z ZXXTZT
√
ΣiiΣjjκ1

(
Σij√
ΣiiΣjj

)
κ0

(
Σij√
ΣiiΣjj

)
(A)PPNP P XXT + 1n×n

√
ΣiiΣjjκ1

(
Σij√
ΣiiΣjj

)
κ0

(
Σij√
ΣiiΣjj

)
GIN In TTT + 1n×n

√
ΣiiΣjjκ1

(
Σij√
ΣiiΣjj

)
κ0

(
Σij√
ΣiiΣjj

)
MLP In XXT + 1n×n

√
ΣiiΣjjκ1

(
Σij√
ΣiiΣjj

)
κ0

(
Σij√
ΣiiΣjj

)

To certify a specific GNN using our
QPCert framework, we need to derive
element-wise lower and upper bounds
valid for all NTK matrices Q̃ ∈ A(Q)
of the corresponding network, that are
constructable by the adversary. As a
first step, we introduce the NTKs for
the GNNs of interest before deriving
the bounds. While Sabanayagam et al.
(2023) provides the NTKs for GCN and
SGC with and without skip connections,
we derive the NTKs for (A)PPNP, GIN
and GraphSAGE in App. B. For clar-
ity, we present the NTKs for fθ(G) with
hidden layers L = 1 here and the gen-
eral case for any L in the appendix. For
L = 1, the NTKs generalize to the form
Q = M(Σ⊙ Ė)MT +MEMT for all
the networks, with the definitions of M,Σ, E and Ė detailed in Table 2. Thus, it is important to note
that the effect of the feature matrix X, which the adversary can manipulate, enters into the NTK only
as a product XXT , making this the quantity of interest when bounding the NTK matrix.

Focusing on p = {1, 2,∞} in the perturbation model Bp(x) and X̃ ∈ A(X), we first derive the
bounds for X̃X̃T by considering U := {i : i ̸∈ VV } to be the set of all unverified nodes that the
adversary can potentially control. Particularly, we present the worst-case element-wise lower and
upper bounds for X̃X̃T = XXT +∆ in terms of ∆ in Lemma 1, and Lemmas 2 and 3 in App. D.

Lemma 1 (Bounds for ∆, p = ∞). Given B∞(x) and any X̃ ∈ A(X), then X̃X̃T = XXT +∆
where the worst-case bounds for ∆, ∆L

ij ≤ ∆ij ≤ ∆U
ij for all i and j ∈ [n], is

∆L
ij = −δ∥Xj∥11[i ∈ U]− δ∥Xi∥11[j ∈ U]− δ2d1[i ∈ U ∧ j ∈ U ∧ i ̸= j]

∆U
ij = δ∥Xj∥11[i ∈ U] + δ∥Xi∥11[j ∈ U] + δ2d1[i ∈ U ∧ j ∈ U] (9)

The NTK bounds Q̃L
ij and Q̃U

ij , are now derived by simply propagating the bounds for X̃X̃T through
the NTK formulation since the multipliers and addends are positive. To elaborate, we compute Q̃L

ij by
substituting XXT = XXT +∆L, and likewise for Q̃U

ij . Only bounding Eij and Ėij needs special
care and our respective approach is discussed in App. D.1. Further, we prove that the bounds are tight
in the worst-case in App. D.2.

Theorem 2 (NTK bounds are tight). The worst-case NTK bounds are tight for GNNs with linear
activations such as SGC and (A)PPNP, and MLP with σ(z) = z for p = {1, 2,∞} in Bp(x).

4 EXPERIMENTAL RESULTS

We present (i) the effectiveness of QPCert in certifying different GNNs using their corresponding
NTKs against node feature poisoning and backdoor attacks; (ii) insights into the role of graph data in
worst-case robustness of GNNs, specifically the importance of graph information and its connectivity;
(iii) a study of the impact of different architectural components in GNNs on their provable robustness.

Dataset. We use the real-world graph dataset Cora-ML (Bojchevski & Günnemann, 2018), where
we generate continuous 384-dim. embeddings of the abstracts with a modern sentence transformer1.
Furthermore, for binary classification, we use Cora-ML and another real-world graph WikiCS
(Mernyei & Cangea, 2022) and extract the subgraphs defined by the two largest classes. We call

1all-MiniLM-L6-v2 from https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

6

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 0.01 0.02 0.05 0.1

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GraphSAGE
GIN
GCN Skip-PC
GCN Skip-α
MLP

(a) Cora-MLb: padv = 1

0 0.01 0.02 0.05 0.1 0.2

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(b) WikiCSb: padv = 1

0 0.01 0.02 0.05 0.1 0.2 0.5

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GraphSAGE
GIN
GCN Skip-PC
GCN Skip-α
MLP

(c) Cora-MLb: padv = 0.1

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(d) WikiCSb: padv = 0.1

Figure 2: Poison Labeled (PL) setting for Cora-MLb and WikiCS. (a)-(b): QPCert effectively
provides non-trivial guarantees. (a)-(d): All GNNs show higher certified accuracy than an MLP.

the resulting datasets Cora-MLb and WikiCSb, respectively. Lastly, we use graphs generated from
Contextual Stochastic Block Models (CSBM) (Deshpande et al., 2018) for controlled experiments on
graph parameters. We give dataset statistics and information on the random graph generation scheme
in H.1. For Cora-MLb and WikiCSb, we choose 10 nodes per class for training, leaving 1215 and
4640 unlabeled nodes, respectively. For Cora-ML, we choose 20 training nodes per class resulting in
2925 unlabeled nodes. From the CSBM, we sample graphs with 200 nodes and choose 40 per class
for training, leaving 120 unlabeled nodes. All results are averaged over 5 seeds (Cora-ML: 3 seeds)
and reported with standard deviation. We do not need a separate validation set, as we perform 4-fold
cross-validation (CV) for hyperparameter tuning.

GNNs and attack. We evaluate GCN, SGC, (A)PPNP, GIN, GraphSAGE, MLP, and the skip
connection variants GCN Skip-α and GCN Skip-PC (see App. A). All results concern the infinite-
width limit and thus, are obtained through training an SVM with the corresponding GNN’s NTK
and, if applicable, applying QPCert using Gurobi to solve the MILP from Theorem 1. We fix the
hidden layers to L = 1, and the results for L = {2, 4} are provided in App. I.2. For CSBMs we
fix C = 0.01 for comparability between experiments and models in the main section. We find
that changing C has little effect on the accuracy but can strongly affect the robustness of different
architectures. Other parameters on CSBM and all parameters on real-world datasets are set using
4-CV (see App. H.2 for details). The SVM’s quadratic dual problem is solved using QPLayer
(Bambade et al., 2023), a differentiable quadratic programming solver. Thus, for evaluating tightness
regarding graph poisoning, we use APGD (Croce & Hein, 2020) with their reported hyperparameters
as attack, but differentiate through the learning process using two different strategies: (i) QPLayer,
and (ii) the surrogate model proposed in MetaAttack (Zügner & Günnemann, 2019a). To evaluate
backdoor tightness, we use the clean-label backdoor attack from Xing et al. (2024) as well as the
above APGD attack, but at test time additionally attacking the target node.

Adversarial evaluation settings. We categorize four settings of interest. (1) Poison Labeled (PL):
The adversary A can potentially poison the labeled data VL. (2) Poison Unlabeled (PU): Especially
interesting in a semi-supervised setting is the scenario when A can poison the unlabeled data VU ,
while the labeled data, usually representing a small curated set of high quality, is known to be
clean (Shejwalkar et al., 2023). (3) Backdoor Labeled (BL): Like (1) but the test node is also
controlled by A. (4) Backdoor Unlabeled (BU): Like (2) but again, the test node is controlled
by A. Settings (1) and (2) are evaluated transductively, i.e. on the unlabeled nodes VU already
known at training time. Note that this means for (2) that some test nodes may be corrupted. For the
backdoor attack settings (3) and (4) the test node is removed from the graph during training and
added inductively at test time. The size of the untrusted potential adversarial node set U is set in
percentage padv ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1} of the scenario-dependent attackable node set
and resampled for each seed. We consider node feature perturbations Bp(x) with p = {1, 2,∞} and
provide all results concerning p = 1 in App. I.5 and J.4. In the case of CSBM, δ is set in percentage
of 2µ of the underlying distribution, and for real data to absolute values. Our main evaluation metric
is certified accuracy, referring to the percentage of correctly classified nodes without attack that are
provably robust against data poisoning / backdoor attacks of the assumed adversary A. We note
that we are the first work to study certificates for clean-label attacks on node features in graphs.
In particular, all current black-box certificates do not apply to graph learning or ℓp perturbation
models (see App. M). Thus, there is no baseline prior work. However, we still compare the certified
accuracies presented below with two common poisoning defenses in App. I.7.

Non-trivial certificates and On the importance of graph information. We evaluate the effective-
ness of our certificates in providing non-trivial robustness guarantees. Consider the PL setting where
A can poison all labeled nodes (padv = 1) for which a trivial certificate would return 0% certified

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 0.01 0.02 0.05 0.1 0.2 0.5

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GraphSAGE
GIN
GCN Skip-PC
GCN Skip-α
MLP

(a) Cora-MLb: PU

0 0.01 0.02 0.05 0.1 0.2 0.5

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
GraphSAGE
GIN
SGC
GCN Skip-PC
GCN Skip-α
MLP

(b) Cora-MLb: BU

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GIN
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(c) CSBM: PU

0 0.01 0.02 0.05 0.1 0.2 0.5

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GIN
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(d) CSBM: BU

Figure 3: Certifiable robustness in the Poisoning Unlabeled (PU) and Backdoor Unlabeled (BU)
setting with padv = 0.1 for Cora-MLb and padv = 0.2 for CSBM. We refer to App. L for WikiCSb.

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(a) SGC (WikiCSb:PU)

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

1.0
C

er
ti

fie
d

A
cc

u
ra

cy

GCN 2×
GCN 1×
GCN 0.5×
GCN 0.25×
GCN 0×

(b) CSBM: PU

0.02 0.05 0.1 0.2

Perturbation Budget δ (p = 2)

0.6

0.7

0.8

0.9

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

APPNP α = 0.1
APPNP α = 0.2
APPNP α = 0.3
APPNP α = 0.5
APPNP α = 1.0 (MLP)

(c) Cora-MLb: PU

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

lower bound
upper bound
GCN
SGC
GraphSAGE
GCN Skip-α
MLP

(d) CSBM: PU

Figure 4: Poison Unlabeled for WikiCSb (padv=0.02), Cora-MLb (padv=0.1), CSBM (padv=0.2).
(a) Certified accuracy gain: difference of certified acc. to an MLP. (b) Graph connectivity analysis
where c× is cp and cq in CSBM model. (c) APPNP analysis based on α. (d) Tightness of QPCert.

accuracy. Figs. 2a and 2b prove that QPCert returns non-trivial guarantees. Further, they highlight
an interesting insight: All GNNs have significantly better worst-case robustness behavior than the
certified accuracy of an MLP. Thus, leveraging the graph connectivity, significantly improves their
certified accuracy, even when faced with perturbations on all labeled nodes. In Figs. 2c and 2d we
show that this observation stays consistent for other padv . Similar results for Cora-ML (App. K) and
CSBM (App. I.1) establish that this behavior is not dataset-specific.

In Fig. 3, we evaluate the poison unlabeled (PU) and backdoor unlabeled (BU) settings for different
datasets. When poisoning only unlabeled data (PU), the MLP’s training process is not affected by the
adversary, as the MLP does not access the unlabeled nodes during training. Thus, this provides a good
baseline for our certificate to study GNNs. Again, QPCert provides non-trivial certified robustness
beyond the MLP baseline. Close to all GNNs show certified accuracy exceeding the one of an MLP
for small to intermediate perturbation budgets (δ ≤ 0.1) for Cora-MLb (Fig. 3a) and CSBM (Fig. 3a),
with a similar picture for WikiCSb (App. L) and Cora-ML (App. K). Note that the drop in certified
accuracy for an MLP stems from the transductive learning setting, in which the MLP is confronted
with the potentially perturbed unlabeled training nodes at test time. For WikiCSb, Fig. 4a elucidates in
detail the certified accuracy gain of an SGC to an MLP and for other GNNs, see App. L (and App. J.1
for Cora-MLb, App. I.1 for CSBM). Concerning backdoor attacks on unlabeled nodes Figs. 3b and 3d
show that most GNNs show significantly better certified robustness than an MLP, even so MLP
training is not affected by A. We observe similar results for a BL setting for Cora-MLb (App. J.1),
WikiCS (App. L), and CSBM (App. I.1). These results show that leveraging graph information
can significantly improve certified accuracy across all attack settings. Further, across all evaluation
settings and datasets, we find GIN and GraphSAGE to provide the lowest certified accuracies of all
GNNs; their most important design difference is choosing a sum-aggregation scheme. We note that a
comparison across architecture can be affected by the certificate’s tightness and we hypothesize that
the high worst-case robustness of SGC compared to other models may be due to the certificate being
tighter (Theorem 2). However, this still allows us to derive architectural insights for a specific GNN.

On graph connectivity and architectural insights. We exemplify study directions enabled through
our certification framework. By leveraging CSBMs, we study the effect of graph connectivity in
the poisoning unlabeled setting in Fig. 4b for GCN. Interestingly, we observe an inflection point at
perturbation strength δ = 0.05, where higher connectivity leads to higher certified accuracy against
small perturbations, whereas higher connectivity significantly worsens certified accuracy for strong
perturbations. These trends are consistent across various architectures and attack settings (App. I.2).

Secondly, we study the effect of different α choices in APPNP on its certified accuracy in poison
unlabeled setting in Fig. 4c. Interestingly, it also shows an inflection point in the perturbation strength

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(δ = 0.1), where higher α increases the provable robustness for larger δ, whereas worsens the
provable robustness for smaller δ in Cora-MLb. Notably, this phenomenon is unique to the PU
setting (see App. J.2) and is similarly observed in CSBM as shown in App. I.2. Although this setup
seems to be similar to the connectivity analysis, it is different as the α in APPNP realizes weighted
adjacency rather than changing the connectivity of the graph, that is, increasing or decreasing the
number of edges in the graph. We compare different normalization choices for S in GCN and SGC in
App. J.3. Through these analyses, it is significant to note that our certification framework enables
informed architectural choices from the perspective of robustness.

5 DISCUSSION AND RELATED WORK

How tight is QPCert? We compute an upper bound on provable robustness using APGD by
differentiating through the learning process. The results in Fig. 4d show that the provable robustness
bounds are tight for small pertubation budgets δ but less tight for larger δ, demonstrating one limitation
(other settings and attacks in App. I.3). While theoretically, the NTK bounds are tight (Theorem 2),
the approach of deriving element-wise bounds on Q to model A leading to a relaxation of P3(Q)
can explain the gap between provable robustness and empirical attack. Thus, we are excited about
opportunities for future work to improve our approach for modeling A in the MILP P (Q).

Is QPCert deterministic or probabilistic? Our certification framework is inherently deterministic,
offering deterministic guarantees for kernelized SVMs using the NTK as the kernel. When the width
of a NN approaches infinity, QPCert provides a deterministic robustness guarantee for the NN due to
the exact equivalence between an SVM with the NN’s NTK as kernel and the infinitely wide NN.
For sufficiently wide but finite-width NNs this equivalence holds with high probability (Chen et al.,
2021), making our certificate probabilistic in this context. However, note that this high-probability
guarantee is qualitatively different from other methods such as randomized smoothing (Cohen et al.,
2019), in which the certification approach itself is probabilistic and heavily relies on the number of
samplings and thus, inherently introduces randomness.

Generality of QPCert. While we focus on (G)NNs for graph data, our framework enables white-box
poisoning certification of NNs on any data domain. QPCert can be extended to other architecture
given the criteria outlined in App. N.4 and other tasks such as graph classification (see App. N.5).
Further, it allows for certifying general kernelized SVMs for arbitrary kernel choices if respective
kernel bounds as in Sec. 3.1 are derived. To the best of our knowledge, this makes our work
the first white-box poisoning certificate for kernelized SVMs. Moreover, the reformulation of the
bilevel problem to MILP is directly applicable to any quadratic program that satisfies strong Slater’s
constraint and certain bounds on the involved variables, hence the name QPCert. Thus extensions to
certify quadratic programming layers in NN (Amos & Kolter, 2017) or other quadratic learners are
thinkable. Therefore, we believe that our work opens up numerous new avenues of research into the
provable robustness against data poisoning.

Perturbation model. We study semi-verified learning (Charikar et al., 2017). This is particularly
interesting for semi-supervised settings, where often a small fraction of nodes are manually verified
and labeled (Shejwalkar et al., 2023), or when learning from the crowd Meister & Valiant (2018);
Zeng & Shen (2023). However, this may produce overly pessimistic bounds when large fractions
of the training data are unverified, but the adversary can only control a small part of it. We study
clean-label attacks bounded by ℓp-threat models instead of arbitrary perturbations to nodes controlled
by A. We refer to App. N.1 for a discussion with which commonly studied empirical attacks this
threat model aligns. Goldblum et al. (2023) distinctively names studying bounded clean-label attacks
as an open problem, as most works assume unrealistically large input perturbations. Exemplary, in
Fig. 2a, QPCert allows us to certify robustness against ℓp-bounded perturbations applied to all labeled
data. Most works on poisoning certification work with so-called ‘general attacks’ allowing arbitrary
modifications of data controlled by the adversary. In the setting studied in Fig. 2a, this would always
lead to 0 certified accuracy and being unable to provide non-trivial guarantees.

Related work. There is little literature on white-box poisoning certificates (see Table 1), and existing
techniques (Drews et al., 2020; Meyer et al., 2021; Jia et al., 2022; Bian et al., 2024) cannot be
extended to NNs. We summarize the most important related work and refer to App. M for more
details. The bilevel problem Eq. (3) is investigated by several works in the context of developing a
poisoning attack or empirical defense, including for SVMs (Biggio et al., 2012; Xiao et al., 2015; Koh

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

& Liang, 2017; Jagielski et al., 2018). Notably Mei & Zhu (2015) reformulate the bilevel problem
P2(Q) for SVMs to a bilinear single-level problem similar to P3(Q) but only solve it heuristically for
attack generation and do not realize the possibility of a MILP reformulation and certification. There
are no poisoning certificates for clean-label attacks against GNNs. (Lai et al., 2024) is the only work
on poisoning certification of GNNs, but differ incomparably in their threat model and are black-box
as well as not applicable to backdoors. Lingam et al. (2024) develops a label poisoning attack for
GNNs using the bilevel problem with a regression objective and including NTKs as surrogate models.
We note that (Steinhardt et al., 2017) develops statistical bounds on the loss that are not applicable to
certify classification.

Conclusion. We derive the first white-box poisoning certificate framework for NNs through their
NTKs and demonstrate its effective applicability to semi-supervised node classification tasks common
in graph learning. In particular, we show that our certificate generates non-trivial robustness guaran-
tees and insights into the worst-case poisoning robustness to feature perturbations of a wide range of
GNNs. The study on node feature perturbations is of practical concern in many application areas of
GNNs such as spam detection (Li et al., 2019) or fake news detection (Hu et al., 2024) (see App. N.3
for a more detailed discussion), and certification against them poses unique graph-related challenges
due to the interconnectedness of nodes. While we address the robustness to node feature perturbations,
certifying against structural perturbations to the graph itself remains an open, complex, but important
problem and we refer to App. N.2 for a technical discussion on the arising challenges. Thus, this
offers a valuable direction for future research. Furthermore, as is the case with all deterministic
certificates (Li et al., 2023), scaling to large datasets remains challenging. Consequently, research on
scaling deterministic certificates is an impactful avenue for future work.

6 ETHICS STATEMENT

Our method represents a robustness certificate for white-box models. This allows a more informed
decision when it comes to the safety aspects of currently used models. However, insights into
worst-case robustness can be used for good but potentially also by malicious actors. We strongly
believe that research about the limitations of existing models is crucial in making models safer and
thus, outweighs potential risks. We are not aware of any direct risks coming from our work.

7 REPRODUCIBILITY STATEMENT

We detail all the experimental setups with the network architectures and hyperparameters in Sec. 4
and app. H.2. The used datasets are open source as mentioned in App. H.1, and the hardware details
are discussed in App. H.3. We provide the complete code base with datasets and configuration files to
reproduce the experiments in https://figshare.com/s/e155ced9910eb7b3a531. The
randomness in the experiments is controlled by setting fixed seeds which are given in the experiment
configuration files. The code will be made public upon acceptance.

REFERENCES

Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning (ICML), 2017.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Antoine Bambade, Fabian Schramm, Adrien Taylor, and Justin Carpentier. QPLayer: efficient dif-
ferentiation of convex quadratic optimization. 2023. URL https://inria.hal.science/
hal-04133055.

Debangshu Banerjee, Avaljot Singh, and Gagandeep Singh. Interpreting robustness proofs of deep
neural networks. In International Conference on Learning Representations (ICLR), 2024.

Song Bian, Xiating Ouyang, ZHIWEI FAN, and Paris Koutris. Naive bayes classifiers over missing
data: Decision and poisoning. In International Conference on Machine Learning (ICML), 2024.

10

https://figshare.com/s/e155ced9910eb7b3a531
https://inria.hal.science/hal-04133055
https://inria.hal.science/hal-04133055

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines.
In International Conference on Machine Learning (ICML), 2012.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. In International Conference on Learning Representations, 2018.

Christopher J. C. Burges and David Crisp. Uniqueness of the svm solution. In Advances in Neural
Information Processing Systems (NeurIPS), 1999.

Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data. In Annual
ACM SIGACT Symposium on Theory of Computing (STOC), 2017.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning (ICML), 2020.

Ruoxin Chen, Zenan Li, Jie Li, Junchi Yan, and Chentao Wu. On collective robustness of bagging
against data poisoning. In International Conference on Machine Learning, pp. 3299–3319. PMLR,
2022.

Yilan Chen, Wei Huang, Lam Nguyen, and Tsui-Wei Weng. On the equivalence between neural net-
work and support vector machine. Advances in Neural Information Processing Systems (NeurIPS),
2021.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In International Conference on Machine Learning (ICML), 2019.

IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation,
2009.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks, 2020.

Enyan Dai, Minhua Lin, Xiang Zhang, and Suhang Wang. Unnoticeable backdoor attacks on graph
neural networks. In Proceedings of the ACM Web Conference 2023, pp. 2263–2273, 2023.

S. Dempe and J. Dutta. Is bilevel programming a special case of a mathematical program with
complementarity constraints? Math. Program., 131:37–48, 2012. doi: https://doi.org/10.1007/
s10107-010-0342-1.

Yash Deshpande, Subhabrata Sen, Andrea Montanari, and Elchanan Mossel. Contextual stochastic
block models. Advances in Neural Information Processing Systems (NeurIPS), 31, 2018.

Samuel Drews, Aws Albarghouthi, and Loris D’Antoni. Proving data-poisoning robustness in decision
trees. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 1083–1097, 2020.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. Advances in
neural information processing systems (NeurIPS), 2019.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations (ICLR), 2019.

Jonas Geiping, Liam H Fowl, W. Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller,
and Tom Goldstein. Witches’ brew: Industrial scale data poisoning via gradient matching. In
International Conference on Learning Representations (ICLR), 2021.

M. Goldblum, D. Tsipras, C. Xie, X. Chen, A. Schwarzschild, D. Song, A. Madry, B. Li, and
T. Goldstein. Dataset security for machine learning: Data poisoning, backdoor attacks, and
defenses. IEEE Transactions on Pattern Analysis & Machine Intelligence, 45(02):1563–1580,
2023. ISSN 1939-3539.

Lukas Gosch, Daniel Sturm, Simon Geisler, and Stephan Günnemann. Revisiting robustness in graph
machine learning. In International Conference on Learning Representations (ICLR), 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Stephan Günnemann. Graph neural networks: Adversarial robustness. In Graph Neural Networks:
Foundations, Frontiers, and Applications, pp. 149–176. Springer Singapore, 2022.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in Neural Information Processing Systems (NeurIPS), 2017.

Christopher Hojny, Shiqiang Zhang, Juan S. Campos, and Ruth Misener. Verifying message-passing
neural networks via topology-based bounds tightening. In International Conference on Machine
Learning (ICML), 2024.

Sanghyun Hong, Nicholas Carlini, and Alexey Kurakin. Diffusion denoising as a certified defense
against clean-label poisoning. arXiv preprint arXiv:2403.11981, 2024.

Bo Hu, Zhendong Mao, and Yongdong Zhang. An overview of fake news detection: From a new
perspective. Fundamental Research, 2024. ISSN 2667-3258.

W. Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. Metapoison: practical
general-purpose clean-label data poisoning. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li.
Manipulating machine learning: Poisoning attacks and countermeasures for regression learning. In
IEEE Symposium on Security and Privacy (SP), 2018.

Robert G Jeroslow. The polynomial hierarchy and a simple model for competitive analysis. Mathe-
matical programming, 1985.

Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Intrinsic certified robustness of bagging against
data poisoning attacks. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7961–7969, 2021.

Jinyuan Jia, Yupei Liu, Xiaoyu Cao, and Neil Zhenqiang Gong. Certified robustness of nearest neigh-
bors against data poisoning and backdoor attacks. In AAAI Conference on Artificial Intelligence
(AAAI), 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks,
2017.

Thomas Kleinert, Martin Labbé, Fränk Plein, and Martin Schmidt. There’s no free lunch: On
the hardness of choosing a correct big-m in bilevel optimization. Operations Research, 68 (6):
1716–1721, 2020. doi: https://doi.org/10.1287/opre.2019.1944.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning (ICML), 2017.

Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks break data
sanitization defenses. Machine Learning, 111(1):1–47, 2022.

Yuni Lai, Yulin Zhu, Bailin Pan, and Kai Zhou. Node-aware bi-smoothing: Certified robustness
against graph injection attacks, 2024.

Thai Le, Suhang Wang, and Dongwon Lee. Malcom: Generating malicious comments to attack neural
fake news detection models. In 2020 IEEE International Conference on Data Mining (ICDM),
2020.

A Levine and S Feizi. Deep partition aggregation: Provable defense against general poisoning attacks.
In International Conference on Learning Representations (ICLR), 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, and Dong Li. Spam review detection with graph
convolutional networks. In International Conference on Information and Knowledge Management
(CIKM), 2019.

Linyi Li, Tao Xie, and Bo Li. Sok: Certified robustness for deep neural networks. In IEEE Symposium
on Security and Privacy, (SP), 2023.

Vijay Lingam, Mohammad Sadegh Akhondzadeh, and Aleksandar Bojchevski. Rethinking label
poisoning for GNNs: Pitfalls and attacks. In International Conference on Learning Representations
(ICLR), 2024.

Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: when and
why the tangent kernel is constant. Advances in Neural Information Processing Systems (NeurIPS),
2020.

Shijie Liu, Andrew C. Cullen, Paul Montague, Sarah M. Erfani, and Benjamin I. P. Rubinstein.
Enhancing the antidote: Improved pointwise certifications against poisoning attacks. In AAAI
Conference on Artificial Intelligence (AAAI), 2023.

Xiaorui Liu, Wei Jin, Yao Ma, Yaxin Li, Liu Hua, Yiqi Wang, Ming Yan, and Jiliang Tang. Elastic
graph neural networks. In International Conference on Machine Learning (ICML), 2021.

Yuzhe Ma, Xiaojin Zhu, and Justin Hsu. Data poisoning against differentially-private learners:
Attacks and defenses. In International Joint Conference on Artificial Intelligence (IJCAI), 2019.

Yuhao Mao, Mark Niklas Mueller, Marc Fischer, and Martin Vechev. Understanding certified training
with interval bound propagation. In International Conference on Learning Representations (ICLR),
2024.

G.P. McCormick. Computability of global solutions to factorable nonconvex programs: Part i —
convex underestimating problems. Mathematical Programming, 10:147–175, 1976.

Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set attacks on
machine learners. In AAAI Conference on Artificial Intelligence (AAAI), 2015.

Michela Meister and Gregory Valiant. A data prism: Semi-verified learning in the small-alpha regime.
In Conference On Learning Theory (COLT), 2018.

Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. International Conference on Machine Learning (ICML) GRL+ Workshop, 2022.

Anna Meyer, Aws Albarghouthi, and Loris D’Antoni. Certifying robustness to programmable data
bias in decision trees. Advances in Neural Information Processing Systems (NeurIPS), 2021.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning,
second edition. The MIT Press, 2018.

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee,
Emil C Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with back-gradient
optimization. In Proceedings of the 10th ACM workshop on artificial intelligence and security, pp.
27–38, 2017.

Salvador Pineda and Juan Miguel Morales. Solving linear bilevel problems using big-ms: Not
all that glitters is gold. IEEE Transactions on Power Systems, 34(3):2469–2471, 2019. doi:
10.1109/TPWRS.2019.2892607.

Keivan Rezaei, Kiarash Banihashem, Atoosa Chegini, and Soheil Feizi. Run-off election: Improved
provable defense against data poisoning attacks. In International Conference on Machine Learning
(ICML), 2023.

Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and Zico Kolter. Certified robustness to label-
flipping attacks via randomized smoothing. In International Conference on Machine Learning, pp.
8230–8241. PMLR, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Mahalakshmi Sabanayagam, Pascal Esser, and Debarghya Ghoshdastidar. Analysis of convolutions,
non-linearity and depth in graph neural networks using neural tangent kernel. Transactions on
Machine Learning Research (TMLR), 2023.

Yan Scholten, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Günnemann. Hierarchical
randomized smoothing. In Advances in Neural Information Processing Systems (NeurIPS), 2023.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93, Sep. 2008.

Virat Shejwalkar, Lingjuan Lyu, and Amir Houmansadr. The perils of learning from unlabeled data:
Backdoor attacks on semi-supervised learning. In International Conference on Computer Vision
(ICCV), 2023.

Amira Soliman and Sarunas Girdzijauskas. Adagraph: Adaptive graph-based algorithms for spam
detection in social networks. In Networked Systems, pp. 338–354, 2017.

J Michael Steele. The Cauchy-Schwarz master class: an introduction to the art of mathematical
inequalities. Cambridge University Press, 2004.

Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data poisoning attacks.
Advances in neural information processing systems, 30, 2017.

Octavian Suciu, Radu Mărginean, Yiğitcan Kaya, Hal Daumé, and Tudor Dumitraş. When does
machine learning fail? generalized transferability for evasion and poisoning attacks. In USENIX
Conference on Security Symposium (SEC), 2018.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming, 2019.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Clean-label backdoor attacks, 2019.
URL https://openreview.net/forum?id=HJg6e2CcK7.

Alexander Wan, Eric Wallace, Sheng Shen, and Dan Klein. Poisoning language models during
instruction tuning. In International Conference on Machine Learning (ICML), 2023.

Binghui Wang, Xiaoyu Cao, Jinyuan jia, and Neil Zhenqiang Gong. On certifying robustness against
backdoor attacks via randomized smoothing, 2020.

Guan Wang, Sihong Xie, Bing Liu, and Philip S. Yu. Identify online store review spammers via
social review graph. ACM Trans. Intell. Syst. Technol., 3(4), 2012.

Haoran Wang, Yingtong Dou, Canyu Chen, Lichao Sun, Philip S. Yu, and Kai Shu. Attacking fake
news detectors via manipulating news social engagement. In ACM Web Conference (WWW), 2023.

Wenxiao Wang, Alexander Levine, and Soheil Feizi. Improved certified defenses against data
poisoning with (deterministic) finite aggregation. In International Conference on Machine Learning
(ICML), 2022.

Maurice Weber, Xiaojun Xu, Bojan Karlaš, Ce Zhang, and Bo Li. Rab: Provable robustness against
backdoor attacks. In IEEE Symposium on Security and Privacy (SP), 2023.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simpli-
fying graph convolutional networks. In International Conference on Machine Learning (ICML),
2019.

Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. Graph backdoor. In 30th USENIX Security
Symposium (USENIX Security 21), pp. 1523–1540, 2021.

Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and Fabio Roli. Is
feature selection secure against training data poisoning? In International Conference on Machine
Learning (ICML), pp. 1689–1698. PMLR, 2015.

14

https://openreview.net/forum?id=HJg6e2CcK7

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Chulin Xie, Yunhui Long, Pin-Yu Chen, Qinbin Li, Sanmi Koyejo, and Bo Li. Unraveling the
connections between privacy and certified robustness in federated learning against poisoning
attacks. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, 2023.

Xiaogang Xing, Ming Xu, Yujing Bai, and Dongdong Yang. A clean-label graph backdoor attack
method in node classification task. Knowledge-Based Systems, 304:112433, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2018.

Shiwei Zeng and Jie Shen. Semi-verified pac learning from the crowd. In International Conference
on Artificial Intelligence and Statistics (AISTATS), 2023.

Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against adversarial
attacks. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

Yuhao Zhang, Aws Albarghouthi, and Loris D’Antoni. Bagflip: A certified defense against data
poisoning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems (NeurIPS), 2022.

Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In International Conference on Learning Representations (ICLR), 2019a.

Daniel Zügner and Stephan Günnemann. Certifiable robustness and robust training for graph
convolutional networks. In International Conference on Knowledge Discovery & Data Mining
(KDD), 2019b.

Daniel Zügner and Stephan Günnemann. Certifiable robustness of graph convolutional networks
under structure perturbations. In ACM International Conference on Knowledge Discovery & Data
Mining (SIGKDD), 2020.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ARCHITECTURE DEFINITIONS

We consider GNNs as functions fθ with (learnable) parameters θ ∈ Rq and L number of layers taking
the graph G = (S,X) as input and outputs a prediction for each node. We consider linear output
layers with weights WL+1 and denote by fθ(G)i ∈ RK the (unnormalized) logit output associated
to node i. In the following, we formally define the (G)NNs such as MLP, GCN (Kipf & Welling,
2017), SGC (Wu et al., 2019) and (A)PPNP (Gasteiger et al., 2019) considered in our study.

Def. 1 (MLP). The L-layer Multi-Layer Perceptron is defined as fθ(G)i = fMLP
θ (xi) =

WL+1ϕ
(L)
θ (xi). With ϕl

θ(xi) = σ(W (l)ϕ
(l−1)
θ (xi) + b(l)) and ϕ

(0)
θ (xi) = xi. W (l) ∈ Rdl+1×dl

and b(l) ∈ Rdl are the weights/biases of the l-th layer with d0 = d and dL+1 = K. σ(·) is an element-
wise activation function. If not mentioned otherwise, we choose σ(z) = ReLU(z) = max{0, z}.

Def. 2 (GCN & SGC). A Graph Convolution Network fGCN
θ (G) (Kipf & Welling, 2017) of depth

L is defined as fθ(G) = ϕ
(L+1)
θ (G) with ϕ

(l)
θ (G) = Sσ(ϕ

(l−1)
θ (G))W (l) and ϕ

(1)
θ (G) = SXW(1).

W(l) ∈ Rdl−1×dl are the l-th layer weights, d0 = d, dL+1 = K, and σ(z) = ReLU(z) applied
element-wise. A Simplified Graph Convolution Network fSGC

θ (G) (Wu et al., 2019) is a GCN with
linear σ(z) = z.

Def. 3 (GraphSAGE). The L-layer GraphSAGE fGSAGE
θ (G) (Hamilton et al., 2017) is defined

as fθ(G) = ϕ
(L+1)
θ (G) with ϕ

(l)
θ (G) = σ(ϕ

(l−1)
θ (G))W(l)

1 + Sσ(ϕ
(l−1)
θ (G))W(l)

2 and ϕ
(1)
θ (G) =

XW
(1)
1 + SXW

(1)
2 . W(l)

1 ,W
(l)
2 ∈ Rdl−1×dl are the l-th layer weights, d0 = d, dL+1 = K, and

σ(z) = ReLU(z) applied element-wise. S is fixed to row normalized adjacency (mean aggregator),
D−1A.

Def. 4 (GIN). A one-layer Graph Isomorphism Network fGIN
θ (G) (Xu et al., 2018) is defined as

fθ(G) = fMLP
θ (G̃) with G̃ = ((1 + ϵ)I+A)X where ϵ is a fixed constant and an one-layer ReLU

as MLP.

Def. 5 ((A)PPNP). The Personalized Propagation of Neural Predictions Network fPPNP
θ (G)

Gasteiger et al. (2019) is defined as fθ(G) = PH where Hi,: = fMLP
θ (xi) and P = α(In −

(1 − α)S)−1. The Approximate PPNP is defined with P = (1 − α)KSK + α
∑K−1

i=0 (1 − α)iSi

where α ∈ [0, 1] and K ∈ N is a fixed constant.

For APPNP and GIN, we consider an MLP with one-layer ReLU activations as given in the default
implementation of APPNP.

Along with the GNNs presented in Definitions 1 to 5, we consider two variants of popular skip
connections in GNNs as given a name in Sabanayagam et al. (2023): Skip-PC (pre-convolution),
where the skip is added to the features before applying convolution (Kipf & Welling, 2017); and Skip-
α, which adds the features to each layer without convolving with S (Chen et al., 2020). To facilitate
skip connections, we need to enforce constant layer size, that is, di = di−1. Therefore, the input
layer is transformed using a random matrix W to H0 := XW of size n× h where Wij ∼ N (0, 1)
and h is the hidden layer size. Let Hi be the output of layer i using which we formally define the
skip connections as follows.

Def. 6 (Skip-PC). In a Skip-PC (pre-convolution) network, the transformed input H0 is added
to the hidden layers before applying the graph convolution S, that is, ∀i ∈ [L], ϕ

(l)
θ (G) =

S
(
σ(ϕ

(l−1)
θ (G)) + σs (H0)

)
W (l), where σs(z) can be linear or ReLU.

Skip-PC definition deviates from Kipf & Welling (2017) because we skip to the input layer instead of
the previous one. We define Skip-α as defined in Sabanayagam et al. (2023) similar to Chen et al.
(2020).

Def. 7 (Skip-α). Given an interpolation coefficient α ∈ (0, 1), a Skip-α network is defined such
that the transformed input H0 and the hidden layer are interpolated linearly, that is, ϕ(l)

θ (G) =(
(1− α)Sϕ

(l−1)
θ (G) + ασs (H0)

)
Wi ∀i ∈ [L], where σs(z) can be linear or ReLU.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B DERIVATION OF NTKS FOR (A)PPNP, GIN AND GRAPHSAGE

In this section, we derive the NTKs for (A)PPNP, GIN and GraphSAGE, and state the NTKs for GCN
and SGC from Sabanayagam et al. (2023).

B.1 NTK FOR (A)PPNP

We derive the closed-form NTK expression for (A)PPNP fθ(G) (Gasteiger et al., 2019) in this section.
The learnable parameters θ are only part of H. In practice, H = ReLU(XW1 + B1)W2 + B2

where node features X, θ = {W1 ∈ Rd×h,W2 ∈ Rh×K ,B1 ∈ Rn×h,B2 ∈ Rn×K}. Note that in
the actual implementation of the MLP, B1 is a vector and we consider it to be a matrix by having
the same columns so that we can do matrix operations easily. Same for B2 as well. We give the full
architecture with NTK parameterization in the following,

fθ(G) = P(
cσ√
h
σ(XW1 +B1)W2 +B2) (10)

where h → ∞ and all parameters in θ are initialized as standard Gaussian N (0, 1). cσ is a constant
to preserve the input norm (Sabanayagam et al., 2023). We derive for K = 1 as all the outputs
are equivalent in expectation. The NTK between nodes i and j is E

θ∼N (0,1)
[⟨∇θfθ(G)i,∇θfθ(G)j⟩].

Hence, we first write down the gradients for node i following (Arora et al., 2019; Sabanayagam et al.,
2023):

∂fθ(G)i
∂W2

=
cσ√
h
(Piσ(G1))

T ;G1 = XW1 +B1

∂fθ(G)i
∂B2

= (Pi)
T1n

∂fθ(G)i
∂W1

=
cσ√
h
XT (PT

i 1nW
T
2 ⊙ σ̇(G1))

∂fθ(G)i
∂B1

=
cσ√
h
PT

i 1nW
T
2 ⊙ σ̇(G1)

We note that B2 has only one learnable parameter for K = 1, but is represented as a vector of size n
with all entries the same. Hence, the derivative is simply adding all entries of Pi. First, we compute
the covariance between nodes i and j in G1.

E
[
(G1)ik (G1)jk′

]
= E

[
(XW1 +B1)ik (XW1 +B1)jk′

]
Since the expectation is over W1 and B1 and all entries are ∼ N (0, 1), and i.i.d, the cross terms will
be 0 in expectation. Also, for k ̸= k′, it is 0. Therefore, it gets simplified to

E
[
(G1)ik (G1)jk

]
= E

[
XiW1W

T
1 X

T
j +

(
B1B

T
1

)
ij

]
=
(
XXT

)
ij
+ 1 = (Σ1)ij (11)

Thus, Σ1 = XXT + 1n×n and let (E1)ij = E
[
σ(G1)iσ(G1)

T
j

]
and

(
Ė1

)
ij

= E
[
σ̇(G1)iσ̇(G1)

T
j

]
computed using the definitions in Theorem 3 for ReLU non-linearity. Now, we can compute the NTK
for each parameter matrix and then sum it up to get the final kernel.

〈
∂fθ(G)i
∂W2

,
∂fθ(G)j
∂W2

〉
=

c2σ
h
Piσ(G1)σ(G1)

TPT
j

h→∞
= c2σPiE

[
σ(G1)σ(G1)

T
]
PT

j = c2σPiE1P
T
j (12)

〈
∂fθ(G)i
∂B2

,
∂fθ(G)j
∂B2

〉
= Pi1n×nP

T
j (13)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

〈
∂fθ(G)i
∂B1

,
∂fθ(G)j
∂B1

〉
h→∞
= c2σPi(E [σ̇(G1)σ̇(G1)])P

T
j = c2σPiĖ1P

T
j (14)

〈
∂fθ(G)i
∂W1

,
∂fθ(G)j
∂W1

〉
=

c2σ
h

f,h∑
p,q

(XT (PT
i 1nW

T
2 ⊙ σ̇(G1)))pq(X

T (PT
j 1nW

T
2 ⊙ σ̇(G1)))pq

=
c2σ
h

d∑
p=1

h∑
q=1

[n∑
a=1

(XT)pa(P
T
i W

T
2)aqσ̇(G1)aq

n∑
b=1

(XT)pb(P
T
j W

T
2)bqσ̇(G1)bq

]
h→∞
= c2σ

n,n∑
a=1,b=1

(XXT)abPia(P
T)bjE [σ̇(G1)σ̇(G1)]ab

= c2σPi(XXT ⊙ E [σ̇(G1)σ̇(G1)])P
T
j = c2σPi(XXT ⊙ Ė)1P

T
j (15)

Finally, the NTK matrix for the considered (A)PPNP is sum of Eqs. (12) to (15) as shown below.

Q = c2σ

(
PE1P

T +P1n×nP
T +PĖ1P+P

(
XXT ⊙ Ė1

)
PT
)

= c2σ

(
P (E1 + 1n×n)P

T +P
((

XXT + 1n×n

)
⊙ Ė1

)
PT
)

= c2σ

(
P (E1 + 1n×n)P

T +P
(
Σ1 ⊙ Ė1

)
PT
)

(16)

Note that cσ is a constant, and it only scales the NTK, so we set it to 1 in our experiments. Since
we use a linear output layer without bias term at the end, that is, B2 = 0, the NTK we use for our
experiments is reduced to

Q =
(
PE1P

T +P
(
Σ1 ⊙ Ė1

)
PT
)
.

□

B.2 NTK FOR GIN

The GIN architecture Definition 4 is similar to APPNP: P and X in APPNP are Identity and G̃ in
GIN, respectively. Hence the NTK is exactly the same as APPNP with these matrices. Thus, the NTK
for GIN is

Q = E1 +
(
Σ1 ⊙ Ė1

)
with Σ1 = G̃G̃T + 1n×n, E1 = E

F∼N (0,Σ1)

[
σ(F)σ(F)T

]
and Ė1 = E

F∼N (0,Σ1)

[
σ̇(F)σ̇(F)T

]
. □

B.3 NTKS FOR GCN AND SGC

We restate the NTK derived in Sabanayagam et al. (2023) for self containment. The GCN of depth L
with width dl → ∞ ∀l ∈ {1, . . . , L}, the network converges to the following kernel when trained
with gradient flow.
Theorem 3 (NTK for Vanilla GCN). For the GCN defined in Definition 2, the NTK Q at depth L
and K = 1 is

Q(L) =

L+1∑
k=1

S
(
. . .S

(
S︸ ︷︷ ︸

L+1−k terms

(
Σk ⊙ Ėk

)
ST ⊙ Ėk+1

)
ST ⊙ . . .⊙ ĖL

)
ST . (17)

Here Σk ∈ Rn×n is the co-variance between nodes of layer k, and is given by Σ1 = SXXTST ,
Σk = SEk−1S

T with Ek = cσ E
F∼N (0,Σk)

[
σ(F)σ(F)T

]
, Ėk = cσ E

F∼N (0,Σk)

[
σ̇(F)σ̇(F)T

]
and

ĖL+1 = 1n×n.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(
Ek

)
ij
=
√

(Σk)ii (Σk)jj κ1

 (Σk)ij√
(Σk)ii (Σk)jj


(
Ėk

)
ij
= κ0

 (Σk)ij√
(Σk)ii (Σk)jj

 ,

where κ0(z) =
1

π
(π − arccos (z)) and κ1(z) =

1

π

(
z (π − arccos (z)) +

√
1− z2

)
.

B.4 NTK FOR GRAPHSAGE

From the definition of GraphSAGE Definition 3, it is very similar to GCN with row normalization
adjacency S = D̂−1Â where Â and D̂ are adjacency matrix with self-loop and its corresponding
degree matrix. The differences in GraphSAGE are the following: there is no self-loop to the adjacency
as S = D−1A, and the neighboring node features are weighted differently compared to the node
itself using W1 and W2. Given that the NTK is computed as the expectation over weights at
initialization and infinite width, both W1 and W2 behave similarly. Hence, these weights can be
replaced with a single parameter W which transforms the network definition of GraphSAGE to
ϕ1
θ(G) = (I+ S)XW(1) and similarly ϕl

θ(G) = (I+ S)σ(ϕ
(l−1)(G)
θ)W(l) with S = D−1A. Thus,

the NTK for GraphSAGE is the same as GCN with the difference in the graph normalization S. □

C EQUIVALENCE OF GNNS TO SVMS

We show the equivalence between GNNs and SVMs by extending the result from Chen et al. (2021),
which showed that an infinite-width NN trained by gradient descent on a soft-margin loss has the
same training dynamics as that of an SVM with the NN’s NTK as the kernel. The fulcrum of their
proof that directly depends on the NN is that the NTK stays constant throughout the training (refer to
(Chen et al., 2021, Theorem 3.4)). As we consider the same learning setup with only changing the
network to GNNs, it is enough to show that the graph NTKs stay constant throughout training for the
equivalence to hold in this case.

Constancy of Graph NTKs. This constancy of the NTK in the case of infinitely-wide NNs is deeply
studied in Liu et al. (2020) and derived the conditions for the constancy as stated in Theorem 4.

Theorem 4 ((Liu et al., 2020)). The constancy of the NTK throughout the training of the NN holds if
and only if (i) the last layer of the NN is linear; (ii) the Hessian spectral norm ∥H∥ of the neural
network with respect to the parameters is small, that is, → 0 with the width of the network; (iii) the
parameters of the network w during training and at initialization is bounded, that is, parameters at
time t, wt, satisfies ∥wt −w0∥2 ≤ ϵ.

Now, we prove the constancy of graph NTKs of the GNNs by showing the three conditions.

(i) Linear last layer. The GNNs considered in Definitions 1 and 7 have a linear last layer.

(ii) Small Hessian spectral norm. Recollect that we use NTK parameterization for initializing
the network parameters, that is, N (0, 1/width). This is equivalent to initializing the network with
standard normal N (0, 1) and appropriately normalizing the layer outputs (Arora et al., 2019; Sa-
banayagam et al., 2023). To exemplify, the APPNP network definition with the normalization is given
in Eq. (10). Similarly for other GNNs, the normalization results in scaling ϕ

(l)
θ as cσ√

h
ϕ
(l)
θ where h is

the width of the layer l. As all our GNNs have a simple matrix multiplication of the graph structure
without any bottleneck layer, the Hessian spectral norm is O(lnh/

√
h) as derived for the multilayer

fully connected networks in Liu et al. (2020). Therefore, as h → ∞ the spectral norm → 0.

(iii) Bounded parameters. This is dependent only on the optimization of the loss function as derived
in Chen et al. (2021, Lemma D.1). We directly use this result as our loss and the optimization are the
same as (Chen et al., 2021).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

With this, we show that the considered GNNs trained by gradient descent on soft-margin loss is
equivalent to SVM with the graph NTK as the kernel. □

D DERIVATION OF NTK BOUNDS AND THEOREM 2

In this section, we first present the bounds for ∆ in the case of p = 2 and p = 1 in Bp(x) (Lemma 2
and Lemma 3), and then derive Lemmas 1, 2 and 3 and Theorem 2 stated in Sec. 3.1.

Lemma 2 (Bounds for ∆, p = 2). Given B2(x) and any X̃ ∈ A(X), then X̃X̃T = XXT + ∆
where the worst-case bounds for ∆, ∆L

ij ≤ ∆ij ≤ ∆U
ij for all i and j ∈ [n], is

∆L
ij = −δ∥Xj∥21[i ∈ U]− δ∥Xi∥21[j ∈ U]− δ21[i ∈ U ∧ j ∈ U ∧ i ̸= j]

∆U
ij = δ∥Xj∥21[i ∈ U] + δ∥Xi∥21[j ∈ U] + δ21[i ∈ U ∧ j ∈ U] (18)

Lemma 3 (Bounds for ∆, p = 1). Given B2(x) and any X̃ ∈ A(X), then X̃X̃T = XXT + ∆
where the worst-case bounds for ∆, ∆L

ij ≤ ∆ij ≤ ∆U
ij for all i and j ∈ [n], is

∆L
ij = −δ∥Xj∥∞1[i ∈ U]− δ∥Xi∥∞1[j ∈ U]− δ21[i ∈ U ∧ j ∈ U ∧ i ̸= j]

∆U
ij = δ∥Xj∥∞1[i ∈ U] + δ∥Xi∥∞1[j ∈ U] + δ21[i ∈ U ∧ j ∈ U] (19)

To derive Lemmas 1, 2 and 3, we consider the perturbed feature matrix X̃ ∈ A(X) and derive the
worst-case bounds for X̃X̃T based on the perturbation model Bp(x) where p = ∞, p = 2 and p = 1
in our study. Let’s say U is the set of nodes that are potentially controlled by the adversary A(X)

and X̃ = X+ Γ ∈ Rn×d where Γi is the adversarial perturbations added to node i by the adversary,
therefore, ∥Γi∥p ≤ δ and Γi > 0 for i ∈ U and Γi = 0 for i ̸∈ U . Then

X̃X̃T = (X+ Γ)(X+ Γ)T

= XXT + ΓXT +XΓT + ΓΓT = XXT +∆. (20)

As a result, it suffices to derive the worst-case bounds for ∆, ∆L ≤ ∆ ≤ ∆U , for different
perturbations. To do so, our strategy is to bound the scalar products ⟨Γi,Xj⟩ and ⟨Γi,Γj⟩ element-
wise, hence derive ∆L

ij ≤ ∆ij ≤ ∆U
ij . In the following, we derive ∆L

ij and ∆U
ij for the cases when

p = ∞, p = 2 and p = 1 in Bp(x).

Case (i): Derivation of Lemma 1 for p = ∞. In this case, the perturbation allows ∥X̃i−Xi∥∞ ≤ δ,
then by Hölder’s inequality ⟨a,b⟩ ≤ ∥a∥p∥b∥q where 1

p + 1
q = 1 for all p, q ∈ [1,∞] we have

|⟨Γi,Xj⟩| ≤ ∥Γi∥∞∥Xj∥1 ≤ δ∥Xj∥1
|⟨Γi,Γj⟩| ≤ ∥Γi∥2∥Γj∥2 ≤ d∥∆i∥∞∥∆j∥∞ ≤ dδ2. (21)

Using Eq. (21), the worst-case lower bound ∆L
ij is the lower bound of ΓXT +XΓT + ΓΓT :

∆L
ij =


0+ if i, j ̸∈ U
−δ∥Xj∥1+ if i ∈ U
−δ∥Xi∥1+ if j ∈ U
−δ2d if i, j ∈ U and i ̸= j.

(22)

The last case in Eq. (22) is due to the fact that ⟨Γi,Γi⟩ ≥ 0, hence ∆L
ii = 0. Finally, the Eq. (22) can

be succinctly written using the indicator function as

∆L
ij = −δ∥Xj∥11[i ∈ U]− δ∥Xi∥11[j ∈ U]− δ2d1[i ∈ U ∧ j ∈ U ∧ i ̸= j],

deriving the lower bound in Lemma 1. Similarly, applying the Hölder’s inequality for the worst-case
upper bound, we get

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

∆U
ij =


0+ if i, j ̸∈ U
δ∥Xj∥1+ if i ∈ U
δ∥Xi∥1+ if j ∈ U
δ2d if i, j ∈ U .

(23)

Thus, we derive Lemma 1 by succinctly writing it as

∆U
ij = δ∥Xj∥11[i ∈ U] + δ∥Xi∥11[j ∈ U] + δ2d1[i ∈ U ∧ j ∈ U].

□

Case (ii): Derivation of Lemma 2 for p = 2. The worst-case lower and upper bounds of ∆ij for
p = 2 is derived in the similar fashion as p = ∞. Here, the perturbation allows ∥X̃i −Xi∥2 ≤ δ.
Hence,

|⟨Γi,Xj⟩| ≤ ∥Γi∥2∥Xj∥2 ≤ δ∥Xj∥2
|⟨Γi,Γj⟩| ≤ ∥Γi∥2∥Γj∥2 ≤ δ2. (24)

Using Eq. (24), we derive the lower and upper bounds of ∆ij :

∆L
ij =


0+ if i, j ̸∈ U
−δ||Xj ||2+ if i ∈ U
−δ||Xi||2+ if j ∈ U
−δ2 if i, j ∈ U

∆U
ij =


0+ if i, j ̸∈ U
δ||Xj ||2+ if i ∈ U
δ||Xi||2+ if j ∈ U
δ2 if i, j ∈ U

□

Case (iii): Derivation of Lemma 3 for p = 1. The worst-case lower and upper bounds of ∆ij for
p = 1 is derived in the similar fashion as p = ∞. Here, the perturbation allows ∥X̃i −Xi∥1 ≤ δ.
Hence,

|⟨Γi,Xj⟩| ≤ ∥Γi∥1∥Xj∥∞ ≤ δ∥Xj∥∞
|⟨Γi,Γj⟩| ≤ ∥Γi∥2∥Γj∥2 ≤ ∥Γi∥1∥Γj∥1 ≤ δ2. (25)

Using Eq. (25), we derive the lower and upper bounds of ∆ij :

∆L
ij =


0+ if i, j ̸∈ U
−δ||Xj ||∞+ if i ∈ U
−δ||Xi||∞+ if j ∈ U
−δ2 if i, j ∈ U

∆U
ij =


0+ if i, j ̸∈ U
δ||Xj ||∞+ if i ∈ U
δ||Xi||∞+ if j ∈ U
δ2 if i, j ∈ U

□

D.1 BOUNDING Eij AND Ėij IN THE NTK

NTKs for GNNs with non-linear ReLU activation have E and Ė with non-linear κ1(z) and κ0(z)
functions in their definitions, respectively. In order to bound the NTK, we need a strategy to bound
these quantities as well. In this section, we discuss our approach to bound Eij and Ėij through
bounding the functions for any GNN with L layers. For ease of exposition, we ignore the layer
indexing for the terms of interest and it is understood from the context. Recollect that the definitions
of E and Ė are based on Σ, which is a linear combination of S and the previous layer. So, we
consider that at this stage, we already have Σ, ΣL and ΣU . Now, we expand the functions in the

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

definition and write Eij and Ėij using their corresponding Σ as follows:

Eij =

√
ΣiiΣjj

π

 Σij√
ΣiiΣjj

(
π − arccos

(
Σij√
ΣiiΣjj

))
+

√
1−

Σ2
ij

ΣiiΣjj

 (26)

Ėij =
1

π

(
π − arccos

(
Σij√
ΣiiΣjj

))
(27)

We derive the lower and upper bounds for Eij and Ėij in Algorithm 1.

Algorithm 1 Procedure to compute EL
ij , EU

ij , ĖL
ij and ĖU

ij

Given Σ, ΣL and ΣU

Let sl =
√
ΣL

iiΣ
L
jj , su =

√
ΣU

iiΣ
U
jj

if ΣL
ij > 0 then

al =
ΣL

ij

su
, au =

ΣU
ij

sl
else

al =
ΣL

ij

sl
, au =

ΣU
ij

su
end if
if |ΣU

ij | > |ΣL
ij | then

bl =

(
ΣL

ij

su

)2

, bu =

(
ΣU

ij

sl

)2

else

bl =

(
ΣL

ij

sl

)2

, bu =

(
ΣU

ij

su

)2

end if
EL

ij =
sl

π

(
al
(
π − arccos

(
al
))

+
√
1− bu

)
EU

ij = su

π

(
au (π − arccos (au)) +

√
1− bl

)
ĖL

ij =
1
π

(
π − arccos

(
al
))

ĖL
ij =

1
π (π − arccos (au))

D.2 DERIVATION OF THEOREM 2: NTK BOUNDS ARE TIGHT

We analyze the tightness of NTK bounds by deriving conditions on graph G = (S,X) when ∆L
ij

and ∆U
ij are attainable exactly. As our NTK bounding strategy is based on bounding the adversarial

perturbation X̃X̃T and the non-linear functions κ0(z) and κ1(z), it is easy to see that the bounds
with non-linearities cannot be tight. So, we consider only linear GCN (=SGC), (A)PPNP and MLP
with linear activations.

Now, we focus on deriving conditions for the given node features X using the classic result on the
equality condition of Hölder’s inequality (Steele, 2004), and then analyze the NTK bounds. Steele
(2004, Fig. 9.1) shows that the bounds on ⟨a,b⟩ using the Höder’s inequality is reached when
|ai|p = |bi|q ∥a∥p

p

∥b∥q
q

. Using this, we analyze

∆ij = ⟨Γi,Xj⟩+ ⟨Γj ,Xi⟩+ ⟨Γi,Γj⟩ (28)

in which we call ⟨Γi,Γj⟩ as interaction term. Following this analysis, the tightness of NTK bounds
is derived below for p = ∞ and p = 2.

Case (i): p = ∞. In this case, the feature bounds in Eq. (21) are tight,

∀j, Xj ̸= 0 and ∀i, k Γik = ci

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

where ci is some constant such that ∥Γi∥∞ ≤ δ so the perturbation budget is satisfied. As a result,
the upper bound of ∆ij in Lemma 1 is achieved exactly in the following cases,

(a) Number of adversarial nodes = 1: Here the interaction term in Eq. (28) is 0 for all i and j. Then
for the one adversarial node i, there exists Xj ∈ Rd

+, one can set Γi = +δ1d to achieve the upper
bound.

(b) Number of adversarial nodes > 1: Here the interaction term is ̸= 0 for all the adversarial nodes
i and j. Then, for the adversarial nodes i and j if there exist Xi ∈ Rd

+ and Xj ∈ Rd
+ then for

Γi = Γj = +δ1d upper bounds are achieved.

The NTKs with linear activations Qij achieve the upper bound in these cases. Similarly, the lower
bound in Lemma 1 is achieved exactly as discussed in the following,

(a) Number of adversarial nodes = 1: Here the interaction term in Eq. (28) is 0 for all i and j. Then
for the adversarial node i, there exists Xj ∈ Rd

+, one can set Γi = −δ1d to achieve the lower bound.

(b) Number of adversarial nodes > 1: Here the interaction term is ̸= 0 for all the adversarial nodes
i and j. Then, for the adversarial nodes i and j if there exist Xi ∈ Rd

+ and Xj ∈ Rd
− then for

Γi = −δ1d and Γj = +δ1d,

leading to tight lower bounds of Lemma 1. The lower and upper tight bounds of ∆ together lead to
tight NTK bounds for linear activations. Note that there is no need to impose any structural restriction
on the graph S to achieve the tight bounds for NTK.

Case (ii): p = 2. In this case, the feature bounds in Eq. (24) are tight,

∀i, j, Xj and Γi are linearly dependent

and ∥Γi∥2 ≤ δ so the perturbation budget is satisfied. As a result, the upper bound of ∆ij in Lemma 2
is achieved exactly in the following,

(a) Number of adversarial nodes = 1: Here the interaction term in Eq. (28) is 0 for all i and j. Then
for the one adversarial node i, and any Xj ∈ Rd, one can set Γi = +δ

Xj

∥Xj∥2
to achieve the upper

bound.

(b) Number of adversarial nodes > 1: Here the interaction term is ̸= 0 for all the adversarial nodes
i and j. Then, for the adversarial nodes i and j, if there exist Xi ∈ Rd

+ and Xj ∈ Rd
+ are linearly

dependent, then for Γi = +δ
Xj

∥Xj∥2
and Γj = +δ Xi

∥Xi∥2
tight upper bound is achieved.

The NTKs with linear activations Qij achieve the worst-case upper bound in these cases. Similarly,
the lower bound in Lemma 2 is achieved exactly as discussed in the following,

(a) Number of adversarial nodes = 1: Here the interaction term in Eq. (28) is 0 for all i and j. Then
for the adversarial node i, and any Xj ∈ Rd, one can set Γi = −δ

Xj

∥Xj∥2
to achieve the lower bound.

(b) Number of adversarial nodes > 1: Here the interaction term is ̸= 0 for all the adversarial nodes
i and j. Then, for the adversarial nodes i and j, if there exist Xi ∈ Rd

+ and Xj ∈ Rd
− are linearly

dependent, then for Γi = −δ
Xj

∥Xj∥2
and Γi = +δ Xi

∥Xj∥2
,

leading to tight lower bounds of Lemma 2. The lower and upper tight bounds of ∆ together leads to
tight NTK bounds for linear activations. Note that there is no need to impose any structural restriction
on the graph S to achieve the tight bounds for NTK, same as the p = ∞ case. We further note that
only one instance of achieving the worst-case bound is stated, and one can construct similar cases,
for example by considering opposite signs for the features and perturbations.

Case (iii): p = 1. In this case, the feature bounds in Eq. (25) are tight,

∀j, Xj and ∀i, k Γik = c1[k = argmax
k′

Xj]

where c = δ to satisfy ∥Γi∥1 ≤ δ. As a result, the upper bound of ∆ij in Lemma 3 is achieved
exactly in the following cases,

(a) Number of adversarial nodes = 1: Here the interaction term in Eq. (28) is 0 for all i and j. Then
for the one adversarial node i, for any j, Xj ̸= 0 and argmaxXj = k, one can set Γik = sgn(Xjk)δ
and Γik′ = 0 ∀ k′ ̸= k to achieve the upper bound.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(b) Number of adversarial nodes > 1: Here the interaction term is ̸= 0 for all the adversarial nodes
i and j. Then, for the adversarial nodes i and j if there exist argmaxXi = argmaxXj = k and
sgn(Xik) = sgn(Xjk) then for Γik = Γjk = sgn(Xik)δ and ∀k′ ̸= k, Γik′ = Γjk′ = 0 upper
bounds are achieved.

The NTKs with linear activations Qij achieve the upper bound in these cases. Similarly, the lower
bound in Lemma 3 is achieved exactly as discussed in the following,

(a) Number of adversarial nodes = 1: Here the interaction term in Eq. (28) is 0 for all i and j.
Then for the one adversarial node i, for any j, Xj ̸= 0 and argmaxXj = k, one can set Γik =
− sgn(Xjk)δ and Γik′ = 0 ∀ k′ ̸= k to achieve the lower bound.

(b) Number of adversarial nodes > 1: Here the interaction term is ̸= 0 for all the adversarial nodes
i and j. Then, for the adversarial nodes i and j if there exist argmaxXi = argmaxXj = k and
sgn(Xik) = − sgn(Xjk) then for Γik = − sgn(Xik)δ, Γjk = − sgn(Xjk)δ and ∀k′ ̸= k, Γik′ =
Γjk′ = 0,

leading to tight lower bounds of Lemma 3. The lower and upper tight bounds of ∆ together leads to
tight NTK bounds for linear activations. Again, there is no need to impose any structural restriction
on the graph S to achieve the tight bounds for NTK. □

E MULTI-CLASS CERTIFICATION

In this section, we discuss the certification for multi-class. We abstract the NN and work with
NTK here. Hence, to do multi-class classification using SVM with NTK, we choose One-Vs-All
strategy, where we learn K classifiers. Formally, we learn β1, . . . ,βK which has corresponding
duals α1, . . . ,αK . In order to learn βc, all samples with class label c are assumed to be positive
and the rest negative. Assume from hence on that for all c, βc corresponds to the optimal solution
with the corresponding dual αc. Then the prediction for a node t is c∗ = argmaxc p̂

c
t where

p̂ct =
∑m

i=1 yiα
c
iQti where Q is the NTK matrix.

Given this, we propose a simple extension of our binary certification where to certify a node t
as provably robust, we minimize the MILP objective in Theorem 1 for the predicted class c∗ and
maximize the objective for the remaining K − 1 classes. Finally, certify t to be provably robust only
if the objective for c∗ remains maximum. Formally, we state the objective below.

Theorem 5. Node t with original predicted class c∗ is certifiably robust against adversary A if
c′ = c∗ where c′ is defined in the following. Using the MILP P (Q) in Theorem 1, we define

P (Q)c := P (Q) using αc, with the only change in obj. to (−1)1[c ̸=c∗]
m∑
i=1

yiZti

c′t = argmax
c∈[K]

P (Q)c. (29)

F PROOF OF PROPOSITION 1

We restate Proposition 1.

Proposition 1. Problem P1(Q̃) given by Eq. (2) is convex and satisfies strong Slater’s constraint.
Consequently, the single-level optimization problem P3(Q) arising from P2(Q) by replacing α ∈
S(Q̃) with Eqs. (5) to (7) has the same globally optimal solutions as P2(Q).

Given any Q̃ ∈ A(Q). We prove two lemmas, leading us towards proving Proposition 1.

Lemma 4. Problem P1(Q̃) is convex.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Proof. The dual problem Pb
1(Q̃) associated do an SVM with bias term reads

Pb
1(Q̃) : min

α
−

m∑
i=1

αi +
1

2

m∑
i=1

m∑
j=1

yiyjαiαjQ̃ij s.t.
m∑
i=1

αiyi = 0 0 ≤ αi ≤ C ∀i ∈ [m] (30)

It is a known textbook result that Pb
1(Q̃) is convex and we refer to Mohri et al. (2018) for a proof.

A necessary and sufficient condition for an optimization problem to be convex is that the objective
function as well as all inequality constraints are convex and the equality constraints affine functions.
Furthermore, the domain of the variable over which is optimized must be a convex set. As removing
the bias term of an SVM results in a dual problem P1(Q̃) which is equivalent to Pb

1(Q̃) only with
the constraint

∑m
i=1 αiyi = 0 removed, the necessary and sufficient conditions for convexity stay

fulfilled.

Now, we define strong Slater’s condition for P1(Q̃) embedded in the upper-level problem P2(Q)
defined in Eq. (4), which we from here on will call strong Slater’s constraint qualification (Dempe &
Dutta, 2012).

Def. 8 (Slater’s CQ). The lower-level convex optimization problem P1(Q̃) fulfills strong Slater’s
Constraint Qualification, if for any upper-level feasible Q̃ ∈ A(Q), there exists a point α(Q̃) in the
feasible set of P1(Q̃) such that no constraint in P1(Q̃) is active, i.e. 0 < α(Q̃)i < C for all i ∈ [m].

Lemma 5. Problem P1(Q̃) fulfills strong Slater’s constraint qualification.

Proof. We prove Lemma 5 through a constructive proof. Given any upper-level feasible Q̃ ∈ A(Q).
Let α be an optimal solution to P1(Q̃). We restrict ourselves to cases, where P1(Q̃) is non-
degenerate, i.e. the optimal solution to the SVM fSVM

θ corresponds to a weight vector β ̸= 0. Then,
at least for one index i ∈ [m] it must hold that αi > 0.

Assume that j is the index in [m] with the smallest αj > 0. Let ϵ = αj/m+ 1 > 0. Now, we
construct a new α′ from α by for each i ∈ [m] setting:

• If αi = 0, set α′
i = ϵ.

• If αi = C, set α′
i = C − ϵ.

The new α′ fulfills 0 < α′(Q̃)i < C for all i ∈ [m]. If P1(Q̃) is degenerate, set α′(Q̃)i = C/2 for
all i ∈ [m]. This concludes the proof.

(Dempe & Dutta, 2012) establish that any bilevel optimization problem U whose lower-level problem
L is convex and fulfills strong Slater’s constraint qualification for any upper-level feasible point has
the same global solutions as another problem defined by replacing the lower-level problem L in U
with L’s Karash Kuhn Tucker conditions. This, together with Lemmas 4 and 5 concludes the proof
for Proposition 1. □

G SETTING BIG-M CONSTRAINTS

Proposition 2 (Big-M ’s). Replacing the complementary slackness constraints Eq. (7) in P3(Q) with
the big-M constraints given in Eq. (8) does not cut away solution values of P3(Q), if for any i ∈ [m],
the big-M values fulfill the following conditions. For notational simplicity j : Condition(j) denotes
j ∈ {j ∈ [m] : Condition(j)}.

If yi = 1 then

Mui
≥

∑
j:yj=1∧Q̃U

ij≥0

CQ̃U
ij −

∑
j:yj=−1∧Q̃L

ij≤0

CQ̃L
ij − 1 (31)

Mvi ≥
∑

j:yj=−1∧Q̃U
ij≥0

CQ̃U
ij −

∑
j:yj=1∧Q̃L

ij≤0

CQ̃L
ij + 1 (32)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

If yi = −1 then

Mui ≥
∑

j:yj=−1∧Q̃U
ij≥0

CQ̃U
ij −

∑
j:yj=1∧Q̃L

ij≤0

CQ̃L
ij − 1 (33)

Mvi ≥
∑

j:yj=1∧Q̃U
ij≥0

CQ̃U
ij −

∑
j:yj=−1∧Q̃L

ij≤0

CQ̃L
ij + 1 (34)

To obtain the tightest formulation for P (Q) from the above conditions, we set the big-M ’s to equal
the conditions.

Proof. Denote by UB an upper bound to
∑m

j=1 yiyjZij and by LB a lower bound to
∑m

j=1 yiyjZij .

The existence of these bounds follows from yi and yj ∈ {−1, 1} and Zij = αjQ̃ij with 0 ≤ αj ≤ C

and Q̃L
ij ≤ Q̃ij ≤ Q̃U

ij , i.e. the boundedness of all variables.

ui and vi need to be able to be set such that
∑m

j=1 yiyjZij − ui + vi = 1 (see Eq. (5)) can be

satisfied given any α∗ and Q̃∗ part of an optimal solution to P3(Q). By using UB and LB we get
the following inequalities:

UB − ui + vi ≥ 1 (35)

and

LB − ui + vi ≤ 1 (36)

Denote
∑m

j=1 yiyjZij by T . Thus, if T ≥ 1, setting vi = 0 and ui ≤ UB− 1∧ui ≥ LB− 1 allows
to satisfy Eq. (5). If T < 1, setting ui = 0 and vi ≤ 1−LB ∧ vi ≥ 1−UB allows to satisfy Eq. (5).
Note that for a given i, we are free to set ui and vi to arbitrary positive values, as long as they satisfy
Eq. (5), as they don’t affect the optimal solution value nor the values of other variables.

Thus, adding ui ≤ UB − 1 and vi ≤ 1 − LB as constraints to P3(Q) does not affect its optimal
solution. Consequently, setting Mui

≥ UB − 1 and Mvi ≥ 1− LB, are valid big-M constraints in
the mixed-integer reformulation of the complementary slackness constraints Eq. (7). The UB and
LB values depend on the sign of yi, yj and the bounds on αj and Q̃ij and the right terms in Eqs. (31)
to (34) represent the respective UB and LB arising. This concludes the proof.

H ADDITIONAL EXPERIMENTAL DETAILS

H.1 DATASETS

The CSBM implementation is taken from (Gosch et al., 2023) publicly released under MIT license.
Cora-ML taken from (Bojchevski & Günnemann, 2018) is also released under MIT license. Cora-ML
has 2995 nodes with 8158 edges, and 7 classes. It traditionally comes with a 2879 dimensional
discrete bag-of-words node feature embedding from the paper abstract. As we focus on continuous
perturbation models, we use the abstracts provided by (Bojchevski & Günnemann, 2018) together
with all-MiniLM-L6-v2, a modern sentence transformer from https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2 to generate 384-dimensional continuous
node-feature embeddings. From Cora-ML, we extract the subgraph defined by the two most largest
classes, remove singleton nodes, and call the resulting binary-classification dataset Cora-MLb. It has
1235 nodes and 2601 edges. WikiCSb, created from extracting the two largest classes from WikiCS,
is the largest used dataset with 4660 nodes and 72806 edges.

H.1.1 CSBM SAMPLING SCHEME

A CSBM graph G with n nodes is iteratively sampled as: (a) Sample label yi ∼ Bernoulli(1/2) ∀i ∈
[n]; (b) Sample feature vectors Xi|yi ∼ N (yiµ, σ

2Id); (c) Sample adjacency Aij ∼ Bernoulli(p)

26

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

if yi = yj , Aij ∼ Bernoulli(q) otherwise, and Aji = Aij . Following Gosch et al. (2023) we set
p, q through the maximum likelihood fit to Cora (Sen et al., 2008) (p = 3.17%, q = 0.74%), and µ
element-wise to Kσ/2

√
d with d = ⌊n/ ln2(n)⌋, σ = 1, and K = 1.5, resulting in an interesting

classification scheme where both graph structure and features are necessary for good generalization.
We sample n = 200 and choose 40 nodes per class for training, leaving 120 unlabeled nodes.

H.2 ARCHITECTURES.

We fix S to Srow for GCN, SGC, GCN Skip-α and GCN Skip-PC following (Sabanayagam et al.,
2023), Ssym for APPNP as its default implementation. From the GNN definitions App. A, the graph
structure for GIN is (1 + ϵ)I+A, for GraphSAGE is I+D−1A.

We outline the hyperparameters for Cora-MLb, for CSBM all parameters are mentioned in Sec. 4
except the Skip-α for GCN Skip-α which was set to 0.2.

• GCN (Row Norm.): C = 0.75

• GCN (Sym. Norm.): C = 1

• SGC (Row Norm.): C = 0.75

• SGC (Sym Norm.): C = 0.75

• APPNP (Sym. Norm.): C = 1, α = 0.1

• MLP: C = 0.5

• GCN Skip-α: C = 1, α = 0.1

• GCN Skippc: C = 0.5

For Cora-ML, the following hyperparameters were set:

• GCN (Row Norm.): C = 0.05

• SGC (Row Norm.): C = 0.0575

• MLP: C = 0.004

For WikiCSb:

• GCN (Row Norm.): C = 1

• SGC (Row Norm.): C = 5

• APPNP (Sym. Norm.): C = 0.75, α = 0.1

• MLP: C = 0.175

• GCN Skip-α: C = 0.1, α = 0.1

• GCN Skippc: C = 1

Hyperparameters were set using 4-fold cross-validation and and choosing the result with lowest C in
the standard deviation of the best validation accuracy, to reduce runtime of the MILP certification
process.

H.3 HARDWARE.

Experiments are run on CPU using Gurobi on an internal cluster. Experiments for CSBM, Cora-MLb
and WikiCSb do not require more than 15GB of RAM. Cora-ML experiments do not require more
than 20GB of RAM. The time to certify a node depends on the size of MILP as well as the structure
of the concrete problem. On our hardware, for CSBM and Cora-MLb certifying one node typically
takes several seconds up to one minute on a single CPU. For Cora-ML, certifying a node can take
between one minute and several hours (≤ 10) using two CPUs depending on the difficulty of the
associated MILP.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

I ADDITIONAL RESULTS: CSBM

I.1 EVALUATING QPCERT AND IMPORTANCE OF GRAPH INFORMATION

Fig. 5a shows the same result as Fig. 2a from Sec. 4 establishing that including graph information
boosts worst-case robustness in CSBM too. This also shows that the result is not dataset-specific.
In Fig. 5, we provide the remaining settings in correspondence to Fig. 3, Poison Labeled PL and
Backdoor Labeled BL for CSBM. Similarly, the heatmaps showing the certified accuracy gain with
respect to MLP is presented in Fig. 6.

0 0.01 0.02 0.05 0.1 0.2

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GraphSAGE
GIN
GCN Skip-PC
GCN Skip-α
MLP

(a) CSBM: PL, padv = 1

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GraphSAGE
GIN
GCN Skip-PC
GCN Skip-α
MLP

(b) CSBM: PL, padv = 0.2

0 0.01 0.02 0.05 0.1 0.2 0.5

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GIN
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(c) CSBM: BL, padv = 0.2

Figure 5: Certifiable robustness for different (G)NNs in Poisoning Labeled (PL) and Backdoor
Labeled (BL) setting.

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0B
u

d
ge

t
δ

(p
=
∞

)

−0.6

−0.4

−0.2

0.0

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(a) GCN

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0B
u

d
ge

t
δ

(p
=
∞

)

−0.4

−0.2

0.0

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(b) SGC

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0B
u

d
ge

t
δ

(p
=
∞

)

−0.6

−0.4

−0.2

0.0

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(c) APPNP

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0B
u

d
ge

t
δ

(p
=
∞

)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

C
er

ti
fie

d
ac

cu
ra

cy
ga

in

(d) GIN

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0B
u

d
ge

t
δ

(p
=
∞

)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fie

d
ac

cu
ra

cy
ga

in

(e) GraphSAGE

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0B
u

d
ge

t
δ

(p
=
∞

)

−0.6

−0.4

−0.2

0.0

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(f) GCN Skip-PC

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0B
u

d
ge

t
δ

(p
=
∞

)

−0.6

−0.4

−0.2

0.0

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(g) GCN Skip-α

Figure 6: Heatmaps of different GNNs for Poison Unlabeled (PU) setting.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

I.2 ON GRAPH CONNECTIVITY AND ARCHITECTURAL INSIGHTS

We present the sparsity analysis for SGC and APPNP in (a) and (b) of Fig. 7, showing a similar
observation to GCN in App. I.2. The APPNP α analysis for PU and PL are provided in (c) and (d)
of Fig. 7, showing the inflection point in PU but not in PL. Additionally, we show the influence of
depth, linear vs ReLU, regularization C and row vs symmetric normalized adjacency in Fig. 8.

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

SGC 2×
SGC 1×
SGC 0.5×
SGC 0.25×
SGC 0×

(a) SGC, PU

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

APPNP 2×
APPNP 1×
APPNP 0.5×
APPNP 0.25×
APPNP 0×

(b) APPNP, PU

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

α = 0.0
α = 0.1
α = 0.2
α = 0.3
α = 0.5
α = 1.0 (MLP)

(c) APPNP, PU

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

α = 0.0
α = 0.1
α = 0.2
α = 0.3
α = 0.5
α = 1.0 (MLP)

(d) APPNP, PL

Figure 7: (a)-(b): Graph connectivity analysis where c× is cp and cq in CSBM model. GCN is
provided in Fig. 4b. (c)-(d): APPNP analysis based on α.

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN row
GCN sym
SGC row
SGC sym

(a) S in GCN, SGC

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

SGC L = 1
SGC L = 2
SGC L = 4

(b) Hidden layers L

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN Skip-PC linear
GCN Skip-PC relu
GCN Skip-α linear
GCN Skip-α relu

(c) Skip connections

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

C = 0.001
C = 0.01
C = 0.1

(d) Regularization

Figure 8: (a): Symmetric and row normalized adjacencies as the choice for S in GCN and SGC.
(b): Effect of number of hidden layers L. (c): Linear and relu for the Skip-PC and Skip-α. (d):
Regularization C in GCN. All experiments in PU setting and padv = 0.2.

I.3 TIGHTNESS OF QPCERT

First, we present the tightness of QPCert in Figs. 9 and 10 evaluated with our strongest employed
attacks for each setting: For graph poisoning (Fig. 9), APGD is employed with direct differentiation
through the learning process (QPLayer) for the PU setting in Fig. 9b and for the PL setting in Fig. 9a.
For the backdoor attack setting (Fig. 10), first a poisoning attack is carried out with APGD (QPLayer)
and then, the respective test node is additionally attacked with APGD in an evasion setting. Fig. 10b
shows the result for the BU setting and Fig. 10a for the BL setting. Interstingly, QPCert seems to
be more tight in a backdoor setting than in a pure poisoning setting. However, this could also be
explained by the fact that an evasion attack is easier to perform than a poisoning attack and thus,
APGD potentially provided lower upper bounds to the actual robustness than for the pure poisoning
setting. Another interesting observation is that for the backdoor settings, the rankings of the GNNs
regarding certified robustness seems to roughly correspond to the robust accuracies obtained by the
backdoor attack.

In Fig. 11 performing a gradient-based attack (APGD) using either exact gradients with QPLayer
or meta-gradients obtained through MetaAttack’s surrogate model is compared. For both the PL
(Fig. 11a) and PU (Fig. 11b) setting using exact gradients results in a lower upper bound to the
robust accuracy (i.e., a stronger attack). Thus, we use the exact gradients from QPLayer to measure
the tightness of QPCert. Meta-gradients from MetaAttack are obtained by adapting Algorithm 2
in (Zügner & Günnemann, 2019a) to feature perturbations, through setting a maximum number
of iterations as the stop criterion and instead of choosing an edge with maximal score, update the
feature matrix with the meta-gradient using APGD. In MetaAttack, λ trading of the self-supervised
with the training loss is set to 0.5. Interestingly, for small budgets, MetaAttack can lead to the
opposite intended effect. Exemplary, for a GCN in the PL setting with δ = 0.1, the generalization
performance is slightly increased. This indicates that for small perturbation budgets, the meta-gradient
of MetaAttack’s surrogate model does not transfer well to the infinite-width networks. However, for

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

larger budgets, MetaAttack still provides a strong, albeit weaker attack than exact gradients. In Figure
Fig. 12 we compare performing the above mentioned gradient-based backdoor attack with the simple
backdoor strategy proposed by Xing et al. (2024) with a trigger size of 0.5. We observe that Xing
et al. (2024)’s attack is significantly weaker compared to the gradient-based attack and only starts to
reduce accuracy of the models for high attack budgets. This can be explained by several observations:
For small ℓp-budgets, the backdoor trigger is often distorted in the backdoored nodes by having to
project the perturbation back into the allowed ℓp-ball and secondly, the attack is simple, static and not
adaptive. Concretely, it simply copies certain features to other nodes without considering the attacked
model. We want to note that similar to MetaAttack, for small budgets, for BU we can observe for
MLP that the change actually results in slightly higher generalization of the model under attack,
showing that for small budgets, the backdoor strategy in Xing et al. (2024) is not effective.

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

lower bound
upper bound
GCN
APPNP
SGC
GIN
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(a) CSBM: PL

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

lower bound
upper bound
GCN
APPNP
SGC
GIN
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(b) CSBM: PU

Figure 9: Tightness of our certificate for data poisoning. Both PU and PL with padv = 0.2 evaluated
with APGD (QPLayer).

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

lower bound
upper bound
GCN
APPNP
SGC
GIN
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(a) CSBM: BL

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

lower bound
upper bound
GCN
APPNP
SGC
GIN
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(b) CSBM: BU

Figure 10: Tightness of our certificate for backdoor attacks. Both BU and BL again with padv = 0.2.

0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.4

0.6

0.8

R
ob

u
st

A
cc

u
ra

cy

QPCert
MetaAttack
GCN
APPNP
SGC

GIN
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(a) CSBM: PL

0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.4

0.6

0.8

R
ob

u
st

A
cc

u
ra

cy

QPCert
MetaAttack
GCN
APPNP
SGC

GIN
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(b) CSBM: PU

Figure 11: Comparison of performing a gradient-based attack (APGD) using either exact gradients
using QPLayer or using surrogate meta-gradients using MetaAttack’s surrogate model. Both PL and
PU with padv = 0.2.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

R
ob

u
st

A
cc

u
ra

cy
APGD-based
Xing et al.
GCN
APPNP
SGC

GIN
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(a) CSBM: BL

0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

R
ob

u
st

A
cc

u
ra

cy

APGD-based
Xing et al.
GCN
APPNP
SGC

GIN
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(b) CSBM: BU

Figure 12: Comparison of performing a gradient-based backdoor attack versus the simple backdoor
attack proposed in Xing et al. (2024).

I.4 RESULTS FOR p = 2 PERTURBATION BUDGET

We present the results for p = 2 perturbation budget evaluated on CSBM and all the GNNs considered.
We focus on Poison Unlabeled setting. Fig. 13 show the results of the certifiable robustness for all
GNNs and the heatmaps showing the accuracy gain with respect to MLP is in Fig. 13. All the results
are in identical to p = ∞ setting and we do not see any discrepancy.

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GIN
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(a) CSBM: PU

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

2)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

C
er

ti
fie

d
ac

cu
ra

cy
ga

in

(b) GIN

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

2)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fie

d
ac

cu
ra

cy
ga

in

(c) GraphSAGE

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

2)

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(d) GCN

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

2)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(e) SGC

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

2)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(f) APPNP

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

2)

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(g) GCN Skip-PC

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

2)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fie

d
A

cc
u

ra
cy

G
ai

n

(h) GCN Skip-α

Figure 13: (a): Certifiable robustness for different (G)NNs in Poisoning Unlabeled (PU) for p = 2.
(b)-(h): Certified accuracy gain for heatmap for all GNNs. All experiments with Poisoning Unlabeled
(PU) and padv = 0.2

I.5 RESULTS FOR p = 1 PERTURBATION BUDGET

Similar to p = 2, we also present the results for p = 1 perturbation budget evaluated on CSBM and
all the GNNs considered for Poison Unlabeled setting in Fig. 14. All the results are in identical to
p = ∞ setting and we do not see any discrepancy.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p = 1)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GIN
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(a) CSBM: PU

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

1)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fie

d
ac

cu
ra

cy
ga

in

(b) GCN

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

1)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fie

d
ac

cu
ra

cy
ga

in

(c) SGC

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

1)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

C
er

ti
fie

d
ac

cu
ra

cy
ga

in

(d) APPNP

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

1)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fie

d
ac

cu
ra

cy
ga

in

(e) GCN Skip-PC

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

1)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fie

d
ac

cu
ra

cy
ga

in

(f) GCN Skip-α

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

1)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

C
er

ti
fie

d
ac

cu
ra

cy
ga

in

(g) GIN

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

1

0.5

0.2

0.1

0.05

0.02

0.01

0

B
u

d
ge

t
δ

(p
=

1)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fie

d
ac

cu
ra

cy
ga

in

(h) GraphSAGE

Figure 14: (a): Certifiable robustness for different (G)NNs in Poisoning Unlabeled (PU) for p = 1.
(b)-(h): Certified accuracy gain for heatmap for all GNNs. All experiments with Poisoning Unlabeled
(PU) and padv = 0.2.

I.6 COMPARISON BETWEEN p = ∞ AND p = 2

We provide a comparison between p = ∞ and p = 2 perturbation budget, showing that p = 2 is
tighter than p = ∞ for the same budget as expected.

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

p =∞
p=2
GCN
APPNP
SGC
MLP

Figure 15: Comparison between p = ∞ and p = 2 for Poison Unlabeled setting. padv = 0.2.

I.7 COMPARISON TO COMMON POISONING DEFENSES

In Fig. 16 we compare two common poisoning defenses namely GNNGuard (Zhang & Zitnik, 2020)
and ElasticGNN (Liu et al., 2021) with the certified accuracy provided by QPCert. While the
accuracies provided by a defense are not certified accuracies (i.e., they are only upper bounds to
the true robust accuracy) and hence, can only be compared partly with the certified accuracy which
represents a true lower bound to the robust accuracy. However, a comparison is still interesting as it
allows to answer the question, of how big the gap between the best-certified accuracy to the robust
accuracy provided by defenses is and if we could even get a certified accuracy result comparable to a
poisoning defense’s accuracy. Interestingly, Fig. 16 shows that for small to intermediate budgets, the
certified accuracy of an infinite-width GCN as provided by QPCert is higher than the robust accuracy
provided by the defense baselines. This can be explained by the fact that even ElasticGNN and
GNNGuard show lower base clean accuracy despite significant hyperparameter tuning (experimental
details see below paragraph) paired with a few very brittle predictions. We hypothesize that this is
due to the difficult learning problem a CSBM poses (despite being a small dataset) paired with the
fact that both poisoning defenses have GCN-like base models where the graph / propagation scheme
is adapted to be more robust to poisoning while potentially trading off clean accuracy.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Both poisoning defenses are trained using the non-negative likelihood loss and the ADAM optimizer
following Zhang & Zitnik (2020). GNNGuard uses a 2-layer GCN as a baseline model and hyperpa-
rameters are searched in the grid: (i) number of filters {8, 16, 32}, (ii) dropout {0, 0.2, 0.5}, (iii)
learning rate {0.01, 0.001}, (iv) weight decay {5e−3, 1e−3, 5e−4, 1e−4} over 10 seeds resulting
in 720 models. For ElasticGNN the hyperparameter grid reported in Liu et al. (2021) is explored over
10 seeds resulting in 11520 models due to ElasticGNN having more hyperparameters to tune. It’s
hidden layer size is fixed to 32. Both baseline defenses are attacked using MetaAttack adapted to
feature perturbations as done in App. I.3. The infinite-width GCN is attacked using the exact gradient
obtained from the QPLayer implementation.

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p =∞)

0.0

0.2

0.4

0.6

0.8

A
cc

u
ra

cy

Robust Acc.
Certified Acc.
GCN (∞-width)

ElasticGNN
GNNGuard

Figure 16: Comparison of different poisoning defenses with the certified accuracy obtained by
QPCert.

J ADDITIONAL RESULTS: CORA-MLB

J.1 EVALUATING QPCERT

Fig. 17a shows the certified accuracy on Cora-MLb for the BL settings for pcert = 0.1. Figs. 17b
to 17d and 18 show a detailed analysis into the certified accuracy difference of different GNN
architectures for PU setting for pcert = 0.1.

0 0.01 0.02 0.05 0.1

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GraphSAGE
GIN
GCN Skip-PC
GCN Skip-α
MLP

(a) BL, padv = 0.1

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.8

−0.6

−0.4

−0.2

0.0

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(b) GCN

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.8

−0.6

−0.4

−0.2

0.0

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(c) SGC

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.8

−0.6

−0.4

−0.2

0.0

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(d) APPNP

Figure 17: (a) Backdoor Labeled (BL) Setting. (b)-(d) Heatmaps of GCN, SGC, and APPNP for
Poison Unlabeled (PU) setting on Cora-MLb with padv = 0.1.

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.8

−0.6

−0.4

−0.2

0.0

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(a) GCN Skip-α

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.8

−0.6

−0.4

−0.2

0.0

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(b) GCN Skippc

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.8

−0.6

−0.4

−0.2

0.0

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(c) GraphSAGE

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(d) GIN

Figure 18: Heatmaps of GCN Skip-α, GCN Skippc, GraphSAGE, and GIN for Poison Unlabeled
(PU) setting on Cora-MLb with padv = 0.1.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

J.2 APPNP

Fig. 19 shows that the inflection point observed in Fig. 4c is not observed in the other settings.

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

APPNP α = 0.1

APPNP α = 0.2

APPNP α = 0.3

APPNP α = 0.5

MLP

(a) PL

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy APPNP α = 0.1

APPNP α = 0.2

APPNP α = 0.3

APPNP α = 0.5

MLP

(b) BL

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy APPNP α = 0.1

APPNP α = 0.2

APPNP α = 0.3

APPNP α = 0.5

MLP

(c) BU

Figure 19: Cora-MLb, all settings with padv = 0.05.

J.3 SYMMETRIC VS. ROW NORMALIZATION OF THE ADJACENCY MATRIX

0 0.01 0.02 0.05 0.1 0.2

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN Row.

GCN Sym.

SGC Row.

SGC Sym.

MLP

(a) S in GCN, SGC, PU

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN Row.

GCN Sym.

SGC Row.

SGC Sym.

MLP

(b) S in GCN, SGC, PL

Figure 20: Influence of symmetric and row normalized adjacency in GCN and SGC for poison
unlabeled and poison labeled settings.

J.4 RESULTS ON p = 1 ADVERSARY

Fig. 21 shows the certifiable robustness to p = 1 adversary on Cora-MLb dataset. The observation is
consistent to the CSBM case.

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p = 1)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GIN
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(a) PU padv = 0.1

0 0.01 0.02 0.05 0.1 0.2 0.5

Perturbation Budget δ (p = 1)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GIN
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(b) PL padv = 1

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p = 1)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GIN
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(c) BU padv = 0.1

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p = 1)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GIN
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(d) BL padv = 0.1

Figure 21: Cora-MLb results for PL, PU, BL and BU under p = 1 perturbation.

K ADDITIONAL RESULTS: CORA-ML

For Cora-ML we choose 100 test nodes at random and investigate in Fig. 22a the poison labeled
(PL) setting with a strong adversary padv = 1.0 for GCN, SGC and MLP. It shows that QPCert can
provide non-trivial robustness guarantees even in multiclass settings. Fig. 22b shows the results for
poison unlabeled (PU) and padv = 0.05. Only SGC shows better worst-case robustness than MLP.
This, together with both plots showing that the certified radii are lower compared to the binary-case,
highlights that white-box certification of (G)NNs for the multiclass case is a more challenging task.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0 0.01 0.02 0.05

Perturbation budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN

SGC

MLP

APPNP

GCN Skip-α

GCN Skip-PC

GraphSAGE

GIN

(a) Cora-ML PL padv = 1.0

0 0.01 0.02 0.05

Perturbation budget δ (p = 2)

0.3

0.4

0.5

0.6

0.7

0.8

C
er

ti
fie

d
A

cc
u

ra
cy

GCN

SGC

MLP

GraphSAGE

(b) Cora-ML PU padv = 0.05

Figure 22: Cora-ML results for PL and PU.

L ADDITIONAL RESULTS: WIKICSB

Fig. 23a shows for the poisoned unlabeled setting that until a certain perturbation budget, GNNs
lead to higher certified accuracy as an MLP. However, as padv = 0.02 it also shows that the certified
accuracy of GNNs can be highly susceptible even to few perturbed nodes. Figs. 24b to 24d and 25
show a more detailed analysis into the certified accuracy difference of different GNN architectures
for PU setting for pcert = 0.02. We want to note the especially good performance of choosing linear
activations (SGC). Fig. 23b shows that all GNNs achieve better certified accuracy as an MLP. Lastly,
Fig. 24a shows the certified accuracy on WikiCSb for the BL settings for pcert = 0.1.

0 0.01 0.02 0.05 0.1 0.2 0.5

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(a) WikiCS: PU

0 0.01 0.02 0.05 0.1 0.2 0.5

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(b) WikiCS: BU

Figure 23: Certifiable robustness for different (G)NNs in Poisoning Unlabeled (PU) and Backdoor
Unlabeled (BU) setting with padv = 0.02 for WikiCSb.

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GraphSAGE
GCN Skip-PC
GCN Skip-α
MLP

(a) BL, padv = 0.1

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(b) GCN

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(c) SGC

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.6

−0.4

−0.2

0.0

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(d) APPNP

Figure 24: (a) Backdoor Labeled (BL) Setting. (b)-(d) Heatmaps of GCN, SGC, and APPNP for
Poison Unlabeled (PU) setting on WikiCSb with padv = 0.02.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(a) GCN Skip-α

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(b) GCN Skippc

0.01 0.02 0.05 0.1 0.2 0.5 1

Adversarial Nodes padv

0

0.01

0.02

0.05

0.1

0.2

0.5

1

B
u

d
ge

t
δ

(p
=

2)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

C
er

ti
fi

ed
ac

cu
ra

cy
ga

in

(c) GraphSAGE

Figure 25: Heatmaps of GCN Skip-α, GCN Skippc, GraphSAGE, and GIN for Poison Unlabeled
(PU) setting on WikiCSb with padv = 0.02.

M RELATED WORKS

Poisoning certificates. The literature on poisoning certificates is significantly less developed than
certifying against test-time (evasion) attacks (Li et al., 2023) and we provide an overview in Table 1.
Black-box certificates for poisoning are derived following three different approaches: (i) Randomized
smoothing, a popular probabilistic test-time certificate strategy (Cohen et al., 2019), in which
randomization performed over the training dataset (Rosenfeld et al., 2020; Weber et al., 2023; Zhang
et al., 2022). Other than data partitioning, a common defense is to sanitize the data, and Hong
et al. (2024) certifies diffusion-based data sanitation via randomized smoothing. (ii) Ensembles:
Creating separate partitions of the training data, training individual base classifiers on top of them and
certifying a constructed ensemble classifier (Levine & Feizi, 2021; Jia et al., 2021; Wang et al., 2022;
Rezaei et al., 2023); Jia et al. (2021) and Chen et al. (2022) offer certificates and collective certificates,
respectively, for bagging, while Levine & Feizi (2021) and Wang et al. (2022) derive certificates for
aggregation-based methods tailored for black-box classifiers. (iii) Differential Privacy2 (DP): Ma
et al. (2019) show that any (ϵ, δ)-DP learner enjoys a certain provable poisoning robustness. Liu et al.
(2023) extend this result to more general notions of DP. Xie et al. (2023) derives guarantees against
arbitrary data poisoning in DP federated learning setup. However, white-box deterministic poisoning
certificates remain sparse. Drews et al. (2020) and Meyer et al. (2021) derive poisoning certificates
for decision trees using abstract interpretations, while Jia et al. (2022) provides a poisoning certificate
for nearest neighbor algorithms based on their inherent majority voting principle. Recently, Bian et al.
(2024) derives a poisoning certificate for naive Bayes classification.

Poisoning attacks and defense using the bilevel problem. Biggio et al. (2012) and Xiao et al. (2015)
use the bilevel problem with SVM hinge loss and regularized ERM to generate poison samples, and
solve it using iterative gradient ascent. Mei & Zhu (2015) also recognize the possibility to transform
the bilevel problem into a single-level one. However, they only reformulate the problem into a
single-level bilinear one and solve it heuristically w.r.t. to the training data to generate poisoning
attacks. Koh & Liang (2017) also considers the bilevel problem to detect and also generate poisoned
samples using influence functions (gradient and Hessian vector product).

Graphs. Currently, there are no poisoning certificates for clean-label attacks specifically developed
for GNNs or the task of node classification. (Lai et al., 2024) is the only work on poisoning
certification of GNNs, but differ incomparably in their threat model and are black-box as well as not
applicable to backdoors. However, there are many works on certifying against test-time attacks on
graphs and Günnemann (2022) provides an overview.

2The mechanism to derive a poisoning certificate from a certain privacy guarantee is model agnostic, thus we
count it as black-box. However, the calculated privacy guarantees may depend on white-box knowledge.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

N FURTHER DISCUSSIONS

N.1 APPLICABILITY TO COMMONLY STUDIED PERTURBATION MODELS AND ATTACKS

QPCert applies to any poisoning or backdoor attack that performs ℓp-bounded feature perturbations.
As such, QPCert is directly applicable to clean-label (graph) backdoor attacks as proposed by Turner
et al. (2019) and Xing et al. (2024), and clean-label poisoning attacks such as Huang et al. (2020) and
Geiping et al. (2021). It is not directly applicable to poisoning of the graph structure as performed
by MetaAttack (Zügner & Günnemann, 2019a). However, the MetaAttack strategy can be easily
adapted to poison node features as done in App. I.3 and we discuss the challenges to extend QPCert
to structure perturbations in App. N.2. The backdoor attack proposed by Dai et al. (2023) changes
the node features and training labels jointly and thus, our method is only applicable if the training
labels will be kept constant or the poisoned nodes are sampled only from the class, the training label
should be changed to. Similar, Xi et al. (2021) develops a backdoor attack that changes the features
and graph structure jointly and thus, QPCert is not applicable given the graph structure changes.

N.2 CERTIFYING AGAINST GRAPH STRUCTURE PERTURBATIONS

In the following, we discuss how to approach certifying against poisoning of the graph structure and
the open challenges that arise in the process. To certify against poisoning the graph structure, again
Eq. (3) has to be solved but now, the adversary A can change the graph structure instead of the node
features, meaning the optimization in Eq. (3) is performed w.r.t. the graph structure matrix S and
thus, reads

min
S̃,θ

Latt(θ, G̃) s. t. S̃∈ A(S) ∧ θ ∈ argmin
θ′

L(θ′, G̃) (37)

with S̃ ∈ A(S) representing the perturbed graph structure matrices constructable by the adversary and
G̃ = (S̃,X). Indeed, it will be possible to reformulate this problem into a single-level problem similar
to the description in Sec. 3. While in theory, QPCert Theorem 1 also applies to structure perturbations,
the bounding strategy from Sec. 3.1 does result in loose bounds for structure perturbations, as an
untrusted node will always result in a lower bound in the respective adjacency matrix entry of 0 and
an upper bound of 1 - thus, spanning the whole space of possible entries.

To overcome this, one can approach certifying graph structure perturbations by including the NTK
computation into the optimization problem with the drawback that each type of GNN architecture
will require slight adaptations of the optimization problem depending on its corresponding NTK.
Assuming that the chosen model is an L = 1 layer GCN (the formulation can be easily extended to
arbitrary layers, see App. B.3), the bilevel optimization problem reads as follows

min
α,S̃,Q,Σ1,Σ2,E1,Ė1,Ė2

sgn(p̂t)

m∑
i=1

yiαiQti s.t. S̃∈ A(S) ∧ α ∈ S(Q) (38)

Q= S̃(Σ1 ⊙ Ė1)S̃
T +Σ2 ⊙ Ė2 (39)

Σ1= S̃XXS̃T (40)

Σ2= S̃E1S̃
T (41)

E1= cσ E
F∼N (0,Σl)

[
σ(F)σ(F)T

]
(42)

Ė1= cσ E
F∼N (0,Σl)

[
σ̇(F)σ̇(F)T

]
(43)

Ė2= 1n×n (44)

This (non-linear) bilevel problem can be transformed into a single-level problem as described in
Sec. 3, as the inner-level problem α ∈ S(Q) is the same as in Eq. (4) and the same strategy can
be applied to linearly model the resulting constraints from the KKT conditions. However, a crucial

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

difference to Eq. (4) are the additional non-linear constraints arising from optimizing over the NTK
computation. Eqs. (39) to (41) are multilinear constraints that can be reduced to bilinear constraints
by introducing additional variables as follows (for brevity, again writing the problem in its bilevel
form):

min sgn(p̂t)

m∑
i=1

yiαiQti s.t. S̃∈ A(S) ∧ α ∈ S(Q) (45)

Q= H ′′
1 +H2 (46)

H1= Σ1 ⊙ Ė1 (47)

H ′
1= H1S

T (48)

H ′′
1= SH ′

1 (49)

H2= Σ2 ⊙ Ė2 (50)

Σ1 = M1M
T
1 (51)

M1= SX (52)

M2= E1S
T (53)

Σ2= SM2 (54)

E1= cσ E
F∼N (0,Σ1)

[
σ(F)σ(F)T

]
(55)

Ė1= cσ E
F∼N (0,Σ1)

[
σ̇(F)σ̇(F)T

]
(56)

Ė2= 1n×n (57)

where the optimization is over the same variables as in the previous problem, and additionally the
variables H1, H ′

1, H ′′
1 , H2, M1, and M2. Eqs. (46) and (52) are linear constraints, the rest of

the newly introduced constraints represent bilinear terms. The same bilinearization strategy can be
applied given the NTK computation over arbitrary layers. The remaining non-linear and non-bilinear
terms are Eqs. (55) and (56). They can be solved in closed-form resulting in relatively well-behaved
functions as shown in App. D.1. Thus, a convex relaxation of the expectation terms can be derived by
e.g., choosing linear functions that lower and upper bound the expectation terms.

Assume for now that one can linearly model S̃ ∈ A(S), this can be achieved by e.g., choosing the
adjacency matrix without normalization as graph structure matrix as done by Hojny et al. (2024).
Then, the crucial question is:

How to effectively solve the arising bilinear problem?

In particular, the bilinearities arise in both, the constraints and objective, and thereby this contrasts
e.g., with Zügner & Günnemann (2020) who only have to deal with a bilinear objective but have
linear constraints. The problem can be slightly simplified if S is chosen to be the unnormalized
adjacency matrix, as then any S̃ is discrete and thus Eqs. (48), (49) and (53) represent multiplications
of a continuous with a discrete variable and thus, can be linearly modeled using standard modeling
techniques. However, the objective and Eqs. (47), (50) and (51) remain products of continuous
variables and thus, can fundamentally not be modeled linearly. One potential way to tackle this, is to
use techniques of convex relaxations of bilinear functions as e.g., the so called McCormic envelope
(McCormick, 1976). However, it is not clear if common bilinear relaxation techniques can scale to
problems of the size necessary to compute practical certificates for machine learning datasets, nor
is it clear if the relaxations introduced in the process result in tight enough formulations to yield
non-trivial certificates. This is complicated by the fact that problems that are studied in the bilinear
optimization literature are often significantly smaller than the problem size we can expect from
certifying graph structure perturbations. However, it is not unlikely that further progress in bilinear
optimization will make this problem tractable.

We want to note that linearly modeling S̃ ∈ A(S) by choosing an unnormalized adjacency matrix as
the graph structure matrix results in a restriction of possible architecture to certify. It could be possible

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

to adapt Zügner & Günnemann (2020)’s modeling technique for the symmetric-degree normalized
adjacency matrix they use to certify a finite-width GCN to the above optimization problem without
increasing its difficulty as it is already bilinear.

N.3 PRACTICAL IMPLICATION OF FEATURE AND STRUCTURE PERTURBATIONS

Both feature and structure perturbations can find applications in real-world scenarios. In particular,
important application areas for graph learning methods with adversarial actors are fake news detection
(Hu et al., 2024) and spam detection (Li et al., 2019). Regarding fake news detection, feature
perturbations can model changes to the fake news content or to (controlled) user account comments
and profiles to mislead detectors (Hu et al., 2024; Le et al., 2020). Structure perturbations allow to
model a change in the propagation patterns (e.g., through changing a retweet graph) (Wang et al.,
2023). The qualitative difference in the application of feature compared to structure perturbations
is similar for spam detection. Here, feature perturbation can model spammers trying to adapt their
comments to avoid detection (Li et al., 2019; Wang et al., 2012). However, structure perturbations
can model behavioral changes in the posting patterns of spammers to imitate real users (Soliman &
Girdzijauskas, 2017; Wang et al., 2012).

N.4 QPCERT FOR OTHER GNNS

While our analysis focused on commonly used GNNs with and without skip connections, QPCert
is broadly applicable to any GNNs with a well-defined analytical form of the NTK. The follow-
ing challenges and considerations have to be taken into account when extending QPCert to other
architectures:

1. NTK-network equivalence: The equivalence between the network and NTK breaks down
when the network has non-linear last layer or bottleneck layers (Liu et al., 2020). Conse-
quently, our certificates do not hold for such networks.

2. Analytical form of NTK:Deriving a closed-form expression for NTK is needed to derive
bounds on the kernel. This might be challenging for networks with batch-normalizations or
advanced pooling layers.

3. Tight bounds for the NTK: Ensuring non-trivial certificates requires deriving tight bounds
for the NTK. Depending on the NTK, additional adaptation of our bounding strategy may
be necessary.

Despite these considerations, most message-passing networks satisfy these criteria, making QPCert
readily applicable to a wide range of architectures.

N.5 ADAPTATION TO QPCERT FOR GRAPH CLASSIFICATION

Our work can be extended to graph classification using the graph NTK of the corresponding neural
network trained for the task. Note that in this case, the kernel is computed between all pairwise graphs
instead of nodes. Du et al. (2019) derived one such NTK for graph classification. Using this NTK
and our MILP, robustness certificate can be derived. We elaborate on the technical details below.

Adversary. First, we extend our adversary setting to include multiple graphs and allow for node
feature perturbation. We have n graphs Gi = (Si,Xi),Si ∈ Rni×ni ,Xi ∈ Rni×d where ni is the
number of nodes in graph i with d dimensional features, for all i ∈ [n] and the adversary A can
perturb the features X where ∈ Bp(x). As we consider semi-verified learning setting, let Ui be the
set of nodes in Gi that are potentially controlled by the adversary A.

MILP. The certification framework applies directly without any change given the NTK Q and its
element-wise bounds. Therefore, the important adaptation here is to derive bounds on the NTK.
Since, in this setting, the NTK computation involves all pairwise feature matrix covariance, that is,
XiX

T
j for all i, j pairs. Similar to node classification setting, we consider X̃i ∈ A(Xi) and derive

X̃iX̃
T
j = XiX

T
j +∆ij . We derive the bounds for ∆ij for the perturbation Bp(x) with p = 2. It is

easy to extend to p = 1 and p = ∞ in a similar way.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Bounds for ∆ij and p = 2. We consider the perturbed feature matrix X̃i ∈ A(Xi) for all graphs i,
and X̃i = Xi +Γi ∈ Rni×d where Γij is the adversarial perturbations added to node j of graph i by
the adversary, therefore, ∥Γij∥p ≤ δ and Γij > 0 for j ∈ Ui and Γij = 0 for j ̸∈ Ui. Then

X̃iX̃
T
j = (Xi + Γi)(Xj + Γj)

T

= XiX
T
j + ΓiX

T
j +XiΓ

T
j + ΓiΓ

T
j = XiX

T
j +∆ij . (58)

As a result, it suffices to derive the element-wise worst-case bounds for ∆ij ∈ Rni×nj , (∆ij)
L
ab ≤

(∆ij)ab ≤ (∆ij)
U
ab, for different perturbations. To do so, our strategy is to bound the scalar products

⟨(Γi)a, (Xj)b⟩ and ⟨(Γi)a, (Γj)b⟩ element-wise.

|⟨(Γi)a, (Xj)b⟩| ≤ ∥(Γi)a∥2∥(Xj)b∥2 ≤ δ∥(Xj)b∥2
|⟨(Γi)a, (Γj)b⟩| ≤ ∥(Γi)a∥2(∥Γj)b∥2 ≤ δ2. (59)

Using Eq. (59), we derive the lower and upper bounds of (∆ij)ab:

(∆ij)
L
ab =


0+ if a ̸∈ U⟩, b ̸∈ Uj

−δ||(Xj)b||2+ if a ∈ Ui

−δ||(Xi)a||2+ if b ∈ Uj

−δ2 if a ∈ Ui, b ∈ Uj

(∆ij)
L
ab =


0+ if a ̸∈ U⟩, b ̸∈ Uj

δ||(Xj)b||2+ if a ∈ Ui

δ||(Xi)a||2+ if b ∈ Uj

δ2 if a ∈ Ui, b ∈ Uj

Thus, writing the bounds succinctly using the indicator function gives us,

(∆ij)
L
ab = −δ∥(Xj)b∥21[a ∈ Ui]− δ∥(Xi)a∥21[b ∈ Uj]− δ21[a ∈ Ui ∧ b ∈ Uj ∧ a ̸= b],

(∆ij)
U
ab = δ∥(Xj)b∥21[a ∈ Ui] + δ∥(Xi)a∥21[b ∈ Uj] + δ21[a ∈ Ui ∧ b ∈ Uj ∧ a ̸= b].

Using these bounds, similar to node classification, we can propagate them through the NTK computa-
tion to get the bounds on NTK. Using the NTK bounds, we can apply QPCert to get the certificate for
graph classification. □

40

	Introduction
	Preliminaries
	QPCert: Our certification framework
	QPCert for GNNs through their corresponding NTKs

	Experimental results
	Discussion and related work
	Ethics Statement
	Reproducibility Statement
	Architecture definitions
	Derivation of NTKs for (A)PPNP, GIN and GraphSAGE
	NTK for (A)PPNP
	NTK for GIN
	NTKs for GCN and SGC
	NTK for GraphSAGE

	Equivalence of GNNs to SVMs
	Derivation of NTK bounds and th:tightbounds
	Bounding Eij and ij in the NTK
	Derivation of th:tightbounds: NTK bounds are tight

	Multi-class certification
	Proof of prop:innerprob
	Setting big-M constraints
	Additional experimental details
	Datasets
	CSBM Sampling Scheme

	Architectures.
	Hardware.

	Additional Results: CSBM
	Evaluating QPCert and importance of graph information
	On graph connectivity and architectural insights
	Tightness of QPCert
	Results for p=2 perturbation budget
	Results for p=1 perturbation budget
	Comparison between p= and p=2
	Comparison to Common Poisoning Defenses

	Additional results: Cora-MLb
	Evaluating QPCert
	APPNP
	Symmetric vs. row normalization of the adjacency matrix
	Results on p=1 adversary

	Additional results: Cora-ML
	Additional results: WikiCSb
	Related works
	Further Discussions
	Applicability to Commonly Studied Perturbation Models and Attacks
	Certifying Against Graph Structure Perturbations
	Practical Implication of Feature and Structure Perturbations
	QPCert for other GNNs
	Adaptation to QPCert for Graph Classification

