
Under review as a conference paper at ICLR 2024

SELF-EVOLVING NEURAL RADIANCE FIELDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, neural radiance field (NeRF) has shown remarkable performance in
novel view synthesis and 3D reconstruction. However, it still requires abundant
high-quality images, limiting its applicability in real-world scenarios. To overcome
this limitation, recent works have focused on training NeRF only with sparse
viewpoints by giving additional regularizations, often called few-shot NeRF. We
observe that due to the under-constrained nature of the task, solely using additional
regularization is not enough to prevent the model from overfitting to sparse view-
points. In this paper, we propose a novel framework, dubbed Self-Evolving Neural
Radiance Fields (SE-NeRF), that applies a self-training framework to NeRF to
address these problems. We formulate few-shot NeRF into a teacher-student frame-
work to guide the network to learn a more robust representation of the scene by
training the student with additional pseudo labels generated from the teacher. By
distilling ray-level pseudo labels using distinct distillation schemes for reliable and
unreliable rays obtained with our novel reliability estimation method, we enable
NeRF to learn a more accurate and robust geometry of the 3D scene. We show and
evaluate that applying our self-training framework to existing models improves
the quality of the rendered images and achieves state-of-the-art performance in
multiple settings.

1 INTRODUCTION

Novel view synthesis that aims to generate novel views of a 3D scene from given images is one of the
essential tasks in computer vision fields. Recently, neural radiance field (NeRF) (Mildenhall et al.,
2021) has shown remarkable performance for this task, modeling highly detailed 3D geometry and
specular effects solely from given image information. However, the requirement of abundant high-
quality images with accurate poses restricts its application to real-world scenarios, as reducing the
input views causes NeRF to produce broken geometry and undergo severe performance degradation.

Numerous works (Kim et al., 2022; Jain et al., 2021; Wang et al., 2023; Niemeyer et al., 2022;
Yu et al., 2021) tried to address this problem, known as few-shot NeRF, whose aim is to robustly
optimize NeRF in scenarios where only a few and sparse input images are given. To compensate for
the few-shot NeRF’s under-constrained nature, they either utilize the prior knowledge of a pre-trained
model (Jain et al., 2021; Yu et al., 2021) such as CLIP (Radford et al., 2021) or 2D CNN (Yu et al.,
2021) or introduce an additional regularization (Niemeyer et al., 2022; Kim et al., 2022; Kwak et al.,
2023), showing compelling results. However, these works show limited success in addressing the
fundamental issue of overfitting as NeRF tends to memorize the input known viewpoints instead of
understanding the geometry of the scene.

In our toy experiment, this behavior is clearly shown in Figure 1, where existing methods (even
with regularization (Fridovich-Keil et al., 2023; Niemeyer et al., 2022; Kim et al., 2022)) trained
with 3-views show a noticeable drop in PSNR even with slight changes of viewpoints. Utilizing
additional ground truth data for viewpoints that were unknown to the few-shot setting, we compare
the rendered images from few-shot NeRF with the ground truth images and verify that there are
accurately modeled regions even in unknown viewpoints that are far from known ones.

This indicates that if we can accurately identify reliable regions, the rendered regions can be utilized
as additional data achieved with no extra cost. Based on these facts, we formulate the few-shot NeRF
task into the self-training framework by considering the rendered images as pseudo labels and training
a new NeRF network with confident pseudo labels as additional data.
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Figure 1: Toy experiment to verify the robustness of models trained with sparse views. (Left)
The red camera (a) indicates the camera position used for training and cameras from (b-e) are used to
verify the robustness of models when the novel viewpoint gets further from the known viewpoint.
(Middle) For each viewpoint (a-e), we visualize the rendered images by RegNeRF (Niemeyer et al.,
2022), baseline (K-Planes (Fridovich-Keil et al., 2023)), and SE-NeRF from top to bottom rows.
(Right) Starting from viewpoint (a), we show the PSNR graph of the rendered images as the viewpoint
moves gradually from (a-e). Existing models show extreme PSNR drops, even with slight movements.

Expanding upon this idea, we introduce a novel framework, dubbed Self-Evolving Neural Radiance
Fields (SE-NeRF), which enables a more robust training of few-shot NeRF in a self-supervised
manner. We train the few-shot NeRF under an iterative teacher-student framework, in which pseudo
labels for geometry and appearance generated by the teacher NeRF are distilled to the student NeRF,
and the trained student serves as the teacher network in the next iteration for progressive improvement.
To estimate the reliability of the pseudo labels, we utilize the semantic features of a pre-trained 2D
CNN to measure the consistency of the pseudo labels within multiple viewpoints. We also apply
distinct distillation schemes for reliable and unreliable rays, in which reliable ray labels are directly
distilled to the student, while unreliable rays undergo a regularization process to distill more robust
geometry.

Our experimental results show that our framework successfully guides existing NeRF models towards
a more robust geometry of the 3D scene in the few-shot NeRF setting without using any external 3D
priors or generative models (Xu et al., 2022). Also, we show the versatility of our framework, which
can be applied to any existing models without changing their structure. We evaluate our approach on
synthetic and real-life datasets, achieving state-of-the-art results in multiple settings.

2 RELATED WORK

Neural radiance fields (NeRF). Synthesizing images from novel views of a 3D scene given
multi-view images is a long-standing goal of computer vision. Recently, neural radiance fields
(NeRF) (Mildenhall et al., 2021) has achieved great success by optimizing a single MLP that learns
to estimate the radiance of the queried coordinates. The MLP learns the density σ ∈ R and color
c ∈ R3 of continuous coordinates x ∈ R3, and is further utilized to explicitly render the volume of
the scene using ray marching (Kajiya & Von Herzen, 1984). Due to it’s impressive performance in
modeling the 3D scene, various follow-ups (Deng et al., 2022; Jain et al., 2021; Kim et al., 2022;
Fridovich-Keil et al., 2023; Niemeyer et al., 2022; Wang et al., 2023; Roessle et al., 2022; Yang et al.,
2023) adopted NeRF as their baseline model to solve various 3D tasks.

Few-shot NeRF. Although capable of successfully modeling 3D scenes, NeRF requires abundant
high-quality images with accurate poses, making it hard to apply in real-world scenarios. Several
methods have paved the way to circumvent these issues by showing that the network can be suc-
cessfully trained even when the input images are limited. One approach addresses the problem
using prior knowledge from pre-trained local CNNs (Yu et al., 2021; Chibane et al., 2021; Kwak
et al., 2023). PixelNeRF (Yu et al., 2021), for instance, employs a NeRF conditioned with features
extracted by a pre-trained encoder. Another line of research introduces a geometric or depth-based
regularization to the network (Jain et al., 2021; Kim et al., 2022; Niemeyer et al., 2022; Deng et al.,
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2022; Wang et al., 2023; Roessle et al., 2022). DietNeRF (Jain et al., 2021) proposes an auxiliary
semantic consistency loss to encourage realistic renderings at novel poses. RegNeRF (Niemeyer et al.,
2022) regularizes the geometry and appearance of patches rendered from unobserved viewpoints.
DS-NeRF (Deng et al., 2022) introduces additional depth supervision from sparse point clouds
obtained in the COLMAP (Schonberger & Frahm, 2016) process.
Self-training. Self-training is one of the earliest semi-supervised learning methods (Fralick, 1967;
Scudder, 1965) mainly used in settings where obtaining sufficient labels is expensive (e.g., Instance
segmentation). Self-training exploits the unlabeled data by pseudo labeling with a teacher model,
which is then combined with the labeled data and used in the student training process. Noisy
student (Xie et al., 2020) succeeds in continually training a better student by initializing a larger
model as the student, and injecting noise into the data and network. Meta pseudo labels (Pham et al.,
2021), on the other hand, optimizes the teacher model by evaluating the student’s performance on
labeled data, guiding the teacher to generate better pseudo labels. We bring self-training to NeRFs by
formulating the few-shot NeRF task as a semi-supervised learning task. Our approach can be seen as
an analogous method of noisy student (Xie et al., 2020) that exploits NeRF as the teacher and student
model, with teacher-generated unknown views as the unlabeled data.

3 PRELIMINARIES AND MOTIVATION

3.1 PRELIMINARIES

Given a set of training images S = {Ii | i ∈ {1, . . . , N}}, NeRF (Mildenhall et al., 2021) represents
the scene as a continuous function f(·; θ), a neural network with parameters θ. The network renders
images by querying the 3D points x ∈ R3 and view direction d ∈ R2 transformed by a positional
encoding γ(·) to output a color value c ∈ R3 and a density value σ ∈ R such that {c, σ} =
f (γ(x), γ(d); θ). The positional encoding transforms the inputs into Fourier features (Tancik et al.,
2020) that facilitate learning high-frequency details. Given a ray parameterized as r(t) = o + td,
starting from camera center o along the direction d, the expected color value C(r; θ) along the ray
r(t) from tn to tf is rendered as follows:

C(r; θ) =

∫ tf

tn

T (t)σ(r(t); θ)c(r(t),d; θ)dt, T (t) = exp

(
−
∫ t

tn

σ(r(s); θ)ds

)
, (1)

where T (t) denotes the accumulated transmittance along the ray from tn to t .

To optimize the network f(·; θ), the photometric loss Lphoto(θ) enforces the rendered pixel color
value C(r; θ) to be consistent with the ground-truth pixel color value Cgt(r):

Lphoto(θ) =
∑
r∈R
∥Cgt(r)− C(r; θ)∥22, (2)

whereR is the set of rays corresponding to each pixel in the image set S.

3.2 MOTIVATION

Despite its impressive performance, NeRF has the critical drawback of requiring large amounts of
posed input images S for robust scene reconstruction. Naïvely optimizing NeRF in a few-shot setting
(e.g., |S| < 10) results in NeRF producing erroneous artifacts and undergoing major breakdowns in
the geometry due to the task’s under-constrained nature (Niemeyer et al., 2022; Kim et al., 2022).

A closer look reveals important details regarding the nature of the few-shot NeRF optimization.
As described by the PSNR graph in Figure 1, all existing methods show a noticeable PSNR drop
even with slight viewpoint changes, which indicates the tendency of NeRF to memorize the given
input views. Such a tendency results in broken geometry that looks perfect in known viewpoints
but progressively degenerates as the rendering view gets further away from known views. Although
training with additional data directly solves this problem, obtaining high-quality images with accurate
poses is extremely expensive. Instead, we notice that although images (rendered from NeRF trained
with only sparse viewpoints) contain artifacts and erroneous geometry, there are reliable pixels of the
image that are close to the corresponding ground truth pixels, which can be used as additional data.
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Figure 2: Illustration of our overall framework for applying self-training to NeRF. SE-NeRF
utilizes the self-training framework to distill the knowledge of learned appearance and 3D geometry
from teacher to student. The process is done iteratively as the student becomes the new teacher.

To check the feasibility that using reliable pixels from the rendered images as additional data can
help prevent NeRF from overfitting, we conduct an experiment of first optimizing NeRF under the
identical few-shot setting. After training a teacher NeRF with three images, we train a new student
NeRF with the extended set of images S ∪ S+ where S+ is the set of rendered images. To train with
only the reliable pixels of S+, we define a binary reliability mask M(r), which masks out pixels
where the difference between the rendered color value C(r; θT) and its ground truth color value
Cgt(r) is above a predetermined threshold. Training the student NeRF network to follow the reliably
rendered color values {C(r; θT) |M(r) = 1} of the teacher can be seen as a weak distillation from
the teacher to the student. The new student NeRF is trained with the following loss function:

Lphoto(θ) + λ
∑

r∈R+

M(r)∥C(r; θT)− C(r; θ)∥22, (3)

whereR+ is a set of rays corresponding to each pixel in the rendered image set S+, and λ denotes
the weight parameter.

The result of this experiment, described in "GT Masked" of the PSNR graph in Figure 1, shows that
the student trained with K-Planes (Fridovich-Keil et al., 2023) as the baseline, displays staggering
improvement in performance, with unknown viewpoints showing higher PSNR values and their
rendered geometry remaining highly robust and coherent. This leads us to deduce that a major cause
of few-shot NeRF geometry breakdown is its tendency to memorize the given sparse viewpoints and
that selected distillation of additional reliable rays is crucial to enhance the robustness and coherence
of 3D geometry. Based on this observation, our concern now moves on to how to estimate the
reliability mask M for the rendered novel images of S+ to develop a better few-shot NeRF model.

4 METHOD

4.1 TEACHER-STUDENT FRAMEWORK

Teacher network optimization. A teacher network is trained naïvely by optimizing the standard
NeRF photometric loss where the number of known viewpoints is |S| < 10. During this process,
NeRF recovers accurate geometry for certain regions and inaccurate, broken geometry in other
regions. The parameters of teacher network θT is optimized as the following equation:

θT = argmin
θ
Lphoto(θ). (4)

Pseudo labeling with teacher network. By evaluating the optimized teacher NeRF representation
θT, we can generate per-ray pseudo labels {C(r; θT)| r ∈ R+} from the rendered images S+ from
unknown viewpoints. To accurately identify and distill the reliable regions of S+ to the student
model, we assess the reliability of every pseudo label inR+ to acquire a reliability mask M(r) using
a novel reliability estimation method we describe in detail in Section 4.2.
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Student network optimization. The student network θS is then trained with the extended training
set of S ∪S+, with the reliability maskM taken into account. In addition to the photometric loss with
the initial image set S , the student network is also optimized with a distillation loss that encourages it
to follow the robustly reconstructed parts of the teacher model in S+. In the distillation process, the
estimated reliability maskM determines how each ray should be distilled, a process which we explain
further in Section 4.3. In summary, student network θS is optimized by the following equation:

θS = argmin
θ

{
Lphoto(θ) + λ

∑
r∈R+

M(r)∥C(r; θT)− C(r; θ)∥22

}
, (5)

where C(r; θT) and C(r; θ) is the rendered color of the teacher and student model, respectively and
λ denotes the weight parameter.
Iterative labeling and training. After the student network is fully optimized, the trained student
network becomes the teacher network of the next iteration for another distillation process to a newly
initialized NeRF, as described in Figure 2. We achieve improvement of the NeRF’s quality and
robustness every iteration with the help of the continuously extended dataset.

4.2 RAY RELIABILITY ESTIMATION

To estimate the reliability of per-ray pseudo labels {C(r; θT)| r ∈ R+} from the rendered images
S+, we expand upon an important insight that if a ray has accurately recovered a surface location and
this location is projected to multiple viewpoints, the semantics of the projected locations should be
consistent except for occlusions between viewpoints. This idea has been used in previous works that
formulate NeRF for refined surface reconstruction (Chibane et al., 2021), but our work is the first to
leverage it for explicitly modeling ray reliability in a self-training setting.

The surface location recovered by a ray r corresponding to pixel pi of the viewpoint i can be projected
to another viewpoint j with the extrinsic matrix Ri→j , intrinsic matrix K, and the estimated depth
Di from viewpoint i with the following projection equation:

pi→j ∼ KRi→jDi(r)K
−1pi. (6)

Using the projection equation, we can make corresponding pixel pairs between viewpoint i and j
such as (pi,pj) where pj = pi→j . Similarly, if we acquire pixel-level feature maps from viewpoint
i and j using a pre-trained 2D CNN, we can make corresponding feature pairs as (f ip, f

j
p). In our

case, by projecting the feature vector of the corresponding pseudo label {C(r; θT)| r ∈ R+} to
all given input viewpoints, we can achieve |S| feature pairs for every pseudo label. To generate a
reliability mask for each ray, if a ray has at least one feature pair whose similarity value is higher
than the threshold value τ , it indicates that the feature consistency of the ray’s rendered geometry
has been confirmed and classify such rays as reliable. Summarized in equation, the binary reliability
mask M(r) for the ray r rendered from viewpoint i can be defined as follows:

M(r) = min

∑
j∈|S|

1

 f ip · f jp∥∥f ip∥∥∥∥∥f jp∥∥∥ > τ

 , 1
 . (7)

To prevent the unreliable rays from being misclassified as reliable, we must carefully choose the
threshold τ . Although using a fixed value for the τ is straightforward, we find that choosing the
adequate value is extremely cumbersome as the similarity distribution for each scene varies greatly.
Instead, we adopt the adaptive thresholding method, which chooses the threshold by calculating
the (1 − α)th percentile of the similarity distribution where α is a hyperparameter in the range
α ∈ [0, 1]. This enables the threshold τ to be dynamically adjusted to each scene, leading to a better
classification of the reliable rays.

4.3 RELIABILITY-BASED DISTILLATION

To guide the student network to learn a more robust representation of the scene, we distill the label
information from the teacher to the student with two distinct losses based on the ray’s reliability. By
remembering the rays evaluated in the teacher network and re-evaluating the same rays in the student
network, the geometry and color information of reliable rays is directly distilled into the student
network through distillation loss, while the rays classified as unreliable are regularized with nearby
reliable rays for improved geometry before applying the distillation loss.
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Figure 3: Distillation of pseudo labels. After estimating the reliability of the rays from unknown
views, we apply distinct distillation schemes for reliable and unreliable rays. Reliable rays are directly
distilled to the student while we aggregate the nearby reliable rays to regularize the unreliable rays.

Reliable ray distillation. Since we assume the reliable rays’ appearance and geometry have been
accurately predicted by the teacher network, we directly distill their rendered color so that the student
network faithfully follows the outputs of the teacher for these reliable rays. With the teacher-generated
per-ray pseudo labels {C(r; θT)| r ∈ R+} from the rendered images S+ and the estimated reliability
mask M , the appearance of a reliable ray is distilled by the reformulated photometric loss LR

c :

LR
c (θ) =

∑
r∈R+

M(r)∥C(r; θT)− C(r; θ)∥22. (8)

In addition to the photometric loss LR
c , we follow Deng et al. (2022); Roessle et al. (2022) of giving

the depth-supervision together to NeRF. As the teacher network θT also outputs the density σ(r; θT)
for each of the rays, we distill the density weights of the sampled points of the reliable rays to the
student network. Within the same ray, we select an identical number of points randomly sampled from
evenly spaced bins along the ray. This allows us to follow the advantages of injecting noise to the
student as in Xie et al. (2020) as randomly sampling points from each bin induces each corresponding
point to have slightly different positions, which acts as an additional noise to the student.

The density distillation is formulated by the geometry distillation loss LR
g , which is L2 loss between

accumulated density values of corresponding points within the teacher and student rays, with teacher
rays’ density values σT serving as the pseudo ground truth labels. Therefore, for reliable rays, our
distillation loss along the camera ray r(t) = o+ td is defined as follows:

LR
g (θ) =

∑
r∈R+

∑
t,t′∈T

M(r)∥σ(r(t); θT)− σ(r(t′); θ)∥22. (9)

where T refers to the evenly spaced bins from tn to tf along the ray, t and t′ indicate randomly
selected points from each bins.
Unreliable ray distillation. In traditional semi-supervised methods, unreliable labels are ignored to
prevent the confirmation bias problem. Similarly, unreliable rays must not be directly distilled as they
are assumed to have captured inaccurate geometry. However, stemming from the prior knowledge
that depth changes smoothly above the surface, we propose a novel method for regularizing the
unreliable rays with geometric priors of nearby reliable rays, dubbed prior-based distillation.

To distill the knowledge of nearby reliable rays, we calculate a weighted average of nearby reliable
rays’ density distribution and distill this density to the student. As described in Figure 3, we apply a
Gaussian mask to unreliable ray r to calculate per-ray weights for nearby reliable rays. The intuition
behind this design choice is straightforward: the closer a ray is to an unreliable ray, the more likely
it is to be that the geometry of the two rays will be similar. Based on these facts, we apply the
prior-based geometry distillation loss LP

g , which is the L2 loss between the weighted-average density
σ̃(r; θT) and the student density outputs σ(r; θ), is described in the following equation:

LP
g (θ) =

∑
r∈R+

∑
t,t′∈T

(1−M(r))∥σ̃(r(t); θT)− σ(r(t′); θ)∥22. (10)

We apply the prior-based geometry distillation loss to the unreliable rays only when adjacent reliable
rays exist. A more detailed explanation can be found in Appendix B.3
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Table 1: Quantitative comparison on NeRF Synthetic and LLFF.

Methods NeRF Synthetic Extreme NeRF Synthetic LLFF
PSNR↑ SSIM↑ LPIPS↓ Avg.↓ PSNR↑ SSIM↑ LPIPS↓ Avg.↓ PSNR↑ SSIM↑ LPIPS↓ Avg.↓

NeRF 14.85 0.73 0.32 0.27 19.38 0.82 0.17 0.20 17.50 0.50 0.47 0.40
K-Planes 15.45 0.73 0.28 0.28 17.99 0.82 0.18 0.21 15.77 0.44 0.46 0.41
DietNeRF 14.46 0.72 0.28 0.28 15.42 0.73 0.31 0.20 14.94 0.37 0.50 0.44
InfoNeRF 14.62 0.74 0.26 0.27 18.44 0.80 0.22 0.12 13.57 0.33 0.58 0.48
RegNeRF 13.73 0.70 0.30 0.30 13.71 0.79 0.35 0.21 19.08 0.59 0.34 0.15

SE-NeRF (NeRF) 17.41 0.78 0.21 0.22 20.53 0.84 0.16 0.19 18.10 0.54 0.45 0.38
(+2.56) (+0.05) (-0.11) (-0.05) (+1.15) (+0.02) (-0.01) (-0.01) (+0.60) (+0.04) (-0.02) (-0.02)

SE-NeRF (K-Planes) 17.49 0.78 0.23 0.24 19.93 0.83 0.17 0.20 16.30 0.49 0.44 0.39
(+2.04) (+0.05) (-0.05) (-0.04) (+1.94) (+0.01) (-0.01) (-0.01) (+0.53) (+0.05) (-0.02) (-0.02)

Total distillation loss. Finally, our entire distillation loss can be formulated as follows:

θS = argmin
θ

{
Lphoto(θ) + λRc LR

c (θ) + λRg LR
g (θ) + λPg LP

g (θ)
}
, (11)

where λRc , λRg , and λPg denotes the weight parameters.

RegNeRF DietNeRF NeRF SE-NeRF (NeRF) K-Planes SE-NeRF (K-Planes)

Figure 4: Qualitative comparison on NeRF Synthetic Extreme. The results show the rendered
images from viewpoints far away from the seen views. A noticeable improvement over existing
models regarding artifacts and distortion removal can be observed in SE-NeRF.

5 EXPERIMENTS

5.1 SETUPS

Datasets and metrics. We evaluate our methods on NeRF Synthetic (Mildenhall et al., 2021) and
LLFF dataset (Mildenhall et al., 2019). For the NeRF Synthetic dataset, we randomly select 4 views
in the train set and use 200 images in the test set for evaluation. For LLFF, we chose every 8-th
image as the held-out test set and randomly select 3 views for training from the remaining images.
In addition, we find that all existing NeRF models’ performance on the NeRF Synthetic dataset
is largely affected by the randomly selected views. To explore the robustness of our framework
and existing methods, we introduce a novel evaluation protocol of training every method with an
extreme 3-view setting (NeRF Synthetic Extreme) where all the views are selected from one side of
the scene. The selected views can be found in Appendix C. We report PSNR, SSIM (Wang et al.,
2004), LPIPS (Zhang et al., 2018) and geometric average (Barron et al., 2021) values for qualitative
comparison.
Implementation details. Although any NeRF representation is viable, we adopt K-
Planes (Fridovich-Keil et al., 2023) as our main baseline to leverage its memory and time efficiency.
Also, we conduct experiments using our framework with NeRF (Mildenhall et al., 2021) and Instant-
NGP1 (Müller et al., 2022) to demonstrate the applicability of our framework. For our reliability
estimation method, we use VGGNet (Simonyan & Zisserman, 2014), specifically VGG-19, and
utilize the first 4 feature layers located before the pooling layers. We train K-Planes for 20 minutes
on NeRF Synthetic and 60 minutes on LLFF using a single RTX 3090, and NeRF is trained for 90
minutes on NeRF Synthetic and 120 minutes on LLFF using 4 RTX 3090 GPUs for each iteration.

1For Instant-NGP, we train the model for 5 minutes on NeRF Synthetic Extreme.
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Figure 5: Qualitative improvement from baselines.

Hyper-parameters. We set the adaptive threshold value at α = 0.15 for the first iteration. To
enable the network to benefit from more reliable rays for each subsequent iteration, we employ a
curriculum labeling Cascante-Bonilla et al. (2021) approach that increases α by 0.05 every iteration.
As images rendered from views near the initial inputs include more reliable regions, we progressively
increase the range of where the pseudo labels should be generated. We start by selecting views that
are inside the range of 10 degrees in terms of ϕ, θ of the initial input and increase range after iterations.
For the weights for our total distillation loss, we use λRc = 1.0, λRg = 1.0, and λPg = 0.005.

Table 2: Quantitative comparison per-scene on NeRF Synthetic Extreme.
Methods chair drums ficus hotdog lego mater. ship mic
NeRF 15.08 11.98 17.16 13.83 16.31 17.31 10.84 16.29
K-Planes 15.61 13.23 18.29 12.45 14.67 16.30 13.35 19.74
Instant-NGP 17.66 12.75 18.44 13.67 13.17 16.83 13.82 19.05
DietNeRF 16.60 8.09 18.32 19.00 11.45 16.97 15.26 10.01
InfoNeRF 15.38 12.48 18.59 19.04 12.27 15.25 7.23 16.76
RegNeRF 15.92 12.09 14.83 14.06 14.86 10.53 11.44 16.12

SE-NeRF (NeRF) 19.96 14.72 19.29 16.06 16.45 17.51 14.20 21.09
(+4.88) (+2.74) (+2.13) (+2.23) (+0.14) (+0.20) (+3.36) (+4.80)

SE-NeRF (K-Planes) 20.54 13.38 18.33 20.14 16.65 17.01 13.72 20.13
(+4.93) (+0.15) (+0.04) (+7.69) (+1.98) (+0.71) (+0.37) (+0.39)

SE-NeRF (Instant-NGP) 20.40 13.34 19.07 18.15 15.99 17.94 14.61 20.23
(+2.74) (+0.59) (+0.63) (+4.48) (+2.82) (+1.11) (+0.79) (+1.18)

5.2 COMPARISON

Qualitative comparison. Figure 4 and Figure 5 illustrates the robustness of our model to unknown
views, even when the pose differs significantly from the training views. Our model demonstrates ro-
bust performance on unknown data, surpassing the baselines. This is particularly evident in the "chair"
scene, where all existing methods exhibit severe overfitting to the training views, resulting in heavy
artifacts when the pose significantly changes from those used during training. RegNeRF (Niemeyer
et al., 2022) fails to capture the shape and geometry in unknown views and although DietNeRF (Jain
et al., 2021) is capable of capturing the shape of the object accurately, it produces incorrect informa-
tion, such as transforming the armrests of the chair into wood. In contrast, SE-NeRF maintains the
shape of an object even from further views with less distortion, resulting in the least artifacts and
misrepresentation.
Quantitative comparison. Table 1 and Table 2 show quantitative comparisons of applying our
framework against other few-shot NeRFs and our baseline models on NeRF synthetic and LLFF
datasets. As shown in Table 1, SE-NeRF outperforms previous few-shot NeRF models in the NeRF
synthetic Extreme and the conventional 4-view setting. By applying SE-NeRF, we observe an
general improvement in performance over different methods and different datasets, demonstrating
that our framework successfully guides networks of existing methods to learn more robust knowledge
of the 3D scene.

5.3 ABLATION STUDY.

Iterative training. As shown in Figure 6, which presents the quantitative results for each iteration,
a significant improvement in performance can be observed after the first iteration. The performance
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Figure 6: Quantitative improvement from baseline after multiple iterations.

continues to be boosted with each subsequent iteration until the convergence. Based on our experi-
mental analysis, we find that after the simultaneous distillation of reliable rays and regularization of
unreliable rays in the first iteration, there is much less additional knowledge to distill to the student
in certain scenes which leads to a smaller performance gain from the second iteration. However,
although the performance gain in terms of metrics is small, the remaining artifacts and noise in the
images continue to disappear after the first iteration, which is important in perceptual image quality.

Table 3: Ray distillation ablation.
Method PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
K-Planes 14.67 0.68 0.31 0.30
K-Planes + Reliable 16.15 (+1.48) 0.72 (+0.04) 0.27 (-0.04) 0.27 (-0.03)
K-Planes + Reliable/Unreliable 16.65 (+1.98) 0.75 (+0.07) 0.24 (-0.07) 0.25 (-0.05)

Prior-based ray distillation. In Ta-
ble 3, we conduct an ablation study
on the "lego" scene of the NeRF Syn-
thetic Extreme setting and show that
using both reliable and unreliable ray
distillation is crucial to guide the net-
work to learn a more robust representation of the scene, showing the highest results in all metrics.
This stands in contrast to existing semi-supervised appraoches (Xie et al., 2020; Amini et al., 2023),
which typically discard unreliable pseudo labels to prevent the student learning from erroneous infor-
mation Arazo et al. (2020). We show that when applying self-training to NeRF, the unreliable labels
can be further facilitated by the prior knowledge that depth within a 3D space exhibits smoothness.

Table 4: Thresholding ablation.
Threshold PSNR ↑ SSIM ↑ LPIPS ↓ Avg. ↓
Fixed 17.02 0.77 0.25 0.25
Unified 15.95 0.73 0.28 0.27
Adaptive 17.49 0.78 0.23 0.24

Thresholding. In Table 4, we show the results of
SE-NeRF trained on the NeRF Synthetic Extreme set-
ting with different thresholding strategies. Following
traditional semi-supervised approaches (Tur et al., 2005;
Cascante-Bonilla et al., 2021; Zhang et al., 2021a; Chen
et al., 2023), we conducted experiments using a pre-
defined fixed threshold, adaptive threshold (ours), and a unified threshold which does not classify
psuedo labels as reliable and unreliable but uses the similarity value to decide how much the distilla-
tion should be made from the teacher to the student. The adaptive thresholding method resulted in the
most performance gain, showing the rationale of our design choice. A comprehensive and detailed
analysis regarding the threshold selection process is provided in Appendix B.4.

6 CONCLUSION AND LIMITATIONS

In this paper, we present a novel self-training framework Self-Evolving Neural Radiance Fields
(SE-NeRF), specifically designed for few-shot NeRF. By employing a teacher-student framework
in conjunction with our unique implicit distillation method, which is based on the estimation of
ray reliability through feature consistency, we demonstrate that our self-training approach yields a
substantial improvement in performance without the need for any 3D priors or modifications to the
original architecture. Our approach is able to achieve state-of-the-art results on multiple settings and
shows promise for further development in the field of few-shot NeRF.

However, our framework also shares similar limitations to existing semi-supervised approaches. 1)
Sensitivity to inappropriate pseudo labels: when unreliable labels are classified as reliable and used
to train the student network, this leads to performance degradation of the student model. 2) Teacher
initialization: if the initialized teacher network in the first iteration is too poor, our framework fails to
enhance the performance of the models even after several iterations. Even with these limitations, our
framework works robustly in most situations, and we leave the current limitations as future work.

9
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7 REPRODUCIBILITY STATEMENT

For the reproducibility of our work, we will release all the source codes and checkpoints used in our
experiments. For those who want to try applying our self-training framework to existing works, we
provide the pseudo codes for our reliability estimation method for the per-ray pseudo labels and the
overall self-training pipeline.

Algorithm 1 Reliability estimation method for per-ray pseudo labels

1: Input: Labeled Image I , rendered Image I+, rendered depth D+, threshold τ
2: Output: Mask M for I+
3: f ← VGG19(I)
4: f+ ← VGG19(I+)
5: for i← 0 to (Height - 1) do
6: for j ← 0 to (Width - 1) do
7: (i′, j′)←Warp(I+, D+, I, i, j) ▷ I+i,j is warped to Ii′,j′ using rendered depth D+

8: S ← CosineSimilarity(f+i,j , fi′,j′)
9: if S > τ then

10: Mi,j ← 1
11: else
12: Mi,j ← 0
13: end if
14: end for
15: end for

Algorithm 2 Self-Training

1: Input: Teacher Network T, set of labeled rayR, set of rendered rayR+

2: Output: Teacher Network T for next iteration
3: for each step do
4: Initialize S ▷ Initialize Student Network
5: Loss← 0
6: for each r in R do
7: Loss← Loss + L2(c,Color(S, r))
8: end for
9: for each r in R+ do

10: Evaluate M(r)
11: if M(r) = 1 then
12: Loss← Loss + L2(Color(T, r),Color(S, r)) ▷ Reliable RGB Loss
13: Loss← Loss + L2(Weight(T, r),Weight(S, r)) ▷ Reliable Density Loss
14: else
15: Loss← Loss + L2(GaussianWeight(T, r),Weight(S, r)) ▷ Unreliable Density Loss
16: end if
17: Update T with Loss
18: end for
19: end for
20: T← S

10
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In this supplementary document, we provide a more detailed analysis of our experiments and
implementation details, together with additional results of images rendered using our framework.

A PRELIMINARY: K-PLANES

K-Planes (Fridovich-Keil et al., 2023) is a model that uses
(
d
2

)
("d-choose-2") planes to represent

radiance fields in d-dimensional scene. This planar factorization makes adding dimension-specific
priors easy and induces a natural decomposition of static and dynamic components of a scene. In the
static scene, K-Planes obtains the features of a 3D coordinate x ∈ R3 from

(
3
2

)
= 3 planes which

are Pxy,Pyz, and Pxz . These planes have shape N ×N ×M , where N is the spatial resolution
and M is the size of stored features that represent the scene and will be decoded into density and
view-dependent color of the scene. The features q(x)k of a 3D coordinate x ∈ R3 can be obtained by
normalizing its entries between [0, N) and projecting it onto the three planes by

q(x)k = ψ(Pk, πk(x)), (12)

where πk projects x onto the k-th plane and ψ denotes bilinear interpolation of a point into a regularly
spaced 2D grid. After repeating the process in Equation 12 for each k ∈ K, the features are combined
using the Hadamard product (elementwise multiplication) over the three planes to produce a final
feature vector q(x) ∈ RM with the following equation:

q(x) =
∏
k∈K

q(x)k. (13)

The final features q(x) are further decoded into color and density using either an explicit linear
decoder or a hybrid MLP decoder. We use the hybrid model as our baseline that utilizes the spherical
harmonic (SH) basis and a shallow MLP decoder. In the hybrid model, the final features are decoded
with two small MLP layers. The first MLP fσ maps q(x) to view-independent density σ ∈ R and
additional features q̂ as follows:

σ(x), q̂(x) = fσ(q(x)). (14)

The second MLP fRGB maps additional features q̂ and the embedded view direction γ(d) to view-
dependent color value c ∈ R3.

c(x,d) = fRGB(q̂(x), γ(d)) (15)

Figure 7: Pixel-level reliability estimation (Left) This figure represents an unknown viewpoint
rendered by the Teacher network in the “ship” scene of the NeRF Synthetic dataset. (Right) This is a
binary reliability mask generated through our reliability estimation method. As can be seen in the red
box, it is evident that the reliability of the net connecting the sails of the ship is well determined at
the pixel-level.
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(a) 1 layers (b) 2 layers (c) 3 layers (d) 4 layers (e) 5 layers

Figure 8: Feature map of the lego scene.

B ANALYSIS

B.1 RELIABILITY ESTIMATION

In this section, we explain the details of our implementation and the results of our proposed method
for estimating the reliability of unknown rays generated by the teacher model. To assess the reliability
of unknown rays, we expand upon an essential insight that when a point located at a surface is
projected to multiple viewpoints, the semantics of the projected viewpoints should be consistent
unless the point is non-visible due to certain occlusions. This idea has been shown in multiple
previous works that formulate NeRF for refined surface reconstruction (Chibane et al., 2021; Truong
et al., 2022).

We check this semantic consistency between the unknown rays and known viewpoints to estimate
the reliability of the ray. Though any architectural framework that can provide pixel-level feature
maps can be used, we utilize a pre-trained 2D CNN image encoder to extract the semantics of the
rays, which is well known for the expressiveness of its features and thus has been adopted as a feature
extractor in various works (Chibane et al., 2021; Yu et al., 2021; Wang et al., 2021; Zhang et al., 2021b)
that leverage semantic information. Following them, we have conducted experiments employing
VGG-19 (Simonyan & Zisserman, 2014), ResNet50 (He et al., 2016), and U-Net (Ronneberger et al.,
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(a) 1 layers (b) 2 layers (c) 3 layers (d) 4 layers (e) 5 layers

Figure 9: Feature map of the chair scene.

Table 5: PSNR comparison of various feature extractors on NeRF Synthetic Extreme.
Methods chair drums ficus hotdog lego mater. ship mic Average
K-Planes 15.61 13.23 18.29 12.45 14.67 16.30 13.35 19.74 15.45

SE-NeRF (K-Planes) w/ U-Net 19.81 13.37 18.33 20.19 16.29 16.74 13.47 19.78 17.25
(+4.20) (+0.14) (+0.04) (+7.74) (+1.62) (+0.44) (+0.12) (+0.04) (+1.80)

SE-NeRF (K-Planes) w/ ResNet50 19.96 13.50 18.42 20.36 16.28 16.89 13.96 19.77 17.39
(+4.35) (+0.27) (+0.13) (+7.91) (+1.61) (+0.59) (+0.61) (+0.03) (+1.94)

SE-NeRF (K-Planes) w/ VGG-19 20.54 13.38 18.33 20.14 16.65 17.01 13.72 20.13 17.49
(+4.93) (+0.15) (+0.04) (+7.69) (+1.98) (+0.71) (+0.37) (+0.39) (+2.04)

2015) feature maps in our framework. For VGG-19 and U-Net, features are extracted prior to the
first 4 pooling layers whose dimensions are H ×W , H/2×W/2, H/4×W/4, H/8×W/8. For
ResNet50, features are extracted prior to the first 3 pooling layers whose dimensions are H/2×W/2,
H/4 ×W/4, H/8 ×W/8. They are upsampled to H ×W using bilinear interpolation and then
concatenated to form latent vectors aligned to each pixel. Though all cases resulted in noticeable
performance enhancements across different networks as shown in Table 5, we empirically selected
VGG-19 as our default feature extractor, which shows the highest performance improvement.
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Number of feature layers

(a) Average Precision ↑
Number of feature layers

(b) Average Recall ↑
Number of feature layers

(c) Average False Positive Rate ↓

Figure 10: Evaluation of masks generated using different numbers of feature layers. This figure
shows the evaluation results of the generated masks using 1∼5 feature layers. Each figure shows the
average Precision, average Recall, average False Positive Rate (FPR) of the generated binary mask
compared with the binary mask constructed with ground truth RGB values.

As can be seen in Figure 7, our reliability estimation method using VGG-19 generates a binary
reliability mask that accurately predicts reliability at the pixel-level. In the following section, we
show the comparison results of leveraging different numbers of feature layers.

B.2 USING DIFFERENT NUMBERS OF FEATURES

To figure out how many features we should take, we compare the results of the generated binary
reliability mask using different numbers of feature layers of 1 to 5. Specifically, we select layers 3, 8,
17, 26, and 35 of the VGG-19 network. The results are shown in Figure 8 and Figure 9. The figures
show the result of the similarity maps in first row and estimated binary reliability masks in second
row by leveraging different numbers of feature layers. The binary reliability mask is constructed by
applying a threshold at the 0.85 percentile of the overall scene similarity values. The third row of
Figure 8 and Figure 9 represents the results of one iteration of training using each reliability mask. As
the number of feature layers increases, the mask is improved by calculating lower similarity values
for erroneous artifacts thus effectively removing the artifacts.

As we leverage reliable rays from the binary reliability mask to distill the density weights and colors
and also regularize unreliable rays, it is important to lower the False Positive Ratio (FPR) to prevent
the confirmation bias problem (Arazo et al., 2020). In Figure 10, we can observe that although the
average Recall decreases as the number of feature layers increases, the FPR decreases much more
sharply. Our analysis of this phenomenon is that the shallow layers of the CNN only model highly
local features (e.g., edges, corners). This leads the features from different locations to have similar
semantics, shown in the high Recall when using only 1 feature layer.

Table 6: Reliability
mask evaluation.

Precision 98.03
Recall 92.25

Reliability estimation of pseudo labels. To evaluate the results of our
proposed ray reliability estimation method, we compare the reliability binary
masks generated by our feature consistency method with the binary masks
created using ground-truth RGB values. The results in Table 6 demonstrate
that our method provides a reasonable estimation of the reliability of the rays.

B.3 UNRELIABLE RAY DISTILLATION

Applying Gaussian mask. Given a rendered image in S+, let the ray going through pixel coordinate
(i, j) be rij . For each reliable ray going through a pixel near (i, j) in the image, we derive the weight
from 2D isotropic Gaussian distribution centered at (i, j) with standard deviation 1, whose probability
density function is G(x, y, i, j) = 1√

2π
exp(− (x−i)2+(y−j)2

2 ). Specifically, we use Q×Q discretely
approximated version whose probability mass function is g(x, y, i, j). Then, the Gaussian weighted-
average density σ̃(rij(t); θT) is calculated as:

σ̃(rij(t); θ
T) =

∑
x∈Ωx

∑
y∈Ωy

M(rxy) · g(x, y, i, j)∑
x∈Ωx

∑
y∈Ωy

M(rxy) · g(x, y, i, j)
σ(rxy(t); θ

T) (16)
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where Ωx = [i−⌊Q2 ⌋, i+⌊
Q
2 ⌋]\{i} and Ωy = [j−⌊Q2 ⌋, j+⌊

Q
2 ⌋]\{j}. We apply the above process

for unreliable rays inR+ only when reliable rays exist in the adjacent Q×Q kernel which leads to
our prior-based geometry distillation loss LP

g .

Table 7: PSNR comparison between different kernel size.

Methods chair drums ficus hotdog lego mater. ship mic
SE-NeRF (K-Planes) w/ kernel 5 20.27 13.29 18.03 20.33 16.60 16.88 13.86 20.47
SE-NeRF (K-Planes) w/ kernel 3 20.54 13.38 18.33 20.14 16.65 17.01 13.72 20.13

Technical design for kernel size. The necessity to handle unreliable rays arises when employing
Fixed or Adaptive thresholding. We adopt a Gaussian mask with a kernel size of 3 as the default
unreliable ray distillation method in our framework. The technical design for this choice is that
although incorporating the depth smoothness prior is intuitive, we find that this assumption can be too
strong in cases when modeling high-frequency regions. As we directly distill the point-wise weights
of points sampled from the ray, we must apply the depth-smoothness prior exclusively in highly
adjacent regions. In Table 7, we compare SE-NeRF (K-Planes) using different sizes of kernels of
3 and 5 in the NeRF Synthetic Extreme setting. Although the overall performance boost does not
show a big difference, scenes that contain high-frequency regions such as ‘ficus’ from the NeRF
Synthetic dataset exhibit suboptimal results. To ensure the robust operation of our framework in
extreme settings, we have selected three as the default kernel size for unreliable ray distillation.

B.4 PSEUDO LABELING

As mentioned in Section 4.2, there are three methods frequently used in traditional semi-supervised
frameworks: fixed thresholding, adaptive thresholding, and using a unified equation. In this section,
we explain each of the methods in detail about how the reliable and unreliable rays can be classified
using each of the methods and show that using the adaptive thresholding method shows the best
results. The equation to classify reliable and unreliable rays is as follows:

Ml(rp) = min

{∑
i∈S

1

[
f ip · f lp∥∥f ip∥∥∥∥f lp∥∥ > τ

]
, 1

}
. (17)

Fixed thresholding. Fixed thresholding is the most naïve and straightforward way of thresholding
which was mainly used in early semi-supervised approaches (Tur et al., 2005). By predefining a
specific threshold, it exploits unlabeled examples with confidence values that are above the predefined
threshold. Although simple and intuitive, the predefined threshold has to be carefully chosen which
needs to be done empirically. Also, only taking values over the fixed threshold sometimes results
in having no reliable values after the thresholding process, which lowers the performance boost
of semi-supervised frameworks. When it comes to applying self-training to NeRF, we found that
the distribution of similarities estimated by our proposed method is significantly different for each
of the scenes, which makes choosing a predefined threshold tricky. For our experiments, we have
empirically set the threshold value as 0.6, after observing the similarity distributions of all scenes.

Adaptive thresholding. To resolve the aforementioned problems, we try taking the top-K confi-
dence value or the (1− α)th percentile value. This approach has the advantage of always allowing
the semi-supervised framework to utilize reliable pseudo labels to improve the performance of the
network. However, this approach also has a disadvantage in the sense that even if a majority of
pseudo labels are actually reliable, only the top-K labels can be classified as reliable. This constrains
the network to learn from as many reliable pseudo labels as it can which constrains the overall
performance boost. To mitigate this problem, recent methods (Cascante-Bonilla et al., 2021; Zhang
et al., 2021a) which utilize curriculum learning (Bengio et al., 2009) adaptively increase the value K
of top-K, allowing the model to learn from more labels as the iteration progresses. We also found
that adopting adaptive thresholding together with curriculum learning resulted in the best results
in our setting. Specifically, we use the (1 − α)th percentile of the confidence distribution starting
from α = 0.15 and increase the value by 0.05 at each step. This strategy allows us to maximize the
advantages gained from expanding the labels through the process of self-training.
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Figure 11: Performance evaluation according to β.

Unified Equation. Instead of using an explicit threshold to classify reliable and unreliable pseudo
labels, some methods (Chen et al., 2023) adopt a unified equation that uses all pseudo labels with
their confidence values taken into account. The advantage of using the unified equation is that it
does not require any initial value such as the fixed threshold or the K for the top-K method. By
giving higher weights to pseudo labels with higher confidence values and vice versa, these methods
show that utilizing the unified equation successfully guides the framework to benefit mostly from the
reliable pseudo labels.

Following this approach, we propose how the unified equation can be designed when it comes to
our reliable and unreliable ray distillation method. As we want to distill the pseudo labels of the
reliable rays directly to the student and regularize the unreliable rays with nearby reliable rays, we
first construct our equation of giving higher weights to rays whose similarity values are high and
regularize the rays with information from nearby rays by Gaussian weighting proposed in Section B.3.

Given a rendered image in S+, let the ray going through pixel coordinate (i, j) is rij . Then, the
geometry distillation loss Lg(rij , θ) for each ray rij is formulated as :

Lg(rij , θ) = sij∆σ
2
ij + (1− sij)

∑
x∈Ωx

∑
y∈Ωy

max(∆sxy, 0) · g(x, y, i, j)∑
x∈Ωx

∑
y∈Ωy

max(∆sxy, 0) · g(x, y, i, j)
∆σ2

xy (18)

where ∆σ2
xy =

∑
t,t′∈T ∥σ(rxy(t); θT) − σ(rij(t′); θ)∥22, ∆sxy = sxy − sij , Ωx = [i − ⌊Q2 ⌋, i +

⌊Q2 ⌋]\{i} and Ωy = [j − ⌊Q2 ⌋, j + ⌊
Q
2 ⌋]\{j}.

The first term of the equation describes how much the ray should learn directly from the identical ray
of the teacher and the second term describes how much the the ray should learn from nearby reliable
rays. To let reliable rays of the teacher network be distilled directly to the student the first term is
multiplied by the similarity value sxy . Also, to guide the ray to learn from only the nearby rays that
are more reliable, we perform the weighted sum on ∆σ2

xy with max(∆sxy, 0) not ∆sxy .

Similarly, photometric loss for each ray rij is formulated as:

Lc(rij , θ) = sij∥C(rij ; θT)− C(rij ; θ)∥22 (19)

Then, the student network is optimized by following equation:

θS = argmin
θ

{
Lphoto(θ) +

∑
r∈R+

Lc(r, θ) + Lg(r, θ)

}
(20)

Although the unified equation has the advantage of avoiding the need to manually search for an
appropriate threshold value, we find that using the unified equation does not perform as well as
initially anticipated. In detail, the unified equation resulted in the smallest performance gain even
after several iterations. To further analyze this phenomenon, we conduct additional experiments
applying several sigmoid functions with different coefficient β to similarity sij , for comparison with
fixed thresholding method.

Sigmoid(sij , β) =
1

1 + exp(−β (sij − 0.7))
(21)
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Experiment is conducted on chair and lego scene with NeRF Synthetic Extreme setting. Quantitative
results are shown at Figure 11 and qualitative results are shown at Figure 12. Both shows that using
a sigmoid function with larger β (which means getting closer to the fixed thresholding) leads to
higher performance gains. As a result, we deduce that using ambiguous boundaries for reliable
and unreliable rays leads to unwanted distillation to the student causing confirmation bias, which
constraints the overall performance gain of the model.
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Figure 12: Qualitative results according to β.
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B.5 LIMITATIONS AND FUTURE WORK

Although our framework successfully guides existing NeRF models to learn a more robust represen-
tation of the scene, our framework shares similar limitations to existing semi-supervised frameworks.
1) Sensitivity to inappropriate pseudo labels: when unreliable labels are classified as reliable and used
to train the student network, this leads to performance degradation of the student model. 2) Teacher
initialization: if the initialized teacher network in the first iteration is too poor, our framework fails to
enhance the performance of the models even after several iterations.

Sensitivity to inappropriate pseudo labels As known as the confirmation bias problem in semi-
supervised frameworks (Arazo et al., 2020), our framework also fails to guide the student network
to learn a more robust representation of the scene in cases where a majority of unreliable rays are
misclassified as reliable. The following cases show when the network was trained with a completely
wrong reliability mask, where the first two images show the initial rendered image and estimated
depth, and the last two images show the rendered image and estimated depth after 4 iterations. The
wrongly estimated mask in the middle leads to performance degradation.

(a) Iteration 1 (b) Depth of (a) (c) Reliability mask (d) Iteration 4 (e) Depth of (d)

Teacher initialization If the rendered images from the initialized teacher model only have a small
portion of the reliable regions or too many artifacts, our framework struggles to guide the student
to capture the geometry of the scene successfully. In these cases, we notice that the small portion
of correct geometry also becomes incorrect after iterations. The first two images are the rendered
images from the first network and the last two images are the rendered images after 4 iterations.

(a) Iteration 1 (b) Iteration 1 (c) Iteration 4 (d) Iteration 4
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Distance from training view Distance from training view

Figure 13: Progressive view selection (Left) This figure visualizes the camera poses in early
iterations steps. The red camera indicates the position of the given input view, and the blue camera
indicates the positions we select to generate pseudo labels. (Right) After iterations, we increase the
range of where the pseudo labels are generated and utilize rendered images from further views of the
given view as pseudo labels.

To enable our framework to guide the student network more robustly, we incorporated several methods
for training. For both K-Planes (Fridovich-Keil et al., 2023) and NeRF (Mildenhall et al., 2021), we
start with generating the pseudo labels from viewpoints that are near the given input views. This is
straightforward as the closer the views are to the known views, the more robust the rendered images
are. By calculating the pose ϕ, θ of the input viewpoints, we start using the rendered images in the
range of 10 degrees (−10 ≤ ϕ ≤ 10,−10 ≤ θ ≤ 10) as the pseudo labels. After the images rendered
from near viewpoints do not give any more additional information about the scene, we increase the
range to guide the student network with new information, as shown in Figure 13.

In addition to the progressive pseudo view selection, we find that training NeRF (Mildenhall et al.,
2021) directly with few-shot images leads to poor initializations, making our framework struggle to
guide the student to a better representation. This was caused mostly by the heavy artifacts that are
located between the scene and the camera, and to mitigate this problem, Park et al. (2021) proposes a
coarse-to-fine frequency annealing strategy that forces the network to learn the low-frequency details
first and the high-frequency details after the coarse features are successfully learned. We follow Park
et al. (2021) and define the weight for each frequency band j as:

wj(η) =
(1− cos(πclamp(η − j, 0, 1)))

2
, (22)

where η is the parameter in the range of η ∈ [0,m] when m is the number of frequency bands used
for the positional encoding γ(·). The η is a hyper-parameter defined as η(t) = mt

N where t is the
current training iteration, and N is a hyper-parameter that defines when the network should utilize
the entire frequency bands. For our experiments, we set N to 1

4 of the total steps. We also compare
the performance of NeRF in the NeRF Synthetic Extreme setting with and without using frequency
annealing and SE-NeRF applied to NeRF using frequency annealing in Table 8.

Table 8: Frequency annealing ablation.
Method PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
NeRF w/o frequency annealing 12.91 0.68 0.33 0.32
NeRF w frequency annealing 14.85 (+1.94) 0.73 (+0.05) 0.32 (-0.01) 0.27 (-0.05)
SE-NeRF (NeRF) 17.15 (+4.24) 0.79 (+0.11) 0.21 (-0.12) 0.22 (-0.10)

With these additional methods incorporated into our framework, SE-NeRF can successfully guide
existing models to learn a more robust representation of the scene without changing the structure of
the models. However, progressive view selection and frequency annealing can be difficult to apply to
all existing models, and removing these additional methods are left for future work.
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(a) Extreme views

(b) Ideally random views

Figure 14: Comparison of extreme views and ideally random views. (a) represents the extreme 3
views that can be randomly selected from the "lego" training set and (b) represents the 3 views that
can be ideally selected. While the extreme views only contain information on the backside of the
lego object, the ideally random views contain information from all sides of the lego which provides
more information to the network. The comparison of (a) and (b) highlights the need for an evaluation
protocol to fairly compare each of the methods.

C VIEW SELECTION

In this section, we show the specific views we selected to compare the performance of multiple
methods in Section 5.1 for the extreme views case. The motivation for the extreme view case is that
when evaluating the NeRF Synthetic dataset (Mildenhall et al., 2021), although current methods do
not show or explain the views used for the evaluation of their models, we found that all methods are
very sensitive to how the random views are selected which makes it hard to evaluate and compare their
performances. Also, to evaluate how much our framework can resolve the model from overfitting
to the given sparse views, we tried to choose the most challenging 3 views to successfully model
the geometry of the scene. In Figure 14, we first show how different extreme views and ideally
random(where 3 views contain near sufficient information to reconstruct the 3D scene) views for the
"lego" scene and then show all the views we selected for each of the scenes in the NeRF Synthetic
dataset (Mildenhall et al., 2021).

C.1 SELECTED VIEWS

Figure 15 shows each of the extreme views we selected for each of the scenes. Specifically, we used
view 26,31,32 for the "chair" scene, view 3,9,14 for the "drums" scene, view 12,36,56 for the "ficus"
scene, view 31,33,48 for the "hotdog" scene, view 0,1,51 for the "lego" scene, view 47,63,73 for the
"materials" scene, view 36,55,66 for the "ship" scene, and view 35,65,82 for the "mic" scene.
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(a) chair

(b) drums

(c) ficus

(d) hotdog
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(e) lego

(f) materials

(g) mic

(h) ship

Figure 15: View selection for NeRF Synthetic Extreme.
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Table 9: Quantitative comparison on LLFF.

Methods PSNR↑ SSIM↑ LPIPS↓ Average↓
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

K-Planes 15.77 19.58 21.72 0.44 0.66 0.73 0.46 0.30 0.24 0.41 0.29 0.25
DietNeRF 14.94 21.75 24.28 0.370 0.717 0.801 0.496 0.248 0.183 0.240 0.105 0.073
RegNeRF 19.08 23.10 24.86 0.587 0.760 0.820 0.336 0.206 0.161 0.149 0.086 0.067

SE-NeRF (K-Planes) 16.30 20.30 22.31 0.49 0.69 0.75 0.44 0.30 0.25 0.39 0.28 0.25
(+0.53) (+0.72) (+0.59) (+0.05) (+0.03) (+0.02) (-0.02) (-0.00) (+0.01) (-0.02) (-0.01) (-0.00)

Table 10: Quantitative per-scene results on LLFF.

Scene PSNR↑ SSIM↑ LPIPS↓ Average↓
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

K-Planes

fern 18.22 21.84 22.59 0.55 0.71 0.76 0.39 0.28 0.23 0.36 0.28 0.25
orchids 12.52 16.41 17.92 0.19 0.48 0.56 0.57 0.36 0.32 0.51 0.37 0.33
horns 14.40 18.37 21.21 0.35 0.63 0.74 0.55 0.35 0.27 0.46 0.33 0.26
leaves 14.44 17.21 18.51 0.37 0.57 0.65 0.47 0.32 0.27 0.43 0.33 0.29
trex 15.04 18.95 21.57 0.45 0.69 0.79 0.49 0.31 0.23 0.42 0.29 0.23
room 14.55 20.73 22.66 0.55 0.81 0.87 0.44 0.23 0.17 0.38 0.22 0.18
fortress 19.74 21.33 26.71 0.65 0.76 0.84 0.30 0.26 0.17 0.30 0.25 0.19
flower 17.25 21.81 22.62 0.41 0.67 0.70 0.49 0.29 0.28 0.42 0.29 0.28

SE-NeRF
(K-Planes)

fern 18.83 22.82 23.28 0.59 0.73 0.77 0.38 0.28 0.25 0.35 0.27 0.25
orchids 13.79 17.14 18.67 0.29 0.52 0.59 0.50 0.36 0.32 0.46 0.36 0.33
horns 14.90 19.39 21.82 0.40 0.67 0.75 0.54 0.35 0.28 0.45 0.31 0.26
leaves 14.92 17.59 18.80 0.40 0.59 0.65 0.47 0.34 0.28 0.43 0.33 0.30
trex 15.32 20.05 22.28 0.50 0.73 0.80 0.47 0.29 0.23 0.40 0.27 0.23
room 14.83 21.59 23.27 0.58 0.84 0.88 0.40 0.22 0.18 0.36 0.21 0.18
fortress 19.99 21.45 26.87 0.69 0.77 0.85 0.31 0.27 0.18 0.29 0.25 0.19
flower 17.84 22.33 23.51 0.45 0.70 0.73 0.49 0.29 0.27 0.41 0.29 0.26

D ADDITIONAL RESULTS

In this section, we show additional results of the estimated binary reliability mask using our reliability
estimation method. In Figure 16, we compare the ground truth (GT) masks generated by the difference
between a fully trained model with 100 training views and a model trained with only 3 training views
to the SE-NeRF masks generated by our method. Our binary reliability masks, created using only 3
training views, effectively mask unreliable artifacts in unknown views, similar to the masks generated
with GT RGB values. In Figure 17,18,19,20, we show additional results of the improved rendered
images from novel viewpoints. In Figure 17, we also present the estimated binary reliability mask,
which is used to apply separate distillation schemes for reliable and unreliable rays that significantly
improves the quality of images rendered by the baseline model. For the LLFF dataset (Mildenhall
et al., 2019), we additionally show the results of K-Planes Fridovich-Keil et al. (2023) and SE-NeRF
(K-Planes) trained with 3, 6, and 9 views. The performance metrics are reported in Table 9 and
Table 10.
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(a) Unknown views (b) GT masks (c) SE-NeRF masks

Figure 16: Binary reliability masks. (b) and (c) represent binary reliability masks for the rendered
unknown views in (a). (b) shows the masks generated by training on 100 views, while (c) shows the
masks generated by training on 3 views and using our reliability estimation method. Note that for
efficient comparison and visualization, we altered the background of the masks generated from our
framework to white as shown in (c).

28



Under review as a conference paper at ICLR 2024

(a) SE-NeRF mask (b) K-Planes (Baseline) (c) SE-NeRF

Figure 17: Qualitative improvement from baseline in 3-view setting (NeRF Synthetic Extreme).
(a) shows the mask generated by training our model in the 3-view setting using our reliability
estimation method. As shown in (c), which presents the results of applying the mask from (a) to (b)
in the subsequent iterations of training, we are able to remove the artifacts present in (b) and achieve
improved performance.
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Figure 18: Additional results in 3-view setting (NeRF Synthetic Extreme).
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Figure 19: Additional results in 3-view setting (LLFF).
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Figure 20: Additional depth improvements in 3-view setting (NeRF Synthetic Extreme).
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