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ABSTRACT
Retrieval-augmented language models have become central in nat-
ural language processing due to their efficacy in generating precise
and relevant content. While traditional methods employ single-time
retrieval, more recent approaches have shifted towards multi-time
retrieval for complex, multi-hop reasoning tasks. However, current
strategies, despite their advancements, are bound by predefined rea-
soning steps, potentially leading to inaccuracies in response genera-
tion. This paper introduces the Metacognitive Retrieval-Augmented
Generation framework (MetaRAG), a novel approach that combines
the retrieval-augmented generation process with human-inspired
metacognition. Drawing from cognitive psychology, metacognition
allows an entity to self-reflect and critically evaluate its cogni-
tive processes. By integrating this, MetaRAG enables the model to
monitor, evaluate, and plan its response strategies, enhancing its in-
trospective reasoning abilities. Through a three-step metacognitive
regulation pipeline, the model assesses the adequacy of its answers,
identifies reasons for potential inadequacies, and formulates plans
for refinement. Empirical evaluations on multi-hop QA datasets
show that MetaRAG significantly outperforms existing methods.

KEYWORDS
Retrieval-Augmented Generation, LLMs, Metacognition

1 INTRODUCTION
Recently, large language models (LLMs) have emerged as a foun-
dational component in various natural language processing tasks,
attributed to their remarkable capability to comprehend and gen-
erate human-like language [23]. While these models are endowed
with vast repositories of knowledge learned during training, they
exhibit the propensity to generate hallucinated content [21, 39]. To
address this issue, researchers have introduced the idea of integrat-
ing retrieval systems into LLMs. By doing so, LLMs can look up
relevance information from external knowledge bases, ensuring a
more reliable and precise content generation.

Historically, retrieval-augmented language models [9–11, 20]
have primarily employed single-time retrieval, extracting knowl-
edge once based on an initial query. This method, while effective for
tasks with straightforward informational needs, falls short when
faced with complex tasks demanding multi-faceted information or
multi-step reasoning. Recognizing this limitation, recent researches
have shifted towards a multi-time retrieval framework [1, 15, 25, 33].
This method doesn’t confine knowledge retrieval to one instance
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Figure 1: The correspondence between the metacognitive
processes in humans and retrieval-augmented LLMs

but revisits it iteratively during the generation process, but de-
composing the primary question into sub-questions [16], or lever-
aging partially generated content [24, 37] and forward-looking
sentences [12] as dynamic search queries.

Although previous methods have made strides in improving the
quality of generated answers, they strictly adhere to predefined
reasoning steps over all questions. Such inflexible approaches lack
the ability to diagnose specific errors in their responses and conse-
quently don’t possess mechanisms to enhance their performance.
We argue that this limitation might stem from the model’s lack
of awareness regarding its own reasoning processes. When hu-
mans confront complex issues, they often reflect on their thought
patterns, gradually adjusting and optimizing their strategies. This
ability comes from our innatemetacognition, which enables intro-
spection, self-assessment, and self-regulation. Inspired by it, we aim
to integrate metacognitive ability into LLMs to enhance retrieval-
augmented generation (RAG). By adopting this approach, the model
is able to identify its own inaccuracies and dynamically adjust their
reasoning strategies, leading to more precise answer generation.

Derived from the field of cognitive psychology [19, 27], metacog-
nition concerns an individual’s capacity to self-reflect and critically
evaluate their cognitive processes [34]. As shown in the Figure 1(a),
it can be classified into two integral components: metacognitive
knowledge and metacognitive regulation. The former refers to an
individual’s self-awareness of their cognitive strengths, limitations,
and mechanisms. On the other hand, metacognitive regulation [4]
involves the active management and control of one’s cognitive pro-
cesses. Empowered by metacognitive capabilities, the human brain
possesses the capacity to discern the underlying rationale behind
responses and acquire the means for self-improvement.

Drawing inspiration from humanmetacognitive processes, we in-
troduce the Metacognitive Retrieval-Augmented Generation frame-
work (MetaRAG). As illustrated in Figure 1(b), MetaRAG features a
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“cognition-metacognition” collaborative framework. The cognition
component is responsible for deriving answers from the provided
question and references, while the metacognitive component, act-
ing as a critic model, delves deep into potential mistakes during
reasoning. Upon conducting an analysis of model performance un-
der different conditions of knowledge (as detailed in Sec. 3.2), it
has been observed that there are three main reasons causing the
model fails to infer the correct answer: insufficient knowledge,
conflicting knowledge, and erroneous reasoning. Endowed
with the benefit of metacognitive mechanism, we expect the model
to be aware of its own cognitive process in RAG tasks from two
aspects: (1) The sufficiency and harmonization of external retrieved
knowledge and LLM’s intrinsic knowledge. (2) The reliability and
accuracy of multi-hop reasoning. By doing so, the model is capable
of identifying potential issues present in knowledge integration
and answer reasoning, thereby enabling targeted improvements.

Specifically, we delineate the metacognitive process into three
distinct steps in the context of retrieval-augmented LLMs. (1)Mon-
itoring assesses the quality of the current response to determine
whether there’s a need to invoke the metacognitive evaluating. (2)
Evaluating is to identify the reasons why the current answer may
not meet the requirements. During this phase, the model leverages
metacognitive knowledge to analyze the flaws in the response. This
knowledge encompasses two main areas: declarative knowledge,
which involves recognizing prevalent error patterns, and proce-
dural knowledge, focusing on the utilization of methods to assess
the sufficiency and harmonization of both internal and external
knowledge. Based on this evaluation, results are categorized into
four distinct scenarios. (3) Planning offers tailored suggestions
for the cognitive component on potential improvements. For each
of the aforementioned scenarios in the evaluating stage, distinct
planning strategies are designed to enhance the original cognitive
process. Collectively, these steps ensure that the model not only
identifies inadequacies in its initial cognitive responses but also
fixes them based on the metacognitive evaluating and planning.
The experimental results on two multi-hop question answering
(QA) datasets indicate that MetaRAG gains higher capabilities of
reasoning and outperforms existing baselines significantly.

The contributions of this paper are summarized as: (1) We intro-
duce a metacognitive retrieval-augmented generation framework
that integrates LLMs with human introspective reasoning for multi-
hop QA tasks. (2) Through empirical analysis, we summarize three
primary challenges in multi-hop QA causing wrong answers: insuf-
ficient knowledge, conflicting knowledge, and erroneous reasoning.
(3) We devise a three-step metacognitive regulation pipeline tai-
lored for retrieval-augmented LLMs, offering a systematic way for
models to assess, diagnose, and refine the original cognitive process.

2 RELATEDWORK
The development of retrieval-augmented language models has been
a central theme in recent research endeavors. Their aim is to har-
moniously marry the static knowledge encapsulated within the
language model to the dynamic wealth of information on the web.
The development of these models can be bifurcated into two pri-
mary phases: single-time retrieval and multi-time retrieval.

Single-timeRetrieval. Initial endeavors in retrieval-augmented
language models predominantly embraced the single-time retrieval
strategy [6, 9, 20, 38]. In this framework, a single-time extraction
of knowledge was performed in response to the user’s initial query.
Various methods were conceived to incorporate this external knowl-
edge retrieval. For instance, Guu et al. [5] introduced a language
model that incorporated latent knowledge retrieval during pre-
training, whereas Ram et al. [25] chose to keep the core LM archi-
tecture untouched, simply appending grounding documents to its
input. Meanwhile, Shi et al. [29] perceived the language model as
an inscrutable entity, complementing it with an externally trainable
retrieval module. Such strategies showcased remarkable efficacy
for tasks that demanded straightforward information, like factoid
question answering [18] and fact verification [31]. However, their
applicability waned for intricate tasks demanding multi-hop rea-
soning, as the single-time retrieval lacked the depth to decode the
subtleties embedded in complex inquiries.

Multi-time Retrieval. To counter the shortcomings of the
single-time retrieval paradigm, the spotlight shifted towards the
development of multi-time retrieval models. This paradigm champi-
ons an iterative knowledge extraction process throughout content
generation. Some approaches [15, 22, 33] are designed to passively
harness past contexts, conducting retrievals at predetermined inter-
vals. Others [17, 37] deconstruct a multifaceted query into a series
of simpler sub-queries, each necessitating its distinct retrieval oper-
ation. Furthermore, the intrinsic capabilities of the latest LLMs have
been harnessed to autonomously dictate the timing and content of
retrievals. For instance, Press et al. [24] leverages the model’s par-
tially generated content as evolving search queries, allowing it to
iteratively refine its search. Meanwhile, Jiang et al. [12] strategically
uses prospective sentences as dynamic search triggers. The ReAct
model [37] ingeniously fuses a Chain-of-Thought (CoT) rationale
with action in a seamless thought-action-observation loop. Other
innovative approaches [28, 30] embed introspective mechanisms
that iteratively refine the model’s outputs. This iterative retrieval
approach proves effective for queries with inherent ambiguities or
those demanding a synthesis of diverse information sources.

In contrast to the aforementioned studies, this paper conducts an
exploration of The fundamental reasons for causing the model to
answer incorrectly in RAG. Drawing inspiration from the domain
of cognitive psychology, we integrate metacognitive ability into
LLMs to enable the model to be aware of its reasoning process, thus
enhancing the quality of answer generation.

3 PRELIMINARY
In this section, we formulate the task of retrieval-augmented gen-
eration and investigate its limitations on multi-hop QA.

3.1 Task Definition
Given a question𝑞 and a retrieval corpus𝐷 = {𝑑𝑖 } |𝐷 |

𝑖=1 (withWikipedia
articles serving as the primary data source in this study), the goal
of retrieval-augmented LLMs is to generate an answer 𝑦 based on
the question as well as the documents retrieved in relation to it.
This can be represented as:

𝑦 = LLMQA ( [𝐷𝑞, 𝑞], PromptQA), (1)
2
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Figure 2: Comparisons of single- and multi-time retrieval-
augmented LLMs under different conditions of knowledge.

PromptQA:
Please act as a question-answering system, answer
the {question} based on the {retrieved documents}

where 𝐷𝑞 is the retrieved documents for the query 𝑞, which is a set
of Wikipedia articles retrieved by BM25 [26] in our experiments.
[·, ·] is concatenation following designated prompts. LLMQA is the
role of the LLM, which concentrates on question answering tasks.

3.2 Task Exploration
We conduct an empirical study to evaluate the effectiveness of
retrieval-augmented LLMs under various knowledge conditions.
Our main aim is to ascertain whether a question can be answered
utilizing either the intrinsic knowledge within the LLM or via ex-
ternally retrieved documents. Through human annotation of (a) the
quality of closebook answers from the LLM and (b) the knowledge
completeness of retrieved documents, we are able to categorize
questions into four distinct conditions:
• No knowledge. Neither the LLM nor retrieved documents can

provide an answer correctly.
• Only external. Answers can be found in retrieved documents, but

not directly from the LLM.
• Only internal. The LLM can answer the question directly, but

external documents cannot provide the solution.
• Both internal and external. The question can be addressed either

directly by the LLM or through retrieved documents.
For comparison, both standard RAG [2] and ReAct [37] are put to
the test on sampled 100 questions from HotpotQA dataset.

The diagram in Figure 2 depicts the efficacy of various methods.
Our study yields several insights: (1) When the model operates
without any knowledge, it faces difficulty in generating accurate re-
sponses. Nevertheless, the ReAct method, with multi-time retrieval
mechanism, enhances the accuracy for such queries. (2) When
the model is based only on either internal or external knowledge,
there’s a noticeable accuracy improvement. However, conflicts in
the knowledge limit the model’s ability to answer questions cor-
rectly. The ReAct method doesn’t sufficiently mitigate this issue. (3)
In situations where both internal and external knowledge sources
concur and can tackle the question at hand, there’s a marked im-
provement in the model’s accuracy. Yet, it still isn’t flawless. This
suggests that even with complete knowledge, the model can err due
to incorrect reasoning. These insights highlight three primary chal-
lenges in multi-hop QA when the model fails to answer correctly:
insufficient knowledge, conflicting knowledge, and erroneous

reasoning. In subsequent sections, we will delve deeper into how
metacognitive strategies can help overcome these challenges.

4 METACOGNITIVE RAG
Retrieval augmentation has become one of the primary methods
to mitigate the hallucination issues in LLMs. However, existing
research on retrieval-augmented LLMs primarily focuses on the
design of the reasoning steps, overlooking the awareness of the
reasoning itself. Motivated by this observation, in this section, we
introduces a metacognitive retrieval-augmented generation frame-
work. This approach taps into the principles of metacognition,
allowing for introspection of the cognitive process. By doing so,
it identifies shortcomings in the reasoning process and aims to
enhance the accuracy of answer derivation.

The overall framework of MetaRAG is depicted in Figure 3.
MetaRAG comprises two spaces: the cognition space and themetacog-
nition space. The former functions as a QA system, while the latter
serves as both an evaluator and critic, introspecting the reasoning
process. This metacognition space primarily encompasses three
main phases: (1)Monitoring; (2) Evaluating; (3) Planning. The
following sections introduce the details of these three steps.

4.1 Monitoring: Assessing Answer Satisfaction
The primary function of monitoring is to keep track of one’s cogni-
tive processes. In human brain, not all cognitive activities necessar-
ily trigger metacognitive evaluating [19]. Typically, only when the
problem becomes so complex that the correctness of the cognitive
process cannot be guaranteed, it becomes necessary to “think thrice
before answering”. In multi-hop QA tasks, due to the complexity of
the task or insufficient knowledge, retrieval-augmented LLMs some-
times fail to reason out the correct answer. The role of monitoring
is to assess the satisfaction of the answer, which then determines
whether to activate the metacognitive evaluating phase.

To investigate the conditions under which an answer is deemed
satisfactory, we hypothesize that an answer is highly plausible when
the cognition of the LLM aligns with the cognition of an expert
model. Conversely, certain deviation necessitates the intervention
of metacognition. With this in mind, we select an expert model on
QA tasks to evaluate the satisfaction level of the answers produced.
Specifically, given a question 𝑞, retrieved documents 𝐷𝑞 , we first
prompt the expert model𝑀 to generate an answer:

𝑦′ = 𝑀𝜙 ( [𝐷𝑞, 𝑞]), (2)

where 𝜙 is the parameters of the model𝑀 . Next, we decide on the
model’s subsequent action by computing the similarity between
the LLM outputs 𝑦 and the expert model’s outputs 𝑦′. The decision
of the next action is defined as:

Action =

{
Activate evaluating stage if ⟨ ®𝑋𝑦, ®𝑋𝑦′ ⟩ < k,
Output the answer otherwise.

Here, 𝑘 serves as a threshold value governing the model’s behavior.
A higher value of 𝑘 implies that a greater number of reasoning pro-
cesses require metacognitive evaluation. ®𝑋 represents embeddings
encoded by an encoder (e.g. BERT Encoder), and ⟨, ⟩ is the similarity
function, implemented by cosine similarity. In cases where the sim-
ilarity between the LLM output and the expert model output falls

3
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below a certain threshold, the expert model triggers metacognitive
process, including metacognitive evaluating and planning.

4.2 Evaluating: Identifying Answer Limitations
When a monitor discerns that an answer fails to fully address a
question, it triggers the metacognitive process of evaluating. This
introspective exercise is geared towards identifying the shortcom-
ings of the provided response and discerning why the model may
have faltered in its reasoning. Central to this introspection are two
pivotal questions: (a) Are both internal and external sources of
knowledge sufficient to tackle the posed question? and (b) Is the
reasoning process of the QA LLM susceptible to common issues
often encountered in multi-hop QA?

To address these concerns, the evaluating step employs two types
of metacognitive knowledge: procedural knowledge and declara-
tive knowledge. Within cognitive psychology [19, 27], procedural
knowledge embodies the grasp of methodologies and strategies
essential for confronting specific tasks, while declarative knowl-
edge is anchored in specific facts or content-based information,
covering facts and concepts associated with problem solving. For
Retrieval-augmented LLMs, we convert the role of LLM from the
original question answering system to an evaluator-critic system.
Different from the question-answering perspective which forces the
model to generate an answer, evaluator-critic perspective can more
objectively judge the limitations of its reasoning process towards
the answer. Below we will introduce how to leverage two types of
metacognitive knowledge to answer the above two questions.

Procedural Knowledge. This domain of knowledge is crucial
for examining the sufficiency of both the internal and external
knowledge for a given question. To address question (a), we propose
model-based methods to evaluating the answer automatically, simu-
lating human annotators in Sec. 3.2.We leverage the evaluator-critic
LLM to gauge the adequacy of its internal knowledge. Meanwhile,

a natural language inference (NLI) model is employed to measure
the sufficiency of external knowledge. Note that this process may
be affected by the accuracy of the LLM and the NLI model, but can
be replaced by any better model in the future.

• Internal Knowledge Evaluating: We capitalize on the inherent
capacity of the LLM to determine if a question can be aptly
answered using its built-in knowledge. To do this, we present
the question 𝑞 to the evaluator-critic LLM, which functions as
an evaluator here and offers a binary outcome based on:

LLMEval-Critic (𝑞, PromptEval) (3)

PromptEval:
Please act as an evaluator-critic system,
determine if you can provide a reliable answer
to the {question} based on your own knowledge?

• External Knowledge Evaluating: To gauge the adequacy of ex-
ternal knowledge sources, we deploy an advanced NLI model
TRUE [8] to examine if the retrieved documents, represented
as 𝐷𝑞 , provide enough information to answer the question. The
process is formulated as:

𝑓

( [
{𝑑𝑖 } |𝐷 |

𝑖=1

]
, 𝑞

)
, (4)

with 𝑓 (premise, hypothesis) being the function of the NLI model.
It returns a value of 1 if the premise entails the hypothesis, oth-
erwise, it returns 0.

Upon evaluating through the aforementioned model-based eval-
uating methods, we can classify the situation into four categories
(as in Sec. 3.2) in an automatic manner: no knowledge; only internal
knowledge; only external knowledge; both internal and external
knowledge. Each situation highlights specific potential sources of
errors, leading to varying strategies employed for future planning
depending on the identified category.

4
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Declarative Knowledge. Addressing question (b), declarative
knowledge within MetaRAG is directed towards identifying preva-
lent error patterns. This aids in pinpointing possible pitfalls in the
reasoning process. We’ve categorized typical mistakes into three
distinct types:
• Incomplete Reasoning: This error is the most prevalent in multi-

hop QA. It arises when the model fails to utilize all relevant
fragments from the given context or does not follow a compre-
hensive chain of thought to arrive at the correct answer.

• Answer Redundance: This pertains to instances where the model
delivers an overly verbose or repetitious answer. Such redun-
dancy can arise when the model identifies multiple analogous
data points but cannot consolidate them effectively.

• Ambiguity Understanding: This error manifests when the model
misunderstands the subtleties or nuances embedded within a
query, leading it to generate answers based on related but incor-
rect references.
Each of these mistakes poses distinct challenges when employing

LLMs for multi-hop reasoning tasks. Relying on declarative knowl-
edge (DK), we invoke the critic functionality of the evaluator-critic
LLM to determine if the proposed answer falls prey to any of these
errors. For each error type, we furnish a description and several ex-
amples in the format {Error name - Error description - Examples}.
Subsequently, the question 𝑞, documents 𝐷𝑞 , and answer 𝑦 are fed
into the LLM, functioning as a critic in this context:

LLMEval-Critic ( [DK, 𝑞, 𝐷𝑞, 𝑦], PromptCritic) (5)

PromptCritic:
Please act as an evaluator-critic system, assess
whether the {response} based on {references} for
the {question} contains any {error types}?

Through the evaluating phase, the model gains an understanding
of potential issues within the current answer, which may stem
from gaps in knowledge or deficiencies in the reasoning process.
Once these challenges are identified, the model can then develop
customized solutions to enhance the precision of its reasoning in
the context of question-answering. We detail this as follows.

4.3 Planning: Strategizing Answer Refinement
In the domain of metacognition, the concept of planning refers to
the effective regulation of the original cognitive process, guided by
the results obtained from the evaluation stage. Previous empirical
studies in Section 3.2 have illuminated three primary challenges in
multi-hop QA when the model fails to provide accurate answers:
insufficient knowledge, conflicting knowledge, and erroneous rea-
soning. After identifying the issues during the evaluating stage, in
this section, we will introduce planning strategies to address each
of these challenges, ensuring a coherent and logical framework to
mitigate such hurdles in multi-hop QA scenarios.

Insufficient Knowledge. In the first type of condition, there
is a lack of both internal and external knowledge to answer the
current question. When the evaluator-critic LLM recognizes this
situation, it’s prompted to generate a new query to further re-
trieve information from the corpus. A well-formulated follow-up
query should have two characteristics: (1) It should differ from
the original inquiry to specifically target missing information. (2)
It should break down the original question into a more specific

sub-question. Specifically, given a question 𝑞, the existing retrieved
documents 𝐷𝑞 , and an answer 𝑦, we utilize the evaluator-critic
LLM’s introspective ability to deduce what external knowledge is
still lacking:

𝑞′ = LLMEval-Critic ( [𝑞, 𝐷𝑞, 𝑦], PromptQG), (6)

where PromptQG is a kind of instruction that encourages the LLM
to ask a new query with “To answer this question, I further
need to search {𝑞′}”. With this new query 𝑞′, the model con-
ducts another search to obtain additional documents. These newly
retrieved documents are then incorporated into the reference list
as new external knowledge.

Conflicting Knowledge. Another situation that can result in
inaccurate responses is when there’s a disparity between internal
and external knowledge.When one subset of knowledge is sufficient
to answer a question, but another isn’t, the model might become
confused due to the inconsistency between the two. This scenario
can be classified into following two cases:
• Only Internal Knowledge Available. When the model is capable of

providing the correct answer directly, external references may
serve as distractors. For example, if asked about the boiling point
of water under standard pressure, an external source may claim
it’s 93.4 °C at 1,905 metres altitude, leading the model astray. To
mitigate this, it’s advisable for the model to discard external
references and rely on its intrinsic knowledge. We achieve this
by altering the question-answering prompt, guiding the model
to rely solely on its internal knowledge.

• Only External Knowledge Available. Conversely, in situations
where only external knowledge is present, LLMs can be prone to
hallucinations if they mistakenly believe they know the answer.
For example, without internal knowledge of a recent event, the
model might incorrectly infer details based on similar but out-
dated events in its training data. To circumvent this, we ask the
LLM to only rely on the provided references for its response.
Erroneous Reasoning. Even if a model can answer questions

consistently using both internal and external knowledge, errors
may still occur during multi-step reasoning. To address the issue of
faulty reasoning, we propose improvements from two perspectives:
• Double-Checking the Reasoning Process. First, we aim to verify

that each statement in our reasoning process is backed by evi-
dence. To achieve this, we invoke the NLI model 𝑓 to assess the
groundedness of each statement 𝑠𝑖 in the LLM output 𝑦. This
will help determine which statements are supported by external
references 𝐷𝑞 = {𝑑1, 𝑑2, ...} and which ones aren’t. Finally, the
statements need to be double-checked are:

𝑆DC =

{
𝑠𝑖 |𝑓

( [
{𝑑𝑖 } |𝐷 |

𝑖=1

]
, 𝑠𝑖

)
= 0

}
, (7)

For any statement that lacks evidence in 𝑆DC, we request the LLM
to re-evaluate its correctness, ensuring that the LLM excludes
any statement that doesn’t meet its confidence threshold.

• Providing Suggestions. In response to the common errors iden-
tified during the evaluating phase, we ask the evaluator-critic
LLM to provide specific suggestions for the question-answering
LLM based on the specific error type by “ Please generate
a statement that offers suggestions to prevent the
occurrence of the {error type} in future reasoning
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processes”. These suggestions serve as guidance during the
next round of answer reasoning. It’s worth noting that if no com-
mon errors are detected, we set a default suggestion “Please
think step by step.” to guide its reasoning process.

The planning at this stage primarily focuses on systematically re-
ducing the model’s error rate when operating under conditions of
comprehensive and consistent knowledge.

Through the implementation of metacognitive regulation, the
evaluator-critic LLM can monitor, evaluate, and plan the cogni-
tive processes of the question-answering LLM. This level of trans-
parency in cognitive space empowers MetaRAG to comprehend
the dimensions of “know whether”, “know why”, and “know how”,
thereby enhancing its reasoning correctness.

5 EXPERIMENTAL SETUP
5.1 Datasets and Evaluation Metrics
To test the ability of our proposed method on multi-hop reason-
ing, we conduct experiments on two multi-hop question answering
datasets: HotpotQA [36] and 2WikiMultiHopQA [7]. These two
datasets are all constructed based on Wikipedia documents, allow-
ing us to use the consistent document corpus and retrievers to
provide external references for LLMs. Considering the constraints
of experimental costs, following [12], we sub-sample 500 questions
from the validation set of each dataset for experiments.

For evaluation metrics, at answer-level, we use exact match (EM)
to test whether the prediction is consistent with the reference an-
swer. At token-level, following [12], we use token-level F1, precision
(Prec.) and recall (Rec.) for comprehensive evaluation.

5.2 Baselines
For comparison, we choose two closebookmodels and four retrieval-
augmented models as baselines. Standard Prompting [2] directs
the LLM to respond to queries without referencing any external
content. Chain-of-Thought [35] furnishes LLM with examples
inclusive of reasoning processes to encourage more thoughtful rea-
soning. Standard RAG [20] employs the query to retrieve multiple
documents, and inputs them into LLM for deriving answers. Re-
Act [37] framework proposes synergizing reasoning and acting in
language models, delineating the question-answering process into
thought, action, and observation phases. Self-Ask [24] integrates
intermediate steps to assist in deliberating on complex issues. Re-
flexion [30] incorporates an evaluator to reinforce language agents
through linguistic feedback.

To ensure a balanced comparison between MetaRAG and the
baseline methodologies, uniform settings are maintained across
all models. This encompasses identical in-context demonstrations,
prompt formats, retrievers, and document corpora.

5.3 Implementation Details
In cognition process, we choose the cutting-edge gpt-35-turbo-16k
LLM by querying its API1 iteratively with a temperature setting of
0. Since both datasets predominantly depend on knowledge from
Wikipedia, we utilize the Wikipedia dump [14] to serve as the doc-
ument corpus, where articles are segmented into passages of 100

1https://api.openai.com/v1/chat/completions

tokens. The retrieval of relevant documents from this corpus em-
ploys the BM25 algorithm [26], selecting the top 5 passages to serve
as the external knowledge.

Transitioning to the metacognition process, we leverage a fine-
tuned T5-large model2 which acts as our expert monitoring model.
The efficacy of similarity calculations is based on a repository of
sentence transformers3. We set a default judgment threshold for our
monitoring mechanism at 0.4 to ensure precision. The maximum
number of iterations is set to 5. The NLI model used in evaluating
and planning is entrusted to a T5-XXL model4.

6 RESULTS AND ANALYSIS
6.1 Main Results
The main results are shown in Table 1. It can be observed that:

(1) Our proposed MetaRAG consistently surpasses all other base-
line methods across two datasets. When compared to the baseline
Reflexion, which also integrates a self-critic mechanism in its rea-
soning process, MetaRAG demonstrates a substantial improvement
of over 26.0% in terms of EM on theHotpotQA dataset. This suggests
that using a metacognitive strategy is more beneficial than merely
relying on self-criticism. By leveraging metacognitive knowledge
and regulation, our method aligns better with human thought pro-
cesses. This allows for a better identification of errors or gaps in
knowledge during reasoning, leading to enhanced answer accuracy.

(2) Models equipped with a self-critic mechanism demonstrate
superior performance compared to those without it. When com-
pared with the multi-time retrieval baseline Self-Ask, both Reflexion
and MetaRAG show improvements of over 6.3% and 34.0% respec-
tively on the HotpotQA dataset. This indicates that by assigning
a critic role to LLMs, they gain the ability to assess the quality of
their own responses from a different perspective. MetaRAG further
considers the conditions of knowledge and the accuracy of multi-
hop reasoning, allowing it not only to pinpoint mistakes but also
to identify the cause of these mistakes.

(3) Upon comparing two datasets, we observe a more signifi-
cant improvement with MetaRAG on 2WikiMultihopQA than on
HotpotQA, boosting performance by 34.6% and 26.0% respectively
when compared to the baseline model Reflexion. Upon closer ex-
amination of the datasets, we note that the 2WikiMultihopQA set
exhibits a higher proportion of conflicting knowledge, meaning
there is a higher incidence where the retriever retrieves informa-
tion that is inconsistent with the knowledge contained within the
LLM. MetaRAG adeptly addresses this by meticulously formulat-
ing planning strategies based on varying conditions of knowledge,
enhancing the precision of reasoning in a targeted manner.

In summary, our proposed MetaRAG explores the synergy of ex-
ternal and internal knowledge in retrieval-augmented LLMs based
on metacognition principles in cognitive science, leading to en-
hanced accuracy in multi-hop reasoning tasks.

6.2 The Study of Monitoring Phase
As a critic step within the metacognitive process, monitoring plays
a pivotal role in evaluating the validity of responses generated by

2https://huggingface.co/gaussalgo/T5-LM-Large_Canard-Fullwiki-HotpotQA
3https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
4https://huggingface.co/google/t5_xxl_true_nli_mixture
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Table 1: Evaluation results on two multi-hop question answering datasets. ✓ and − indicates reasoning with and without the
retrieval (Retr.), multi-time retrieval (Multi.), and critic component. “†” denotes the result outperforms baseline models in
t-test at 𝑝 < 0.05 level. The best results are in bold and the second best results are underlined.

Method Retr. Multi. Critic HotpotQA 2WikiMultihopQA

EM F1 Prec. Rec. EM F1 Prec. Rec.

Without retrieval (Closebook)

Standard Prompting - - - 20.0 25.8 26.4 28.9 21.6 25.7 24.5 31.8
Chain-of-Thought - - - 22.4 34.2 33.9 46.0 27.6 37.4 35.8 44.3

With retrieval (BM25)

Standard RAG ✓ - - 24.6 33.0 34.1 34.5 18.8 25.2 25.6 26.2
ReAct ✓ ✓ - 24.9 41.7 42.6 44.7 21.0 28.0 27.6 30.0
Self-Ask ✓ ✓ - 28.2 43.1 43.4 44.8 28.6 37.5 36.5 42.8

Reflexion ✓ ✓ ✓ 30.0 43.4 43.2 44.3 31.8 41.7 40.6 44.2
MetaRAG (ours) ✓ ✓ ✓ 37.8† 49.9† 52.1† 50.9† 42.8† 50.8† 50.7† 52.2†

Table 2: The comparison of variousmonitoring expertmodels
with different parameter size (Param.) on 2WikiMultihopQA.

Expert model Param. EM F1 Prec. Rec.

Large Language Models

LLaMA2-chat 13B 40.4 47.6 47.6 48.8
ChatGLM2 6B 39.8 48.8 48.5 50.5

Fine-tuned QA Models

SpanBert-large 0.34B 42.0 50.4 50.3 51.8
T5-large 0.77B 42.8 50.8 50.7 52.2

LLMs. In order to understand the impact of monitor on the overall
framework, we conduct two experiments by comparing different
monitoring models and the similarity threshold 𝑘 .

Monitoring Models Variation. We begin by evaluating the
impact of using various expert models, which determine whether
activating metacognition, as monitors. We primarily focus on two
categories of models formonitoring: large languagemodels and fine-
tuned QA models. LLMs, like LLaMA2-chat [32] and ChatGLM2 [3],
offer notable zero-shot capabilities, allowing them to assess answer
quality effectively. On the other hand, the fine-tuned QA models,
such as SpanBERT-large [13] and T5-large, are smaller but have
been specifically trained on particular datasets to become experts
in their domains. We provide details on their parameter sizes and
compare their performance.

As illustrated in Table 2, utilizing fine-tuned QA models as the
expert model during the monitoring phase yields superior per-
formance compared to large language models. This suggests that
fine-tuned QA models can offer more precise feedback with fewer
parameters, meeting the efficiency and effectiveness requirements
of the monitoring stage. The performance of LLaMA2-chat and
ChatGLM2 indicates that using LLMs to self-supervise is a feasible
approach, setting higher standards for model capabilities. Moreover,
the T5-large slightly outperforms SpanBERT-large, which might be
attributed to the fact that generative models with larger parameter
capacities are more apt for this task than extraction-based models.

Different similarity thresholds. Secondly, we focus on the
relationship between the similarity threshold 𝑘 in the monitor and
overall performance. This threshold dictates the ease of triggering
metacognitive processes. A higher threshold implies a higher likeli-
hood for activating metacognitive evaluating. We test the range of
𝑘 from 0.2 to 0.8, incrementing by 0.1, and report the metacognitive
proportion and answer quality on 2WikiMultihopQA.

As depicted in Figure 4(a), when the threshold is set to 0.2,
roughly 15% of questions are directed to the evaluator-critic LLM for
metacognitive reasoning. At this point, there is approximately a 20%
improvement compared to Reflexion. As the threshold increases, the
proportion of questions requiring metacognitive reasoning steadily
increases. By the time the threshold reaches 0.8, this arrives to 84%.
Interestingly, the performance doesn’t increase linearly. The model
performs best when the threshold is set at 0.4. This suggests that
not all questions benefit from metacognitive reasoning. For some
straightforward inquiries, overthinking can be counterproductive.
This mirrors human tendencies to some extent: going with one’s
intuition can be more effective than over-analyzing.

6.3 Ablation Studies on Meta-knowledge
The metacognitive evaluating employs metacognitive knowledge
(declarative and procedural knowledge) to pinpoint potential mis-
takes in the reasoning and assessing the completeness of internal
and external knowledge. To explore the necessity of these two cat-
egories of metacognitive knowledge, we conduct ablation studies
by eliminating the assessment of internal or external knowledge
for procedural knowledge or exclude a type of common error as-
sessment linked to declarative knowledge.

The findings, depicted in Table 3, highlight that stripping away
any facet of metacognitive knowledge detrimentally impacts per-
formance across all evaluation metrics. Among these, the omission
of procedural knowledge results in the most pronounced decline in
model efficiency. This suggests a heightened importance of under-
standing the interplay between internal and external knowledge,
as this understanding is crucial for the model’s strategic planning.
Within the procedural knowledge category, it’s evident that rec-
ognizing external knowledge stands out in terms of importance.
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Table 3: Ablation Studies on Meta-knowledge. Co. is the con-
sistency between model evaluating and human annotation.

Expert model EM F1 Prec. Rec.

Procedural Knowledge (Internal Co.=0.76; External Co.=0.84)

w/o. Internal 41.4 49.5 49.6 50.5
w/o. External 37.4 44.9 45.1 45.9
w/o. All 30.6 36.8 37.2 37.3

Declarative Knowledge

w/o. Incomplete 41.2 49.7 49.8 51.0
w/o. Redundance 41.6 49.3 49.3 50.6
w/o. Ambiguity 41.2 50.9 51.0 51.9
w/o. All 40.6 49.2 49.3 50.5

MetaRAG 42.8 50.8 50.7 52.2
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Figure 4: Performance with different similarity thresholds
and the number of iterations on 2WikiMultihopQA.

This underscores the idea that many questions arise from an in-
sufficiency in external knowledge. Thanks to the architecture of
MetaRAG, this deficiency can be alleviated, leading the model to
generate new queries for knowledge acquisition. When we turn our
focus to declarative knowledge, each type of common error bears
significance to the overall model efficacy. Notably, errors stemming
from incomplete reasoning seem to be most impactful. This implies
that conventional QA prompts cannot effectively harness the multi-
hop reasoning abilities of LLMs. However, with the inclusion of
metacognitive knowledge, this latent potential can be harnessed,
thereby refining the model’s reasoning precision.

6.4 Performance of Each Planning Strategies
During the planning phase, we employ improvement strategies for
three distinct scenarios: insufficient knowledge, conflicting knowl-
edge, and erroneous reasoning. To validate the effectiveness of these
strategies, we conduct experiments to measure the enhancements
each scenario could offer. We categorize all questions into three
scenarios based on the conditions of knowledge, and examine the
impact of the planning approach on each scenario.

Figure 5 shows the performance of various models in the three
scenarios. Generally, as the richness of knowledge increases, the
accuracy of each model improves. The ReAct and Reflexion models
enhance the performance in situations of insufficient knowledge
through employing multi-time retrieval and critic mechanisms.
However, the improvement in scenarios of conflicting knowledge

Insufficient knowledge Conflicting knowledge Sufficient knowledge
Challenges During Reasoning

0.0

0.2

0.4

0.6

Ac
cu
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Standard RAG
ReAct
Reflecxion
MetaRAG

Figure 5: Performance of the planning strategy under each
knowledge conditions: insufficient, conflicting, sufficient.

and complete knowledge is relatively marginal. In contrast to these
two methods, our proposed MetaRAG significantly boosts the ac-
curacy of reasoning in these two scenarios. This achievement is
primarily attributed to MetaRAG’s meticulous analysis of conflicts
between internal and external knowledge and common error types
through a metacognitive process, thereby optimizing the model’s
reasoning process in a targeted manner.

6.5 Exploration of the Number of Iterations
In the context of MetaRAG, monitoring is crucial in determining
whether to proceed to the next stage of the metacognitive process.
It’s important to emphasize that the results are significantly influ-
enced by the maximum number of iterations. To identify the ideal
number, we systematically increase the maximum iteration count
from 1 to 6, while closely observing how the accuracy changes.

As depicted in Figure 4(b), the accuracy of MetaRAG improves
progressively as the maximum iteration count increases. However,
once the iteration count reaches 5, the performance peaks, indi-
cating that deeper metacognitive reflection can indeed enhance
inference accuracy. Nevertheless, excessively increasing the num-
ber of reflection rounds leads to a slight decline in results. This
could be attributed to the model’s diminishing ability to extract
more useful information or suggestions through the metacognitive
mechanism. An intriguing observation is a minor accuracy peak at
an iteration count of 2. This phenomenon primarily arises from the
characteristics of the 2WikiMultihopQA dataset, where the major-
ity of questions require references from two sources. Two rounds
of metacognitive reflection prove sufficient to gather the necessary
knowledge for these questions. Beyond that, additional rounds of
reflection tend to introduce noise, resulting in fluctuating results.

7 CONCLUSION
In this paper, we proposed MetaRAG, a novel framework combin-
ing the retrieval-augmented LLMs process with human-inspired
metacognition to enhance multi-hop reasoning. Through a struc-
tured metacognitive process involving monitoring, evaluating, and
planning stages, MetaRAG facilitates model awareness on its own
reasoning process. This empowers the model to identify the suf-
ficiency of knowledge and potential mistakes during reasoning.
Experimental results on two multi-hop QA datasets demonstrated
the superior performance ofMetaRAGover existing baselines. In the
future, we aspire to incorporate more human cognitive approaches,
including emotional understanding, intuition, and cultural aware-
ness, into the reasoning process of LLM.
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