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Abstract
Multi-agent reinforcement learning (MARL) has
demonstrated strong performance across various
domains but still faces challenges in sparse reward
environments. Preference-based Reinforcement
Learning (PbRL) offers a promising solution by
leveraging human preferences to transform sparse
rewards into dense ones. However, its application
in MARL remains under-explored. We propose
Dual Preferences-based Multi-Agent Reinforce-
ment Learning (DPM), which extends PbRL to
MARL by introducing preferences comparing not
only trajectories but also individual agent con-
tributions. Moreover, the research introduces a
novel method taking advantage of Large Lan-
guage Models (LLMs) to gather preferences, ad-
dressing challenges associated with human-based
preference collection. Experimental results in
the StarCraft Multi-Agent Challenge (SMAC) en-
vironment demonstrate significant performance
improvements over baselines, indicating the ef-
ficacy of DPM in optimizing individual reward
functions and enhancing performances in sparse
reward settings.

1. Introduction
Multi-agent reinforcement learning (MARL) has demon-
strated strong performance across various domains (Du &
Ding, 2021; Oroojlooy & Hajinezhad, 2023). However, it
encounters significant challenges in solving problems within
sparse reward environments, where the reward signals are
rarely given hence learning the optimal policy is challeng-
ing. The situation worsens in MARL since the space is sub-
stantially larger than single-agent reinforcement learning,
making identification of desirable behaviors more difficult.

Preference-based Reinforcement Learning (PbRL) is one no-
table approach to addressing sparse reward challenges. By
training a reward model based on human preferences, PbRL
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Figure 1. Comparison of win rates based on preference types in
the SMAC 3m scenario. HF Both refers to training the reward
model using two types of human preferences, HF trajectory
indicates training solely with trajectory comparison preferences,
and LLM Both represents training with two types of preferences
acquired using LLM.

can transform a sparse reward environment into a dense re-
ward environment, thereby allowing for the facile resolution
of issues arising from sparse rewards. Recent works have
demonstrated that PbRL effectively solves single-agent re-
inforcement learning tasks in sparse reward setting or even
without rewards from the environments, proving PbRL to be
an effective alternative (Lee et al., 2021a; Kim et al., 2023).
However, its application in MARL has been explored in
only a few studies (Zhu et al., 2024).

Meanwhile, a challenge in applying PbRL to MARL arises
from the limitation in optimizing the reward function. Com-
mon methods, which depend on a single preference type
comparing trajectories, encounter difficulties in accurately
assessing the contributions of individual agents, thereby
complicating the optimization of individual reward func-
tions. As illustrated by the red line in Figure 1, which
represents the win rate in the StarCraft Multi-Agent Chal-
lenge (SMAC) (Samvelyan et al., 2019) 3m scenario using
trajectory comparison preferences, there is no observed per-
formance improvement. This indicates that comparing only
trajectories is insufficient for enhancing performance.
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In this paper, we propose the Dual Preferences-based Multi-
Agent Reinforcement Learning (DPM) that applies PbRL to
address the sparse reward problem in MARL. The proposed
model leverages the characteristics of MARL, allowing for
comparisons not only between trajectories but also between
agents. By utilizing preferences that compare contributions
among agents, it becomes possible to optimize individual re-
ward functions. The blue line in Figure 1 represents the win
rate when using two types of preferences. Convergence to a
higher win rate is achieved compared to when only one type
of preference is used. Therefore, we collect two types of
preferences: trajectory comparisons and agent comparisons,
and use them to train the reward model.

Additionally, our proposed model introduces a method to
overcome the limitations associated with human preferences
by utilizing a Large Language Model (LLM) to collect
preferences. When acquiring preferences from humans,
challenges such as high costs, inconsistency in preferences
among individuals, and the possibility of human error are
present. To address these challenges, researches have been
conducted on gathering preferences through LLMs, which
are believed to possess a level of comprehension akin to that
of humans (Bai et al., 2022; Lee et al., 2023). The green line
in Figure 1 represents the results obtained when preferences
were acquired using LLM. It shows no significant difference
or even a tendency towards better performance compared
to when human preferences were used. In this study, we
expand upon this approach to apply it to MARL.

The experiments are conducted in the sparse reward set-
tings of SMAC environment. Our proposed model brings
significant performance improvements across various sce-
narios compared to existing MARL baselines. Furthermore,
compared to the cases which rely solely on trajectory com-
parisons, our method demonstrates more stable convergence
and higher win rates, indicating better optimization of indi-
vidual reward functions through dual preference types.

2. Preliminary
2.1. A Cooperative Multi-agent Reinforcement Learning

A cooperative MARL task can be formulated as a Dec-
PODMP (Oliehoek et al., 2016) which consists of a tuple
⟨S,A, P,R,O,Ω, n, γ⟩. s ∈ S is the global environment
state. At each time step, each agent i ∈ N ≡ {1, ..., n}
obtains an observation oi ∈ O with the observation func-
tion Ω(s, i) : S × N → O, and selects an action ai ∈ A
which forms a joint action a = {a1, · · · , an} ∈ An. Then
the environment follows the transition function P (s′|s,a) :
S × An × S → [0, 1] and all the agents share the same
reward function r(s,a) : S × An → R. The objective is
to learn a joint policy π to maximize the expected return
Est+1:∞,at+1:∞∼π[

∑∞
k=0 γ

krt+k|st,at] with γ ∈ [0, 1).

In sparse-reward setting, non-zero rewards r(s,a) are rarely
given (e.g., when the given task is completed). To ad-
dress the sparse-reward challenge, various approaches have
been proposed including intrinsic motivation for explo-
ration (Gronauer & Diepold, 2022), subgoal-based meth-
ods (Tang et al., 2018; Jeon et al., 2022), and influence-based
methods (Jaques et al., 2019; Li et al., 2022).

2.2. Preference-based Reinforcement Learning

Preference-based Reinforcement Learning (PbRL) is an al-
ternative approach for complex tasks where designing a
suitable reward function is difficult. In PbRL, the agent’s
learning is also guided by a preference between difference
behaviors rather than just a single scalar feedback from the
environment. The source of preferences could be human
feedback (Christiano et al., 2017; Casper et al., 2023), a
scripted teacher which assign preferences according to true
task rewards, human feedback (Lee et al., 2021b;a), or AI
feedback (Bai et al., 2022; Lee et al., 2023).

A common approach for PbRL is to assign preferences over
two trajectory segments (Christiano et al., 2017). A seg-
ment σs is a sequence of observations and actions during
k timesteps {s0,a0, · · · , sk,ak} in single-RL, and we gen-
erate preference labels y ∈ {0, 0.5, 1} for each segment
pair (σ1

s , σ
2
s) where y = 0 and y = 1 mean σ1

s and σ2
s

is preferred, respectively, and y = 0.5 implies both seg-
ments are equally preferable. Following the Bradley-Terry
model (Bradley & Terry, 1952), the probability of the pref-
erence can be defined as:

Pψ[σ
1
s ≻ σ2

s ] =
exp(

∑
t r̂ψ(s

1
t ,a

1
t ))∑

i∈{1,2} exp(
∑
t r̂ψ(s

i
t,a

i
t))

(1)

where σ1
s ≻ σ2

s indicates σ1
s is preferred to σ2

s , and r̂ψ is
a learnable reward function from preferences. Given the
preference dataset Ds = {(σ1

s , σ
2
s , y)}, the loss for r̂ψ is:

L(r̂ψ) = −E(σ1
s ,σ

2
s ,y)∼D

[
(1−y) logPψ[σ

1
s ≻ σ2

s ]

+ y logPψ[σ
2
s ≻ σ1

s ]
] (2)

3. Method: DPM
In this section, we present Dual Preferences-based Multi-
Agent Reinforcement Learning (DPM), which applies
preference-based learning to multi-agent systems based on
dual preferences. DPM not only offers a solution to the
sparse reward problem but also replaces traditional human
preferences with large language model-based preferences,
thereby addressing the issues associated with human prefer-
ences. DPM is based on an off-policy and online learning
MARL algorithm such as QMIX (Rashid et al., 2018).
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Figure 2. The overall framework of DPM

3.1. Overview

The overall structure of DPM is illustrated in Figure 2. DPM
comprises reward models learned from preferences, which
generate intrinsic rewards. This process effectively trans-
forms sparse rewards into dense rewards. Transition data
from the environment and intrinsic rewards are stored in the
replay buffer and utilized in the policies training.

DPM trains the reward models based on two types of prefer-
ences. One involves comparing trajectory pairs, while the
other entails ranking the actions of the agents in one scene.
Preferences are obtained using LLM. To utilize LLM, vector-
based transition information must be transformed into text-
based prompts. Therefore, a prompt generator is utilized
to convert transition information into text format for input
into the LLM. The LLM utilizes the provided information
to generate preferences or rankings. Then the generated
preferences (or rankings) are used to train the reward model.

3.2. Dual-Preferences

DPM utilizes two types of preferences to train the reward
models. One is trajectory comparison preference, which se-
lects the better trajectory through comparison, and the other
is agent comparison preference, which ranks the actions of
agents in a single step. Trajectory comparison is similar to a
common approach in PbRL and consistent with Section 2.2.

Trajectory Comparison: In a multi-agent concept, a trajec-
tory segment includes additional observations compared to
a single RL segment σ = {(s0,o0,a0), · · · , (sk,ok,ak)}
where o denotes observations of all the agents. Two trajec-
tory segments are sampled from the replay buffer to generate
a preference label (y) and we save the pair and the label into
the dataset DT = {(σ1, σ2, y)}.

Agent Comparison: Agent comparison involves prefer-
ences in the form of rankings. In a given step, the ac-
tions of agents (a1t , a

2
t , . . . , a

n
t ) are ranked according to

their contributions. Therefore, when the state st and the
actions ot are provided, LLM generates ranking labels
z = {z1, z2, . . . , zn} based on the contributions and we
save the dataset DA = {(st,at,ot, z)} to the buffer.

3.3. Preference Collection via LLM

Prompt Generation: To obtain preferences using a Large
Language Model (LLM), prompt generation is essential.
However, most environments provide state information in
the form of vectors or images rather than text. In this re-
search, we use a prompt generator to convert vector-based
states into text-based prompts that an LLM can understand.
The prompt generator employs a template-based approach,
where the provided vector states and actions are substituted
into the corresponding sections of the template. The prompt
generator effectively converts vector data into text format.
However, it is limited in its ability to include all transitions
of trajectories in the prompt. Therefore, for trajectory com-
parison, the prompt only includes the information of the
initial state and the end state. Examples of prompts can be
found in the Appendix C.

LLM Choice: The LLM generates preferences for the given
comparison dataset using the prompts created by the prompt
generator. We utilize the GPT-4o (Achiam et al., 2023) as
the preference generation model. This model is considered
to possess human-level judgment capabilities, enabling it to
make decisions at a level comparable to that of humans (Bai
et al., 2022; Lee et al., 2023),

3.4. Trajectory Selection Strategy

To obtain high-quality preference data, it is crucial to select
comparison pairs appropriately. In prior PbRL research (Lee
et al., 2021b), ensemble-based sampling techniques are em-
ployed. This involves assuming rewards generated by mul-
tiple reward models as preferences and selecting pairs of
trajectories where the preferences do not align.
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On the other hand, in DPM, individual reward functions
are utilized, necessitating optimization based on individ-
ual rewards rather than global rewards which are the sum
of individual rewards. However, if trajectory-based sam-
pling, similar to single-RL, is employed, the global reward
becomes the criterion, making it challenging to select ap-
propriate trajectories. To address this issue, DPM employs
Kendall’s Tau (Kendall, 1938) to calculate the degree of
consensus among ranking data generated from individual
reward functions. The ranking is determined based on the re-
wards generated by the reward functions, with higher-ranked
agents having higher rewards.

Since Kendall’s Tau calculates the concordance between
pairs of ranking data, to assess the consensus among multi-
ple reward functions, pairwise combinations is performed,
followed by averaging the results. If the value is lower
than the threshold, the trajectory is added to the list for
comparison. Otherwise, the trajectory is excluded from
the comparison. The threshold varies with each iteration,
decreasing as the iterations progress.

3.5. Reward Models

Structure: DPM consists of multiple reward functions, with
the mean value of the functions serving as the intrinsic
reward. In contrast to common MARL approaches that
utilize a global (team) reward function, DPM generates re-
wards individually for each agent by leveraging preferences
based on agent comparisons. These reward functions take
as input the transition and state information of the agent
(st, st+1, o

i
t, o

i
t+1, a

i
t) and produce corresponding an intrin-

sic reward (r̂it). This reward generation process enables
DPM to tailor rewards to the specific contributions of each
agent, enhancing its effectiveness in multi-agent environ-
ments. For more details of the reward models’ structure,
please refer to Appendix B. Furthermore, DPM adopts mul-
tiple reward models, then the intrinsic reward is defined as
the average of rewards generated by the reward models.

Reward Training: Since the reward models are trained
using dual-preferences, it is necessary to derive the appro-
priate loss function for each preferences type. First of all,
the loss function for trajectory comparison preference is
similar to common method. To train the reward functions,
Bradley-Terry model is used to calculate the probability :

Pψ[σ
1 ≻ σ2] =

exp(
∑
t R̂

1
t )∑

i∈{1,2} exp(
∑
t R̂

i
t)

(3)

which R̂it is the sum of individual rewards at time t in
trajectory segment i. The corresponding loss function uses

cross-entropy and is defined as follows :

LT = −E(σ1,σ2,y)∼DT

[
(1−y) logPψ[σ

1 ≻ σ2]

+ y logPψ[σ
2 ≻ σ1]

] (4)

Moreover, we utilize agent comparison data applying the
Bradley-Terry model to a single step, similar to the action
preferences approach in (Wirth et al., 2017).

Pψ[a
i
t ≻ ajt ] =

exp(r̂ψ(st, a
i
t, o

i
t))∑

k∈{i,j} exp(r̂ψ(st, a
k
t , o

k
t ))

(5)

The loss function is represented as the sum of the cross-
entropy values for each pair of agents. In the equation, βi≻j
denotes the preference for action ait over action ajt , and M
means the set of agent pairs M = {(i, j)|i, j ∈ N, i ̸= j}.

LA = −E(st,at,ot,z)∼DA

[ ∑
(i,j)∈M

βi≻j logPψ[a
i
t ≻ ajt ]

]
(6)

βi≻j :=

 0 zi > zj
1 zi < zj
0.5 zi = zj

(7)

Finally, the loss function resulting from the use of dual-
preferences is as follows :

L(r̂ψ) = LT + LA (8)

4. Experiments
4.1. Setup

Environment and Baselines: We evaluate DPM on
StarCraft Multi-agent Challenge (SMAC) environment
(Samvelyan et al., 2019) which consists of diverse microcon-
trol task and is one of the most widely used benchmarks for
MARL. For baselines, We compare DPM with the common
MARL algorithms including VDN (Sunehag et al., 2017),
QMIX (Rashid et al., 2018) and QPLEX (Wang et al., 2020).
Furthermore, we also test DPM against MASER (Jeon et al.,
2022) which addresses sparse-reward cooperative tasks. We
report the average win rates with the standard deviation
from three different random seeds. Further details on the
experimental setup can be found in Appendix A.

MARL Algorithms for DPM and Training: We adopt
the Finetuned-QMIX algorithm (Hu et al., 2021) as our
baseline for training agents. This algorithm builds upon
QMIX (Rashid et al., 2018) incorporating hyper-parameter
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Figure 3. Comparison of performance between DPM and baselines in the sparse reward setting of SMAC. In the sparse reward setting of
SMAC, a comparison of performance between DPM and baselines reveals that DPM effectively addresses the sparse reward problem
when compared to baseline methods

optimization and other enhancements to achieve state-of-the-
art performance in dense reward environments. However,
in sparse reward environments, its performance remains
sub-optimal. To demonstrate that the intrinsic rewards gen-
erated by DPM can sufficiently substitute sparse rewards
with dense rewards, we train agents using the algorithm.
Furthermore, we utilize intrinsic rewards(r̂) alongside an
extrinsic global reward(rext) provided by the environment.
Then, the reward(r) used for agent training is as follows :

rt =
∑
i∈N

r̂it + rextt (9)

4.2. Main Results

In this subsection, we conduct experiments in the sparse
reward setting of SMAC to evaluate whether DPM can over-
come the sparse reward environment. The experimental re-
sults are presented in Figure 3. Across six scenarios, DPM
outperformed the baseline algorithms. In the EASY sce-
narios(3m, 2m vs 1z, 3s vs 3z, and 2s vs 1sc), DPM
achieves a 100% win rate. This is a significant performance
improvement compared to dense reward-based algorithms
such as QMIX, VDN, and QPLEX, which record a 0% win
rate in these scenarios. Additionally, even when compared
to MASER, which operates in sparse reward environments,
DPM demonstrated superior performance.

The blue line represents the results of the QMIX algorithm
operating under dense reward settings. Compared to these
results, DPM showed almost similar performance in 3m

and 2s vs 1sc scenarios. Although DPM exhibited rela-
tively lower sample efficiency in 2m vs 1z and 3s vs 3z
scenarios, it ultimately converged to a 100% win rate.

The 5m vs 6m and 3s vs 5z scenarios are categorized
as HARD scenarios in SMAC, posing significant challenges
even for algorithms designed to address sparse rewards.
However, DPM not only outperformed baseline algorithms
(QMIX, VDN, QPLEX) in these scenarios but also achieved
victories, demonstrating its robustness.

Based on the results presented in Figure 3, it is evident that
applying DPM to QMIX, a dense reward-based algorithm,
enables it to solve problems in sparse reward environments.
This indicates that DPM effectively transforms a sparse
reward environment into a dense reward setting, thereby
validating its efficacy in handling sparse reward settings.

4.3. Performance analysis of Dual Preferences

DPM optimizes the reward model using two types of pref-
erences. In this subsection, we compare the performance
differences between using dual preferences and a single pref-
erence type, to highlight the advantages of dual preferences.
Additionally, we compare the results of using only ranking
preferences. Figure 4 illustrates the performances of models
using only one type preference versus those incorporating
both trajectory and agent comparison preferences.

The experiments are conducted on EASY scenarios in
SMAC: 3m, 2m vs 1z, and 2s vs 1sc. For both the
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Figure 4. Comparing the performance of DPM based on preference types. it is evident that employing dual preferences yields significantly
superior performance compared to using a single type of preference.

single and dual preference types, the total number of pref-
erences used is the same. For instance, in this experiment,
when using only trajectory comparison preferences, 150
preferences are employed per iteration, leading to a total
of 650 preferences over 5 iterations. When utilizing dual
preferences, each iteration incorporates 75 trajectory com-
parison preferences and 75 agent comparison preferences,
amounting to a total of 650 preferences over 5 iterations
for learning. This setup ensures a balanced utilization of
preferences for both types across iterations, maintaining
consistency in the learning process.

When using only trajectory comparison, some scenarios did
not converge to a high win rate or failed to solve the prob-
lem entirely. In contrast, using both types of preferences
leads to a convergence to a 100% win rate. Specifically, in
the 2m vs 1z scenario, the single type approach showed
no performance improvement at all. Furthermore, when
using only agent comparison preferences, except for the 3m
scenario, the win rate converged to 0.

In online learning, unlike offline RL, the agent policy is
trained from scratch, making initial policy training crucial.
If the reward model is not well-optimized from the begin-
ning, it is difficult to achieve good performance. Using only
one type of preference often causes the reward function to
fall into a local optimum. Consequently, the policy fails to
learn effectively, and the quality of transitions collected sub-
sequently is poor, making it difficult to acquire appropriate
preferences in the next iteration. Therefore, using a single
type of preference limits policy learning.

Case study : To verify the efficacy of dual-preferences in
optimizing the individual reward function, we conduct a
case study on a single episode of the 3m scenario. The top
of Figure 5 depicts five selected scenes within the episode,
describing the states and actions at these steps. The bar
graphs display normalized individual reward values, scaled
between 0 and 1, generated by reward models trained us-
ing different preference types. From top to bottom, the
graph represents dual-preferences, trajectory comparison

preference only, and agent comparison preference only.

Firstly, when comparing DPM and the trajectory comparison
preference only case, we observe that the reward model,
which is trained on trajectory comparison preference only,
can sometimes assign high rewards even when allied agents
die. For instance, at steps 16 and 19, agents 2 and 3 are
assigned high rewards despite being killed. Additionally, the
model fails to provide appropriate rewards for the situation;
at step 9, agent 3 receives a high reward despite not taking
any action while being engaged with an enemy. In contrast,
using the reward model trained dual preferences ensures the
generation of appropriate individual rewards at all steps.

Similarly, when only agent comparison preference is used,
the individual reward model does not optimize well. At step
9, agent 2, with low health, is moving toward the enemy,
while agent 1, with higher health, is attacking the enemy
agent. Ideally, agent 1 should receive a higher reward, but
the model assigns a higher reward to agent 2. At step 13,
agent 2 receives a higher reward than agents 1 and 3, despite
being low on health and under enemy attack, leading to its
imminent death in the next step. Thus, the reward model
fails to appropriately assess the situation and assigns a high
reward incorrectly. These issues do not arise when dual
preference types are utilized.

Overall, the graphs demonstrate that dual-preferences effec-
tively mitigate the drawbacks of using a single preference
type by leveraging the advantages of both preference types.
Therefore, employing dual-preferences positively impacts
the optimization of the reward model.

5. Conclusion and Limitation
We propose a novel approach called Dual Preference-based
Multi-Agent Reinforcement Learning(DPM) for applying
preference-based learning to multi-agent reinforcement
learning. DPM leverages a reward model trained on pref-
erences to transform sparse reward environments into ones
akin to dense reward settings, thus addressing the sparse

6



DPM: Dual Preferences-based Multi-Agent Reinforcement Learning

Figure 5. A case study for comparing the performance of reward models based on preference types.

reward problem. Moreover, it addresses issues inherent in
traditional human-based preference methods by utilizing
a large language model to obtain preferences instead of
relying solely on human input.

DPM differs from conventional models that solely utilize tra-
jectory comparison preferences by introducing a preference
type that compares agents’ contributions through ranking.
This addition enhances the optimization of the reward model.
We evaluate DPM in SMAC, a prominent environment in
multi-agent reinforcement learning. DPM demonstrates sig-
nificant performance improvement compared to baselines in
sparse reward settings, and its performance is comparable
to that in dense reward settings. This confirms that DPM
effectively addresses the sparse reward problem in MARL.

However, there exists a constraint to generate prompts due
to the utilization of LLM. It is limited to encapsulate in-
formation such as state, observation, actions, etc., within
the prompt. To convert vector or image data into text form,
additional prepossessing is required. Therefore, we aim
for DPM to be more generally applicable across various
environments through future research, such as exploring

the utilization of Vision-Language Models (VLMs) to ef-
fectively substitute non-vector data such as image format
data into prompts. This includes investigating methods to
seamlessly incorporate data in forms other than vectors into
prompts, thereby enhancing the generality of DPM.

We believe that DPM presents a direction for applying
preference-based reinforcement learning to multi-agent re-
inforcement learning effectively. By leveraging Large Lan-
guage Models (LLMs), we propose an efficient method for
addressing problems within this context.

Broader Impact
Our study introduces Dual Preferences-based Multi-Agent
Reinforcement Learning (DPM) to enhance decision-
making in spare reward multi-agent system. By addressing
the sparse reward problem through preference-based ap-
proach which trains reward models by using preferences,
our approach has broad applications in real-world scenarios.
As the sparse reward cases commonly arise in the real world,
DPM would bring improved decision-making across diverse
multi-agent environments.
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A. Experimental Details
In this section, we introduce the environments used in the experiments, the baseline algorithms, as well as the hyperparameters
and computational resources. Experiments are carried out on NVIDA A6000 and GTX3090 GPUs and AMD EPYC 7313
CPU.

We conduct experiments in the following environment:

• StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) from https://github.com/oxwhirl/
smac which is licensed under MIT license.

All algorithms are implemented based on the open-source framework pymarl2 (Hu et al., 2021) from https://github.
com/hijkzzz/pymarl2 which is an augmented version of pymarl from https://github.com/oxwhirl/
pymarl. Both are licensed under Apache License 2.0.

The StarCraft Multi-Agent Challenge (SMAC) is one of the benchmarks widely utilized in research to evaluate MARL
algorithms. Units from the strategy video game StarCraft II engage in confrontations with each other in diver scenarios. The
objective is for multiple agents to collaborate in defeating the enemies. There are multiple scenarios, each categorized into
difficulty levels such as EASY, HARD, and SuperHARD. We primarily conduct experiments in EASY, and HARD scenarios.
Table 1 provides a detailed description of the scenarios we used in our experiments.

Scenario Difficulty Ally Units Enemy Units Type

2s vs 1sc EASY 2 Stalkers 1 Spine Crawler micro-trick: alternating fire

3s vs 3z EASY 3 Stalkers 3 Zealots micro-trick: kiting

3m EASY 3 Marines 3 Marines homogeneous & symmetric

2m vs 1z EASY 2 Marines 1 Zealot micro-trick: alternating fire

5m vs 6m Super HARD 5 Marines 6 Marines homogeneous & symmetric

3s vs 5z HARD 3 Stalkers 5 Zealots micro-trick: kiting

Table 1. A detailed description of the SMAC scenario used in the experiment
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B. Structure of Reward Function
The reward functions adopt a structure based on linear layers, with specific architecture detailed in Table 2. In the
experiments, the size of the hidden layer used is 16.

Name Type In features Out features
input state Linear state size hidden size

input next state Linear state size hidden size
input obs Linear observation size hidden size

input actions Linear action size hidden size
hidden layer Linear hidden size × 4 hidden size

output Linear hidden size 1

Table 2. Structure of DPM’s reward functions
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C. Prompt Examples
We list and discuss the prompts we employ in conducting the experiments. The prompt consists of four stages : LLM system
configuration, environment description, providing information about comparisons, and task instructions.

C.1. LLM system configuration

In the LLM system configuration, the LLM is endowed with roles and context awareness to enable it to generate high-quality
responses.

Figure 6. Example of a system configuration prompt for the SMAC 3m scenario.

C.2. Environment description

The environment description encompasses a comprehensive overview of the SMAC scenario. It includes the scenario name,
composition of allies, composition of adversaries, description of the situation, objectives, and other pertinent details.

Figure 7. Example of an environment description prompt for the SMAC 3m scenario.
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C.3. Providing information about the comparisons

This part describes the comparison targets for acquiring preferences. In trajectory comparison and agents comparison,
separate prompts exist, each allowing for the provision of information to the LLM by altering the details in the square
brackets([]), including state, actions, and other relevant information. For the trajectory comparison case, an example prompt
is provided in Figure 8, and for the agent comparison case, an example prompt is given in Figure 9.

Figure 8. Example of a description of trajectories prompt for the SMAC 3m scenario.

Figure 9. Example of a description of state and agent actions prompt for the SMAC 3m scenario.
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C.4. Task instructions

The task instruction part provides detailed instructions regarding the output that the LLM should generate. In the trajectory
comparison case, the LLM should produce preferences, while in the agent comparison case, it should generate rankings.
Therefore, they have different prompt formats to facilitate these distinct tasks.

Figure 10. Example of a task instruction(trajectory comparison) prompt for the SMAC 3m scenario.

Figure 11. Example of a task instruction(agents comparison) prompt for the SMAC 3m scenario.
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C.5. Full prompt

Figure 12. Example of a full trajectory comparison prompt for the SMAC 3m scenario.
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Figure 13. Example of a full agents comparison prompt for the SMAC 3m scenario.

16


