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ABSTRACT

Attention mechanisms lie at the heart of modern large language models (LLMs).
Straightforward algorithms for forward and backward (gradient) computation take
quadratic time, and a line of work initiated by [Alman and Song NeurIPS 2023]
and [Alman and Song NeurIPS 2024] has shown that quadratic time is necessary
unless the model weights are small, in which case almost linear time algorithms
are possible. In this paper, we show that large weights are necessary to avoid a
strong preclusion to representational strength we call layer collapse, which means
that the entire network can be approximated well by a network with only a single
layer. This means that transformers with small weights are shockingly weak, and
that the quadratic running time of attention is unavoidable for expressive trans-
formers.

The notion of layer collapse that we introduce is a variant on the notion of rank
collapse from the work of [Dong, Cordonnier, and Loukas ICML 2021]. They
showed that in Self Attention Networks with small weights and with skip con-
nections, rank collapse must occur. This is typically interpreted as justifying the
necessity of skip connections in expressive networks. However, our result shows
that even with skip connections, if the weights are small, then layer collapse still
occurs. Thus, only large weights, and not skip connections, can prevent these
representational weaknesses.

1 INTRODUCTION

The rapid progress of large language models, text-to-image and text-to-video models like Trans-
former (Vaswani et al., [2017), BERT (Devlin et al., 2018), GPT-4 (OpenAl, 2023), Llama 3
(Llama Team| 2024), and Gemini 2.0 (Google, 2025), has enabled powerful language modelling
abilities. These models take advantage of large-scale pretraining on massive textual data, which
equips them with strong abilities to interpret the complex patterns of natural language. These LLMs
have a broad range of applications, influencing domains such as human-computer interaction, mul-
tilingual translation, language comprehension, text generation, and rapid prototyping of software.

The major architecture behind the success of all these language models is the attention mechanism.
Specifically, attention computes pairwise similarities by calculating inner products between vec-
torized representations of words, with input sequences represented as vectors. Formally, softmax
attention can be formulated as follows:

Definition 1.1 (Self-Attention with Softmax Units). Let A € R"*? and weights Q, K,V € R%*4,
Let g represent the entry-wise exponentiation function, i.e., for z € R we have g(z) = exp(z), and
for a matrix W we have g(W); ; = g(W, ;). The attention computation can be defined as

_ p-1 TyT

SAtt(X,Q,K,V) =D 'g(XQK'X") X V
nxn nxn nxd dxd

where D := diag(g(XQK T X ")1,,), and where 1,, € R" is a length-n vector whose entries are

all 1.
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Small Coefficients are Needed for Fast Algorithms However, the straightforward algorithm for
computing self-attention results in a quadratic O(n?d) running time, where n is the length of the
input token and d is the hidden dimension. Under popular complexity-theoretic assumptions, there
is no better, subquadratic time algorithm to compute attention, even approximately (Alman & Song,
2023)). Therefore, models based on attention may face difficulties when they handle long contexts.

In fact, a key observation of this line of work on the computational complexity of attention is that
attention can be computed (or tightly approximated) faster if one restricts to small weights, i.e., an
upper bound on how large the entries of @, K,V can be in Definition above. Indeed, a line
of work (Alman & Song| 2023} [2024a7b; 2025) has shown that small weights are both necessary
and sufficient for a faster algorithm: If the weights are large, then the aforementioned complexity-
theoretic result shows that there is no subquadratic time algorithm. However, if the weights are small,
then attention can be approximated to low error in almost linear time! Their algorithm is based on
low-rank approximations of the n x n attention matrix (the matrix g(X QK " X ") in Definition
above).

This type of observation is also frequently used in practice; many LLM implementations have en-
forced bounds on the weights, often using techniques like approximation or quantization, and then
used this for substantial speedups. For some examples, see (Zafrir et al.|[2019; [Katharopoulos et al.,
2020b; [Frantar et al., 2022} [Perez et al., 2023} Dettmers et al.|[2023; [Egashira et al.,2024; [Liu et al.,
2024b; | Xu et al.l [2024a; |Lin et al., 2025} |Chen et al., [2025b; [Liu et al., [2025} Ouyang et al., 2025}
Deng et al.| [2025; [Hu et al., 2025c; [Fu et al., [2025; [Hu et al., [2025b; [Park et al., [2025} [Zeng et al.,
2025 'Yu et al.l 2025 |Wei et al.| [2025)).

In this paper, we investigate the representational strength of transformers with small weights. Our
main result will show a limitation, that without large weights, a transformer cannot take advantage
of more than a single layer. In other words, we will show that in order to take advantage of the full
expressive power of the transformer model, large weights are necessary.

Rank Collapse and Skip Connections We will crucially build on the approach of Dong, Cordon-
nier, and Loukas (Dong et al.||2021), who studied the representational strength of different variants
on the transformer architecture through the lens of a notion called rank collapse. We say that a
model experiences rank collapse if, on any input, the output must always be close to a rank 1 ma-
trix. (See Definition [3.4]below for the precise meaning.) Beyond being unable to represent complex
concepts, models with rank collapse also have numerous other issues in both training and evaluation
(Noct et al.,2022; |Roth & Liebigl[2024; Naderi et al., 2024;|Nguyen et al., |2024; Heo & Choi, [2024;
Yuan & Xul 2024; |Barbero et al., [2025; [Bonino et al., [2025)).

The work of (Dong et al.l 2021) highlights skip connections (or residual connections) in a trans-
former network as crucial for avoiding rank collapse. They show that in a Self-Attention Network
without skip connections, rank collapse occurs with a doubly exponential rate of convergence. More
precisely, if 5 is a bound on the ¢; norm of the weight matrices of the network, and the network has
L layers, then they show the distance to a rank-1 matrix shrinks as

O(p) ey

Meanwhile, they observe that networks with skip connections may experience no rank collapse at
all. For instance, it is not hard to simulate the identity function as a Self-Attention Network with
skip connections (simply set all value weights to 0, so that only the skip connections are output). In
this case, any input which is far from rank-1 will result in an output which is also far from rank-1.
They study other mechanisms in transformer networks as well, including multi-layer perceptrons
and layer normalization, but find that only skip connections prevents the rank collapse of Equation
(I). This result is frequently cited in the literature as evidence of the importance of skip connections
(Ma et al., 20215 Noci et al., 2022} |Sander et al., 2022; |Guo et al., 2023 |Li et al., 2023 |[Kim et al.}
2023} |Geshkovski et al., 2023} [Kim et al., [2024; J1 et al., [2025)).

3l 1
2

The Importance of Large Weights and Layer Collapse We begin with a simple observation: in
order for Equation (I)) to be shrinking as L grows, it is necessary that [ is small, i.e., that the weights
of the network are small. In other words, the result of (Dong et al., | 2021) really says that:

To avoid rank collapse, one needs either skip connections or large weights.
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In this paper, we prove that Self Attention Networks with skip connections, but with small weights,
must suffer from a phenomenon similar to rank collapse which we call layer collapse. We say that
an L-layer Self Attention Network S has layer collapse if there is a nearly equivalent Self Attention
Network S” which only has a single layer. In other words, although S’ only has one layer, it is still
as expressive as .S, since on any input X, the outputs S(X) and S’(X) differ in each entry by at
most a small error parameter.

When combined with (Dong et al.,[2021)), our result implies:
To avoid rank and layer collapse, one needs large weights (skip connections do not suffice).

This challenges the previous popular interpretation of (Dong et al., 2021]), that skip connections were
crucial for the representational strength of the model.

The connection between layer collapse and rank collapse may not be evident from the definitions,
but it will become clear in our proofs below. At a high level, we will find that the attention mech-
anisms in lower layers of the Self Attention Network must exhibit rank collapse (regardless of skip
connections), and can thus be removed from the network without substantially changing the output.
We will show

Theorem 1.2 (Main result, informal). If S is a Self Attention Network whose weight matrices have
Lo norm bounded by n, then there is a Self Attention Network S’ with only one layer, such that on
any input X with || X ||cc < O(1), we have ||S(X) — S (X)||co < O(n).

In fact, the example from (Dong et al., 2021)) of the identity network with skip connections heavily
inspired our definition of layer collapse. That network indeed does not have rank collapse, so we
could not hope to prove a version of Theorem [I.2] with rank collapse instead of layer collapse. On
the other hand, it is essentially not making use of its attention mechanisms; they could be removed
without changing the output of the network. Our key idea is to show that, more generally, the
attention mechanisms with small weights can be removed from any Self Attention Network, with
skip connections, without changing the output of the network by very much.

Our 7 in Theorem is a bound on the ¢, norm of the weight matrices (maximum magnitude of
an entry), whereas the prior result in Eq. above uses parameter 3, which is a bound on the ¢;
norm (sum of magnitudes of all entries). Our 7 could thus be quite a bit smaller (by a factor of d?
for d x d weight matrices), and there are thus networks without skip connections where (Dong et al.,
2021) does not imply rank collapse (since 5 >> 1 is too big) but our Theorem [I.2]still implies layer
collapse (since n < 1 is smaller).

We also note that both our informal statement of Theorem|[I.2]and our presentation of the main result
of (Dong et al} 2021)) in Eq. (T), are given assuming that the Self Attention Network has a constant
number of heads and layers. The more complete statement in terms of the number of heads and
layers is presented in Theorem in the appendix. Both results have modest assumptions on the
relationships between 7 (or 3), || X ||oo, and the numbers of heads and layers, and we emphasize that
these assumptions are nearly identical in both results; see Remark [D.3] for more details.

Roamdap. In Section [2] we present the related work. In Section [3] we introduce several basic
notations and definitions. In Section[d] we study perturbation properties of several functions, such
as softmax. In Section [5] we provide several major rank collapse results. In Section[6] we provide
the conclusion of this paper.

2 RELATED WORK

Low-rank Approximations Low rank approximation is a fundamental topic in numerical linear
algebra (Clarkson & Woodruff, 2013 Nelson & Nguyén, |2013; [Song et al., [2023bja). Many prob-
lems require either computationally or analytically finding a low-rank approximation under different
settings such as linear and kernel SVMs (Gu et al 2025)), tensor regression (Song et al.|, [2021b;
Reddy et al., 2022} Diao et al.,[2018};[2019), low rank approximation with Frobenious norm (Clark-
son & Woodruff, 2013} [Nelson & Nguyén, 2013)), weighted low rank approximation (Razenshteyn
et al., |2016; |Gu et al.| [2024; [L1 et al., 2025aj [Song et al 2025)), general norm column subset se-
lection (Song et al [2019al), entrywise #; norm low rank approximation (Song et al., 2017; 2019b),
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tensor low rank approximation (Song et all, 2019¢), tensor power method 2023b), and
matrix CUR decomposition (Boutsidis & Woodruff, 2014} [Song et al., 2017; 2019¢). Rank collapse

and other techniques we use here build on this line of work.

Algorithmic Result for Attention Computations The quadratic time complexity of attention
mechanisms (Vaswani et all, 2017) has posed significant computational challenges for long se-
quences. In response to this problem, a wide range of works have been proposed to reduce com-
putational cost and enhance the scalability of attention mechanisms, including sparsification (Child
et al|, [2019; [Zaheer et all, [2020; [Beltagy et al., Hubara et al., 2021} [Shi et al.| [2023a} [Kurtic

et al.,[2023; [Frantar & Alistarh} 20235 Li et al.,[2024b} [Liang et al., 2024a; Han et al.,[2024), kernel-
based approaches (Liu & Zenkel,2020; (Charikar et al.,2020; Zandieh et al.,[2023} Deng etal.,[2023a;
Liang et al,[2024b), and low-rank methods (L1 et al.,[2016; Razenshteyn et al.,[2016; Hu et al.,[2022;
2024b;Zeng & Lee, [2024). Additionally, another promising line of research is linear attention (T'sai]
et al., 2019; |Katharopoulos et al.| [2020a; [Schlag et al., 2021; [Deng et al.|

Zhang et al.| [2023b; |Ahn et al., 2024; |Li et al., 20244} [Shi et al.,[2023c¢}; [Zhang et al.| [2024), which
significantly accelerates traditional softmax attention. Other relevant works have explored important

aspects of attention mechanisms, covering topics such as circuit complexity (Chen et al.} 2024ajc

Li et al},[2025b), model pruning (Frantar & Alistarh,[2023;[Shen et al ., 2024} [Sun et al.| 2024

et al.,2025), privacy protection (Liang et al., 2024d; Gao et al.,[2024), regression (Gao et al.,[2023b),
half-space reporting (HSR) (Jiang et al., 2021} |Chen et al., 2024b), and quantum computation

et al.l [2023c}; [Zhao et al,[2024).

Polynomial Kernels for Attention Acceleration With the assumption that model weights are
small, polynomial kernels (Alman & Song| [2023}; 2024b) are powerful tools for approximating at-
tention computation in almost linear time complexity, providing promising acceleration for both
training and inference of a single attention layer. This approach can be further extended to a wide
range of applications. For instance, polynomial kernels can provide insights into novel attention
mechanisms and model designs, such as modern Hopfield models 20244), Diffusion

Transformers (DiTs) Hu et al 2024d), multi-layer Transformers
[2024c)), and tensor attention mechanisms (Liang et al.| [2024e; [Alman & Song| [2024a)). These poly-
nomial kernel methods also contribute to efficient and model-utility-preserving fine-tuning of foun-
dation models, such as model adapters (Hu et al., 2022} [Zhang et al.,2023a} [Shi et al.,
2023a)), multi-task fine-tuning (Gao et al., 2021; Oswald et al., Xu et al.,2024b), black-
box model tuning (Sun et al, 2022), and instruction tuning (L1 & Liang| [2021; |Chung et al., 2022}
Mishra et al.}[2022). Other promising applications include privacy protection in attention computa-
tion (Liang et al., 2024d), CoT reasoning 2022; (Wei et al.| 2022} [Yao et al.l 2023
[Zheng et al., 2024), and model calibration (Zhao et al., [2021}; [Zhou et al| [2023). Very recently,
(Gupta et al.| 2025) further extends the work of (Alman & Song| 2023)) to almost all the regimes of
parameter d (see definition of d in Defintion|1.1)).

Regression Models The unprecedented energy consumption in training large-scale ML models
has necessitated the development of scalable and efficient ML models (Venkataramani et al., 2015}
[Bender et al.| [2021; [McDonald et al., 2022). As a simple yet powerful approach to solving various
machine learning problems (Bubeckl, [2015; [Brand et al.} 2021} [Song et al., 2024b}; [Subrahmanya &
[2009), simple regression models have raised significant concerns in model acceleration, with
recent advances from different perspectives, including sketching (Song & Yu, 2021} [Reddy et al.
2022 [Song et al. [20234) and pre-conditioning (Yang et al., 2018}, [Kelner et al.l 2022} |Song et al.
2024a). Our work discusses low-rank approximations in attention mechanisms, while our general
insight can be extended to other low-rank method applications, such as accelerated regression mod-
els.

Diffusion Models Diffusion models and score-based generative models have achieved remark-
able success in generating human-preference-aligned and high-quality visual content
[2020}; [Song et all, [2021a} [Blattmann et al.| 2023)). These advances not only benefit vision tasks but
also enhance the performance of other applications, such as language modeling
Sahoo et all, [2024), chemical design (Xu et al., 2023} [Wen et al.| [2024), and e-commerce
et al., 2023; [Wang et al), 2023}, [Liu et al.| [2024a). Relevant works have discussed the theoretical
guarantee that diffusion models can be approximated efficiently (Hu et all, 2024d} 20254, 2024c}
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Gong et al.l 2025). Empirical approaches to accelerate diffusion models have addressed various
aspects, such as shortcuts (Frans et al., 2024} |Dao et al., 2024; |Chen et al.,[2025a)), parameter prun-
ing (Castells et al.| 2024} Ma et al.} [2024), and lazy computation (Nitzan et al., 2024; |Shen et al.,
2025). With these acceleration techniques, diffusion models can be trained on larger-scale data,
overcoming inherent limitations such as counting (Hui et al.l 2024} [Cao et al., [2025} (Guo et al.,
2025a)), text rendering (Chen et al., 2023} [Tuo et al. 2024} |Guo et al., [2025c)), and adherence to
physical constraints (Motamed et al.| 2025} |Guo et al.,[2025b}; Bansal et al., [2025). Most diffusion
models leverage Transformer backbones for enhanced modelling capability. Our work accelerates
attention mechanism computations, significantly benefiting a wide range of diffusion models.

Graph ML Models Relational data is prevalent in many real-world scenarios, where graph neural
networks (GNNs) are the powerful solutions for mining effective patterns from such relations (Kipf
& Welling}, 2017 Hamilton et al.| 2017;|Wu et al.,|2019). Recent scalability approaches have widely
adopted low-rank approximations, such as sketching (Ding et al.| [2022; (Chamberlain et al., 2023)
and vector quantization (Ding et al.| [2021; Wang et al., [2025), which can take insights from this
paper. These accelerations empower a wide range of applications, including misleading information
mitigation (Xu et al., 2022; Chang et al., 2024), social network prediction (Fan et al.,|2019; [Zhang
et al.| [2022), and human action recognition (Peng et al.| 2020; Li et al., [2021}; |Fu et al.;2021)), while
also inspiring advances in multiple aspects of graph learning, such as differential privacy (Lin et al.,
2022 Mueller et al., 2022), robustness (Geisler et al., 2021} Dai et al., [2022;|Zeng et al.,2022), and
sensitive data removal (Chien et al.| 2023} [Zhang| [2024; |Yi & Wei, [2025). A recent work (Zhang,
2024) proposes an efficient framework for empowering sensitive data impact removal from trained
GNNs with partial retraining, leveraging model utility-aware data partitioning and contrastive sub-
model aggregation.

3 PRELIMINARIES

In Section @ we provide basic notation, definitions and facts. In Section [ZZ] and Section @l,
we define the Res function and balanced matrix notation which will appear prominently in our
constructions. In Section we provide the definition of a multi-layer multi-head Self Attention
Network which we study here.

3.1 BASIC NOTATION AND FACTS

For an arbitrary positive integer n, we use [n] to represent the set {1,2,--- ,n}. We define 1,, as
a length-n vector where all entries are ones. For any z € R", we use exp(z) € R" to represent
a length-n vector whose i-th entry is exp(z;). For any vector z € R”, we use x' to denote its

transpose. For a vector z, the vector £ norm is denoted by ||z|2, ie., [|z]2 == (i, 22)1/2
For a vector x, we use ||z|| to denote its o, norm, i.e., ||z|c := max}, |z;|. For a vector
x, we use ||z||; to denote its entrywise ¢1 norm, i.e., ||z|; := > |2;|. For a matrix, we use

[Al[x to denote its £, norm, i.e., [[All1 = >_,; |4l We use [[Al|o to denote its £ norm, i.e.,
|Alloo := max;;|A;;|. Fora vector z € R", we use diag(z) to denote a diagonal matrix where
i, i-th entry on diagonal is x; for all i € [n].

Definition 3.1. For a vector x € R"™, we define a(z) := (exp(x),1,). We define softm(x) as

softm(x) := a(x) "t exp(x). For a matrix A, we use the notation softm(A) to denote that we apply
softm to each row of A individually.

Fact 3.2 (Shift-invariance property of softmax). For any vector x € R" and for any fixed scalar
a € R, we have softm(z) = softm(z + al,).

Fact 3.3 (Norm inequality). For any matrices A, B we have (1) ||AB|1 < ||A]: - ||B
2| ABlloo < [[Allos + [ Blloe, (3) [AB]l1 < [|Al]1 - | Blloo-

1

3.2 DEFINITIONS OF Res

Definition 3.4 (Res). Let Z € R"*? denote any matrix, we define function the Res : R <4 — Rm*4d
asRes(Z) := Z — 1,y " where y := argmin,cga |Z — 1,y || .
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Res is the key definition behind the notion of rank collapse from prior work (Dong et al.,[2021)); we
will use it here to study layer collapse as well, although we use the co norm here in contrast to prior
work which uses a 1, co norm.

3.3 6O-BALANCE

We also need a measure of how balanced a matrix is.

Definition 3.5 (f-balance). Given a matrix E € R"*", we define a corresponding matrix D €
R™™ to be the diagonal matrix with D; ; := max; e |Eij — Eiy|. We say E is 6-balanced, if
Do < 6.

3.4 SELF-ATTENTION NETWORK

Definition 3.6. Let g denote the entry-wise exponentiation function, i.e., for z € R we have g(z) =
exp(2), and for a matrix W we have g(W); ; = g(W; ;). Given A € R"*?% and weights Q, K,V €
R4 the attention computation can be defined as

H
SAtty(X):=>) D 'g(XQnK/XT) X W,
R e
nxn nxn n dxd
where Dy, := diag(g(XQn K, X )1,,), and where 1,, € R" is a length-n vector whose entries are
all 1.

Definition 3.7. Let L, H denote fixed constants, where L represents the number of layers of the
network, and H represents the number of heads per layer. Let SAtty denote the multi-heads version
of SAtt where H is the number of heads. For each { € [L], X, € R™"*? denote the (-th layer input
of self-attention network, then we have X1 = SAtty (X,) + Xo.

4 PERTURBATION PROPERTY

‘We now move on to our main proof of layer collapse. We begin by showing that the relevant measure
of matrices to not change much when their inputs are perturbed. We will ultimately show that layer
collapse occurs because lower layers of the network can be seen as slightly perturbing their inputs.
We study the Res function in Section[4.1] the « function in Section

4.1 PERTURBATION PROPERTY OF RES FUNCTION

Lemma 4.1. Let Res() be defined as Definition[3.4) If | A—B||o < €, then || Res(A)—Res(B) || <
€.

Proof. Let y € R? be the vector such that Res(B) = B — 1,,y ". Then, || Res(A) — Res(B)||o <
|A—1ny" —Res(B)|loo < ||B—1ny" — Res(B)|loo + |B — Aljoc <0 +e. O

4.2 PERTURBATION PROPERTY OF EXP FUNCTION
Lemma 4.2. [f the following conditions hold: Let a,b € R™. Let ||b||cc < €. Then, we can show

o |exp(a; + b;) —exp(a;)| < (ef — 1) - exp(ay).
)

* |exp(a; + b;) — exp(a;

la(a+b) —afa)] <

la(a+b) —afa)] <

Proof. 1t is easy to see that
max{|exp(—b;) — 1], |exp(b;) — 1|} < e —1 (2)
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We can show
|exp(ai + bi) — exp(ai)| = exp(ai)| exp(b;) — 1| < exp(ai) - (e = 1) 3)
where the first step follows from simple algebra, the second step follows from Eq. ().

Thus, we have

n

jaa+b) — a(a)] = |(expla+b), 1) — (exp(a), L)l < S lexpla; + b;) — exp(ay)|

< > exp(a) - (e = 1) = (¢ ~Dafa)

where the second step follows from triangle inequality, the third step follows from Eq. (3), the last
step follows from definition of «(+) function.

Similarly, we can show
|exp(a; +b;) —exp(a;)| = exp(a; + ;)| exp(—=b;) — 1] < exp(a; +b;) - (ec°—1) (4)
where the first step follows from simple algebra, the second step follows from Eq. (2).

Then, we have

n

(ala +) ~ afa)| =|(expla +b). 1) ~ (exp(a). 1)| < 3| explas +b) — exp(as)]

<Y exp(ai+bi) - (¢° = 1) = (e = a(a+Db)

=1

where the first step follows from definition of a (Definition , the second step follows from

triangle inequality, the third step follows from Eq. (@), and the last step follows from definition of «
(Definition [3.T).

Thus, we complete the proof. [

5 RANK COLLAPSE PROPERTY

In Section we present a Lemma which connects Res(SAtt()) and Res(). In Section [5.2] we
present our key lemma, a perturbation theorem for a layer of a Transformer. In Section |5.3] we
present our main result and proof sketch.

5.1 THE CONNECTION BETWEEN Res(SAtt()) AND Res()

We next establish the relationship between Res(SAtt()) and Res() in terms of the balance of the
mputs.

Lemma 5.1. If the following conditions hold: Let X € R"™*¢ denote the input of attention layer.
Let X = SAtt(X) (see Definition forfunction SAtt). Let Wy, Wy, W,, € R4 be the weight
matrices of SAtt. Let W = W,W,'. Let E = BRes(X)W Res(X)". Suppose that E is a 0-

balanced matrix (see Definition . Let 8 := 1/+/dy denote the normalization factor. Let K :=
(€% — 1)||[Wy|loo- Then, we have [[Res(SAtt(X))||oo < K - || Res(X)]|oo-

Proof. The unscaled attention scores are computed as follows A = (XW, + lnb;r) (XW +
1,b; ). Recall that W = W, W, . For notational convenience, we define b := Wjb,.

We can use the softmax shift invariance property to remove terms which are constant over the
columns and obtain, A= X W X' + 1, T O XT.
NN N N

nxd dxd dxn nx1l 1xd dxn

We define R := Res(X) € R"*? (Recall the definition of the function Res() in Definition .
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In next equation, we will use the definition of R to simplify A. The attention matrix can be written
as

(" FRW Az +R)T+B-1,0" (1,2 +R)T
(x"Wal, + RWz + 1,0 2)1) + 8- (RWR" +1,2"WR" +1,b"R")  (5)

Using Fact[3.2] we can remove the first term in the above equation since it is constant across columns.
We thus have that the following equation for P = softm(A) € R™"*"

P = softm(BRWR" +1,7) = softm(E + 1,7 ) 6)

where the first step follows from r = BR(W "z + b) € R™, the second step follows from setting
E =BRWRT € R™*n,

To continue the proof, we also set A= 1,77 € R™*™, the input reweighted by the attention
probabilities PX will be entry-wisely upper bounded as follows

PX =P(1,2" +R)= 1,2" + PR
=1,z" +softm(1,r" + E)R
<1l,2" + (I +eP —1)1,softm(r)"R
=1, (z " softm(r) " R) + (¢P — I)1,, softm(r) "R (7

step follows from Eq. (6)), the forth step follows from Lemma|B.3|and e is diagonal matrix where

where the first step follows from definition of R, the second stollows from P1,, = 1,,, the third
B.3|
Di,i

the ¢, i-th entry on diagonal is e

Therefore, the entry-wise distance of the output of the self-attention layer SAtt(X) = PXW, from
being constant across token is at most:

I[SAtt(X) — 1,7 ' Ji,j| = [[PXW, — 1,7 ], ;| < (€ — 1) - |[D1,, softm(r) " RW,]; ;]
where the second step follows from 7 = (z + R softm(r))W,, and Eq. (7).
Now we bound the right hand side of the above inequality.

For || - |0, we can show

[ SAtt(X) — 1,,(r") oo < (¢ = 1)|| D1, |00 - || sOftm (1) " RW, || 0o

< (¢ = DIDLllslI Rl Wl < (¢ = D[Rl - [Wolloo,  (®)

where the last step follows from Definition [3.5]

Note that R’ = Res(SAtt(X)) and R = Res(X) and using the definition of K in Lemma statement,
we can show || Res(SAtt(X))]|oo < K - || Res(X)||oo. Thus, we complete the proof. O

5.2 PERTURBATION OF ONE TRANSFORMER LAYER

Lemma 5.2 (Single Head). Let X € R"*4. Let A = softm;(X) (Recall that softm() function is
defined as Definition Note that softmy and softms are two different instantiations with different
Wi, Wy, W, weights). Let B = X + A. Suppose ||Res(A)]lcoc < K - ||Res(X)||oo < € (We
remark that this condition will hold due to Lemma 5.1} here K is as defined in Lemma[5.1). Let
g(e) :=2(e — 1) and let eg = 2g(2¢). Then we can show

|l softma(B) — softma(X)||oe < €o.

Proof. Let Rx = Res(X) so that X = Rx + yx 13 for some vector yxy € R™. Using Fact we
can show that

softm; (X) = softm; (Rx). )

Let R4 = Res(A)sothat A = Rs + yAl;lr for some vector y4 € R™. Using Fact we can show
that softm(A) = softm(R4).
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Let Rp = Res(B) so that B = Rp —|—y131;lr for some vector y € R™. Using Fact we can show
that softmy(B) = softma(Rp).

Next we will show that || softm(Rx + R4) — softm(Rx )| cc is small.

Let us consider the vector version || softm(a + b) — softm(a)||~. Note that if |b;| < €, then using
Lemma [B.2] we can show || softm(a + b) — softm(a)|| < g(€).

Thus, as long as || R4 ||« < e, then using Lemma[B.2] we have
[| softm(Rx + Ra) — softma(Rx)[loc < g(e) (10)

We can show Ry = Res(X) = Res(B — A) = Res(B — R4). Then, we know |Rx — Rp|lcc <
||Res(B — R4a) — Res(B)|loo < ||Rallco < e

Recall B= X + A, and ||Ra|loo < € then we know

[Bx + Ba = Rplloc < [[Bx = Bplleo + [Ralloc <2[|Ralloc < 2€.

Since [[Rx + Ra — Rplloo < 2¢, then using Lemma|[B.2] we have
|| softma(Rx + Ra) — softma(Rp)|leo < g(2¢€) (11)

Then, we can show
|| softma(B) — softma(X)||eo
= || softma(B) — softma(Rx)||co
= || softma(Rp) — softma(Rx)]co
< || softma(Rp) — softma(Rx + Ra)llco + || SOftma(Rx + Ra) — softma(Rx)]|co
< 9(2¢) +g(e) < 29(2e)
where the first step follows from softm(X) = softm(Rx), the second step follows from

softm(Rp) = softm(B), the third step follows from triangle inequality, the forth step follows from
Eq. (TI0) and Eq. (TI), and the last step follows from g is monotone. O

5.3 PUTTING IT ALL TOGETHER

Proof Sketch of Theorem[I.2] We’ll show what to do to delete one layer, then repeat that L — 1
times to get down to one layer. When we delete the first layer, Lemma [C.1] (which is the version of
Lemma [5.2] which deals with multiple heads) says that the output of the second layer will differ by
at most O(n - €y), where ¢g = O(1) - | X || is the constant from Lemma [5.1]and Lemma/5.2] and X
is the input of first layer of network. Therefore, by applying Lemma iteratively to each layer, it
follows that the outputs of all subsequent layers will also change by at most O(7) - €p). In particular,
the final output will differ by at most O(n - €g). We finally repeat this L — 1 times to remove all
but one layer and get the final error. We defer further proof details to the Appendix due to space
limitations. O

6 CONCLUSION

We have shown that Self Attention Networks must experience layer collapse unless they have large
attention weights, even if they have skip connections. Our result proves that two different common
notions in the literature are actually misconceptions.

The first misconception is the common interpretation of the prior work (Dong et al., [ 2021)) that skip
connections are the key to the expressive power of Self Attention Networks. We extend their result
and show that even with skip connections, large weights are needed to prevent layer collapse.

The second misconception is that Self Attention Networks with smaller weights may still have rea-
sonable expressive power. Indeed, although it is intuitive that bounding the magnitudes of weights
must limit the expressive power to some extent, there is nonetheless a long line of work on trying
to use networks with small weights, weight quantization, or similar approaches. This work is (pre-
sumably) hoping that the limit is only modest. We show that the limit is severe: networks with small
weights cannot take advantage of more than one layer! This is the first theoretical limitation result
on networks with small weights to our knowledge.
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Appendix

Roadmap. In Section [A] we provide several simple definitions. In Section [B] we show more per-
turbation properties for the softmax matrix. In Section[C| we provide the proofs related to network
layers with multiple attention heads. In Section D] we prove our main Theorem. In Section [E| we
provide the broader impact of this work. In Section [ we discuss the LLM usage.

A PRELIMINARIES

Note that softm(X) function defined above is ignoring the effect of the weights W,. Here we
incorporate them in another function softmv(X') (which is also usually called self-attention).

Definition A.1. Let W,, W}, be weights being used in softm. Let W, denote the extra weights that
will be used in softmv. We define softmv(X) as follows

softmv(X) := softm(X)XW,.

Next we define a very useful parameter €, which captures the Lipschitz and layer norm property of
every layer.

Definition A.2. Let all layers’ weights are bounded, i.e, ||W| oo, |Wiklloos |Wolleo < 1. Let Xo
denote the first layer input of entire neural network and it is bounded || Xq||co < ¢o. Let H denote
the number of heads. For each layer { € [L], we define a parameter ¢; := 2n¢o(1 + Hn)~.

Definition A.3. We define function g(e¢) := 2(e — 1).

B PERTURBATION PROPERTY OF SOFTMAX MATRIX

Lemma B.1. [f the following conditions hold: Let a,b € R™. Let ||b||cc < €. Then we can show
* la(a+b)"" —ala) ™| < (e — Dafa) ™
 Jafa -+ —a(@) ] < (e — Daa+ b~

Proof. We can show that
(e +b)7" —ala) | = ala+b) " a(a) " ala +b) — afa)|
<ala+b)ta(a)™t - (ef = 1a(a+b)
= (¢" = (o)
where the first step follows from simple algebra, the second step follows from Lemmaf.2]
Similarly, we can also show |a(a + b) ™! — a(a) 7! < (e — 1)a(a + b) 1. O
Lemma B.2. Leta,b € R™ If |b;| < € for all i € [n], then, we can show that
|| softm(a + b) — softm(a)||oc < 2(e€ —1)

Proof. For each i € [n], we can show
|a(a+b) " exp((a +b)i) — a(a) ™" exp(a;)|

— Ja(a+b) " exp((a+b);) — ala +b)~ exp(a;) + ala+b) " exp(a;) — a(a)~* exp(as)|

< aa+b)"Hexp(b; + a;) — exp(a;)| + exp(a;) - [ala +b) 7" — a(a) 7!

= A + Ay
where the second step follows from the triangle inequality.
We can upper bound A; as

Ay =ala+b)71 - |exp(a; + b;) — exp(ay)]

<ala+b)7t- (e —1)exp(a; + b;)
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< (e—1)

where the second step follows from Lemma[4.2] the third step follows from a/(z) ! exp(;) € (0,1)
for any x and 7.

We can upper bound A, as

Ay = exp(a;) - |a(a+ b))t —ala)™!
< exp(a;) - (€€ — 1)afa)™?
<e -1

where the second step follows from Lemma|[B.1] and the third step follows from a/(z) ! exp(z;) €
(0,1) for any x and .

Putting everything together, we can show
|| softm(a + b) — softm(a)||cc = 11161%3]( la(a +b)"Ha +b); — afa) tay
<2(ef —1).

Thus, we complete the proof. O
Lemma B.3. [fthe following conditions hold

* Let P = softm(A) (see Definition|3.I|for function softm()).

e Let A= A—F.

e Let P = softm(A).
Let D be defined as Deﬁnition ie, Dj;:=max;cm |Eij — Eijl

Then we can show, for all i € [n], j € [n]
e PHiP < Py < PP

Proof. Let us start by the definition of P, for each i € [n], j € [n]
Pi,j = (softm(A))m
= (softm(A + E)),
__ exp(Ay; + Biy)
> exp(Aig + Eip)
_ exp(Ai;))
Z?:l exp(AiJ) eXp(EU — Ei,j)

where the first step follows from definition of P, the second step follows from definition of A, the
third step follows from definition of softmax (Definition[3.T)), and the last step follows from property
of exp.

We define D; ; := max; () |Eij — Eii|. We have that

Pi’j S [ﬁi’j eXp(—Di)i), ﬁiJ exp(Di7i)}
Thus, we complete the proof. [

Lemma B.4. If the following conditions hold
» Let Wy, Wi, W, be the matrix that |Wy||co, [[Wk|loos [|Wa oo < 1.
o Let W =W, W,/.
o Let E = BRes(X)W Res(X)'.
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o Let 3 satisfy that 3 < 1/(|| Res(X)|%n?).

Then, we have E is 6-balanced with 0 = 1.

Proof. First, note that |[W||eo < [[Wylloo - [|[Wklleo < 72

‘We can show
[Elloo < 8- || Res(X) |12, - [Wlloo

< B~ Res(X)||% -
<1

Thus, we complete the proof. O

C MULTIPLE HEADS

Here, we generalize the proof of Lemma [5.2] to multiple heads. Note that Lemma [5.2] presented a
simplified proof by ignoring the effects of X W,,, and thus automatically assuming n = d. In this
section we remove that condition and prove the result for general n and d. In Section[C.1] our goal
is to prove Lemma [C.T] which is the multiple heads version of Lemmal[5.2] In Section|C.2] we show
that several required conditions in Lemma[C.1] are satisfied.

C.1 MULTIPLE HEADS FOR SKIPPING ONE LAYER

In the next Lemma[C.1] we will put the effect of softmv back. We remark that the major idea of the
proof remains the same as Lemmal[5.2}

Lemma C.1 (Multiple Heads version of Lemma[5.2). If the following conditions hold,

* Let H denote the number of heads.

* Note that softm; and softmy are two different instantiations with different Wy, W,, W,
weights.

o Let X € R™¥4,
o A; = softmvy ;(X) € R"™4 fori € [H]. (Let softmv be defined as Deﬁnition
c B=X+Y" A e R

* ||Res(4;)||oo < K - ||Res(X)||oo < €foralli € [H]. (We remark that this condition will
hold due to Lemma[5.1} here K is as defined in Lemma[5.1))

* Let g(€) := 2(e — 1) (see Definition[A.3).
o Let W, satisfy that ||(B — X)W, |leo < H -€and || XWylleo <1
o Leteg = 3g(2He)

Then we can show

¢ Part 1. || softmy(B) — softma(X)|lec < €0

* Part 2. || softmvs(B) — softmvy (X))l < €

Proof. Proof of Part 1.
Let Rx = Res(X) sothat X = Rx + yxldT for some vector yx € R™.
Using Fact[3.2] we can show that
softm; (X) = softm; (Rx). (12)
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To notataionaly help in our proof, we define the prefix sums of matrices Ag, Ay, --- , A; € R"*% as

Ay = A
j=0

where Ay is an artificial matrix that has 0 everywhere.

For each i € [H], let Ra, = Res(A(;) so that Ap; = Rag +yag 13 for some vector y 4, ;) € R™.

Using Fact[3.2] we can show that
softm(Ap;)) = softm(Ra ).

Let Rp = Res(B) sothat B= Rp+yp 1} for some vector yp € R™. Using Fact we can show

that
softmy(B) = softmy(Rp).

13)

Let us consider the vector version || softm(a + b) — softm(a)||. Note that if ||b||oc < €, then using

Lemma|[B.2] we can show

|| softm(a + b) — softm(a)||s < g(€)

Since || Ra, — Ray, |l < €foralli € [H], then using Lemmal[B.2} we have: for each i € [H]

| softma(Rx + Rag,) — softma(Rx + Ra;,_,))llec < g(e)

We can show Rx = Res(X) = Res(B — A()) = Res(B — Ra,,).
Then, we know
[Rx — Rpllec = [[Res(B — Ray,;;) — Res(B)|[
<N Rapy lloo
where the first step follows from Rx = Res(B — Ra,,) and Rp = Res(B).
Recall B = X + A, and ||Ral|c < € then we know
[Rx + Ra— Bplloc < [|Rx — RBlloo + [[RaA o
<2[[Rapy o
<2He,

(14)

5)

where the first step follows from triangle inequality, the second step follows from ||Rx — Rp||eo <

[ R4 | oo» and the last step follows from || R, [l < He.
Since ||Rx + Ra.i — Rp|lcc < 2He, then using Lemma we have
|| softma(Rx + Ra i) — softma(RB) |l < g(2He)

Then, we can show

|| softma(B) — softma(X)||eo
= || softmy(B) — softma(Rx)||0o
= || softma(Rp) — softma(Rx)|co
< || softmg(Rp) — softma(Rx + Ra, i)l
H-1
+ Y |[softmy(Rx + Ra) — softma(Rx + Rai—1)loe
i=1
<g(2He) + H - g(e)
< 2g(2He)
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where the first step follows from softm(X) = softm(Rx) (see Eq. (12)), the second step follows
from softm(Rp) = softm(B) (see Eq. (13)), the third step follows from triangle inequality, the
forth step follows from Eq. (T4) and Eq. (16), and the last step follows from property of function g.

Proof of Part 2.
We can show that

|| softmva(B) — softmva(X)||eo
= || softma(B) BW,, — softma (X)X W, ||
< || softmg (B) BW,, — softma(B) X W, ||o + || softmz(B) X W,, — softmaz(X) X W, ||oo
< | softmy(B)|loc - [I(B = X)Wy [l + || softma(B) — softms (X)|loc - [[ X Wy [l
< He+g(2He) + H - g(¢)
< 29(2He)

where the second step follows from triangle inequality, the third step follows from Fact [3.3] and
the forth step follow from Eq. , where the last step follows from ¢ < g(¢) and 2Hg(e) <
g(2He). O

C.2  CONDITIONS IN LEMMA[C.TIARE SATISFIED
Here we will show that the three conditions in Lemma [C.1] will be satisfied for each layer £.

* || Res(A;)||oo < K-||Res(X)||oo < € (where K := (¢ —1)||W, || oo, definition of K recall
Lemma[5.1)). Here § = 1 due to Lemma[B.4

* (B = X)Wolloo < H - g(e)
X W lo <1
Lemma C.2. [fthe following conditions hold
e :=2n¢o(1 + Hn)t. (see Deﬁnition
e Letn € (0,1].
* Letes € (0,1).
Then, we can show
o Part 1. K - || Res(X¢)||loo < €
« Part 2. ||(B — X)W, ||loo < Hey
o Part3. | XWyl|leo < 1

Proof. Proof of Part 1.
‘We can show that

K - || Res(X¢)loo < 27| Res(X¢)lloo

< 20|| X¢[|so
< 2n¢o - (1 + Hn)"
= 6(

where the first step follows from 6 = 1 and ||W,||oc < 7, the third step follows from Lemma [D.8]
and the last step follows from definition €,

Proof of Part 2.
[(B = Xe)Wylloo <0+ [|B = X¢lloo

H
=n- Y [[softmv;(Xo)||
i=1
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H
<ne Y | softmi(Xe) X Wil oo
=1
H
<n- Z [| softm; (X¢) oo - | Xelloo = [[Wa,illoo
=1

<n*H - || Xe]lo
<0.5nH - ¢
< Heg

where the first step follows from ||W,||s07, the second step follows from definition of B, the third
step follows from definition of softmv, the forth step follows from Fact the fifth step follows
from || softm()||cc < 1 and |W, ;||co7, and the last step follows from 7 < 1.

Proof of Part 3.

‘We can show
[ XeWalloo < nll Xelloo

< ngo(1+ Hn)"
<e
<1

where the second step follows from Lemma [D.8] the third step follows from choice of €, last step
follows from Lemma statement condition.

O

D MULTIPLE LAYERS

In Section we provide the proof of our main theorem. In Section we provide the Lipshitz
property of several key functions being used in our proofs. In Section we prove the Lipschitz
property for each layer of our Self Attention Network. Finally, in Section [D.4] prove the norm of
each layer in the Self Attention Network is not increasing much.

D.1 PROOF OF THEOREM D11

Theorem D.1 (Formal version of Theorem[I.2). Suppose S is a SAtt with residuals, with the prop-
erty that for every attention head in every one of its layers, the weight matrices Wq, Wy, W,, € Rdxd
all have the bound ||Wy || o, [|Wklloos |[Wolleo < 1. Let H denote the number of heads. Let L denote
the number of layers. Assume n < A-min{l/(HL),1/¢o} < 1 for some parameter A < O(1).
Then, there exists a SAtt with residuals S’ with just one layer so that, for any bounded X € R™*?
with || X ||eo < ¢o, we have ||S(X) — S'(X)|leo < O(A/L).
Proof. We define
Xfo :Bfo
Then, we define
Lo X§E1 +Zi}1:1 Az(lu’ ifl < Lo
B@ - H Lo ’ .
Y it A#Li otherwise.
Let softmv() function be defined as Defintion[A.1} We define
Ay 5 = softmv?, (X;2y)

Note that the notation Bg means we have residual in every layer, whereas the notation Bé‘) means
we don’t have a residual connection from layer ¢ to layer L.
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Let ¢, be defined as Definition[A.2} Let § := maxe (1) 2g(2He;). Using Lemma|C.1] we can show
forall £ € [L],

I softhg(Bffl) - SOfthé(Bf)Hoo <9

Let C := maxye(y 377(65 +1).
Then we can show

|| softmvy (BY) — softmvy(B2)||oo
< || softmva (BY) — softmva(B3)||eo + || softmva(By) — softmva(B3)||eo
< C - || softmvy (BY) — softmvy (B])]| s + || softmva(B3) — softmva(B3)]| s
<(C+1)6
where the first step follows from triangle inequality, the second step follows from the fact that one

layer of the network is C-Lipschitz (see Lemma [D.6)), and the last step follows from merging the
errors.

For three layers, we have

|| softmvs(BY) — softmvs(

< || softmvs(BY) — softmvs(

B3) |l
Bs)
+ || softmvs(B3) — softmvs(B32)| s
+ || softmvs(B2) — softmvs(B3)]| 0
< C? - | softmvy (BY) — softmvy (B1)]|s
+ C - || softmvy(B2) — softmva(B2) ||
+ || softmvs(B3) — softmvs(B3) ||«
<C*+C6+0

=(C? +C +1)§

3
3
1
3)lloo
(

where the first step follows from triangle inequality, the second step follows from one layer of
network is C-Lipshitz (see Lemma [D.6)), and the forth step follows from Lemma and the last
step follows from merging the errors.

Therefore for L layers we have
|| softmvy, (BY) — softmvy, (BE)||eo < (CF + -+ C +1)8
Thus we complete the proof.

Now, we are ready to analyze the final bound, Recall that above we have ¢, = 2¢on(1 + Hn)*
(0,1), 6 = max,2g(2He;), and C = maxy 3n(e; + 1).

Recall that n < A - mln{l/ HL) 1/¢H} < 1 for some parameter A < O(1). Then we can
show ¢, = 2¢on(1 + Hn)t = 2(;5 netin < 2¢gne? < 1. Next, we can show that compute
C<3n(E11)<37-2<05 Thus CL .-+ C+1<2.

Note that 2He, € (0,0.5) § = 2(e2H< — 1) < 8He, < AH - min{1/HL,1/¢o}
The final is 26 < 2AH - min{1/HL,1/¢o} < 2A/L.
O

Remark D.2. We remark that our proof can be straightforwardly generalized to the situation where
the Self Attention Network also has MLP layers, similar to Section 3.2 in (Dong et al.| |2021), by
defining Xfo =f (Bg“) where f is the MLP layer. Note that the Lipshitz property of f will appear
correspondingly in the final bound.

Remark D.3. Note that in our Theorem|D 1| we assume that n < O(min{1/(HL),1/¢o}). Mean-
while, the prior work (Dong et al., 2021, Corollary 2.3) similarly requires 3 < O(v/d/(Hy)).
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Recall that (3 is in terms of the {1 norm, and so may be up to a factor of d* larger than our 1; their
factor of \/d only modestly helps with this.

(Their result statement is in terms of || Res(X)|| s rather than || X ||, but we could state ours in
terms of Res(X) instead; we simply bound || Res(X)||so < || X || in the proof of our Lemma|C.2})

D.2 LIPSCHITZ PROPERTY

We state a simple application of Lemma[B.2}
Corollary D.4. Let a,b € R™. Then, we can show that

|| softm(a + b) — softm(a)]oe < 2(ell’l= —1)

Proof. The proof is same as Lemma [B.2] O
Lemma D.5. Let a,b € R™. If ||b||oo < 1, then we have

|| softm(a + b) — softm(b)|co < 4[|8]|00

Proof. Note that for 2 € (0, 1], we know e* — 1 < 2z.

Thus, we know

|| softm(a 4 b) — softm (D) |so < 2(elltll= —1)
< 4blloo

where the first step follows from Corollary [D.4] the second step follows from e* — 1 < 2. O
Lemma D.6. If the following conditions hold

o Let Wy, Wi, W, denote weight matrices.

o Let W =W, W,].

o Let Y satisfy that ||Y — X||oo < 2| X |00

Ky = 12]| X | oo[[W | oo
Ky = KIHXHOOHWUHOO + ||Wv||oo

Then, we can show

e Part 1.
I softm(X) — softm(Y)||oc < K1 - ||X — Y|loo

* Part 2.
I softmv(X) — softmv(Y)||co < K2« [| X — Y ||oo

Proof. Proof of Part 1. We can show
|| softm(X) — softm(Y)||oo
<A XWXT — YWY oo
SAIXWXT = XWY oo +4|XWY T = YWY 7|
SAIXW oo - [ X = Voo +4WY oo - |1 X = Y loo
<4 (WXl + WY o) - [ X = Yoo
< L2[[Wlloo[ X oo [ X = Yoo

where the first step follows from Lemma [D.3] the second step follows triangle inequality, the third
step follows from Fact[3.3] the last step follows from Fact[3.3]
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Proof of Part 2. We can show

|l softmv(X) — softm(Y)|| o
= || softm(X)XW, — softm(Y)Y W, || oo
< || softm(X) X W, — softm(Y )XW, || + || softm(Y)XW, — softm(Y )Y W, ||
< [Isoftm(X) — softm(Y)|oo - [ X Wy [[oo + (X = Y)Woloo
S KXW [[oof| X = Yoo + [Woloo [ X = Yoo

where the first step follows from definition, the second step follows from triangle inequality, the
third step follows from Fact[3.3] and the last step follows from Part 1 and Fact[3.3] O

D.3 INSTANTIATING AN INSTANCE FOR EACH LAYER LIPSCHITIZ PROPERTY
Lemma D.7. If the following conditions hold
e Let Xy denote (-th layer output
Let [[Wolloos [Whlloos [Wolloo < m
e Let Y satisfy that ||Y — Xo|loo < 2| X000
* ep:=2n¢o(1 + Hn)".

Then, we can show

o || softmv(Xy) — softmv(Y) || < 3n(es + 1)

Proof. We can show
|| softmv(Xy) — softmv(Y)|loo < Ko || X — Y|
We just need to upper bound K
Ky = K[| Xefloo[[Wolloo + [IWolloo

<1201 X012 W oo [Wolloo + W llso
< 12)| Xe||2n* + 1

<12(do - (1+ Hn)*n® +n

=3n(e2 4+ 1)
where the first step follows from the definition of K, the forth step follows from Lemma and
the fifth step follows from the definition of e,. O

D.4 EACH LAYER NORM IS NOT INCREASING MUCH
Lemma D.8. If the following conditions hold

* Let X denote the input of first layer of neural network, and satisfy || Xo||co < ¢o
o For ! € [L], we use X, to denote the {-th layer output

o Let [Wylloo <
Then, we can show

» Part 1. Forany ¢, || Xoi1]loo < [| Xelloo - (1 4+ Hn)
e Part 2. Forany {, || X¢||oo < ¢0 - (1 + Hn)*

Proof. Proof of Part 1.
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For any ¢, we have

H
1 Xer1lloe = 11X+ softmvi(Xe)l|oo
=1
< [ Xelloo + H - || softmv; (X) ||
= HXgHOO + H - || SOftmi(Xg)Xsz,A 00
< [ Xelloo + H - || softm; (Xe)[oo - | Xelloo - [Wo,illoo
<[ Xelloo (1 + Hn)

where the first step follows from definition of X, the second step follows from triangle inequality,
the third step follows from definition of softmv, the forth step follows from Fact and the last
step follows from || softm()||ec < 1 and [[Wy;llcc < 1. (Here W, ; € R™*< denotes the weight
matrix, W, for the ¢-th head.)

Proof of Part 2.

‘We can show

||X€||oo < HXZ—lHoo(l + H77)

< || Xolloo (1 + Hn)*
<o (1+ Hn)"

where the first step follows from Part 1, the third step follows from recursively applying Part 1, and
the last step follows from || Xo||oo < ¢o.

Therefore, we complete the proof. O

E BROADER IMPACT

Our results offer new theoretical insights into the expressiveness of attention mechanisms in trans-
formers. These findings may guide the future design of large language models toward more expres-
sive architectures. We do not foresee any potential negative societal impacts from this work.

F LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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