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ABSTRACT

We introduce XYZ-IBD, a bin-picking benchmark for 6D pose estimation that
captures real-world industrial complexity, including challenging object geome-
tries, reflective materials, severe occlusions, and dense clutter. The dataset reflects
authentic robotic manipulation scenarios with millimeter-accurate annotations. Un-
like existing datasets that primarily focus on household objects, which approach
saturation, XYZ-IBD represents the unsolved vision problems in the real-world ap-
plication. The dataset features metallic and mostly symmetrical objects of varying
shapes and sizes. These objects are heavily occluded and randomly arranged in bins
with high density, replicating the challenges of industrial bin-picking. XYZ-IBD
was collected using two high-precision industrial cameras and one commercially
available camera, providing RGB, grayscale, and depth images. It contains 75
multi-view real-world scenes with around 273k annotated object instances, along
with a large-scale synthetic dataset rendered under simulated bin-picking conditions.
We employ a meticulous annotation pipeline that includes anti-reflection spray,
multi-view depth fusion, and semi-automatic annotation, achieving millimeter-
level pose labeling accuracy required for industrial manipulation. Quantification
in simulated environments confirms the reliability of the ground-truth annotations.
We benchmark state-of-the-art methods on 2D detection and 6D pose estimation
tasks on our dataset, revealing significant performance degradation in our setups
compared to current academic household benchmarks. By capturing the complex-
ity of real-world bin-picking scenarios, XYZ-IBD introduces more realistic and
challenging vision problems for future research.

1 INTRODUCTION

The ability to detect, segment, and estimate the 6D pose of objects is critical for robotics applications,
particularly in industrial bin-picking scenarios. These tasks demand not only high accuracy but
also efficiency to enable real-time operation. While recent advancements in computer vision have
significantly improved performance on benchmark datasets ( ), there remains
a substantial gap between academic research and real-world applications ( );

. This discrepancy is especially pronounced in industrial settings, where challenges such as clutter,
occlusion, and reflective, texture-less objects must be addressed.

Current popular benchmarks for pose estimation, such as those designed for household objects

( ); ( ); ( ), often exhibit favorable properties including

rich textures, semantic cues, low occlusion, and minimal clutter. Some datasets
( ); ( ); ( ) have extended the challenge by introducing
texture-less objects ( ), cluttered scenes ( ), or robotic bin-
picking setups ( ). While these household benchmarks have driven significant
progress in pose estimation pipelines, state-of-the-art methods ( ); ( );
( ) still struggle with industrial objects that are highly reflective, symmetric, or lack
distinctive visual features ( ). Unlike household objects, industrial items often lack

contextual semantics and present ambiguous appearances, making them particularly difficult for
feature extraction and accurate pose estimation, thereby the methods falling short of the precision
requirements in real-world industrial manipulation. Although several datasets have begun to address
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Figure 1: Example data from our industrial bin-picking dataset that shows challenging scenes captured by
three cameras with different modalities, along with our 6D pose annotations. The industrial parts adopted in this
benchmark present variant geometry and size.

these challenges by including texture-less, reflective, and symmetric industrial objects Hodan et al.
(2017); De Roovere et al. (2022); Liu et al. (2021); Kalra et al. (2024), they still lack configurations
that fully replicate the complexity of industrial bin-picking scenarios. These include randomly stacked
objects in containers, harsh and variable lighting conditions, diverse object geometries, and multiple
repeated instances with severe occlusion.

To address this need, we introduce XYZ-IBD, a novel RGB-D dataset specifically designed for
industrial bin-picking applications. Unlike existing datasets, XYZ-IBD captures the complexity of
real-world industrial environments, including challenging object geometries, severe scene clutter,
and strong spectral reflections. The dataset features 15 texture-less, metallic, and mostly symmetric
objects commonly used in industrial settings. As shown in Figure 1, these objects vary in shape
and size, and are densely packed with multiple instances in cluttered bins, creating significant
occlusion. To ensure diverse and practical data modalities, we capture multi-view RGB and depth
images using two high-precision industrial-grade cameras, an XYZ Robotic DLP structured light
camera, and a Photoneo PhoXi laser scanner alongside a commercially available Intel RealSense
D415 stereoscopic camera. The dataset consists of 75 real-world scenes (5 configurations per object),
comprising over 22k labeled multi-view RGB-D frames and approximately 273k 6D pose annotations.
Additionally, we provide a large-scale synthetic training set containing up to 45k rendered views
generated using BlenderProc Denninger et al. (2020), simulating realistic bin-picking conditions
through physics-based object interactions.

Given the millimeter-level precision required for industrial bin-picking, ensuring the accuracy of
these annotations is essential. To provide accurate 6D pose annotations, we employ a multi-step,
semi-automatic annotation pipeline. First, we sample and calibrate multiple viewpoints within a
specified working distance using four calibration spheres. To enable precise depth map acquisition,
we apply an anti-reflection spray to the objects, following practices from prior work Yang et al. (2021);
Jung et al. (2023; 2024). We then fuse the depth data from multiple views using the high-quality
ground truth depth. A self-developed annotation tool is used to label each object instance in the
fused point cloud. Finally, the annotated object poses from the reference frame are projected to all
remaining frames, followed by a manual double-check pass.

To quantify the accuracy of our pose annotations, we simulate real-world setups within a controlled
simulation environment. We replicate the exact camera intrinsics and extrinsics used in our real-
world experiments and randomly arrange objects in a virtual container. To closely mirror real-world
conditions, we introduce camera measurement noise into the simulated images. The same annotation
pipeline used for the real dataset is then applied to the simulated scenes. By comparing the resulting
annotations to the ground truth poses available in the simulation, we compute the annotation error.
This evaluation validates that our annotations are precise enough to serve as reliable ground truth for
benchmarking 6D pose estimation methods. The overall data collection and annotation quantification
is illustrated in Figure 2.
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Figure 2: The real-world industrial data collection pipeline and the annotation error quantification
pipeline in the simulated environment for XYZ-IBD dataset.

We benchmark XYZ-IBD on object 2D detection and object 6D pose estimation tasks with state-of-the-
art methods. While these methods perform exceptionally well on existing datasets, our experiments
reveal a stark performance drop in the challenging conditions posed by XYZ-IBD. This highlights
the current gap between recent academic benchmarks and real industrial conditions. By addressing
the challenging scenarios, XYZ-IBD provides a much-needed benchmark for advancing detection
and pose estimation methods in realistic industrial settings. We firmly believe XYZ-IBD bridges the
gap between current academic benchmarks and practical vision problems, fostering the development
of more robust and efficient solutions for industrial robotics, ultimately improving automation and
machine support.

In summary, our key contributions are :

* We build a challenging real-world industrial bin-picking dataset that simultaneously captures
the complexity of object geometry, material, occlusion, and clutter, introducing academic
challenges for object detection and pose estimation tasks.

* Qur dataset provides high-quality annotation for the industrial-grade demanded millimeter-
level precision that provides accurate labels for reliable evaluation.

* We benchmark the dataset with 2D detection and 6D detection tasks with the most recent
baselines, for both instance-specific and generalizable frameworks.

2 RELATED WORK

2.1 HOUSEHOLD DATASETS

A large number of object pose and scene depth datasets have been developed to address ev-
eryday scenarios involving household objects. Datasets such as LineMOD Hinterstoisser et al.
(2012), LineMOD-Occlusion Brachmann et al. (2014), YCB-V Xiang et al. (2018), Home-
brewedDB Kaskman et al. (2019), and TUD-L Hodan et al. (2018) are widely used in benchmarks for
model-based object pose estimation Van Nguyen et al. (2025); Hodan et al. (2018), and have driven
progress on key challenges such as handling texture-less objects Hinterstoisser et al. (2012), occluded
targets Brachmann et al. (2014), and typical household environments Xiang et al. (2018); Kaskman
et al. (2019). The HOPE dataset Tyree et al. (2022) extends this focus to robotic manipulation scenar-
ios with varied lighting and occlusion conditions. IC-BIN Doumanoglou et al. (2016) introduces an
early bin-picking setup with randomly placed objects, but it includes only two textured objects and
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Table 1: Comparison of datasets for object pose estimation from different dimensions.

Dataset  Modalites  Nemberof | Obiect - Obect DIameler g ppuances  UWSACES  ACCUTMe 0y Refection  LAPnE Frror
DIMO oy RGB-D 6 + 75~302 31.2k 100k <10 X + X 2.7
T-LES‘S ) RGB-D 30 +++ 63~152 147k 100k <10 X ++ X 11.3
ITOD(D ) RGB-D 28 +++ 24~270 800 5k <10 X ++ X 1.8
RoBt RGB-D 7 + 2476 8k 600k 10 v - v 18
StereOB)-IM RGB 18 ++ - 96k 15M <10 x + x 23
e RGB-D+Polar 20 ot 80~240 30k 100Kk <10 x + v N/A
XYZ-IBD (Ours) RGB-D 15 +++ 54~300 22.5k 273k 22 v +++ v 0.99
suffers from low annotation quality. StereoOBJ-1M ( ) improves annotation precision
through structure-from-motion (SfM) with checkerboards and offers a large number of RGB images,
yet it lacks object diversity and does not include depth data. NOCS ( ) presents the
first category-level 6D pose dataset, covering six household object categories. More recent datasets
such as PhoCal ( ), HouseCat6D ( ), Booster ( ),
and SCRREAM ( ) focus on more complex scenes involving transparent or highly

reflective objects and utilize a range of sensor modalities, including RGB, depth, and polarization
images. While those datasets provide high-quality depth and pose annotations, they lack typical scene
properties found in industrial environments. Therefore, existing datasets featuring household objects
do not fully capture the challenges inherent in industrial applications, which involve both object-level
and scene-level complexity.

2.2 INDUSTRIAL DATASETS

In industrial applications, the working environment is quite different from the household scenario.
Firstly, unlike household objects, industrial parts are usually texture-less and often symmetric and
highly reflective ( ); ( ); ( ). Consequently, networks
trained on household objects hardly generalize to industrial datasets. Secondly, the required pose
accuracy in industrial robotics is usually higher than in household robotics or AR/VR applications.
The robotic arm is expected to not only pick up singulated objects, but typically needs to pick
objects from a filled container and place them at a target pose or assemble them. Even though
bin-picking is a typical setup for industrial applications, only a few publicly available datasets target
this scenario which severely hampers the usability of pose estimation pipelines in industrial practice.
T-LESS dataset ( ) features texture-less industrial objects with symmetries but
does not present challenging lighting conditions, and the annotation quality is not mm-accurate,
a requirement in many industrial applications. Only a few scenes present the complexity of real
bin-picking configurations where similar objects occlude each other. ITODD ( )
collects industrial parts with challenging geometry and lighting conditions but does not feature bins
filled with objects. The consistently low pose estimation scores on ITODD ( ) in the
BOP challenge ( ) also demonstrate the need for industrial bin-picking datasets.
Other datasets such as DIMO ( ) and ROBI ( ) focus on metallic
objects for bin-picking setups, but they focus on a limited number of objects whose size and shape
are not representative of the diversity in real applications. The recent dataset IPD ( )
leverages multiple sensors to collect data from industrial objects but presents little clutter, stacking
and occlusions which simplifies the setup compared to real industrial scenarios. Table 1 compares the
characteristics of current industrial datasets.

3 THE XYZ-IBD DATASET

XYZ-IBD establishes a benchmark for industrial bin-picking by capturing data under authentic
factory conditions. It advances prior work through four perspectives: (1) Industrial-Grade Setup:
Data is acquired using industry-standard robotic arms (FANUC M10iD/8L) and multi-modal sensors
(RGB/depth/grayscale) mounted at industrial working distances, replicating real application condi-
tions. (2) Challenging Objects: fifteen reflective, texturless, and mostly symmetric industrial parts
that present rich geometrical shapes and sizes(54—-300 mm scale), introducing academic challenges
for pose estimation. (3) Multi-instance Dense Clutter: Objects are randomly and densely arranged
in a container with multiple repeat instances, creating more ambiguity for instance detection and
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alignment. (4) Precise Annotation: Our annotation pipeline achieves <1 mm positional and <1°
angular annotation accuracy, validated with simulated environment.

This benchmark consists of 75 real-world scenes (five configurations per object), encompassing
approximately 273k annotated instances with 22 instances per scene on average, and up to
60 instances in some scenes. In addition, it includes 45k synthetic training set generated with
BlenderProc ( ) through physics-based object interactions, simulating a realistic
bin-picking setup.

3.1 OBIECTS AND HARDWARES

Objects. Our dataset comprises fifteen representative industrial parts with diameters ranging from
54 mm to 300 mm, including components like sheet metal parts, bolts, pins, covers, and many other
kinds of machined metal objects. As shown in Figure 1, these objects exhibit challenging visual
properties such as high reflectivity and symmetry that are common in manufacturing environments yet
problematic for vision algorithms. The original CAD models provided by industrial partners ensure
micron-level geometric accuracy for both real-world captures and synthetic renderings. All real-world
data is collected in bins with sensor-to-object distances carefully calibrated between 600-1000mm.
We put multiple instances of each object into the bin, mostly with severe occlusion and clutter.

Sensor Setup. For precise and repeatable data acquisition, we employ an industrial-grade FANUC
M10iD/8L robotic arm with +0.06mm repeatability to position our multi-sensor array. Three comple-
mentary vision systems are rigidly co-mounted on the end-effector (see Figure 6): the Intel RealSense
D415 stereoscopic camera provides aligned RGB (1920x1080) and depth streams at 30 FPS, offer-
ing baseline color-depth registration for general scene understanding; the XYZ Robotic AL-M DLP
structured-light camera delivers high-precision grayscale (1440x1080) and depth maps (0.08mm
resolution) through projected pattern deformation analysis, particularly effective for matte surfaces;
the Photoneo PhoXi M 3D scanner utilizes laser triangulation to generate high-accuracy depth data
(up to 2064x1544 resolution) with 0.1 mm voxel precision, complemented by synchronized grayscale
imagery. All sensors are positioned at optimized working distances of 600-1000 mm based on object
size and bin geometry, maintaining consistent fields-of-view across the industrial container. The fixed
relative positions between cameras enable direct cross-modality calibration, while the robotic arm’s
precise positioning ensures reproducible viewpoint acquisition throughout the data collection process.

3.2 DATA ACQUISITION PIPELINE.

As shown in Figure 2, our data acquisition pipeline integrates three sequential stages: viewpoint
sampling and calibration, multi-pass scene capture for depth ground truth, and a hybrid annotation
protocol combining manual and algorithmic refinement.

Multi-view Sampling and Calibration. Beginning with the bin’s centroid as the origin, we define a
spherical sampling surface spanning elevation angles of 45° to 90° to balance perspective diversity
and robotic arm operability. Fifty viewpoints are randomly distributed across this surface to ensure
comprehensive spatial coverage. Following the calibration framework of ( ), we place
four precisely machined calibration spheres on the working plane. During an initial calibration pass,
the robotic arm captures multi-modal images of these spheres across all viewpoints. The cameras are
firstly undistorted and obtain the initial camera poses with hand-eye calibration ( ), then
pose refinement via iterative closest point (ICP) alignment on the spheres’ point clouds establishes
relative transformations between viewpoints with around 0.248 mm average root mean square error
(RMSE), resolving the 6 DoF relationships between 49 secondary viewpoints and a primary reference
view. These transformations enable subsequent multi-view data fusion and label projection with
sub-millimeter consistency. After calibration, the calibration spheres are removed, and the robotic
arm systematically revisits each pre-calibrated viewpoint to capture cluttered industrial bin-picking
scenes. At each viewpoint, three rigidly mounted cameras (Intel RealSense D415, XYZ Robotic DLP,
Photoneo PhoXi) acquire synchronized RGB, grayscale, and depth data. To maximize scene diversity,
we perform five complete capture cycles per object, randomly shuffling parts between cycles.

Multi-Pass Scene Capture. To address depth sensing challenges from reflective surfaces, we
employ a dual-phase capture strategy. The first phase applies a temporary anti-reflective coating
(Acksys SP-102) to suppress specularity, enabling high-fidelity ground truth depth acquisition. After



Under review as a conference paper at ICLR 2026

Raw Image Anti-reflection Image Raw Depth Anti-reflection Detph

Figure 3: Comparison between raw depth and anti- Figure 4: Example data of the synthetic training data
reflection depth. with bin-picking simulation.

allowing 15 minutes for complete evaporation under controlled ambient conditions (25°C +1°C),
we execute an identical second capture pass to record the scene’s native optical properties. Both
phases maintain pixel-wise spatial correspondence through robotic arm pose repetition (£0.06 mm
precision), providing high-quality depth to fuse the scene point cloud, thus resulting in more accurate
pose annotation and also aligned datasets of enhanced and raw depth for algorithm benchmarking.

6D Pose Annotation. The annotation derives from a hierarchical process beginning with 3D fusion of
spray-enhanced depth data into a unified scene point cloud. Annotators coarsely align CAD models
to this reconstruction using our developed constrained GUI (+1 mm translational, +1° rotational
increments), followed by multi-scale ICP refinement. The ICP pipeline first aligns downsampled
point clouds for global adjustment and then iteratively optimizes with full-resolution data to achieve
sub-millimeter accuracy. Finalized poses are propagated to all 50 viewpoints using pre-calibrated
transformations that we obtained from the first stage, ensuring label consistency across perspectives
without manual per-view annotation. This protocol yields around 273k annotated object instances in
total, with a minimum of 11 and a maximum of 60 instances per scene, resulting in an average of 22
instances per image. We choose the XYZ Robotic DLP camera as the primary camera and perform
annotations on the data it collected. The annotation of the other two cameras are projected through
the calibrated relative transformation between the cameras.

3.3 ANNOTATION ERROR QUANTIFICATION.

To quantify the cumulative annotation error, we replicated the data collection and annotation process
in a simulated environment, recovering the sensor error, calibration error and the human annotation
error, and compared the resulting annotations against ground truth poses. Our evaluation framework
comprises three stages: data noise recovery, synthetic data collection, and 6D pose quantification.

Data Noise Recovery. We simulate the multi-view calibration procedure in a synthetic environment
using identical calibration spheres and camera parameters as in the real-world setup. 50 calibration
views are sampled, and varying levels of Gaussian noise are added to the rendered depth images.
The corresponding RMSE of the point cloud is then computed using ICP, revealing the relationship
between noise magnitude and calibration error (see Table 3). When Gaussian noise o = 0.26 mm
is applied, the computed RMSE reached 0.248 mm, matching the error observed during real-world
calibration. This provided the chosen noise level to best represent the cumulative error introduced by
the sensor, robotic system, and multi-view calibration process.

Synthetic Data Collection. To ensure realistic, cluttered arrangements, we generate synthetic
counterparts using the same CAD models within a simulated bin-picking environment rendered with
physically-based rendering in BlenderProc Denninger et al. (2020). Objects are randomly dropped
into the bin via a free-fall simulation, and any that fall outside the bin are removed. Multi-view
synthetic images are rendered using a complementary noise model derived in the last step. The same
annotation pipeline used for real data, incorporating multi-view fusion, manual adjustments, and
multi-scale ICP refinement, is also applied to the synthetic scenes. As ground truth poses are available
in the simulation, this setup allows for direct comparison between annotated and true object poses.

To complement the real dataset, we additionally render a large-scale synthetic dataset as the training
data. We programmatically vary rendering conditions, including lighting, material properties, object
quantity, and pose configurations, closely replicating real-world setups to ensure cross-domain
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Table 2: Specifications for data collection error sources. Table 3: Effect of Gaussian noise on average
viewpoints calibration RMSE.
Source Specify Error (mm)
ge"sor galibraﬁ?“ . 0’%0 Gaussian Noise o (mm) RMSE (mm)
Viewpoints ensor Temporal noise 0.10
Lo Sensor Distortion N/A 0.0 0.199
Calibration - B .
Robot arm Repeatability 0.06 0.1 0.209
Viewpoints Calibration RMSE (Total) 0.245 0'2 0'233
Depth fusion TSDF N/A 0 '26 0'248
Manually annotate  Human, ICP N/A N .
Overall 0.99 03 0259

consistency. For each of the 15 objects, we perform 120 free-fall simulations, with random variations
in material and lighting, resulting in a total of approximately 45,000 frames in the synthetic training
dataset. As shown in Figure 4, this parallel real-synthetic collection supports robust benchmarking
while preserving strong visual alignment between domains.

6D Pose Quantification. To assess annotation quality, we systematically investigated several error
sources: inherent sensor inaccuracies, robotic arm repeatability, viewpoint calibration discrepancies,
and annotator subjectivity. Specifically, the sensor error encompasses both the camera calibration
inaccuracies and measurement noise due to sensor characteristics and environmental conditions. This,
together with the robot arm repeatability, is manifested in the overall multi-view pose calibration error.
We compute pose errors through nearest-neighbor matching between annotated and GT poses using
Hungarian assignment on 3D centroid distances. We analyze up to 60 samples per scene X 3 scenes
per object, revealing a mean positional error of 0.999 mm (o = 0.12 mm) and an angular error of
0.432° (o = 0.08°). Per-object error averages across 15 industrial parts demonstrate sub-millimeter
precision even for challenging geometries. This synthetic validation confirms that our real-world
annotations achieve <1 mm positional and <1° angular accuracy relative to physical GT.

4 BENCHMARKS

Our dataset provides high-precision 6D object pose and depth annotations, enabling the establishment
of a comprehensive benchmark for object detection and pose estimation. In order to align the
evaluation protocol with the widely used Benchmark for 6D Object Pose Estimation (BOP) and
challenges, we adopt their evaluation protocols to assess performance on our dataset. For the 2D
detection and 6D pose estimation tasks, we evaluate representative methods under both seen and
unseen object settings. In the seen object setup, models are trained on our synthetic dataset and
evaluated on the real-world test split. In the unseen object setup, we directly use off-the-shelf
generalizable methods, which have been pretrained on large-scale external datasets, to infer our real
test scenes without extra finetuning. We benchmark several recent state-of-the-art methods across
five previous BOP-Core datasets (LM-O ( ), T-LESS ( ),
YCB-V ( ), IC-BIN ( ), TUD-L ( )
in compare with XYZ-IBD, under four tasks (model-based seen/unseen object 2D detection and
model-based seen/unseen object 6D detection). Detailed data splits and the implementation for these
baseline methods are provided in the Appendix D.

4.1 EVALUATION CRITERIA

Object 2D Detection Metics. For the object 2D detection task, we follow the model-based 2D
detection task defined in BOP 2024-2025 Challenge ( ). The objective is to
generate a set of non-overlapping 2D binary instance masks with associated confidence scores from
an RGB-D input image that contains multiple object instances from a given dataset. To evaluate
performance, we adopt the Average Precision (AP) metric, following the protocol used in the COCO
2020 challenges ( ). AP is calculated by averaging the precision scores at several
Intersection-over-Union (IoU) thresholds, ranging from 0.5 to 0.95 in increments of 0.05. Each
object’s AP score reflects its detection quality across these thresholds. To obtain an overall dataset-
level performance measure, the mean Average Precision (mAP) is computed by averaging the AP
scores across all object categories. This evaluation strategy comprehensively captures both the
accuracy of object localization and the effectiveness of category-level recognition, ensuring alignment
with established benchmarking standards.
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Object 6D Detection Metics. For the 6D pose estimation task, we adopt the model-based 6D
object detection metric defined in BOP 2024-2025 Challenge ( ), evalu-
ating detection accuracy using symmetry-aware Average Precision (AP) scores. For each pre-
dicted pose P and its corresponding ground truth pose Por, we compute two error metrics: Maxi-
mum Symmetry-Aware Surface Distance (MSSD) and Maximum Symmetry-Aware Projection Dis-
tance(MSPD). MSSD measures the maximum 3D surface deviation under object symmetries, defined
as epssp = MaXgze s Milges |1333 — S(Pgrx)|, where M is the object mesh and S is the set of
predefined symmetry transformations. MSPD evaluates the maximum 2D projection deviation consid-
ering object symmetries, computed as eyspp = MaxX,cy Minges |H(15xu) —TI(S(Pgrxy))|, where
II denotes the camera projection function and U the set of visible mesh vertices. A pose estimate is
deemed correct when the error e falls below a threshold 6.. For each error type e € MSSD, MSPD
and object o € O, we compute the object-level AP score as AP, , = ‘@—il > oceo, Po(0), where O,

is the set of threshold values and P,(6) is the precision at threshold #. The final AP score aggregates
over all objects and both error types as AP = ﬁ > 0c0 2cemsspmspp ALe,o-

Table 4: Performance comparison of 2D and 6D detection SOTA methods on previous core datasets in BOP and
XYZ-IBD dataset. We report the AP scores on the main BOP datasets YCB-V, T-LESS, and LM-O, and the
average AP on the 5 BOP core datasets (YCB-V, T-LESS, LM-O, IC-BIN and TUD-L) under the four tasks of
seen object 2D detection, unseen object 2D detection, seen object 2D detection, and unseen object 2D detection.

Method | Task | Unseen Object | YCB-V | T-LESS | LM-O | BOP-Core 5 | XYZ-IBD
YOLOX (021) X 0877 | 0.707 | 0.894 0.798 0.774
CNOS(SAM) (2023) | 2D Detection v 0490 | 0395 | 0330 0.361 0.275
SAM-6D(SAM) (2024) v 0518 | 0465 | 0.437 0.449 0.296
GDRN (2021) X 0.906 | 0.852 | 0.775 0.827 0.266
SurfEmb (2022) | b Doteti X 0799 | 0828 | 0.760 0.758 0.247
FoundationPose (2024) ctection v 0.889 | 0.646 | 0.756 0.734 0.564
SAM6D (2024) v 0.845 | 0515 | 0.699 0.704 0.578
4.2 EVALUATION OF OBJECT 2D DETECTION
Seen Object 2D Detection. YOLOX ( ) is a widely used advanced real-time object
detection model that builds upon the YOLO ( ) series. We follow the implementa-
tion of the SOTA method for object pose estimation GDRNet ( ) to train the YOLOX
model on our synthetic training data and test on the real test split.
Unseen Object 2D Detection. CNOS ( ) is a model-based method that uses vision
foundation models SAM ( ) and DINOv2 ( ) for novel object

segmentation and detection without re-training. It renders object templates from a CAD model and
ranks SAM-generated segments by comparing their DINOvV2 class token features with those of the
templates. SAM-6D ( ) detects the objects with a similar strategy as CNOS

( ) but computes a weighted score including semantics, appearance, and geometry to match
the query object template with the segments extracted from SAM ( ).

As shown in Table 4, for the 2D detection task, YOLOX ( ) is trained on the training split
of each dataset and tests on the test split for the same objects (seen objects), achieving comparable
results across different datasets. However, for the unseen object detection on our dataset, CNOS and
SAMG6D show a clear drop compared to other BOP datasets. These results highlight the increased
difficulty of our dataset for 2D detection, due to heavy occlusion, repeated object instances, and
strong surface reflections. We show a qualitative comparison in Figure 5.

4.3 EVALUATION OF OBJECT 6D DETECTION

Seen Object 6D Detection. SurfEmb ( ) learns per-object dense 2D-3D cor-
respondence distributions over object surfaces using contrastive learning in an unsupervised fashion.
It achieves strong performance on BOP and handles visual ambiguities effectively. GDRNet

( ) is a recent state-of-the-art framework that processes zoomed-in Rols from RGB images
to predict intermediate geometric features: dense 2D-3D correspondences, surface region attention
maps, and visible object masks. These features guide a Patch-PnP module to directly regress the 6D
pose in a differentiable manner.
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Figure 5: Example qualitative results of SOTA methods for unseen object 2D and 6D detection tasks on
XYZ-IBD dataset. In the detection results, green boxes indicate correct object IDs, while red boxes indicate
mismatches with the ground truth ID.

Unseen Object 6D Detection. FoundationPose ( ) supports both model-based and
model-free settings using neural implicit representations for view synthesis. Trained on large-scale
synthetic data with transformer-based coarse-to-fine design, it generalizes well and outperforms
prior methods across benchmarks. SAM-6D ( ) uses the Segment Anything Model for
segmentation and applies ViT ( ) and GeoTransformer ( ) to
extract features from RGB-D input and CAD models. Trained on a large-scale synthetic dataset, it
achieves strong performance in model-based 6D pose estimation.

Unseen object methods assume the availability of object segmentation or detection as a prior for
pose estimation. Accordingly, we use segmentation masks produced by SAM-6D for fair comparison
among these methods, while seen object methods utilize detection results from YOLOX. As shown in
Table 4, all methods struggle on our dataset. Specifically, both GDRNet and SurfEmb, representing
seen object methods, fail to predict accurate poses, despite being trained on synthetic data. In contrast,
unseen object methods demonstrate relatively better performance, with SAM6D achieving state-of-
the-art results. Compared to existing household datasets, ( );

( ), our dataset introduces greater challenges for pose estimation due to the complexity
of object materials, geometric variations, and severe scene clutter. Figure 5 shows a qualitative
comparison of the baseline results on XYZ-IBD benchmark.

5 CONCLUSION AND LIMITATIONS

we introduce the XYZ-IBD dataset, a high-precision bin-picking benchmark that captures real-world
industrial-grade complexity, including object reflectivity, scene clutter, and heavy occlusion. The
dataset comprises several industrial parts collected under real factory conditions using three different
sensors, resulting in 273k real-world, annotated samples, along with a 45k-frame synthetic dataset
simulating realistic bin-picking environments. Through a multi-stage, semi-automatic protocol,
XYZ-IBD provides accurate 6D pose annotations, with error quantified via simulations that model
real-world sensor and calibration noise, achieving pose errors as low as 1 mm. We believe XYZ-IBD
brings real-world industrial vision problems to the academic community and helps bridge the gap
between academic research and practical application. While we focus on a specific industrial scenario
for bin-picking, the working distance and the scale of the objects are still limited, which is a potential
limitation for the methods to generalize to other objects with different materials and shapes.
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Appendix

A  DATA COLLECTION HARDWARE SETUP

Figure 6 shows the robotic setup and camera configuration on the robot arm. We mount three
cameras with different resolutions, working distances, and depth technologies. The cameras are
mounted on the end of the robotic arm, collecting the scenes synchronously. We compare the sensor’s
configuration in Table 5.

} Photoneo PhoXi 3D scanner

XYZ Robotic DLP

RealSense D415

Figure 6: The data collection setup for the robot arm and sensors.

Attribute | Working Distance (mm) | Resolution | Modalities | Depth Technology
RealSense D415 500 — 3000 1920 x 1080 RGB/Depth Stereoscopic
XYZ Robotics AL-M DLP 350 - 800 1440 x 1080 | Grayscale/Depth | Structured Light
Photoneo PhoXi M 458 - 1118 2064 x 1544 | Grayscale/Depth Laser Scanner

Table 5: Configuration of the sensors.

B SYNTHETIC TRAINING DATA

All collected industrial objects are used to generate the synthetic training dataset. We show the CAD
models and the real objects for the collected industrial parts in Figure 8. For each scene, we simulate
a free-fall of multiple object instances and render 25 images under varying lighting conditions and
material properties. The rendering process uses the same camera intrinsics as the XYZ Robotics
structured light camera. For each object, 120 scenes are rendered, resulting in approximately 3,000
bin-picking frames per object. This bin-picking synthetic dataset provides ground truth object masks,
depth images and object 6D poses, therefore can be used as the training set for the depth estimation,
2D detection and pose estimation tasks. In total, the synthetic training dataset contains 45,000 RGB-D
frames and occupies about 80 GB.

C BENCHMARK SETUP

For each of the 15 real industrial parts, we collected 5 different scenes by varying the number of
instances, lighting conditions and object poses. We use 1 scene for each object as the validation set,
and 4 scenes for each object as the test set. In the test set, we follow the BOP Challenge 2025’s
setup and provide both single-view and multi-view evaluation protocols. For multi-view evaluation,
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CAD Models

Figure 8: The collected industrial parts and their corresponding CAD models of XYZ-IBD dataset.

5 viewpoints are selected per scene based on the maximum spatial spread. One view is designated
as the target view for evaluation, while the other 4 views serve as reference views. Relative camera
poses among the 5 views are provided to enable multi-view methods to exploit spatial context. For
single-view methods, only the target view is used. The ground truth pose of the validation set is
released publicly, but the ground truth of the test set is hidden and hosted in the BOP evaluation
system. The validation set size is approximately 8 GB, while the test set occupies around 3 GB.

D IMPLEMENTATION DETAILS FOR THE BASELINES

All seen-object baseline methods are trained on our synthetic training dataset and evaluated on the
real testing split. For all the unseen baselines, we directly use the pretrained model to infer on the
testing split.

D.1 YOLOX

We train a YOLOX Ge et al. (2021) model for object detection following the configuration used in
GDRNPP Liu et al. (2025). Training is performed on a single NVIDIA RTX 4090 GPU with a batch
size of 24 for 30 epochs. Data augmentation is applied during the first 15 epochs, consistent with the
GDRNPP setup. The complete training process on the synthetic PBR dataset takes approximately 18
hours.
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D.2 GDRNET

GDRNet Wang et al. (2021) is trained on all the objects of our synthetic dataset with a batch size
of 24 for 10 epochs, totaling roughly 490,000 training steps. The training is conducted on a single
NVIDIA RTX 4090 GPU and completes in approximately 24 hours.

D.3 SURFEMB

SurfEmb Haugaard & Buch (2022) is trained on each object of our synthetic dataset with a batch
size of 24 for 500,000 steps. Training is performed on a single NVIDIA RTX 4090 GPU and takes
approximately 20 hours.
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Figure 10: More data samples from the RealSense camera.
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E MORE VISUALIZATIONS OF DATA SAMPLES

We visualize more data samples in this section. Figure 9 shows more examples for the scenes that
were recorded with the XYZ camera, and Figure 10 shows more examples from the RealSense camera.
We compare our dataset with other BOP datasets with the instance distribution in Figure 11. The
dataset follows the BOP dataset format as shown in Figure 12.
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Figure 11: The instance distribution of the BOP industrial datasets.
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Figure 12: Directory structure of the dataset.
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