
RECoRD: A Multi-Agent LLM Framework for Reverse Engineering Codebase
to Relational Diagram

Yuan Xue 1 2 Xiaoyu Lu 1 Yunfei Bai 1 Hoiyi Ng 1 Yunan Liu 1

Abstract

Understanding the behavior and logical structure
of complex algorithms is a fundamental challenge
in industrial systems. Recent advancements in
large language models (LLMs) have demonstrated
remarkable code understanding capabilities. How-
ever, their potential for reverse engineering al-
gorithms into interpretable causal structures re-
mains unexplored. In this work, we develop a
multi-agent framework, RECoRD, that leverages
LLMs to Reverse Engineering Codebase to Re-
lational Diagram. RECoRD uses reinforcement
fine-tuning (RFT) to enhance the reasoning accu-
racy of the relation extraction agent. Fine-tuning
on expert-curated causal graphs allows smaller
specialized models to outperform larger founda-
tion models on domain-specific tasks. The RFT-
trained models significantly outperformed their
foundation counterparts, improving F1 score from
0.69 to 0.97. RECoRD also exhibited strong gen-
eralization, with models fine-tuned on one use
case improving performance on others. By au-
tomating the construction of interpretable causal
models from code, RECoRD has wide-ranging
applications in areas such as software debugging,
operational optimization, and risk management.

1. Introduction
Understanding the behavior and logical structure of com-
plex algorithms in large industrial systems is critical for de-
bugging, performance optimization, and security assurance.
However, modern software systems are often developed
and maintained by multiple teams over extended periods,
making it challenging to retain a clear and interpretable
representation of the underlying logic.

1Amazon, Seattle, USA. 2The Ohio State University, Columbus,
USA. Correspondence to: Yuan Xue <xue.643@osu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

While traditional program analysis techniques provide some
level of insight, they often fail to capture the causal rela-
tionships governing software behavior. In contrast, causal
graph-based methods offer a principled approach to address
this complexity and answer “why” (attribution) and “what-if”
(counterfactual) questions at scale. However, constructing
these causal graphs remains a perennial challenge.

A thoughtful approach to software development often starts
with the creation of causal graphs, frequently in the form
of high-level flowcharts and dependency diagrams, prior to
implementing the actual code. These visual models serve as
essential blueprints, clearly illustrating the logical structure
and relationships between inputs and outputs within the pro-
gram. Unfortunately, in reality, due to time constraints and
rapidly evolving business requirements, developers often up-
date the source code without maintaining the corresponding
documentation and graphical models.

In this paper, we aim to address the aforementioned chal-
lenges by developing a novel framework called Reverse
Engineering Codebase into Relational Diagram (RECoRD).
Leveraging recent advances in large-language models
(LLMs), RECoRD automates the extraction of causal de-
pendencies from source code. RECoRD consists of two
key agents: the entity extraction agent, which identifies key
variables used in the code, and the relation extraction agent,
which leverages reinforcement fine-tuned LLM to identify
the relationships among the code entities. Our method sys-
tematically extracts causal relationships among input, in-
termediate and output variables, providing structured and
interpretable representations of complex algorithms while
substantially reducing human efforts required to produce
and maintain causal graphs. Our key contributions include:

• We develop a scalable LLM-driven dual-agent frame-
work, RECoRD, that automates the extraction of causal
graphs from complex computer code, significantly re-
ducing the manual effort required to produce and main-
tain such representations.

• We propose a novel approach for generating curated
training datasets of causal graphs, enhancing pre-
trained language models through reinforcement fine-
tuning (RFT), and employing the fine-tuned LLM to
extract causal relationships from source code.

• We conduct empirical evaluations on several public

1

A Multi-Agent LLM Framework for Codebase to Relational Diagram

codebases to validate the accuracy and efficiency of
the RECoRD framework in producing interpretable
causal structures from complex algorithms.

2. Related Work
Causal discovery and root cause analysis. Causal dis-
covery is fundamental in fields like supply chain manage-
ment, biology, and medicine. These methods aim to uncover
causal structures to support root cause analysis (Singal et al.,
2021; Budhathoki et al., 2021) and counterfactual reason-
ing. While progress has been made with observational data-
driven algorithms—such as the Peter-Clark test and kernel
conditional independence test (Glymour et al., 2019; Zhang
et al., 2011; Shimizu et al., 2006)—these approaches still
depend heavily on domain expertise and manually curated
data, limiting scalability to complex, evolving systems.

Generative knowledge graph construction. Melnyk et
al. (Melnyk et al., 2023) proposed an end-to-end system
that generates knowledge graphs from textual inputs. The
emergence of powerful foundation models like GPT-4 and
Claude 3 has transformed the field, allowing knowledge
graph construction through zero/one/few-shot prompting.
Jiralerspong et al. (Jiralerspong et al.) present a frame-
work that leverages LLMs combined with a breadth-first
search approach for full causal graph discovery, achieving
state-of-the-art results on real-world causal graphs. Further-
more, Darvariu et al. (Darvariu et al., 2024) demonstrate
that LLMs can serve as effective priors for causal graph
discovery, integrating background knowledge to improve
performance on common-sense benchmarks, particularly in
assessing edge directionality. The most recent work (Carta
et al., 2023) showed LLM’s capability in constructing knowl-
edge graph without additional human efforts. However,
these LLM-based methods often struggle with accurately
capturing the structural semantics present in source code.

Code understanding and integration of program anal-
ysis with LLMs. Code-centric LLMs like Codex (Chen
et al., 2021), CodeGen (Nijkamp et al., 2022), and Star-
Coder (Li et al.) show strong performance in code gen-
eration and translation, but their token-level perspective
can yield syntactically correct but semantically incorrect
outputs. Hybrid systems address this by incorporating pro-
gram structure: CodeLLM-Devkit injects abstract syntax
tree and control/data-flow features (Krishna et al., 2024),
while LLMDFA uses symbolic tracing to check intermediate
results (Wang et al., 2024). Still, even semantics-preserving
rewrites can mislead models, highlighting the need for ex-
plicit structural grounding (Nguyen et al., 2024).

3. Methodology
Our proposed RECoRD framework automates the extrac-
tion of interpretable causal graphs directly from complex

Figure 1. Three-stage causal graph generation flow. The process
begins by ingesting and chunking code and documents, proceeds
through entity identification, and culminates in relationship extrac-
tion that yields a final causal graph.

source code by integrating deterministic program analysis
and advanced reasoning capabilities of RFTed LLMs. Our
approach consists of three sequential yet complementary
stages (see Algorithm 1 and Fig. 1 for an illustration). First,
entities representing causal nodes are systematically identi-
fied through a hybrid process combining abstract syntax tree
(AST) parsing, data flow analysis, and LLM-guided refine-
ment, optionally followed by manual filtering to mitigate
potential inaccuracies. Subsequently, using these refined
entities, we employ a carefully crafted prompt engineering
strategy to guide foundation LLMs in extracting causal rela-
tionships. Finally, recognizing limitations in foundational
model outputs, we implement a RFT strategy utilizing DPO
informed by expert-annotated preferences, enhancing the
precision and reliability of inferred causal relationships. In
the rest of this paper, we use the terms relational diagram,
causal graph, and directed acyclic graph (DAG) all inter-
changeably.

3.1. Entity Extraction Agent

The first critical component of RECoRD is automated entity
extraction. This process systematically identifies relevant
variables within the source code, including inputs, interme-
diate states, and outputs, which collectively constitute the
nodes of our causal graph. We combine program analysis
techniques, such as AST parsing and data flow analysis,
with LLM-based refinement to achieve high accuracy. The
source code is parsed to extract fundamental properties,
such as function signatures, parameter lists, return variables,
class hierarchies, and object attributes. These properties
are then processed by an LLM agent. This agent evaluates
the contextual significance of each variable, refining the
initial candidate set to ensure comprehensive identification
of causal nodes.

3.2. Relation Extraction Agent – Prompt Engineering

The relation extraction agent is responsible for inferring the
causal relationships between the entities identified by the en-

2

A Multi-Agent LLM Framework for Codebase to Relational Diagram

Algorithm 1 RECoRD: Automated Causal Graph Extrac-
tion
Require: Source code C, pre-trained LLM M, parameters

ϵupper, β, p
Ensure: Causal graph G = (V,E), adjacency matrix A

Stage 1: Entity Extraction (Sec 3.1)
1: Generate Abstract Syntax Tree from source code C
2: Perform data flow analysis on AST to identify initial candidate

nodes
3: Use LLM-based node-list generation agent (Claude 3.7 Son-

net) to refine candidate nodes
4: Optional: Manually filter nodes to remove obviously irrele-

vant entities
5: Finalize refined node list V ← {v1, v2, . . . , vn}

Stage 2: Relation Extraction via Prompt Engineering (Sec
3.2)

6: Construct prompt using refined nodes V and source code C
7: Infer preliminary causal relationships E′ ⊆ V × V using

prompt-engineered inference withM
Stage 3: Reinforcement Fine-Tuning via DPO (Sec 3.3)

8: for t← 1 to T do
9: Sample m ∼ Uniform(1, ⌊ϵupper · n⌋) nodes

10: Generate subgraph node set I ⊆ V , |I| = m
11: Generate correct subgraph GI based on ground truth edges

EI

12: Generate incorrect subgraph ĜI by randomly removing or
adding edges proportional to |EI | · p

13: Compute preference score s(GI , β) using Eq. (1)
14: Collect pair (GI , ĜI) with preference score s(GI , β)
15: end for
16: Fine-tune M using collected training pairs with DPO and

LoRA adapters to obtain fine-tuned modelMRFT
Final Graph Extraction

17: Use fine-tuned LLM MRFT with node set V to infer final
causal relationships E

18: Construct the final causal graph G = (V,E) and derive adja-
cency matrix A

19: return G, A

tity extraction agent. Crafting effective prompts for this task
is crucial, as it directly impacts the quality of the inferred
causal structures. We employ a multi-stage prompt engineer-
ing approach to guide the relation extraction agent: Entity
Framing: The prompt begins by clearly stating the list of
entities extracted from the code (e.g., entities identified in
Section 3.1), framing them as the key variables or compo-
nents in the system. Causal Relationship Elicitation: The
agent is then instructed to analyze the relationships between
these entities and identify the causal dependencies. Direc-
tional Insights: To enrich the causal understanding, the
prompt further requests the agent to specify the direction-
ality of each relationship (e.g., what variable is an input to
another variable).

We start with prompting large size foundation models (FMs)
using code and its corresponding instructions. The prompt
instruction in Appendix A gives the best results. Although
FMs can identify a set of key entities within code and infer
causal relationships among them, their outputs often contain

inaccuracies such as missing causal links and the inclusion
of spurious relations not supported by the code. These
limitations persist even in state-of-the-art models such as
Qwen3-32B. To address these issues, we adopt an RFT
approach to enhance the model’s code comprehension and
improve its reasoning accuracy.

3.3. Relation Extraction Agent – RFT

To enhance the model’s reasoning accuracy, we adopt an
RFT approach on smaller-scale models with 7B to 14B pa-
rameters. RFT explicitly optimizes model behavior through
feedback derived from both correct and incorrect responses,
guided by corresponding preference scores. We generate
various subsets of the full causal graph, assign preference
scores to each, and use them to fine-tune the model (see
details in Section 3.3). This process allows the model to
learn causal relationships between smaller sets of entities
with a large number of examples, and generalize the reason-
ing to the full graph. For RFT, we employ DPO (Rafailov
et al., 2023) in combination of the Parameter-Efficient Fine-
Tuning (PEFT) (Houlsby et al., 2019; Xu et al., 2023)
method with Low-Rank Adaptation (LoRA) (Hu et al., 2021)
adapters. DPO directly updates the foundation model’s pa-
rameters based on relative preferences rather than absolute
labels, leading to a more stable and efficient learning process.
LoRA further enhances efficiency and generalization ability
cross a wide range of codebases by fine-tunes only a small
subset rather than updating all parameters of the pre-trained
model. In our framework, each adapter is specialized for
a specific codebase, allowing us to deploy a single founda-
tion model equipped with multiple codebase specific LoRA
adapters. This design not only support diverse code under-
standing task, but also mitigates catastrophic forgetting by
isolating task-specific knowledge within separate adapters.

RFT Dataset Generation. To generate sub-graphs for
training, we set an upper threshold ϵupper on the proportion
of nodes included in the fine-tuning examples given n num-
ber of entities (nodes). For each subsampled list of entities
{N1, N2, · · · , Nm} where m ∼ Uniform([0, [ϵupper ·n]),
we generate a pair of the correct sub-graph and an incor-
rect sub-graph, where the incorrect sub-graph is generated
through sampling a DAG with the m entities where the DAG
is not the same as the ground truth sub-graph.

The DPO preference score is calculated by comparing the
edges between the generated sub-graph and the ground truth
sub-graph. To allow for asymmetric penalty for missing
edges versus wrong edges, we use a weighted sum of the
two different penalties controlled by the parameter β as the
score:

s(GI , β) = max

(
0,

∑
(AI − ÂI) · 1{AI−ÂI>0}

|I|2

+ β

∑
−(AI − ÂI) · 1{AI−ÂI<0}

|I|2

)
(1)

3

A Multi-Agent LLM Framework for Codebase to Relational Diagram

where I is the set of the nodes in the sub-graph, GI refers
to the sub-graph with the node list I , AI and ÂI are the
adjacency matrices of the ground truth sub-graph and the
generated sub-graph respectively.

In practice, when the full ground truth graph is unknown,
we will generate pairs of sub-graphs for human domain
experts to rank their preferences, which will then be used
for DPO fine-tuning. The larger the threshold ϵupper, more
nodes are involved in the sub-graphs and therefore more
domain knowledge is required to label the human prefer-
ence. For each prompt, we modify the instruction to let the
agent extract causal graph based on the node list involved in
each sub-graph only. The prompt, in combination with the
positive/negative examples with their scores, constitute the
DPO training dataset.

4. Experiments
We demonstrate RECoRD’s performance using three real-
world use cases that have causal interpretations (physical
mechanisms) supporting the implementation: News Vendor,
MiniSCOT, and Black-Scholes, each with a known ground
truth DAG and readily available open-sourced code base
(see Appendix B for details).

Across all three use cases we observe a clear precision–recall
trade-off among the entity-extraction pipelines (Table 2).
We first apply a lightweight human filtering step: a mini-
mal manual review (typically 1–2 minutes by a non-expert)
to remove obviously irrelevant items such as loop coun-
ters, framework artifacts, or generic placeholders. This step
requires no domain-specific knowledge and serves as a prac-
tical compromise between fully automated extraction and
exhaustive annotation. The code-only +H pipeline achieves
perfect precision on the Newsvendor case and slightly higher
recall than AST-assisted variants on MiniSCOT, confirming
its effectiveness for compact, business-rule–driven code. In
structurally richer settings such as Black-Scholes, however,
many relevant variables are buried in deeper abstractions;
here AST guidance, despite adding noise, captures subtle
but critical terms (e.g., higher-order Greeks) and yields
substantially better recall. This recall gain is particularly
valuable because relation extraction performance is more
sensitive to missing nodes than spurious ones, as missing
variables preclude the generation of edges entirely. Overall,
the AST +LLM +H pipeline strikes the best balance between
coverage and precision, and its recall advantage translates
to higher downstream edge.

We experiment with RECoRD’s Relation Generation Agent
on the above three use cases using the following RFT
models: Qwen2.5-7B-Instruct-RFT, Qwen2.5-14B-Instruct-
RFT, and Phi-4-RFT. The model performance is measured
by the F1-score between the model generated DAG entities

and relations and the ground truth annotated by human ex-
perts, as shown in Appendix F. The results demonstrate that
RECoRD can effectively extract interpretable causal graphs
from complex codebase in an automated manner. For the
MiniSCOT use case, the RFT-based approach was able to
accurately recover the causal structure without any wrongly
identified nodes or edges (see Figure 3). Even with partial
entity lists which is closer to practical settings, the RFT-
trained models significantly boosted performance compared
to the foundation models.

To demonstrate the generalization capability of RECoRD to
a new codebase without human-labeled data, we use a RFT
model trained using the News Vendor codebase to extract a
causal graph from the MiniSCOT codebase. Figure 2 and
Table 1 show the corresponding causal graph and F1 score.

Table 1. Graph relation F1-score of RECoRD with different con-
figurations on MiniSCOT use case. The RFT model is fine-tuned
by the training dataset from News Vendor.

Use Case Model Full entity list LLM + H + AST LLM + H

FM RFT FM RFT FM RFT

MiniSCOT Qwen3-32B 0.750 - 0.412 - 0.303 -
Qwen2.5-7B 0.786 0.857 0.364 0.452 0.182 0.323
Phi-4 0.690 0.733 0.375 0.438 0.121 0.250

Figure 2. Comparison of ground truth and learned causal graphs
for MiniSCOT with full entity list using Qwen 7B-Instruct FM
and RFT trained on News Vendor. RFT significantly improves the
causal discovery accuracy.

5. Conclusions
We presented RECORD, a multi-agent pipeline that
fuses deterministic program analysis with reinforcement
fine-tuned LLMs to turn production code into accurate, in-
terpretable causal graphs with minimal human input. There
are several venues for future research. First, developing scal-
able training procedures to extract causal relationships from
large-scale code repositories remains an under-explored ter-
ritory. Second, designing advanced mechanisms to further
enhance RECoRD’s reasoning capabilities could improve its
ability to uncover domain-transferable causal relationships,
potentially leading to more robust and generalizable models.
Finally, expanding RECoRD’s applications beyond causal
graph extraction to recursive algorithmic flowcharts, such as
reinforcement learning, presents an intriguing opportunity
to broaden its impact.

4

A Multi-Agent LLM Framework for Codebase to Relational Diagram

References
Arrow, K. J., Harris, T., and Marschak, J. Optimal inven-

tory policy. Econometrica, 19(3):250–272, 1951. ISSN
00129682, 14680262. URL http://www.jstor.
org/stable/1906813.

Budhathoki, K., Janzing, D., Bloebaum, P., and Ng,
H. Why did the distribution change? In Baner-
jee, A. and Fukumizu, K. (eds.), Proceedings of The
24th International Conference on Artificial Intelligence
and Statistics, volume 130 of Proceedings of Machine
Learning Research, pp. 1666–1674. PMLR, 13–15 Apr
2021. URL https://proceedings.mlr.press/
v130/budhathoki21a.html.

Carta, S., Giuliani, A., Piano, L., Podda, A. S., Pompianu,
L., and Tiddia, S. G. Iterative zero-shot llm prompt-
ing for knowledge graph construction. arXiv preprint
arXiv:2307.01128, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Darvariu, V.-A., Hailes, S., and Musolesi, M. Large lan-
guage models are effective priors for causal graph discov-
ery. arXiv preprint arXiv:2405.13551, 2024.

Glymour, C., Zhang, K., and Spirtes, P. Review of causal
discovery methods based on graphical models. Frontiers
in genetics, 10:524, 2019.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
de Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for
nlp, 2019. URL https://arxiv.org/abs/1902.
00751.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models, 2021. URL https://arxiv.
org/abs/2106.09685.

Jiralerspong, T., Chen, X., More, Y., Shah, V., and Bengio,
Y. Efficient causal graph discovery using large language
models. In ICLR 2024 Workshop: How Far Are We From
AGI.

Krishna, R., Pan, R., Pavuluri, R., Tamilselvam, S., Vukovic,
M., and Sinha, S. Codellm-devkit: A framework for
contextualizing code llms with program analysis insights.
arXiv preprint arXiv:2410.13007, 2024.

Li, R., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C.,
Marone, M., Akiki, C., Jia, L., Chim, J., Liu, Q., et al.
Starcoder: may the source be with you! Transactions on
Machine Learning Research.

Maggiar, A., Song, I., and Muharremoglu, A. Multi-echelon
inventory management for a non-stationary capacitated
distribution network. Optimization Online, 2022.

Melnyk, I., Dognin, P., and Das, P. Knowledge graph
generation from text. arXiv, 2023. URL https:
//arxiv.org/abs/2211.10511.

Nguyen, T.-T., Vu, T. T., Vo, H. D., and Nguyen, S. An
empirical study on capability of large language mod-
els in understanding code semantics. arXiv preprint
arXiv:2407.03611, 2024.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou,
Y., Savarese, S., and Xiong, C. Codegen: An open large
language model for code with multi-turn program synthe-
sis. arXiv preprint arXiv:2203.13474, 2022.

Oksendal, B. Stochastic differential equations (3rd ed.): an
introduction with applications. Springer-Verlag, Berlin,
Heidelberg, 1992. ISBN 3387533354.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Man-
ning, C. D., and Finn, C. Direct preference optimization:
your language model is secretly a reward model. In Pro-
ceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS ’23, Red Hook,
NY, USA, 2023. Curran Associates Inc.

Shimizu, S., Hoyer, P. O., Hyvärinen, A., Kerminen, A.,
and Jordan, M. A linear non-gaussian acyclic model for
causal discovery. Journal of Machine Learning Research,
7(10), 2006.

Singal, R., Michailidis, G., and Ng, H. Flow-based
attribution in graphical models: A recursive shapley
approach. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 9733–9743. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/singal21a.html.

Wang, C., Zhang, W., Su, Z., Xu, X., Xie, X., and Zhang, X.
Llmdfa: Analyzing dataflow in code with large language
models. Advances in Neural Information Processing
Systems, 37:131545–131574, 2024.

Xu, L., Xie, H., Qin, S.-Z. J., Tao, X., and Wang, F. L.
Parameter-efficient fine-tuning methods for pretrained
language models: A critical review and assessment, 2023.
URL https://arxiv.org/abs/2312.12148.

Zhang, K., Peters, J., Janzing, D., and Schölkopf, B.
Kernel-based conditional independence test and appli-
cation in causal discovery. In Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelli-
gence, UAI’11, pp. 804–813, Arlington, Virginia, USA,
2011. AUAI Press. ISBN 9780974903972.

5

http://www.jstor.org/stable/1906813
http://www.jstor.org/stable/1906813
https://proceedings.mlr.press/v130/budhathoki21a.html
https://proceedings.mlr.press/v130/budhathoki21a.html
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2211.10511
https://arxiv.org/abs/2211.10511
https://proceedings.mlr.press/v139/singal21a.html
https://proceedings.mlr.press/v139/singal21a.html
https://arxiv.org/abs/2312.12148

A Multi-Agent LLM Framework for Codebase to Relational Diagram

A. Prompt
(entity1), (entity2), ... represent the identified entity from Section 3.1.

Prompt Instruction

You are a causal relationship extractor and your task is to extract causal relationships from a code snippet and a technical
document. Let’s extract it step by step:

(1) Identify the entities in the text from the code snippet and the document. An entity must be a noun or a noun phrase
that refers to a real-world object or an abstract concept.
(2) Identify the relationships between the entities. A relationship must describe as “is an input to” from the head entity to
the tail entity.
(3) List the relationship in triplet format: (‘head entity’, ‘is an input to’, ‘tail entity’).

The code snippet is provided in (code) tags. The technical document is provided in (doc) tags. Only identify the causal
relationship from the following nodes: (entity1), (entity2), ...
DO NOT put any preambles in the response. If you don’t know the answer, just say I don’t know.
DO NOT make up the answer.

B. Real-world Use Cases
• News vendor: The news vendor problem (Arrow et al., 1951) is a classic operations research problem which determines

how much of a perishable product to order under stochastic demand, aiming to minimize total expected cost. This cost
comes from ordering too much (overage cost) or too little (underage cost). The optimal ordering quantity is a function
of the demand distribution, whole sale price, retail price, and salvage cost (code).

• MiniSCOT is a simplified simulation platform developed by Amazon. It simulates multiple supply chain metrics
evolution over time based on physics of the supply chain operation. In particular, we focus on its strategic buying
decision which is one of the most critical and computationally expensive components in real-world supply chain
systems (Maggiar et al., 2022). The MiniSCOT buying module optimizes for the optimal purchase order quantities and
inbound routing based on demand forecast, inventory positions, planning period and sales patterns across different
retail locations (code).

• Black-Scholes: The Black-Scholes model (Oksendal, 1992) is a classic problem in quantitative finance that determines
the optimal price of an European option of certain asset (e.g., stock) which is assumed to evolve according to a
geometric Brownian motion. The optimal option price is a function of key input parameters including the initial stock
price, drift and volatility parameters, interest rate, strike price, and maturity time (code).

C. Fine-tuning Procedure
When conducting RFT with LoRA, we carefully tune the hyperparameters to streamline the efficient learning process and
minimize the training loss. Specifically, we grid search over the learning rate, batch size, LoRA rank, and LoRA alpha, to
select the optimal size of LoRA training parameter for lower training loss and faster convergence time. We set the alpha to
four times the rank to improve the LoRA adapter’s influence on the full model weights.

Our results suggest that smaller size models (7B and 14B parameters) fine-tuned with carefully curated domain-specific
sample data outperform a large size SOTA reasoning model (Qwen3-32B) with higher accuracy, lower latency, and cost.
The RFT model demonstrates improved reasoning over the foundation model, capable of explicitly identifying patterns
within the code, such as variables that are input to a method or derived from other variables. These results confirm that entity
recall plays a critical role in determining overall graph quality, as missing entities inherently limit the ability to recover
corresponding edges. AST-guided methods, augmented by simple human filtering, strike an effective balance by maximizing
recall without introducing excessive noise, resulting in the highest end-to-end graph F1 scores across all benchmarks.

6

https://github.com/amzn/supply-chain-simulation-environment
https://github.com/amzn/supply-chain-simulation-environment
https://github.com/CarloLepelaars/blackscholes/tree/main/src/blackscholes

A Multi-Agent LLM Framework for Codebase to Relational Diagram

Table 2. Entity-level precision (P) and recall (R).

Use Case AST + Code AST + Code + H Code-only + H

P R P R P R

Newsvendor 0.89 0.73 0.89 0.73 1.00 0.73
MiniSCOT 0.56 0.63 0.83 0.63 0.61 0.69
Black–Scholes 0.34 0.58 0.37 0.58 0.27 0.21

D. Entity List Evaluation

E. Learned Causal Graph
We show the learned causal graph in Figure 3 and Figure 2, with models fine-tuned with different use case.

Figure 3. Ground truth and learned causal graphs with full entity list using Qwen 7B-Instruct models for News Vendor Problem (left); and
Phi-4 models for MiniSCOT (right). RFT significantly improves the causal discovery accuracy.

F. Causal Graph Evaluation
We report the node F1 score in Table 3 and edge F1 score in Table 4 respectively.

Table 3. Graph node F1-score of RECoRD with different configurations on 3 different use cases. LLM+H+AST refers to AST + LLM
generated entity list with human filtering; LLM+H refers to LLM generated entity list with human filtering.

Use Case Model Full entity list LLM + H + AST LLM + H

FM RFT FM RFT FM RFT

Newsvendor
Claude 3.7 Sonnet 1.000 – 1.000 – 0.952 –
Qwen-7B-Instruct 1.000 0.952 0.952 0.952 0.900 0.900
Phi-4 0.917 1.000 0.870 0.909 0.952 1.000

MiniSCOT
Claude 3.7 Sonnet 0.968 – 0.500 – 0.722 –
Qwen-7B-Instruct 0.914 1.000 0.530 0.690 0.629 0.632
Phi-4 0.938 0.970 0.606 0.710 0.743 0.824

Black-Scholes
Claude 3.7 Sonnet 0.840 – 0.750 – 0.591 –
Qwen-14B-Instruct 0.966 0.966 0.862 0.909 0.605 0.591
Phi-4 1.000 1.000 0.847 0.885 0.545 0.545

7

A Multi-Agent LLM Framework for Codebase to Relational Diagram

Table 4. Graph relation F1-score of RECoRD with different configurations on 3 different use cases. The F1 score is computed against the
set of edges in the ground truth causal graph.

Use Case Model Full entity list LLM + H + AST LLM + H

FM RFT FM RFT FM RFT

Newsvendor
Claude 3.7 Sonnet 0.765 – 0.710 – 0.728 –
Qwen-7B-Instruct 0.810 0.895 0.571 0.687 0.462 0.518
Phi-4 0.737 0.800 0.647 0.647 0.500 0.533

MiniSCOT
Claude 3.7 Sonnet 0.645 – 0.400 – 0.487 –
Qwen-7B-Instruct 0.667 0.857 0.425 0.519 0.182 0.364
Phi-4 0.690 0.968 0.375 0.467 0.267 0.323

Black-Scholes
Claude 3.7 Sonnet 0.593 – 0.417 – 0.291 –
Qwen-14B-Instruct 0.552 0.573 0.483 0.569 0.256 0.286
Phi-4 0.556 0.562 0.412 0.497 0.284 0.284

8

