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ABSTRACT

Out-of-distribution (OOD) detection has received much attention lately due to its
importance in the safe deployment of neural networks. One of the key challenges
is that models lack supervision signals from unknown data, and as a result, can
produce overconfident predictions on OOD data. Previous approaches rely on real
outlier datasets for model regularization, which can be costly and sometimes in-
feasible to obtain in practice. In this paper, we present VOS, a novel framework for
OOD detection by adaptively synthesizing virtual outliers that can meaningfully
regularize the model’s decision boundary during training. Specifically, VOS sam-
ples virtual outliers from the low-likelihood region of the class-conditional distri-
bution estimated in the feature space. Alongside, we introduce a novel unknown-
aware training objective, which contrastively shapes the uncertainty space be-
tween the ID data and synthesized outlier data. VOS achieves competitive per-
formance on both object detection and image classification models, reducing the
FPR95 by up to 9.36% compared to the previous best method on object detectors.
Code is available at https://github.com/deeplearning-wisc/vos.

1 INTRODUCTION

Modern deep neural networks have achieved unprecedented success in known contexts for which
they are trained, yet they often struggle to handle the unknowns. In particular, neural networks have
been shown to produce high posterior probability for out-of-distribution (OOD) test inputs (Nguyen
et al., 2015), which arise from unknown categories and should not be predicted by the model. Taking
self-driving car as an example, an object detection model trained to recognize in-distribution objects
(e.g., cars, stop signs) can produce a high-confidence prediction for an unseen object of a moose;
see Figure 1(a). Such a failure case raises concerns in model reliability, and worse, may lead to
catastrophe when deployed in safety-critical applications.

The vulnerability to OOD inputs arises due to the lack explicit knowledge of unknowns during
training time. In particular, neural networks are typically optimized only on the in-distribution (ID)
data. The resulting decision boundary, despite being useful on ID tasks such as classification, can be
ill-fated for OOD detection. We illustrate this in Figure 1. The ID data (gray) consists of three class-
conditional Gaussians, on which a three-way softmax classifier is trained. The resulting classifier
is overconfident for regions far away from the ID data (see the red shade in Figure 1(b)), causing
trouble for OOD detection. Ideally, a model should learn a more compact decision boundary that
produces low uncertainty for the ID data, with high OOD uncertainty elsewhere (e.g., Figure 1(c)).
However, achieving this goal is non-trivial due to the lack of supervision signal of unknowns. This
motivates the question: Can we synthesize virtual outliers for effective model regularization?

In this paper, we propose a novel unknown-aware learning framework dubbed VOS (Virtual Outlier
Synthesis), which optimizes the dual objectives of both ID task and OOD detection performance.
In a nutshell, VOS consists of three components tackling challenges of outlier synthesis and ef-
fective model regularization with synthesized outliers. To synthesize the outliers, we estimate the
class-conditional distribution in the feature space, and sample outliers from the low-likelihood re-
gion of ID classes (Section 3.1). Key to our method, we show that sampling in the feature space
is more tractable than synthesizing images in the high-dimensional pixel space (Lee et al., 2018a).

1

https://github.com/deeplearning-wisc/vos


Published as a conference paper at ICLR 2022

(a) Overconfident predictions 
on OOD data 

(b) Uncertainty measure on model trained
without outliers (not ideal) 

(c) Uncertainty measure on model trained 
with virtual outliers (ours) 

Figure 1: (a) A Faster-RCNN (Ren et al., 2015) model trained on BDD-100k dataset (Yu et al., 2020) produces
overconfident predictions for OOD object (e.g., moose). (b)-(c) The uncertainty measurement with and without
virtual outlier training. The in-distribution data x ∈ X = R2 is sampled from a Gaussian mixture model).
Regularizing the model with virtual outliers (c) better captures the OOD uncertainty than without (b).

Alongside, we propose a novel unknown-aware training objective, which contrastively shapes the
uncertainty surface between the ID data and synthesized outliers (Section 3.2). During training, VOS
simultaneously performs the ID task (e.g., classification or object detection) as well as the OOD un-
certainty regularization. During inference time, the uncertainty estimation branch produces a larger
probabilistic score for ID data and vice versa, which enables effective OOD detection (Section 3.3).

VOS offers several compelling advantages compared to existing solutions. (1) VOS is a general
learning framework that is effective for both object detection and image classification tasks, whereas
previous methods were primarily driven by image classification. Image-level detection can be lim-
iting as an image could be OOD in certain regions while being in-distribution elsewhere. Our work
bridges a critical research gap since OOD detection for object detection is timely yet underexplored
in literature. (2) VOS enables adaptive outlier synthesis, which can be flexibly and conveniently
used for any ID data without manual data collection or cleaning. In contrast, previous methods us-
ing outlier exposure (Hendrycks et al., 2019) require an auxiliary image dataset that is sufficiently
diverse, which can be arguably prohibitive to obtain. Moreover, one needs to perform careful data
cleaning to ensure the auxiliary outlier dataset does not overlap with ID data. (3) VOS synthesizes
outliers that can estimate a compact decision boundary between ID and OOD data. In contrast, ex-
isting solutions use outliers that are either too trivial to regularize the OOD estimator, or too hard to
be separated from ID data, resulting in sub-optimal performance. Our key contributions and results
are summarized as follows:

• We propose a new framework VOS addressing a pressing issue—unknown-aware deep
learning that optimizes for both ID and OOD performance. VOS establishes state-of-the-art
results on a challenging object detection task. Compared to the best method, VOS reduces
the FPR95 by up to 9.36% while preserving the accuracy on the ID task.

• We conduct extensive ablations and reveal important insights by contrasting different out-
lier synthesis approaches. We show that VOS is more advantageous than generating outliers
directly in the high-dimensional pixel space (e.g., using GAN (Lee et al., 2018a)) or using
noise as outliers.

• We comprehensively evaluate our method on common OOD detection benchmarks, along
with a more challenging yet underexplored task in the context of object detection. Our
effort facilitates future research to evaluate OOD detection in a real-world setting.

2 PROBLEM SETUP

We start by formulating the problem of OOD detection in the setting of object detection. Our frame-
work can be easily generalized to image classification when the bounding box is the entire image
(see Section 4.2). Most previous formulations of OOD detection treat entire images as anomalies,
which can lead to ambiguity shown in Figure 1. In particular, natural images are composed of nu-
merous objects and components. Knowing which regions of an image are anomalous could allow
for safer handling of unfamiliar objects. This setting is more realistic in practice, yet also more
challenging as it requires reasoning OOD uncertainty at the fine-grained object level.
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Figure 2: The framework of VOS. We model the feature representation of ID objects as class-conditional
Gaussians, and sample virtual outliers v from the low-likelihood region. The virtual outliers, along with the
ID objects, are used to produce the uncertainty loss for regularization. The uncertainty estimation branch
(Luncertainty) is jointly trained with the object detection loss (Lloc,Lcls).

Specifically, we denote the input and label space by X = Rd and Y = {1, 2, ...,K}, respectively.
Let x ∈ X be the input image, b ∈ R4 be the bounding box coordinates associated with object
instances in the image, and y ∈ Y be the semantic label for K-way classification. An object detec-
tion model is trained on in-distribution data D = {(xi,bi, yi)}Ni=1 drawn from an unknown joint
distribution P . We use neural networks with parameters θ to model the bounding box regression
pθ(b|x) and the classification pθ(y|x,b).
The OOD detection can be formulated as a binary classification problem, which distinguishes be-
tween the in- vs. out-of-distribution objects. Let PX denote the marginal probability distribution on
X . Given a test input x∗ ∼ PX , as well as an object instance b∗ predicted by the object detector,
the goal is to predict pθ(g|x∗,b∗). We use g = 1 to indicate a detected object being in-distribution,
and g = 0 being out-of-distribution, with semantics outside the support of Y .

3 METHOD

Our novel unknown-aware learning framework is illustrated in Figure 2. Our framework encom-
passes three novel components and addresses the following questions: (1) how to synthesize the
virtual outliers (Section 3.1), (2) how to leverage the synthesized outliers for effective model regu-
larization (Section 3.2), and (3) how to perform OOD detection during inference time (Section 3.3)?

3.1 VOS: VIRTUAL OUTLIER SYNTHESIS

Our framework VOS generates virtual outliers for model regularization, without relying on external
data. While a straightforward idea is to train generative models such as GANs (Goodfellow et al.,
2014; Lee et al., 2018a), synthesizing images in the high-dimensional pixel space can be difficult to
optimize. Instead, our key idea is to synthesize virtual outliers in the feature space, which is more
tractable given lower dimensionality. Moreover, our method is based on a discriminatively trained
classifier in the object detector, which circumvents the difficult optimization process in training
generative models.

Specifically, we assume the feature representation of object instances forms a class-conditional mul-
tivariate Gaussian distribution (see Figure 3):

pθ(h(x,b)|y = k) = N (µk,Σ),

where µk is the Gaussian mean of class k ∈ {1, 2, ..,K}, Σ is the tied covariance matrix, and
h(x,b) ∈ Rm is the latent representation of an object instance (x,b). To extract the latent repre-
sentation, we use the penultimate layer of the neural network. The dimensionality m is significantly
smaller than the input dimension d.
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Figure 3: UMAP vi-
sualization of feature em-
beddings of PASCAL-VOC
(on a subset of 10 classes).

To estimate the parameters of the class-conditional Gaussian, we com-
pute empirical class mean µ̂k and covariance Σ̂ of training samples
{(xi,bi, yi)}Ni=1:

µ̂k =
1

Nk

∑
i:yi=k

h(xi,bi) (1)

Σ̂ =
1

N

∑
k

∑
i:yi=k

(h(xi,bi)− µ̂k) (h(xi,bi)− µ̂k)
>
, (2)

where Nk is the number of objects in class k, and N is the total number
of objects. We use online estimation for efficient training, where we
maintain a class-conditional queue with |Qk| object instances from each
class. In each iteration, we enqueue the embeddings of objects to their
corresponding class-conditional queues, and dequeue the same number
of object embeddings.

Sampling from the feature representation space. We propose sampling the virtual outliers from
the feature representation space, using the multivariate distributions estimated above. Ideally, these
virtual outliers should help estimate a more compact decision boundary between ID and OOD data.
To achieve this, we propose sampling the virtual outliers Vk from the ε-likelihood region of the
estimated class-conditional distribution:

Vk = {vk|
1

(2π)m/2|Σ̂|1/2
exp

(
−1

2
(vk − µ̂k)

>Σ̂−1(vk − µ̂k)

)
< ε}, (3)

where vk ∼ N (µ̂k, Σ̂) denotes the sampled virtual outliers for class k, which are in the sublevel set
based on the likelihood. ε is sufficiently small so that the sampled outliers are near class boundary.

Classification outputs for virtual outliers. For a given sampled virtual outlier v ∈ Rm, the output
of the classification branch can be derived through a linear transformation:

f(v; θ) =W>clsv, (4)

where Wcls ∈ Rm×K is the weight of the last fully connected layer. We proceed with describing
how to regularize the output of virtual outliers for improved OOD detection.

3.2 UNKNOWN-AWARE TRAINING OBJECTIVE

We now introduce a new training objective for unknown-aware learning, leveraging the virtual out-
liers in Section 3.1. The key idea is to perform visual recognition task while regularizing the model
to produce a low OOD score for ID data, and a high OOD score for the synthesized outlier.

Uncertainty regularization for classification. For simplicity, we first describe the regularization
in the multi-class classification setting. The regularization loss should ideally optimize for the sepa-
rability between the ID vs. OOD data under some function that captures the data density. However,
directly estimating log p(x) can be computationally intractable as it requires sampling from the en-
tire space X . We note that the log partition function E(x; θ) := − log

∑K
k=1 e

fk(x;θ) is proportional
to log p(x) with some unknown factor, which can be seen from the following:

p(y|x) = p(x, y)

p(x)
=

efy(x;θ)∑K
k=1 e

fk(x;θ)
,

where fy(x; θ) denotes the y-th element of logit output corresponding to the label y. The nega-
tive log partition function is also known as the free energy, which was shown to be an effective
uncertainty measurement for OOD detection (Liu et al., 2020a).

Our idea is to explicitly perform a level-set estimation based on the energy function (threshold at 0),
where the ID data has negative energy values and the synthesized outlier has positive energy:

Luncertainty = Ev∼V 1{E(v; θ) > 0}+ Ex∼D 1{E(x; θ) ≤ 0}
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This is a simpler objective than estimating density. Since the 0/1 loss is intractable, we replace it
with the binary sigmoid loss, a smooth approximation of the 0/1 loss, yielding the following:

Luncertainty = Ev∼V

[
− log

1

1 + exp−φ(E(v;θ))

]
+ Ex∼D

[
− log

exp−φ(E(x;θ))

1 + exp−φ(E(x;θ))

]
. (5)

Here φ(·) is a nonlinear MLP function, which allows learning flexible energy surface. The learning
process shapes the uncertainty surface, which predicts high probability for ID data and low probabil-
ity for virtual outliers v. Liu et al. (2020a) employed energy for model uncertainty regularization,
however, the loss function is based on the squared hinge loss and requires tuning two margin hyper-
parameters. In contrast, our uncertainty regularization loss is completely hyperparameter-free and
is much easier to use in practice. Moreover, VOS produces probabilistic score for OOD detection,
whereas Liu et al. (2020a) relies on non-probabilistic energy score.
Object-level energy score. In case of object detection, we can replace the image-level energy with
object-level energy score. For ID object (x,b), the energy is defined as:

E(x,b; θ) = − log

K∑
k=1

wk · expfk((x,b);θ), (6)

where fk((x,b); θ) = W>clsh(x,b) is the logit output for class k in the classification branch. The
energy score for the virtual outlier can be defined in a similar way as above. In particular, we will
show in Section 4 that a learnable w is more flexible than a constant w, given the inherent class
imbalance in object detection datasets. Additional analysis on wk is in Appendix G.
Overall training objective. In the case of object detection, the overall training objective combines
the standard object detection loss, along with a regularization loss in terms of uncertainty:

min
θ

E(x,b,y)∼D [Lcls + Lloc] + β · Luncertainty, (7)

where β is the weight of the uncertainty regularization. Lcls and Lloc are losses for classification and
bounding box regression, respectively. This can be simplified to classification task without Lloc. We
provide ablation studies in Section 4.1 demonstrating the superiority of our loss function.

3.3 INFERENCE-TIME OOD DETECTION

During inference, we use the output of the logistic regression uncertainty branch for OOD detection.
In particular, given a test input x∗, the object detector produces a bounding box prediction b∗. The
OOD uncertainty score for the predicted object (x∗,b∗) is given by:

pθ(g | x∗,b∗) =
exp−φ(E(x∗,b∗))

1 + exp−φ(E(x∗,b∗))
. (8)

For OOD detection, one can exercise the thresholding mechanism to distinguish between ID and
OOD objects:

G(x∗,b∗) =

{
1 if pθ(g | x∗,b∗) ≥ γ,
0 if pθ(g | x∗,b∗) < γ.

(9)

The threshold γ is typically chosen so that a high fraction of ID data (e.g., 95%) is correctly classi-
fied. Our framework VOS is summarized in Algorithm 1.

Algorithm 1 VOS: Virtual Outlier Synthesis for OOD detection

Input: ID data D = {(xi,bi, yi)}Ni=1, randomly initialized detector with parameter θ, queue size
|Qk| for Gaussian density estimation, weight for uncertainty regularization β, and ε.
Output: Object detector with parameter θ∗, and OOD detector G.
while train do

Update the ID queue Qk with the training objects {(x,b, y)}.
Estimate the multivariate distributions based on ID training objects using Equation 1 and 2.
Sample virtual outliers v using Equation 3.
Calculate the regularization loss using Equation 5, update the parameters θ based on Equation 7.

end
while eval do

Calculate the OOD uncertainty score using Equation 8.
Perform thresholding comparison using Equation 9.

end
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In-distribution D Method FPR95 ↓ AUROC ↑ mAP (ID)↑
OOD: MS-COCO / OpenImages

PASCAL-VOC

MSP (Hendrycks & Gimpel, 2017) 70.99 / 73.13 83.45 / 81.91 48.7
ODIN (Liang et al., 2018) 59.82 / 63.14 82.20 / 82.59 48.7
Mahalanobis (Lee et al., 2018b) 96.46 / 96.27 59.25 / 57.42 48.7
Energy score (Liu et al., 2020a) 56.89 / 58.69 83.69 / 82.98 48.7
Gram matrices (Sastry & Oore, 2020) 62.75 / 67.42 79.88 / 77.62 48.7
Generalized ODIN (Hsu et al., 2020) 59.57 / 70.28 83.12 / 79.23 48.1
CSI (Tack et al., 2020) 59.91 / 57.41 81.83 / 82.95 48.1
GAN-synthesis (Lee et al., 2018a) 60.93 / 59.97 83.67 / 82.67 48.5
VOS-ResNet50 (ours) 47.53±2.9 / 51.33±1.6 88.70±1.2 / 85.23± 0.6 48.9±0.2
VOS-RegX4.0 (ours) 47.77±1.1 / 48.33±1.6 89.00±0.4 / 87.59±0.2 51.6±0.1

Berkeley
DeepDrive-100k

MSP (Hendrycks & Gimpel, 2017) 80.94 / 79.04 75.87 / 77.38 31.2
ODIN (Liang et al., 2018) 62.85 / 58.92 74.44 / 76.61 31.2
Mahalanobis (Lee et al., 2018b) 57.66 / 60.16 84.92 / 86.88 31.2
Energy score (Liu et al., 2020a) 60.06 / 54.97 77.48 / 79.60 31.2
Gram matrices (Sastry & Oore, 2020) 60.93 / 77.55 74.93 / 59.38 31.2
Generalized ODIN (Hsu et al., 2020) 57.27 / 50.17 85.22 / 87.18 31.8
CSI (Tack et al., 2020) 47.10 / 37.06 84.09 / 87.99 30.6
GAN-synthesis (Lee et al., 2018a) 57.03 / 50.61 78.82 / 81.25 31.4
VOS-ResNet50 (ours) 44.27±2.0 / 35.54±1.7 86.87±2.1 / 88.52±1.3 31.3±0.0
VOS-RegX4.0 (ours) 36.61±0.9 / 27.24±1.3 89.08±0.6 / 92.13±0.5 32.5±0.1

Table 1: Main results. Comparison with competitive out-of-distribution detection methods. All baseline
methods are based on a model trained on ID data only using ResNet-50 as the backbone, without using any
real outlier data. ↑ indicates larger values are better and ↓ indicates smaller values are better. All values
are percentages. Bold numbers are superior results. We report standard deviations estimated across 3 runs.
RegX4.0 denotes the backbone of RegNetX-4.0GF (Radosavovic et al., 2020) for the object detector.

4 EXPERIMENTAL RESULTS

In this section, we present empirical evidence to validate the effectiveness of VOS on several real-
world tasks, including both object detection (Section 4.1) and image classification (Section 4.2).

4.1 EVALUATION ON OBJECT DETECTION

Experimental details. We use PASCAL VOC1 (Everingham et al., 2010) and Berkeley DeepDrive
(BDD-100k2) (Yu et al., 2020) datasets as the ID training data. For both tasks, we evaluate on two
OOD datasets that contain subset of images from: MS-COCO (Lin et al., 2014) and OpenImages
(validation set) (Kuznetsova et al., 2020). We manually examine the OOD images to ensure they do
not contain ID category. We have open-sourced our benchmark data that allows the community to
easily evaluate future methods on object-level OOD detection.

We use the Detectron2 library (Girshick et al., 2018) and train on two backbone architectures:
ResNet-50 (He et al., 2016) and RegNetX-4.0GF (Radosavovic et al., 2020). We employ a two-
layer MLP with a ReLU nonlinearity for φ in Equation 5, with hidden layer dimension of 512. For
each in-distribution class, we use 1,000 samples to estimate the class-conditional Gaussians. Since
the threshold ε can be infinitesimally small, we instead choose ε based on the t-th smallest likelihood
in a pool of 10,000 samples (per-class), generated from the class-conditional Gaussian distribution.
A larger t corresponds to a larger threshold ε. As shown in Table 6, a smaller t yields good per-
formance. We set t = 1 for all our experiments. Extensive details on the datasets are described in
Appendix A, along with a comprehensive sensitivity analysis of each hyperparameter (including the
queue size |Qk|, coefficient β, and threshold ε) in Appendix C.

Metrics. For evaluating the OOD detection performance, we report: (1) the false positive rate
(FPR95) of OOD samples when the true positive rate of ID samples is at 95%; (2) the area under the
receiver operating characteristic curve (AUROC). For evaluating the object detection performance
on the ID task, we report the common metric of mAP.

VOS outperforms existing approaches. In Table 1, we compare VOS with competitive OOD de-
tection methods in literature. For a fair comparison, all the methods only use ID data without using
auxiliary outlier dataset. Our proposed method, VOS, outperforms competitive baselines, including
Maximum Softmax Probability (Hendrycks & Gimpel, 2017), ODIN (Liang et al., 2018), energy

1PASCAL-VOC consists of the following ID labels: Person, Car, Bicycle, Boat, Bus, Motorbike, Train,
Airplane, Chair, Bottle, Dining Table, Potted Plant, TV, Sofa, Bird, Cat, Cow, Dog, Horse, Sheep.

2BDD-100k consists of ID labels: Pedestrian, Rider, Car, Truck, Bus, Train, Motorcycle, Bicycle, Traffic
light, Traffic sign.

6



Published as a conference paper at ICLR 2022

Method AUROC ↑ mAP ↑

Image synthesis
�GAN (Lee et al., 2018a) 83.67 48.5
�Mixup (Zhang et al., 2018) (mixing ratio 0.4) 61.23 44.3
�Mixup (Zhang et al., 2018) (mixing ratio 1) 63.99 46.9

Noise as outliers
\Additive Gaussian noise to ID features 68.02 48.7
\Trainable noise added to the ID features 66.67 48.6
\Gaussian noise 85.98 48.5

Negative
proposals

♣All negative proposals 63.45 48.1
♣Random negative proposals 66.03 48.5
♣Proposals with large background prob (Joseph et al., 2021) 77.26 48.5

VOS (ours) 88.70 48.9

Table 2: Ablation on outlier synthesis approaches (on backbone of ResNet-50, COCO is the OOD data).

score (Liu et al., 2020a), Mahalanobis distance (Lee et al., 2018b), Generalized ODIN (Hsu et al.,
2020), CSI (Tack et al., 2020) and Gram matrices (Sastry & Oore, 2020). These approaches rely on
a classification model trained primarily for the ID classification task, and can be naturally extended
to the object detection model due to the existence of a classification head. The comparison precisely
highlights the benefits of incorporating synthesized outliers for model regularization.

Closest to our work is the GAN-based approach for synthesizing outliers (Lee et al., 2018a). Com-
pare to GAN-synthesis, VOS improves the OOD detection performance (FPR95) by 12.76% on
BDD-100k and 13.40% on Pascal VOC (COCO as OOD). Moreover, we show in Table 1 that VOS
achieves stronger OOD detection performance while preserving a high accuracy on the original in-
distribution task (measured by mAP). This is in contrast with CSI, which displays degradation, with
mAP decreased by 0.7% on BDD-100k. Details of reproducing baselines are in Appendix E.

Ablation on outlier synthesis approaches. We compare VOSwith different synthesis approaches in
Table 2. Specifically, we consider three types of synthesis approach: (i�) synthesizing outliers in the
pixel space, (ii\) using noise as outliers, and (iii♣) using negative proposals from RPN as outliers.
For type I, we consider GAN-based (Lee et al., 2018a) and mixup (Zhang et al., 2018) methods.
The outputs of the classification branch for outliers are forced to be closer to a uniform distribution.
For mixup, we consider two different beta distributions Beta(0.4) and Beta(1), and interpolate ID
objects in the pixel space. For Type II, we use noise perturbation to create virtual outliers. We
consider adding fixed Gaussian noise to the ID features, adding trainable noise to the ID features
where the noise is trained to push the outliers away from ID features, and using fixed Gaussian noise
as outliers. Lastly, for type III, we directly use the negative proposals in the ROI head as the outliers
for Equation 5, similar to Joseph et al. (2021). We consider three variants: randomly sampling n
negative proposals (n is the number of positive proposals), sampling n negative proposals with a
larger probability, and using all the negative proposals. All methods are trained under the same
setup, with PASCAL-VOC as in-distribution data and ResNet-50 as the backbone. The loss function
is the same as Equation 7 for all variants, with the only difference being the synthesis method.

The results are summarized in Table 2, where VOS outperforms alternative synthesis approaches
both in the feature space (♣, \) or the pixel space (�). Generating outliers in the pixel space (�) is
either unstable (GAN) or harmful for the object detection performance (mixup). Introducing noise
(\), especially using Gaussian noise as outliers is promising. However, Gaussian noise outliers are
relatively simple, and may not effectively regularize the decision boundary between ID and OOD as
VOS does. Exploiting the negative proposals (♣) is not effective, because they are distributionally
close to the ID data.

Ablation on the uncertainty loss. We perform ablation on several variants of VOS, trained with
different uncertainty loss Luncertainty. Particularly, we consider: (1) using the squared hinge loss for
regularization as in Liu et al., (2) using constant weight w = [1, 1, ..., 1]> for energy score in Equa-
tion 6, and (3) classifying the virtual outliers as an additionalK+1 class in the classification branch.
The performance comparison is summarized in Table 3. Compared to the hinge loss, our proposed
logistic loss reduces the FPR95 by 10.02% on BDD-100k. While the squared hinge loss in Liu
et al. requires tuning the hyperparameters, our uncertainty loss is completely hyperparameter free.
In addition, we find that a learnable w for energy score is more desirable than a constant w, given
the inherent class imbalance in object detection datasets. Finally, classifying the virtual outliers as
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D Method FPR95 AUROC object detection mAP (ID)
↓ ↑ ↑

PASCAL-VOC

VOS w/ hinge loss 49.75 87.90 46.5
VOS w/ constant w 51.59 88.64 48.9
VOS w/ K + 1 class 65.25 85.26 47.0
VOS (ours) 47.53 88.70 48.9

Berkeley
DeepDrive-100k

VOS w/ hinge loss 54.29 83.47 29.5
VOS w/ constant w 49.25 85.35 30.9
VOS w/ K + 1 class 52.98 85.91 30.1
VOS (ours) 44.27 86.87 31.3

Table 3: Ablation study. Comparison with different regularization loss functions (on backbone of ResNet-50,
COCO is the OOD data).

an additional class increases the difficulty of object classification, which does not outperform either.
This ablation demonstrates the superiority of the uncertainty loss employed by VOS.

VOS is effective on alternative architecture. Lastly, we demonstrate that VOS is effective on
alternative neural network architectures. In particular, using RegNet (Radosavovic et al., 2020) as
backbone yields both better ID accuracy and OOD detection performance. We also explore using
intermediate layers for outlier synthesis, where we show using VOS on the penultimate layer is the
most effective. This is expected since the feature representations are the most discriminative at
deeper layers. We provide details in Appendix F.

Comparison with training on real outlier data. We also compare with Outlier Expo-
sure (Hendrycks et al., 2019) (OE). OE serves as a strong baseline since it relies on the real outlier
data. We train the object detector on PASCAL-VOC using the same architecture ResNet-50, and use
the OE objective for the classification branch. The real outliers for OE training are sampled from
the OpenImages dataset (Kuznetsova et al., 2020). We perform careful deduplication to ensure there
is no overlap between the outlier training data and PASCAL-VOC. Our method achieves OOD de-
tection performance on COCO (AUROC: 88.70%) that favorably matches OE (AUROC: 90.18%),
and does not require external data.

4.2 EVALUATION ON IMAGE CLASSIFICATION
Method FPR95 ↓ AUROC ↑

WideResNet / DenseNet
MSP 51.05 / 48.73 90.90 / 92.46
ODIN 35.71 / 24.57 91.09 / 93.71

Mahalanobis 37.08 / 36.26 93.27 / 87.12
Energy 33.01 / 27.44 91.88 / 94.51

Gram Matrices 27.33 / 23.13 93.00 / 89.83
Generalized ODIN 39.94 / 26.97 92.44 / 93.76

CSI 35.66 / 47.83 92.45 / 85.31
GAN-synthesis 37.30 / 83.71 89.60 / 54.14

VOS (ours) 24.87 / 22.47 94.06 / 95.33

Table 4: OOD detection results of VOS and com-
parison with competitive baselines on two archi-
tectures: WideResNet-40 and DenseNet-101.

Going beyond object detection, we show that VOS is
also suitable and effective on common image classi-
fication benchmark. We use CIFAR-10 (Krizhevsky
& Hinton, 2009) as the ID training data, with stan-
dard train/val splits. We train on WideResNet-
40 (Zagoruyko & Komodakis, 2016) and DenseNet-
101 (Huang et al., 2017), where we substitute the
object detection loss in Equation 7 with the cross-
entropy loss. We evaluate on six OOD datasets:
Textures (Cimpoi et al., 2014), SVHN (Netzer
et al., 2011), Places365 (Zhou et al., 2018),
LSUN-C (Yu et al., 2015), LSUN-Resize (Yu
et al., 2015), and iSUN (Xu et al., 2015). The com-
parisons are shown in Table 4, with results averaged over six test datasets. VOS demonstrates com-
petitive OOD detection results on both architectures without sacrificing the ID test classification
accuracy (94.84% on pre-trained WideResNet vs. 94.68% using VOS).

4.3 QUALITATIVE ANALYSIS
In Figure 4, we visualize the prediction on several OOD images, using object detection models
trained without virtual outliers (top) and with VOS (bottom), respectively. The in-distribution data
is BDD-100k. VOS performs better in identifying OOD objects (in green) than a vanilla object
detector, and reduces false positives among detected objects. Moreover, the confidence score of the
false-positive objects of VOS is lower than that of the vanilla model (see the truck in the 3rd column).
Additional visualizations are in Appendix D and H.

5 RELATED WORK

OOD detection for classification can be broadly categorized into post hoc and regularization-based
approaches. In Bendale & Boult (2016), the OpenMax score is developed for OOD detection based
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Figure 4: Visualization of detected objects on the OOD images (from MS-COCO) by a vanilla Faster-RCNN
(top) and VOS (bottom). The in-distribution is BDD-100k dataset. Blue: Objects detected and classified as one
of the ID classes. Green: OOD objects detected by VOS, which reduce false positives among detected objects.
on the extreme value theory (EVT). Subsequent work (Hendrycks & Gimpel, 2017) proposed a sim-
ple baseline using maximum softmax probability. Improved algorithms have been proposed, such
as ensembling (Lakshminarayanan et al., 2017), ODIN (Liang et al., 2018), energy score (Liu et al.,
2020a), Mahalanobis distance (Lee et al., 2018b), Gram matrices based score (Sastry & Oore, 2020),
and GradNorm score (Huang et al., 2021). Very recently, Sun et al. (2021) showed that a simple acti-
vation rectification strategy termed ReAct can significantly improve test-time OOD detection. Theo-
retical understandings on different post-hoc detection methods are provided in (Morteza & Li, 2022).
Different from Lee et al. (2018b), VOS performs dynamic estimation of class-conditional Gaussian
during training, which shapes the uncertainty surface over time using our proposed loss.

Another line of approaches explore model regularization using natural outlier images (Hendrycks
et al., 2019; Mohseni et al., 2020; Zhang et al., 2021) or images synthesized by GANs (Lee et al.,
2018a). However, real outlier data is often infeasible to obtain. Instead, VOS automatically syn-
thesizes virtual outliers which allows greater flexibility and generality. Tack et al. (2020) applied
self-supervised learning for OOD detection, which we compare in Section 4. Blum et al. (2021);
Jung et al. (2021); Besnier et al. (2021) proposed to detect outliers for semantic segmentation task.
Grcic et al. (2021) trained a generative model and synthesize outliers in the pixel space, which can-
not be applied to object detection where a scene consists of both known and unknown objects. The
regularization is based on entropy maximization, which is different from VOS.

OOD detection for object detection is currently underexplored. Joseph et al. (2021) used energy
score (Liu et al., 2020a) to identify the OOD data and then labeled them for incremental object
detection. In contrast, VOS focuses on OOD detection and adopts a new unknown-aware train-
ing objective with a new test-time detection score. Our learning framework is generally applicable
to both object detectors and classification models. Moreover, Joseph et al. (2021) used the neg-
ative proposals as unknown samples for model regularization, which is suboptimal as we show
in Table 2. Harakeh & Waslander (2021); Riedlinger et al. (2021) focused on uncertainty estima-
tion for the localization regression, rather than OOD detection for classification problems. Several
works (Dhamija et al., 2020; Miller et al., 2019; 2018; Hall et al., 2020; Deepshikha et al., 2021)
used approximate Bayesian methods, such as MC-Dropout (Gal & Ghahramani, 2016) for OOD
detection. They require multiple inference passes to generate the uncertainty score, which are com-
putationally expensive on larger datasets and models.

Open-world object detection includes out-of-domain generalization (Kim et al., 2021; Wang et al.,
2021), zero-shot object detection (Gu et al., 2022; Rahman et al., 2020) and incremental object
detection (Liu et al., 2020b; Pérez-Rúa et al., 2020). Most of them either developed measures to
mitigate catastraphic forgetting (Joseph et al., 2020) or used auxiliary information (Rahman et al.,
2020), such as class attributes to perform object detection on unseen data, which is different from
our focus of OOD detection.
6 CONCLUSION
In this paper, we propose VOS, a novel unknown-aware training framework for OOD detection.
Different from methods that require real outlier data, VOS adaptively synthesizes outliers during
training by sampling virtual outliers from the low-likelihood region of the class-conditional distri-
butions. The synthesized outliers meaningfully improve the decision boundary between the ID data
and OOD data, resulting in superior OOD detection performance while preserving the performance
of the ID task. VOS is effective and suitable for both object detection and classification tasks. We
hope our work will inspire future research on unknown-aware deep learning in real-world settings.
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REPRODUCIBILITY STATEMENT

The authors of the paper recognize the importance and value of reproducible research. We summa-
rize our efforts below to facilitate reproducible results:

1. Datasets. We use publicly available datasets, which are described in detail in Section 4.1,
Section 4.2, and Appendix A.

2. Baselines. The description and hyperparameters of the OOD detection baselines are ex-
plained in Appendix E.

3. Model training. Our model training on object detection is based on the publicly
available Detectron2 codebase: https://github.com/facebookresearch/
detectron2. Hyperparamters are specified in Section 4.1, with a thorough ablation study
provided in Appendix C.

4. Methodology. Our method is fully documented in Section 3, with the pseudo algorithm
detailed in Algorithm 1.

5. Open Source. The codebase and the dataset will be released for reproducible research.
Code is available at https://github.com/deeplearning-wisc/vos.

ETHICS STATEMENT

Our project aims to improve the reliability and safety of modern machine learning models. Our
study can lead to direct benefits and societal impacts, particularly for safety-critical applications
such as autonomous driving. Our study does not involve any human subjects or violation of legal
compliance. We do not anticipate any potentially harmful consequences to our work. Through our
study and releasing our code, we hope to raise stronger research and societal awareness towards the
problem of out-of-distribution detection in real-world settings.
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Supplementary Material

A EXPERIMENTAL DETAILS

We summarize the OOD detection evaluation task in Table 5. The OOD test dataset is selected from
MS-COCO and OpenImages dataset, which contains disjoint labels from the respective ID dataset.
The PASCAL model is trained for a total of 18,000 iterations, and the BDD-100k model is trained for
90,000 iterations. We add the uncertainty regularizer (Equation 5) starting from 2/3 of the training.
The weight β is set to 0.1. See detailed ablations on the hyperparameters in Appendix C.

Task 1 Task 2

ID train dataset VOC train BDD train
ID val dataset VOC val BDD val
OOD dataset COCO and OpenImages val COCO and OpenImages val
#ID train images 16,551 69,853
#ID val images 4,952 10,000
#OOD images for COCO 930 1,880
#OOD images for OpenImages 1,761 1,761

Table 5: OOD detection evaluation tasks.

B SOFTWARE AND HARDWARE

We run all experiments with Python 3.8.5 and PyTorch 1.7.0, using NVIDIA GeForce RTX 2080Ti
GPUs.

C EFFECT OF HYPERPARAMETERS

Below we perform sensitivity analysis for each important hyperparameter1. We use ResNet-50 as
the backbone, trained on in-distribution dataset PASCAL-VOC.

Effect of ε. Since the threshold ε can be infinitesimally small, we instead choose ε based on the
t-th smallest likelihood in a pool of 10,000 samples (per-class), generated from the class-conditional
Gaussian distribution. A larger t corresponds to a larger threshold ε. As shown in Table 6, a smaller
t yields good performance. We set t = 1 for all our experiments.

t mAP↑ FPR95 ↓ AUROC↑ AUPR↑
1 48.7 54.69 83.41 92.56
2 48.2 57.96 82.31 88.52
3 48.3 62.39 82.20 88.05
4 48.8 69.72 80.86 89.54
5 48.7 57.57 78.66 88.20
6 48.7 74.03 78.06 91.17
8 48.8 60.12 79.53 92.53

10 47.2 76.25 74.33 90.42

Table 6: Ablation study on the number of selected outliers t (per class).

Effect of queue size |Qk|. We investigate the effect of ID queue size |Qk| in Table 7, where we
vary |Qk| = {50, 100, 200, 400, 600, 800, 1000}. Overall, a larger |Qk| is more beneficial since the
estimation of Gaussian distribution parameters can be more precise. In our experiments, we set the
queue size |Qk| to 1, 000 for PASCAL and 300 for BDD-100k. The queue size is smaller for BDD
because some classes have a limited number of object boxes.

Effect of β. As shown in Table 8, a mild value of β generally works well. As expected, a large value
(e.g., β = 0.5) will over-regularize the model and harm the performance.

1Note that our sensitivity analysis uses the speckle noised PASCAL VOC validation dataset as OOD data,
which is different from the actual OOD test datasets in use.

15



Published as a conference paper at ICLR 2022

|Qk| mAP↑ FPR95 ↓ AUROC↑ AUPR↑
50 48.6 68.42 77.04 92.30

100 48.9 59.77 79.96 89.18
200 48.8 57.80 80.20 89.92
400 48.9 66.85 77.68 89.83
600 48.5 57.32 81.99 91.07
800 48.7 51.43 82.26 91.80
1000 48.7 54.69 83.41 92.56

Table 7: Ablation study on the ID queue size |Qk|.

β mAP↑ FPR95 ↓ AUROC↑ AUPR↑
0.01 48.8 59.20 82.64 90.08
0.05 48.9 57.21 83.27 91.00

0.1 48.7 54.69 83.41 92.56
0.15 48.5 59.32 77.47 89.06

0.5 36.4 99.33 57.46 85.25

Table 8: Ablation study on regularization weight β.

Effect of starting iteration for the regularizer. Importantly, we show that uncertainty regulariza-
tion should be added in the middle of the training. If it is added too early, the feature space is not
sufficiently discriminative for Gaussian distribution estimation. See Table 9 for the effect of starting
iteration Z. We use Z = 12, 000 for the PASCAL-VOC model, which is trained for a total of 18,000
iterations.

Z mAP↑ FPR95 ↓ AUROC↑ AUPR↑
2000 48.5 60.01 78.55 87.62
4000 48.4 61.47 79.85 89.41
6000 48.5 59.62 79.97 89.74
8000 48.7 56.85 80.64 90.71

10000 48.6 49.55 83.22 92.49
12000 48.7 54.69 83.41 92.56
14000 49.0 55.39 81.37 93.00
16000 48.9 59.36 82.70 92.62

Table 9: Ablation study on the starting iteration Z. Model is trained for a total of 18,000 iterations.
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D ADDITIONAL VISUALIZATION RESULTS

We provide additional visualization of the detected objects on different OOD datasets with models
trained on different in-distribution datasets. The results are shown in Figures 5-8.

Figure 5: Additional visualization of detected objects on the OOD images (from MS-COCO) by a vanilla
Faster-RCNN (top) and VOS (bottom). The in-distribution is Pascal VOC dataset. Blue: Objects detected and
classified as one of the ID classes. Green: OOD objects detected by VOS, which reduce false positives among
detected objects.

E BASELINES

To evaluate the baselines, we follow the original methods in MSP (Hendrycks & Gimpel, 2017),
ODIN (Liang et al., 2018), Generalized ODIN (Hsu et al., 2020), Mahalanobis distance (Lee et al.,
2018b), CSI (Tack et al., 2020), energy score (Liu et al., 2020a) and gram matrices (Sastry & Oore,
2020) and apply them accordingly on the classification branch of the object detectors. For ODIN,
the temperature is set to be T = 1000 following the original work. For both ODIN and Mahalanobis
distance Lee et al. (2018b), the noise magnitude is set to 0 because the region-based object detector
is not end-to-end differentiable given the existence of region cropping and ROIAlign. For GAN (Lee
et al., 2018a), we follow the original paper and use a GAN to generate OOD images. The prediction
of the OOD images/objects is regularized to be close to a uniform distribution, through a KL diver-
gence loss with a weight of 0.1. We set the shape of the generated images to be 100×100 and resize
them to have the same shape as the real images. We optimize the generator and discriminator using
Adam (Kingma & Ba, 2015), with a learning rate of 0.001. For CSI (Tack et al., 2020), we use the
rotations (0◦, 90◦, 180◦, 270◦) as the self-supervision task. We set the temperature in the contrastive
loss to 0.5. We use the features right before the classification branch (with the dimension to be 1024)
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Figure 6: Additional visualization of detected objects on the OOD images (from OpenImages) by a vanilla
Faster-RCNN (top) and VOS (bottom). The in-distribution is Pascal VOC dataset. Blue: Objects detected and
classified as one of the ID classes. Green: OOD objects detected by VOS, which reduce false positives among
detected objects.

to perform contrastive learning. The weights of the losses that are used for classifying shifted in-
stances and instance discrimination are both set to 0.1 to prevent training collapse. For Generalized
ODIN Hsu et al. (2020), we replace and train the classification head of the object detector by the
most effective Deconf-C head shown in the original paper.

F VIRTUAL OUTLIER SYNTHESIS USING EARLIER LAYER

In this section, we investigate the effect of using VOS on an earlier layer within the network. Our
main results in Table 1 are based on the penultimate layer of the network. Here, we additionally
evaluate the performance using the layer before the penultimate layer, with a feature dimension of
1, 024. The results are summarized in Table 10. As observed, synthesizing virtual outliers in the
penultimate layer achieves better OOD detection performance than the earlier layer, since the feature
representations are more discriminative at deeper layers.

G VISUALIZATION OF THE LEARNABLE WEIGHT COEFFICIENT w IN
GENERALIZED ENERGY SCORE

To observe whether the learnable weight coefficientwk in Equation 6 captures dataset-specific statis-
tics during uncertainty regularization, we visualizewk w.r.t each in-distribution class and the number
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Figure 7: Additional visualization of detected objects on the OOD images (from MS-COCO) by a vanilla
Faster-RCNN (top) and VOS (bottom). The in-distribution is BDD-100k dataset. Blue: Objects detected and
classified as one of the ID classes. Green: OOD objects detected by VOS, which reduce false positives among
detected objects.

Models FPR95↓ AUROC↑ mAP↑
PASCAL VOC

VOS-final 47.53 88.70 48.9
VOS-earlier 50.24 88.24 48.6

BDD-100k

VOS-final 44.27 86.87 31.3
VOS-earlier 49.66 86.08 30.6

Table 10: Performance comparison of employing VOS on different layers. COCO is the OOD data.

of training objects of that class in Figure 9. We use the BDD-100k dataset (Yu et al., 2020) as the in-
distribution dataset and the RegNetX-4.0GF (Radosavovic et al., 2020) as the backbone network. As
can be observed, the learned weight coefficient displays a consistent trend with the number of train-
ing objects per class, which indicates the advantage of using learnable weights rather than constant
weight vector with all 1s.
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Figure 8: Additional visualization of detected objects on the OOD images (from OpenImages) by a vanilla
Faster-RCNN (top) and VOS (bottom). The in-distribution is BDD-100k dataset. Blue: Objects detected and
classified as one of the ID classes. Green: OOD objects detected by VOS, which reduce false positives among
detected objects.

Figure 9: Visualization of learnable weight coefficient in the generalized energy score and the num-
ber of training objects per in-distribution class. The value of the weight coefficient is averaged over
three different runs.

H VISUALIZATION OF THE VIRTUAL OUTLIERS

In this section, we visualize the synthesized virtual outliers by VOS using UMAP in Figure 10. The
in-distribution dataset is the Pascal VOC dataset with the backbone of ResNet-50. Note that we
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cannot visualize virtual outliers in the pixel space since they are synthesized in low-dimensional
feature space.

ID objects
Virtual outliers

Figure 10: UMAP visualization of the synthesized virtual outliers. The blue points denote the object
features from the in-distribution class of Person. The green points denote the synthesized virtual
outliers from the low-density space w.r.t the features from that class.

From Figure 10, the virtual outliers reside in the near-boundary region of the in-distribution feature
cluster, which helps the model to learn a compact decision boundary between ID and OOD objects.

I DISCUSSION ON THE DETECTED, REJECTED AND IGNORED OOD OBJECTS
DURING INFERENCE

The focus of VOS is to mitigate the undesirable cases when an OOD object is detected and classified
as in-distribution with high confidence. In other words, our goal is to ensure that “if the box is
detected, it should be faithfully an in-distribution object rather than OOD”. Although generating
the bounding box for OOD data is not the focus of this paper, we do notice that VOS can improve
the number of boxes detected for OOD data (+25% on BDD trained model compared to the vanilla
Faster-RCNN).

The number of OOD objects ignored by RPN can largely depend on the confidence score threshold
and the NMS threshold. Hence, we found it more meaningful to compare relatively with the vanilla
Faster-RCNN under the same default thresholds. Using BDD100K as the in-distribution dataset
and the ResNet as the backbone, VOS can improve the number of detected OOD boxes by 25%
(compared to vanilla object detector). VOS also improves the number of rejected OOD samples by
63%.
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