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Abstract001

Relational reasoning lies at the core of many002
NLP tasks, drawing on complementary signals003
from text and graphs. While prior research004
has investigated how to leverage this dual com-005
plementarity, a detailed and systematic under-006
standing of text-graph interplay and its effect007
on hybrid models remains underexplored. We008
take an analysis-driven approach to investigate009
text–graph representation complementarity via010
a unified architecture that supports knowledge011
co-distillation (CoD). We explore five tasks in-012
volving relational reasoning that differ in how013
text and graph structures encode the informa-014
tion needed to solve that task. By tracking how015
these dual representations evolve during train-016
ing, we uncover interpretable patterns of align-017
ment and divergence, and provide insights into018
when and why their integration is beneficial.019

1 Introduction020

Incorporating modalities beyond the surface form021

of the text has shown promise for several challeng-022

ing natural language processing (NLP) tasks. This023

is particularly true for relational reasoning based024

tasks where the objective is to understand or infer025

the semantic relationships within the input (Nastase026

et al., 2015). Examples of such tasks are relation ex-027

traction (Zhang et al., 2018b; Christopoulou et al.,028

2019; Guo et al., 2020), knowledge base question029

answering (KBQA) (Tian et al., 2024; Feng and He,030

2025; Gao et al., 2025), and structured document031

interpretation or reasoning (Yao et al., 2018; Wang032

et al., 2023; Chen et al., 2025).033

A common and effective way to encode rela-034

tional structure is through graphs (Yao et al., 2018;035

Lee et al., 2023; Lin et al., 2025; Gururaja et al.,036

2023; Dutt et al., 2022), where nodes represent tex-037

tual units and edges encode relationships, like se-038

mantic links or ontological structure. This explicit039

representation of structured information enables040

models to leverage signals that are complementary041

to or explicitly absent from the text. 042

While many tasks utilize this text-graph repre- 043

sentation to improve performance, how they com- 044

plement each other remains underexplored. Some 045

systematic reviews (Stanton et al., 2021) observe 046

that models fail to effectively integrate data from 047

distinct modalities. This raises important open 048

questions: How do text and graph representations 049

relate to each other during learning? Do they con- 050

verge toward similar representations, or diverge to 051

encode distinct signals? And under what conditions 052

is their integration most beneficial? 053

To address these questions, we adopt an analysis- 054

oriented approach and introduce a unified frame- 055

work for characterizing the alignment and comple- 056

mentarity between text and graph representations 057

across tasks. We inspect how these dual repre- 058

sentations relate and evolve with knowledge co- 059

distillation (CoD) (Yao et al., 2024), an architec- 060

tural framework that can generalize across a range 061

of tasks where both text and graph inputs are avail- 062

able. We conduct this analysis across a diverse 063

suite of five tasks involving relational reasoning 064

spanning fine-grained, localized reasoning between 065

entity pairs to multi-entity inference. To this end: 066

• We systematically analyze how text and graph 067

representations complement each other under 068

knowledge co-distillation (CoD) across five rela- 069

tional reasoning tasks. 070

• We identify consistent patterns ranging from 071

complementarity to alignment and characterize 072

how these patterns differ across tasks. 073

• We provide practical insights to inform the ef- 074

fective use of CoD. 075

2 Related work 076

Text–graph integration in NLP: Graphs have 077

long played an important role in NLP, tradition- 078

ally used to capture structure in tasks such as 079

syntactic parsing, information retrieval, text min- 080
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ing, and encode semantic representation through081

knowledge graphs, linguistic frameworks, and082

other semantic networks. Graph Neural Network083

(GNN)s (Scarselli et al., 2009) and their variants084

such as Graph Convolutional Neural Networks085

(GCNs) (Bruna et al., 2014) and Graph Atten-086

tion (GAT) layers (Veličković et al., 2018) have087

become the de-facto way to integrate text and graph088

representations across a variety of tasks.089

In text classification, graphs have been used to090

jointly model word and document relations (Yao091

et al., 2018) and to enhance transformers with struc-092

tured information (Lin et al., 2021). Knowledge093

graphs provide support for reasoning and informa-094

tion retrieval for QA (Sun et al., 2018; Yasunaga095

et al., 2022; Lin et al., 2025). For document un-096

derstanding, graph-based methods have been ap-097

plied to paragraph recognition (Wang et al., 2022;098

Liu et al., 2022b), information extraction (Lee099

et al., 2023), and layout or structure analysis (Wang100

et al., 2023; Chen et al., 2025). More recently,101

such approaches have also been used to detect AI-102

generated content (Valdez-Valenzuela et al., 2025).103

While text–graph integration has been widely104

used for performance gains, little is known about105

how their representations relate during learning.106

We analyze this relationship and how it is shaped107

by task characteristics and learning objectives.108

Knowledge distillation (KD): One of the earli-109

est works in this space was of Buciluǎ et al. (2006),110

i.e. a kind of model compression to facilitate ef-111

ficient ensembling of complex classifiers. Hinton112

et al. (2015) refined it to distill knowledge from113

one model to another. Later, this type of directed,114

teacher-student knowledge distillation (KD) has115

seen usage in several NLP tasks (Sanh et al., 2019;116

Sun et al., 2019; Liang et al., 2020; Liu et al.,117

2022a). As opposed to distilling information from118

one model to another, Zhang et al. (2018a) pro-119

posed the idea of mutual learning where informa-120

tion is shared between models. Finally, Tian et al.121

(2020) introduced contrastive representational dis-122

tillation, which later works (Sun et al., 2020; Fu123

et al., 2021) showed is effective at refining KD-loss124

for shared representational spaces.125

Though KD is widely prevalent in NLP, its ef-126

fectiveness in successfully compressing complex127

tasks remains unclear. Stanton et al. (2021) argues128

that a gap exists in our current understanding of129

KD, evident in the difficulty in obtaining model130

fidelity for certain types of teachers. Though it is131

known that KD’s efficacy varies across models, the 132

reason remains unknown. 133

Representation analysis: Representation anal- 134

ysis examines the internal representations learned 135

by models to better understand how they encode 136

and process information. Subsequently, a variety of 137

tools have been developed for this purpose. These 138

range from traditional methods such as Principal 139

Component Analysis (PCA) (Ferrone and Zanzotto, 140

2020) and Canonical Correlation Analysis (CCA) 141

for dimensionality reduction and visualization, to 142

more targeted approaches such as classifier probes 143

to test whether specific linguistic properties are en- 144

coded in model representations (Belinkov, 2021; 145

Gupta et al., 2015). Recently, sparse autoencoders 146

(Gao et al., 2024; Cunningham et al., 2023; Ng 147

et al., 2011) have also been deployed for extracting 148

interpretable features from model representations. 149

To support our goal of analyzing how text and 150

graph representations are related during learn- 151

ing, we require lightweight, task-agnostic tools to 152

enable consistent and interpretable comparisons 153

across tasks. We thus adopt PCA and leverage 154

distance-based metrics to answer our questions. 155

3 Task suite and formulations 156

We propose a spectrum of how the relationship be- 157

tween the text and the graph representations can 158

vary as visualized in Figure 1. This spectrum 159

ranges from cases where text and graph encode 160

largely complementary information and preserve 161

distinct representations (left), to cases where they 162

tend to converge and form aligned representations 163

(right). In between, partial alignment refers to the 164

case where the representations become more sim- 165

ilar but do not fully converge. To cover this spec- 166

trum, we select five relational reasoning tasks with 167

diverse characteristics, such as 1) how explicitly 168

the graph models the relation or structure that the 169

task seeks to predict, 2) whether nodes have di- 170

rect correspondence to textual spans, and 3) the 171

scope of reasoning (e.g., local mention pairs versus 172

global graph structure). This diversity enables us 173

to examine how these variations shape text-graph 174

representation relations. We outline the goal, input 175

and output, an illustrated example, graph construc- 176

tion method, and the knowledge type of each task 177

in Table 1. 178

Event temporal relation extraction (ETRE) 179

The objective of ETRE is to predict the temporal 180
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Task Goal Input Output Example K-Type

ETRE Predict temporal
relation between
two events

Text passage
+ Syntactic
graph and
Time-aware
graph

Relation
label (e.g., BE-
FORE/AFTER)

In: Atlanta nineteen ninety-six. A bomb <E1> blast
</E1> shocks the Olympic games. One person is
killed. January nineteen ninety-seven. Atlanta again.
This time a bomb at an abortion clinic. More people
are <E2> hurt </E2>. Out: Event E1 took place
BEFORE Event E2.

Episodic

MLRE Predict semantic
relation between
entities

Text passage
+ Depen-
dency graph

Relation label
(e.g. sibling)

In: The <E1> wood </E1> is used as fuel and to
make posts for <E2> fences </E2>. Out: The relation
between E1 and E2: material used

Episodic

FU Predict token
relationships in
scanned forms

OCR tokens
with layout
info

Label over to-
ken pairs

We present an example in Figure 7 Episodic

RPP Predict reason-
ing path over the
KG for a ques-
tion.

Question
+ KG sub-
graph

Reasoning
Path

In: Question: What was Elie Wiesel’s father’s name?
KG: Elie Wiesel <E1> | <E1>
book.author.book_editions_published <E2>
| <E3> people.person.gender <E4> ...
Out: Reasoning Pattern Type: T2 — The answer is
located a single-hop away from the two constraints.
Entities ranked: <E6>, <E4>, ...

Static

KBQA
entity-
ranking

Extract answers
from a KG for a
question

Ranked list of
candidate enti-
ties

Table 1: For each task, we state the goal, the input/output format, an illustrative example, and the graph construction
method. We also distinguish between tasks grounded in episodic knowledge (context-dependent and document-
specific), and those involving static knowledge (holds independently of context) in the Knowledge(K)-Type column.

Complementarity Partial Alignment Alignment

G

T

Complementarity

G T

Partial Alignment

G T

Complete Alignment

ETRE MLRE

RPP

FU

KBQA entity-ranking

Figure 1: Task spectrum of representation relationships.
Left: they remain distinct and complementary. Middle:
they show some similarity but do not fully align. Right:
they converge toward aligned representations. This spec-
trum motivates our task selection for analysis.

relationship yij between a pair of event mentions181

(i, j) within a short passage q using a fixed relation182

label set (e.g., before, after, simultaneous, vague).183

Because distinct layers of text encode time cues for184

short- and long-distance mention pairs, the model185

represents the text using linear transformers along-186

side associated graph G(V,E). The graph contains187

nodes V for event mentions and time expressions,188

and edges E encoding structural relations. It is189

derived from the q using part-of-speech labeling190

and by applying temporal logic to limited date-191

time associations which can be extracted from q.192

Thus, while the graph does not explicitly encode193

the temporal relation being predicted or have di- 194

rect correspondence with text spans it reflects long- 195

distance structural dependencies not captured by 196

linear transforms. We follow Yao et al. (2024) and 197

use three benchmark datasets: TimeBank-Dense 198

(TB-Dense) (Cassidy et al., 2014), TDDiscourse- 199

Auto (TDDAuto) and TDDiscourse-Manual (TD- 200

DMan) (Naik et al., 2019). 201

Multilingual relation extraction (MLRE) In a 202

similar vein, the task of MLRE involves identify- 203

ing the semantic relation between a pair of entity 204

mentions within a given sentence(s) q for a particu- 205

lar language. Each text input has its corresponding 206

graph G(V,E) generated by an off-the-shelf depen- 207

dency parser (Qi et al., 2020) where V represents 208

the words in the sentence(s) and the E represents 209

the syntactic dependencies between the words. We 210

initialize the nodes(words) in the graph by pool- 211

ing across its constituent token embeddings, and 212

further augment it with the structural information 213

obtained from the graph’s topology via Walklets 214

(Perozzi et al., 2017). We emphasize that the de- 215

pendency relations capture the explicit linguistic 216

signals between words but do not encode the rela- 217

tion being predicted. We provide an example in the 218

Appendix A.2. We use the REDfm (Huguet Cabot 219

et al., 2023) dataset which covers five languages. 220
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Reasoning pattern prediction (RPP) Given a221

question q and its associated subgraph G = (V,E)222

from the knowledge base, the goal is to infer the223

reasoning pattern or RP of the question q. Each224

pattern corresponds to a particular reasoning path,225

composed of single/multiple hops and single/multi-226

ple constraints. We provide detailed descriptions in227

Appendix A.1. The text input includes q and a lin-228

earized serialization of the subgraph Glinear, while229

the graph input uses the same question paired with230

the explicit graph structure G. Thus, both text and231

graph encode the same information but in struc-232

turally distinct forms. We initialize the nodes in233

each subgraph with Walklets embeddings follow-234

ing the same procedure as Dutt et al. (2022). RP235

prediction requires reasoning over the entire graph236

with respect to the question, rather than individual237

tokens or nodes. We use WebQSP dataset for our238

task (Yih et al., 2016; Xie et al., 2022).239

KBQA entity-ranking We formulate extracting240

the correct answer(s) for a given question from its241

associated subgraph as a ranking problem. The242

model operates over a shared set of candidate en-243

tities and assigns a relevance score to each entity244

based on its likelihood of being the correct answer.245

The input is the same as in the reasoning pattern246

prediction task setting. To enable entity-level pre-247

dictions from the text model, we extract an embed-248

ding for each candidate entity by identifying its249

corresponding span in the text and aggregating the250

token representations produced by the text encoder.251

Each entity thus has a one-to-one correspondence:252

it appears as a node vi ∈ V in the graph and as a253

token span si ⊆ q in the text.254

Form understanding (FU): This task involves255

identifying key–value relationships between tex-256

tual spans extracted from scanned forms, such257

as “Date: 2024-12-01”. Each input document is258

processed by OCR to yield textual tokens with259

bounding-box coordinates. The corresponding260

graph G(V,E) encodes the visual layout of the261

document; V represents OCR tokens and E cap-262

tures spatial relations between the tokens such as263

alignment, proximity, and reading order. Such a264

framework encodes positional cues central to the265

task objective, and establishes a one-to-one corre-266

spondence between the nodes and the OCR tokens.267

We adopt the experimental setup of Nourbakhsh268

et al. (2024) and include three multimodal datasets,269

i.e. SROIE (Huang et al., 2019), FUNSD (Jaume270

et al., 2019), and CORD (Park et al., 2019).271

4 Unified framework for analysis 272

We propose a unified, task-agnostic framework, 273

henceforth called R2-CoD (Figure 2), to under- 274

stand how text and graph representations relate 275

during learning. We choose a framework that is 276

generalizable to observe how information from text 277

and graph are represented and integrated. 278

Across tasks, each instance corresponds to a text- 279

graph pair, as defined in Section 3. These are en- 280

coded using modality-specific encoders: ht = ft(q) 281

and hg = fg(G). We then create a hybrid repre- 282

sentation hhybrid through concatenation or residual 283

connection to perform task-specific prediction and 284

compute the task loss: 285

hhybrid = ffuse(ht, hg) (1) 286

Ltask = L(hhybrid, y) (2) 287

where y denotes the gold supervision and L(·, ·) is 288

the task-specific loss function. We present model 289

configurations, loss function, and evaluation met- 290

rics used for each task in Table 5 in the Appendix. 291

To analyze text and graph representations, we 292

require a shared space where they can be directly 293

compared. Thus, we apply modality-specific MLP 294

projection heads that learn to map each representa- 295

tion into a shared latent space during training: 296

ztext = MLPt(ht), zgraph = MLPg(hg). (3) 297

4.1 Contrastive co-distillation 298

While learning a shared space enables compari- 299

son, it cannot solely influence how text and graph 300

will complement one another. We thus apply a 301

contrastive knowledge co-distillation (CoD) objec- 302

tive (Yao et al., 2024) which combines a contrastive 303

loss with a stop-gradient operation (Chen and He, 304

2021) to explicitly encourage bidirectional knowl- 305

edge transfer. Such a formulation allows us to ob- 306

serve how the information encoded in one modality 307

influences the other during mutual learning. 308

Formally, the contrastive loss lcl between the 309

teacher t and the student s representations is: 310

lcl(t, s) = − log
esim(t,s)/τ∑

u 1[u̸=t] esim(t,u)/τ
(4) 311

where u indicates representations from the training 312

data other than t and s, sim(., .) is cosine similar- 313

ity, τ is the temperature scaling parameter (Tian 314

et al., 2022). Note that the notions of “teacher” and 315
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Text EncoderText sequence

Graph Encoder
task h

ead

MLP

MLP

CoD

hg

ht

h hybrid

z text

z graph

Figure 2: Our unified framework for analyzing how text and graph representations complement each other. A
text sequence and its corresponding graph are processed by separate encoders. Their outputs are used in two
ways: (1) combined as hybrid inputs for task prediction, and (2) projected into a shared space where a contrastive
co-distillation (CoD) objective encourages mutual learning and enables representation-level analysis.

“student” are interchangeable and fully symmetric:316

one scenario treats the text projection behaves as317

the teacher supervising the graph projection, while318

in another the graph projection supervises the text319

projection. This bidirectional design ensures that320

either modality can act as teacher or student at each321

step, thus mutually distilling knowledge from each322

other. Hence, the full CoD loss is computed as323

LCoD =
1

2

∑
i

[lcl(z
text
i , ẑi

graph)+ lcl(zi
graph, ẑi

text)]

(5)324

where .̂ is the stop gradient operator (Chen and325

He, 2021) that sets the input variable to a constant.326

Finally, we combine this with the task loss to enable327

end-to-end model optimization:328

Ltotal = Ltask + λLCoD (6)329

where λ controls the weight of the CoD signal.330

CoD serves as a task-agnostic framework to facili-331

tates learning and analysis over dual modalities.332

4.2 Measuring representation relations333

To evaluate how text and graph relate during learn-334

ing, we need tools that can surface both alignment335

and divergence in the shared space. Our goal is to336

characterize the degree to which text and graph con-337

verge, remain distinct, or shift in their relationship338

throughout training under CoD.339

To support visual interpretation, we apply340

PCA, which reduces the projected embeddings341

(ztext, zgraph) into a two dimensional space and re-342

veals their spatial arrangement at various stages of343

training, i.e. whether there is clustering, separation,344

or overlap between modalities.345

For more precise measurement, we also compute 346

batch-level cosine similarity between paired repre- 347

sentations, along with average within- and between- 348

modality distances based on cosine distance. To- 349

gether, these measures capture both the directional 350

and spatial properties of different modalities in the 351

learned representation space. 352

5 Analysis and discussions 353

5.1 RQ1: Does combining text and graph 354

representations improve performance? 355

We examine whether integrating textual and graph- 356

based representations improves task performance, 357

and whether CoD facilitates more effective inte- 358

gration. We compare four model configurations: 359

(1) text-only, (2) graph-only, (3) hybrid without 360

CoD, and (4) hybrid with CoD. We present the 361

main results in Table 2. The task suite statistics 362

and training times in Table 7 illustrate that CoD 363

introduces minimal additional cost. Additional re- 364

sults for different model combinations in Table 8 365

further demonstrate the generalizability of our CoD 366

framework across different text and graph models.1 367

Across the tasks, we observe that hybrid models 368

consistently outperform the text-only and graph- 369

only baselines, and that incorporating the CoD loss 370

leads to further gains. The only exception is for 371

MLRE where the hybrid approaches achieve perfor- 372

mance comparable to the the text-based baseline, 373

possibly because the graph representations fail to 374

capture any complementary signals. Prior work has 375

1For consistency, we report results either from our own
experiments or from existing work when the same architecture
is adopted.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 3: Results for ETRE on the TDDMan dataset. PCA visualizations (top) at initial, intermediate, and final
training stages, and corresponding distance-based metrics (bottom).

Task Dataset Text Graph CoD T+G

ETRE TDDAuto 61.6 34.6 77.1 68.9

FU FUNSD 33 22 38 35

MLRE REDfm 79.7 48.6 78.6 79.5

RPP WebQSP 62.4 63.2 65.9 65.6

KBQA WebQSP 80.7 52.2 83.8 83.5

Table 2: Task performance (averaged across three seeds)
for text-only (Text), graph-only (Graph), hybrid with
CoD (CoD), and hybrid without CoD, i.e. with only the
text and graph representations (T+G). Best performance
in bold, second-best underlined. We present results
for one representative dataset per task due to resource
constraints. Similar trends hold for other datasets. For
FU, the model was pretrained on a 1,000-example subset
of its original pretraining corpus.

demonstrated how large-scale pretraining enables376

transformer models to encode syntactic informa-377

tion within their parameters (Starace et al., 2023;378

Liu et al., 2024) and thus employing off-the-shelf379

parsers to capture dependency information shows380

little promise (Sachan et al., 2021).381

For the KBQA tasks, where text and graph in-382

puts aim to encode the same information albeit383

coming from two different formats, i.e. the lin-384

earized format (for the text) versus the topological385

structure (for the graph), CoD offers only marginal 386

gains over the default hybrid setting. In contrast, 387

tasks like FU where text and graph encode different 388

information (form content versus layout structure 389

from OCR), CoD shows more improvement. 390

5.2 RQ2: How do text and graph 391

representations relate during learning? 392

Using the representation analysis framework de- 393

tailed in Section 4, we observe three qualitatively 394

distinct trends in the spatial relationship between 395

text and graph representations that aligns with the 396

task spectrum proposed in Figure 1: complemen- 397

tarity, partial alignment, and complete alignment. 398

Complementarity (ETRE): The text and graph 399

representations remain well-separated throughout 400

training, signifying that they contribute distinct, 401

complementary signals rather than converging to- 402

wards a shared embedding space. 403

The PCA visualization confirms this complemen- 404

tarity. In Figure 3, text and graph representations 405

consistently occupy distinct regions. We attribute 406

this separation to distinctiveness in how text and 407

graph encode task-relevant information. In ETRE, 408

the text representation provides local semantic cues 409

around event mentions, while the graph encodes 410
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 4: Results for reasoning pattern prediction on the WebQSP dataset.

structural information in an attempt to quantify se-411

mantic temporal and discourse relations. These412

structural and semantic divergences could lead text413

and graph representations to retain independent414

representation space.415

Partial alignment (MLRE and RPP): We ob-416

serve that MLRE and RPP exhibit moderate conver-417

gence between text and graph. PCA visualizations418

(Figure 11 and 4) show that the text and graph rep-419

resentations move closer in the shared space during420

training, yet remain largely separable. This sug-421

gests that text and graph are aligning but do not422

collapse into a single unified cluster. This behav-423

ior aligns with the task objective: while the inputs424

encode equivalent information, the objective is to425

classify the reasoning path traversed in the graph,426

not specific tokens or nodes. Thus, the text and427

graph representations can evolve in parallel with-428

out needing to fully align. This allows each of429

them to retain its inductive biases while adapting430

to shared learning signals through CoD.431

Complete alignment (FU and KBQA): FU and432

KBQA appear near the alignment end of our spec-433

trum. In both tasks, text and graph representations434

show strong convergence. E.g., PCA visualizations435

in Figure 5 show a clear alignment trajectory: ini-436

tial representations are moderately separated in the437

shared space, but progressively draw closer during438

training. By the final epochs, the paired embed- 439

dings often form overlapping clusters. 440

We explain this finding by establishing the fine- 441

grained correspondence in input structure between 442

text and graph for both tasks. Each graph node vi ∈ 443

V has a clear textual counterpart as a token span 444

si ⊆ q. In FU, OCR tokens are linked to spatially 445

grounded nodes, while in entity ranking, candidate 446

answer entities are matched between graph nodes 447

and text tokens. This one-to-one correspondence 448

likely encourages representations to align. 449

To complement the PCA-based categorization, 450

we further analyze cosine similarity and distance 451

metrics to offer quantitative insight into the degree 452

of alignment. 453

Cosine similarity increases consistently across 454

tasks due to the CoD objective, which encour- 455

ages directional agreement between text and graph 456

representations. However, in contrast to other tasks, 457

tasks characterized by complementarity like ETRE 458

exhibits a weaker increase, whose cosine similarity 459

remains bounded to 0.4. 460

Alignment is indicated by how closely between- 461

group distances match within-group ones. In 462

ETRE, the between-group distance remains consis- 463

tently higher than the within-group distances. In 464

2We present distance metrics for three representative train-
ing phases due to resource constraints.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Distance within text (e) Distance within graph (f) Distance between text and graph

Figure 5: Results for form understanding on the CORD dataset.2

both partial and complete alignment tasks, within-465

group distances increase over training. However,466

their between-group trends diverge: in partial align-467

ment tasks like MLRE and RPP, the between-group468

distance also increases, whereas in complete align-469

ment tasks such as FU and KBQA, the between-470

group distance steadily decreases and eventually471

approaches the within-group distances.472

5.3 RQ3: How do task characteristics shape473

the effects of CoD?474

Building on the representation patterns observed in475

RQ2, we now examine what task-specific charac-476

teristics may shape how CoD influences learning.477

We only consider the cases where adding in CoD478

consistently brought about performance gains.479

Same input, different task objectives Although480

RPP and KBQA share the identical input, they dif-481

fer in task objectives: the former identifies rea-482

soning patterns in the subgraph on a global level,483

whereas the latter scores individual entities at a484

local level. Despite this shared input, the learned485

representations behave differently under CoD. RPP486

demonstrates partial convergence, while KBQA487

shows strong alignment. This contrast suggests488

that the level at which reasoning is required, in this489

case global vs. local, can shape how the representa-490

tions align in the representation space.491

Same reasoning scope, different graph construc-492

tion: ETRE and FU both involve localized rea-493

soning between pairs: event mentions in ETRE494

and field spans in forms. However, their graph495

constructions differ in how directly they support496

the task. In FU, edges explicitly capture spatial497

layout relations that closely match the key–value498

associations being predicted. In ETRE, the graph499

encodes distinct layers of linguistic cues (e.g., syn- 500

tax, discourse), which support but do not directly 501

define the target temporal relation. Under CoD, 502

FU shows complete alignment while ETRE demon- 503

strates complementarity. This indicates that how 504

well the graph structure reflects the task objective 505

can influence whether CoD promotes complemen- 506

tarity or alignment. 507

With or without token-node correspondence 508

In FU and KBQA entity-ranking, there is a strong 509

one-to-one correspondence between graph nodes 510

and text token spans. This provides a scaffold that 511

supports representational convergence, which is 512

reinforced through CoD. This is in contrast to com- 513

plementary information encoded in ETRE, where 514

representations remain more distinct, and CoD pre- 515

serves separation. This highlights that explicit to- 516

ken–node correspondence could act as a structural 517

prior that facilitates CoD towards alignment. 518

6 Conclusion 519

We analyze how text and graph representations 520

complement each other during learning within a 521

unified, task-agnostic framework using contrastive 522

co-distillation (CoD) as a lens. We select five di- 523

verse relational reasoning tasks and observe a spec- 524

trum of representational behaviors from alignment 525

to complementarity shaped by differences in task 526

structure, such as whether the graph encodes the 527

prediction target explicitly, whether nodes corre- 528

spond directly to textual spans, and whether rea- 529

soning operates at a local or global level. These 530

findings improve our understanding of text-graph 531

representation relations and offer practical insights 532

into applying CoD in structured NLP tasks. 533
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7 Limitations534

Task coverage While our selected five relational535

reasoning tasks covers a broad spectrum of com-536

plementarity and alignment patterns, extending the537

framework to other tasks may reveal additional rep-538

resentational behaviors.539

Analysis metrics We rely on PCA visualizations540

and cosine/distance-based metrics for representa-541

tion analysis. These methods provide interpretable542

trends but may not capture all fine-grained or non-543

linear interactions between text and graph, which544

could be explored with advanced probing or disen-545

tanglement techniques.546

8 Ethical considerations547

Bias propagation Our framework builds on pre-548

trained text and graph encoders, which may inherit549

and amplify biases present in the underlying data550

sources.551
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RP Illustration Definition Example Question S-expression

T-0 A single-hop path from the con-
straint to the answer.

What is the name of
money in Brazil?

(JOIN (R loca-
tion.country.currency_used) m.015fr)

T-1 A two-hop path from the con-
straint to the answer.

Where does the Queen
of Denmark live?

(JOIN (R people.place_lived.location)
(JOIN (R people.person.places_lived)
m.0g2kv))

T-2 Two single-hop paths arising
from two different constraints
and converging to the same an-
swer.

What was Elie
Wiesel’s father’s
name?

(AND (JOIN people.person.gender
m.05zppz) (JOIN (R peo-
ple.person.parents) m.02vsp))

T-3 Two paths (one single-hop and
another two-hop) arising from
two different constraints and con-
verging to the same answer.

Where did Joe Namath
attend college?

(AND (JOIN com-
mon.topic.notable_types
m.01y2hnl) (JOIN (R educa-
tion.education.institution) (JOIN (R
people.person.education) m.01p_3k)))

T-4 Two two-hop paths arising from
two different constraints and con-
verging to an intermediate com-
mon node before reaching the an-
swer.

Who does Zach Gal-
ifianakis play in The
Hangover?

(JOIN (R film.performance.character)
(AND (JOIN film.performance.film
m.0n3xxpd) (JOIN (R film.actor.film)
m.02_0d2)))

Table 3: Reasoning patterns with their corresponding definitions, example questions, and S-expressions.

Figure 6: Example depicting the supplemental information provided by the dependency tree. The entities of interest
are wood and fences, having the relationship material_used. The path wood← used→ make→ posts→ fences
elicits this relationship.

RP Illustration i.i.d. Comp Z.S. Total

T-0 50.3 0.0 49.7 54.5

T-1 37.3 44.3 18.4 23.5

T-2 17.1 47.1 35.7 5.2

T-3 83.3 6.7 10.0 2.2

T-4 12.8 81.5 5.6 14.5

ALL 40.8 24.9 34.3 100.0

Table 4: Distribution of reasoning patterns over the
generalization splits (i.i.d., compositional (Comp), zero-
shot (Z.S.)) of our modified WebQSP dataset.

A Task suite details897

A.1 Data processing for reasoning pattern898

prediction and KBQA entity-ranking899

We use the WebQSP dataset (Yih et al., 2016) for900

our two KBQA related experiments, i.e. reason-901

ing pattern prediction and entity-ranking. An ex- 902

ploratory analysis of WebQSP highlighted a sig- 903

nificant overlap of relations and classes across the 904

train and test splits. Subsequently, we employed 905

the approach of Jiang and Usbeck (2022) to obtain 906

development and test splits that characterize differ- 907

ent generalization levels in equal proportion. The 908

three generalization levels for KBQA tasks include 909

i.i.d, compositional, and zero-shot. 910

The i.i.d. case implies that the questions ob- 911

served during inference follow similar logical tem- 912

plates to those during training; for example the 913

questions “Who was the author of Oliver Twist?” 914

and “Who wrote Pride and Prejudice?” follow sim- 915

ilar logical templates. We contrast this with the 916

compositional case, where questions in the test 917

split operate over the same set of relations that were 918

present in the training set (such as the “written-by” 919

relation), but different logical templates. For exam- 920

ple, the questions “Who wrote Pride and Prejudice?” 921

and “Who wrote both The Talisman and It?” re- 922
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Task Text model Graph model Loss function Metric

ETRE RoBERTa1 {1,2,3}-layer
RGAT4

cross-entropy
(CE)

weighted F1

Form understanding RoBERTa1 2-layer RGAT4 binary CE F1
MLRE mBERT-base2 2-layer RGCN 5 CE macro F1
Reasoning pattern prediction T5-base3 2-layer RGCN5 CE macro F1
KBQA answer-ranking T5-base3 2-layer RGCN5 binary CE Hits@K6

Table 5: Model configurations, training objectives, and evaluation metrics for each task. The text and graph model
backbones listed in this table are used for the primary results in Table 2.

Task LR Batch
size

Drop
out Temp. Max

input len
GNN
layers

GNN
hidden dim

ETRE (TDDMan) 1e-5 16 0.1 0.1 – 2 256
ETRE (TDDAuto) 1e-5 32 0.1 0.04 – 3 256
ETRE (TB-Dense) 1e-5 32 0.1 0.9 – 1 256
MLRE 1e-5 16 0.2 0.1 512 2 768
Reasoning pattern prediction 5e-5 6 0.2 0.1 512 2 768
KBQA entity-ranking 5e-5 4 0.2 0.1 1024 2 768
Form understanding Same settings as in Nourbakhsh et al. (2024)

Table 6: Hyperparameters used across tasks. Temperature refers to τ in CoD. All experiments use a shared space
dimension of 2048.

quire reasoning over the same relation “written-by”923

but follows different reasoning paths, since the for-924

mer involves only one constraint or entity, whereas925

the latter involves two. Finally, questions in the926

zero-shot split operate over new or unseen relations927

that were not present in the training dataset. For928

example, the questions “Who wrote Pride and Prej-929

udice?” and “Who directed Pride and Prejudice in930

2005?” involves different relations, i.e. “written-931

by” and “directed-by” respectively. We defer the932

readers to past work (Gu et al., 2021; Jiang and Us-933

beck, 2022; Dutt et al., 2023) for a more thorough934

description of the different generalization splits.935

We characterize the complexity of the reasoning936

pattern to answer a given KBQA question based937

on Dutt et al. (2023). Given the modified version938

of WebQSP dataset, we identify the following five939

reasoning patterns that accounted for ≥ 97% of the940

dataset across all splits. We describe the different941

reasoning patterns in Table 3 and outline their dis-942

tribution in the our modified WebQSP dataset in943

Table 4.944

To accommodate the input length constraints of945

models like T5, we simplify the representation of946

knowledge base entities in the linearized graph in-947

put. Instead of using full entity identifiers (e.g.,948

m.02896), we assign short, unique placeholder to-949

kens (e.g., <E1>, <E2>) to each entity as a part of950

the tokenizer vocabulary. This helps reduce the in-951

put sequence length and avoids unwanted subword952

tokenization. In addition, we ensure that these 953

placeholder tokens are assigned consistently across 954

modalities: the same entity is represented as node 955

vi in the graph and as token <Ei> in the linearized 956

text. 957

A.2 MLRE dependency parsing illustration 958

See Figure 6. 959

A.3 FU example 960

We adapt an example to showcase the FU task 961

from Nourbakhsh et al. (2024) in Figure 7. 962

B Task experiments details 963

We present the experimental details for different 964

tasks. In Table 5, we outline the loss function that 965

we are optimizing, the corresponding evaluation 966

metric, and the backbone architectures used for the 967

primary results reported in Table 2: the transformer 968

model that encodes the textual information, and the 969

specific GNN architecture that encodes the graph 970

information. In Table 6, we provide hyperparam- 971

eters values for our experiments. We also present 972

statistics on the task suite datasets and training 973

times in Table 7. All datasets we used are publicly 974

available, and we follow the licensing terms and 975
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Task Dataset Train Test Number of labels Training time

ETRE
TDDMan 4,000 1,500 5 28 min
TDDAuto 32,609 4,258 5 3h 40min
TB-Dense 4,032 1,427 6 26 min

MLRE

REDFM (en) 8,504 1,235 32 6h 7min
REDFM (es) 5,194 733 32 2h 30min
REDFM (fr) 5,452 975 32 3h 14min
REDFM (de) 5,909 811 32 2h 46min
REDFM (it) 4,597 1,086 32 2h 38min

Reasoning pattern prediction WebQSP 3,014 1,343 5 1h
KBQA answer-ranking WebQSP 3,014 1,343 Number of gold answers 3h

Form understanding
SROIE 626 347 4 10h
FUNSD 149 50 4 4h 36min
CORD 800 100 30 17h 47min

Table 7: Task suite statistics and training times. We train for 1000 epochs for form understanding.

intended use of each.976

C Extended CoD results977

To further demonstrate the robustness and general-978

ity of CoD, we apply it to new model combinations979

on two representative tasks: reasoning pattern pre-980

diction and ETRE (Table 8). We also demonstrate981

additional CoD performance across each language982

data for MLRE in Table 9.983

D Extended visualization results across984

tasks985

D.1 ETRE results986

See Figure 8 and Figure 9 for results on TimeBank-987

Dense and TDDAuto datasets, respectively. See988

Figure 10 for results on TDDMan dataset when no989

CoD is applied.990

D.2 MLRE results991

See Figure 11 for PCA plots, and Figure 12 for992

cosine similarity and distance metrics results.993

D.3 FU results994

See Figure 13 and Figure 14 for results on SROIE995

and FUNSD datasets, respectively.996

1Liu et al. (2019)
2Devlin et al. (2019)
3Raffel et al. (2023)
4Busbridge et al. (2019)
5Schlichtkrull et al. (2017)
6K indicates the number of correct answers for an instance.

D.4 RPP results 997

See Figure 15 for Reasoning Pattern Prediction task 998

without CoD applied. 999

D.5 KBQA entity-ranking results 1000

See Figure 16 and Figure 17 for results for KBQA 1001

entity-ranking with and without CoD applied, re- 1002

spectively. 1003
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(a) Reasoning pattern prediction

Text encoder Graph encoder Hybrid (CoD) Text only Graph only

T5 RGCN 0.6190 0.5700 0.5840
T5 RGAT 0.6120 0.5700 0.4966
BERT RGCN 0.5999 0.5835 0.5840
BERT RGAT 0.5956 0.5835 0.4966
GPT-2 RGCN 0.6022 0.5614 0.5840
GPT-2 RGAT 0.6049 0.5614 0.4966

(b) Event temporal relation extraction (ETRE)

Text encoder Graph encoder Hybrid (CoD) Text only

TDDMan
BERT GCN 0.411 0.447
BERT RGCN 0.384 0.447
BERT RGAT 0.481 0.447
RoBERTa GCN 0.435 0.445
RoBERTa RGCN 0.452 0.445
RoBERTa RGAT 0.551 0.445

TDDAuto
BERT GCN 0.631 0.624
BERT RGCN 0.647 0.624
BERT RGAT 0.683 0.624
RoBERTa GCN 0.748 0.689
RoBERTa RGCN 0.665 0.689
RoBERTa RGAT 0.771 0.689

TB-Dense
BERT GCN 0.790 0.775
BERT RGCN 0.782 0.775
BERT RGAT 0.810 0.775
RoBERTa GCN 0.805 0.767
RoBERTa RGCN 0.847 0.767
RoBERTa RGAT 0.856 0.767

Note that we did not record numbers for the graph-only approach
because the graph approach for this task yields incredibly poor results
without the incorporation of linear transformers (Yao et al., 2024).

Table 8: Additional results for (a) Reasoning pattern prediction and (b) ETRE using different text and graph encoder
backbones. CoD consistently improves over baselines across all combinations in Reasoning pattern prediction, and
improves 78% of the times across all 18 cases for ETRE. These results demonstrate CoD’s generality across diverse
model architecture combinations.
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Figure 7: An example of FU task from the FUNSD dataset, adapted from Nourbakhsh et al. (2024). Green links
show correct predictions. Red links show false negatives. Blue links show false positives.

Language Text only Graph only Hybrid + CoD Hybrid + no-CoD

de 80.41 ± 0.61 47.13 ± 2.76 80.35 ± 0.71 79.55 ± 0.40
en 85.94 ± 1.41 52.21 ± 0.56 84.57 ± 2.25 84.74 ± 1.07
es 80.49 ± 0.61 51.21 ± 1.47 76.64 ± 1.09 80.26 ± 0.44
fr 77.47 ± 0.73 45.62 ± 1.60 78.80 ± 0.58 78.31 ± 0.78
it 74.25 ± 0.36 46.61 ± 1.98 72.67 ± 1.40 74.76 ± 1.02

Avg 79.71 ± 3.95 48.55 ± 3.21 78.61 ± 4.17 79.53 ± 3.32

Table 9: F1 score results on MLRE task for the REDfm dataset.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 8: Results for ETRE on the TimeBank-Dense dataset.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 9: Results for ETRE on the TDDAuto dataset.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 10: Results for ETRE on the TDDMan dataset when no CoD is applied.
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(a) Initial epoch (de) (b) Intermediate epoch (de) (c) Final epoch (de)

(d) Initial epoch (en) (e) Intermediate epoch (en) (f) Final epoch (en)

(g) Initial epoch (es) (h) Intermediate epoch (es) (i) Final epoch (es)

(j) Initial epoch (fr) (k) Intermediate epoch (fr) (l) Final epoch (fr)

(m) Initial epoch (it) (n) Intermediate epoch (it) (o) Final epoch (it)

Figure 11: PCA plots for MLRE across the different languages in the REDfm dataset.
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(a) Cosine similarity (b) Distance within text

(c) Distance within graph (d) Distance between text and graph

Figure 12: Cosine similarity and distance results for MLRE on the REDfm dataset.

(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Distance within text (e) Distance within graph (f) Distance between text and graph

Figure 13: Results for form understanding on the SROIE dataset.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Distance within text (e) Distance within graph (f) Distance between text and graph

Figure 14: Results for form understanding on the FUNSD dataset.

(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 15: Results for reasoning pattern prediction on the WebQSP dataset when no CoD is applied.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 16: Results for KBQA entity-ranking on the WebQSP dataset.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 17: Results for KBQA entity-ranking on the WebQSP dataset when no CoD is applied.
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