Beyond Uniform Sampling: Offline Reinforcement
Learning with Imbalanced Datasets

Zhang-Wei Hong'; Aviral Kumar?, Sathwik Karnik!, Abhishek Bhandwaldar?,
Akash Srivastava®, Joni Pajarinen*, Romain Laroche®, Abhishek Gupta®, Pulkit Agrawal’

Abstract

Offline policy learning is aimed at learning decision-making policies using existing
datasets of trajectories without collecting additional data. The primary motivation
for using reinforcement learning (RL) instead of supervised learning techniques
such as behavior cloning is to find a policy that achieves a higher average return
than the trajectories constituting the dataset. However, we empirically find that
when a dataset is dominated by suboptimal trajectories, state-of-the-art offline RL
algorithms do not substantially improve over the average return of trajectories in
the dataset. We argue this is due to an assumption made by current offline RL
algorithms of staying close to the trajectories in the dataset. If the dataset primarily
consists of sub-optimal trajectories, this assumption forces the policy to mimic the
suboptimal actions. We overcome this issue by proposing a sampling strategy that
enables the policy to only be constrained to “good data" rather than all actions in the
dataset (i.e., uniform sampling). We present a realization of the sampling strategy
and an algorithm that can be used as a plug-and-play module in standard offline
RL algorithms. Our evaluation demonstrates significant performance gains in 72
imbalanced datasets, D4RL dataset, and across three different offline RL algorithms.
Code is available at https://github. com/Improbable-AIl/dw-offline-rl.

1 Introduction

Offline reinforcement learning (RL) [23, 27] aims to learn a decision-making policy that maximizes
the expected return (i.e., the sum of rewards over time) using a pre-collected dataset of trajectories,
making it appealing for applications where data collection is infeasible or expensive (e.g., recom-
mendation systems [28]). Without loss of generality, it can be assumed that the dataset is generated
from an unknown policy mp(als), also known as the behavior policy [24]. The goal in offline RL
is to learn a policy, 7g(a|s) with parameters 6, that exceeds the performance of the behavior policy.
In offline RL, a widely recognized issue is the overestimation of ()-values for out-of-distribution
state-action pairs, leading to suboptimal policies [8, 20, 22]. This stems from incomplete coverage
of the state-action space in the dataset, causing the learning algorithm to consider absent states and
actions during optimization.

Most state-of-the-art offline RL algorithms [7, 9, 20, 22, 25] mitigate the issue of OOD Q-values by
constraining the distribution of actions of the learned policy mg(als), to be close to the distribution of
actions in the dataset. This results in a generic objective with the following form:

max .J(mg) — aE (s q)up [C(5,0)],

where J(7p) denotes the expected return of the policy 7y, D denotes the dataset, C is a regularization
term that penalizes the policy 7y for deviating from the state-action pairs in the dataset, and « is the

*Correspondence: zwhong@mit.edu, ImprobableAl Lab, Massachusetts Institute of Technology', RAIL
Lab, UC Berkeley?, MIT-IBM Lab®, Aalto University*, University of Washington®, and independent researcher®.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/Improbable-AI/dw-offline-rl

>
>
a
»

POOYIYI] UondIY
POOYIII] U0V

>

© 0000 O0o0O0 Action © 0000 O0O0o Action
(a) Regularized offline RL with uniform sampling (b) Regularized offline RL with re-weighted dataset
Behavior Learned - Re-weighted behavior O High-return O Low-return
policy 7, policy 7, policy 7g, action action

Figure 1: The dots represent actions in the dataset, where imbalanced datasets have more low-return
actions. (a) Regularized offline RL algorithms [22, 7, 18] equally regularize the policy 7y on each
action, leading to imitation of low-return actions and a low-performing 7r9. The color under the curves
shows the policy’s performance J(my), with red indicating higher performance and blue indicating
lower performance. (b) Re-weighting the dataset based on actions’ returns allows the algorithm to
only regularize on actions with high returns, enabling the policy 7y to imitate high-return actions
while ignoring low-return actions.

hyper-parameter balancing the conflicting objectives of maximizing returns while also staying close
to the data distribution. This prevents offline RL algorithms from learning behaviors that produce
action distributions that diverge significantly from the behavior policy.

An easy-to-understand example of choice for C is the squared distance between the policy and
the data [7], C(s,a) = ||me(s) — a||3, where 7y (s) denotes the mean of the action distribution
mo(.|s) and a is an action sampled from the dataset. When the collected dataset is good, i.e., mostly
comprising high-return trajectories, staying close to the data distribution is aligned with the objective
of maximizing return, and existing offline RL algorithms work well. However, in scenarios where the
dataset is skewed or imbalanced, i.e., contains only a few high-return trajectories and many low-return
trajectories, staying close to the data distribution amounts to primarily imitating low-performing
actions and is, therefore, detrimental. Offline RL algorithms struggle to learn high-return policies in
such scenarios [12]. We present a method that overcomes this fundamental limitation of offline RL.
Our method is plug-and-play in the sense that it is agnostic to the choice of the offline RL algorithm.

Our key insight stems from the observation that current methods are unnecessarily conservative
by forcing the policy my to stay close to all the data. Instead, we would ideally want the policy
Ty to be close to the best parts of the offline dataset. This suggests that we should constrain 7y to
only be close to state-action pairs that would be generated from a policy that achieves high returns,
for instance, the (nearly) optimal policy 7*. In offline scenarios, where collecting additional data
is prohibited, to mirror the data distribution of 7* as much as possible, we can re-weight existing
data (i.e., importance sampling [17]). We instantiate this insight in the following way: Represent
the distribution induced by a better policy mp,, (initially unknown) by re-weighting data points in
the dataset with importance weights w(s, a) and denote this distribution as D, (s, a). Under this
weighting, the offline RL algorithm’s training objective can be written as:

max J(WG) - aE(s,a)ND [U}(S, a)C(S, a)])
o

Solving for 7y using the re-weighted objective constrains the policy to be close to the better policy
mp, and, therefore, allows learning of performant policies. The key challenge is determining the
weights w since the state-action distribution of the better policy 7p,, is initially unknown. To address
this, we employ off-policy evaluation techniques [32, 26, 44] to connect the data distribution D,,
with the expected return of the policy 7p,, that would generate it. This allows one to optimize the
importance weights with respect to its expected return as follows:

max J(mp,) = E(s,a)~D,, [1(5,0)] = E(s,0)~p [W(s,a)r(s,a)].

Here (s, a) denotes reward of state-action pair (s, a). By exploiting this connection, we optimize
the importance weights w to maximize the expected return J(7p,,) of its corresponding policy 7p,,
subject to necessary constraints (i.e., Bellman flow conservation constraint [35, 32]). This enables us
to obtain a better importance weights w.

We evaluate our method with state-of-the-art offline RL algorithms [22, 18] and demonstrate perfor-
mance gain on 72 imbalanced datasets [12, 6]. Our method significantly outperforms prior work [12]

in challenging datasets with more diverse initial states and fewer trajectories (20x smaller than exist-
ing datasets). These datasets pose greater challenges, yet they are crucial for practical applications
since real-world datasets are often small and exhibit diverse initial states (e.g., robots with different
starting positions, where data comes from human teleoperation).

2 Preliminaries

Typical (online) RL. Reinforcement learning is a formalism that enables us to optimize an agent’s
policy in a Markov decision process (MDP [35]). The agent (i.e., decision-maker) starts from an initial
state so sampled from an initial state distribution pg(.). At each timestep ¢, the agent perceives the
state sy, takes an action a; ~ 7(.|s;) with its policy 7, receives a reward r; = 7(s;, a;) from the envi-
ronment, and transitions to a next state s;41 sampled from the environment dynamics 7 (.|s¢, a;) until
reaching terminal states. The goal in RL is to learn a policy 7 to maximize the vy-discounted expected,

infinite-horizon return JY(m) = Eg < pg.a;mm(.|s0),s01~T(|sts00) {Z:io ~ir(st, at)}. Typical (on-

line) RL algorithms estimate the policy 7’s expected return (policy evaluation) from trajectories
7 = (80, 00,70, $1,01,71 - - -) generated by rolling out 7, and update the policy 7 toward increasing
J7(m) (policy improvement), and repeat the processing by performing rollouts with the updated
policy.

Offline RL. With no interaction with the environment allowed during the course of learning, offline
RL algorithms aim to learn a policy 7 that maximizes return, entirely using a fixed dataset D that
was collected by an arbitrary and unknown “behavior policy" 7mp (e.g., humans or pre-programmed
controllers). These methods typically aim to estimate the return of a policy 7 via techniques such as
Q-learning or actor-critic, only using batches of state-action pairs (s;, a;) uniformly drawn from D.

We will denote this estimate value of the return as j%(w) The dataset D consists of NV trajectories
rolled out by 7p:

D = {7 = (S0,0,70,51,a1,71 "~ ST,)i } o1, (1

where T; denotes the length of 7;. In practice, a limit on trajectory length is required since we can
only collect finite-length trajectories [34]. When the states that the policy m would encounter and

the actions that ™ would take are not representative in the dataset D, the estimated return j% (m) is
typically inaccurate [8, 20, 22]. Thus, most offline RL algorithms learn the policy 7 with pessimistic
or conservative regularization that penalizes shift of 7 from the behavior policy 7p that collected the
dataset. Typically, implicitly or explicitly, the policy 7 learned by most offline RL algorithms can be
thought of as optimizing the following regularized objective:

max j%(ﬂ) — aE(s;,a0)~p [C(51,at)] @

where C measures some kind of divergence (e.g., Kullback-Leibler divergence [7]) between 7 and
mp, and o € R denotes the strength of regularization.

3 Problem Statement: Unnecessary Conservativeness in Imbalanced Datasets

In this section, we describe the issue of offline RL in imbalanced datasets. While algorithms
derived from the regularized offline RL objective (Equation 2) attain good performance on several
standard benchmarks [6], recent work [12] showed that it leads to “unnecessary conservativeness"
on imbalanced datasets [12] due to the use of constant regularization weight on each state-action
pairs (s, a) in Equation 2. To illustrate why, we start by defining imbalance of a dataset D using
the positive-sided variance of the returns of the dataset (RPSV [12] defined in Definition 3.1). In
essence, RPSV measures the dispersion of trajectory returns in the dataset. It indicates the room for
improvement of the dataset. Figure 2 illustrates the distribution of trajectory returns in imbalanced
datasets with high and low RPSV. Datasets with a low RPSV exhibit a pronounced concentration
of returns around the mean value, whereas datasets with a high RPSV display a return distribution
that extends away from the mean, towards higher returns. Intuitively, a dataset with high RPSV has
trajectories with far higher returns than the average return of the dataset, indicating high chances of
finding better data distribution through reweighting. Throughout this paper, we will use the term
imbalanced datasets to denote datasets with high RPSV.

Definition 3.1 (Dataset imbalance). RPSV of a dataset, V. [G(7;)], corresponds to the second-
order moment of the positive component of the difference between trajectory return: G(7;) :=

Z;T;gl ytr(si, al) and its expectation, where 7; denote trajectory in the dataset:

Vi[G(r)] = Epp [(G(R) — EnnnlGr))2] with oo = max{z,0}, @)

Imbalanced datasets are common in real-world
scenarios, as collecting high-return trajectories

is often more costly than collecting low-return 3 A RPSV
ones. An example of an imbalanced offline 2o | \\\ m High
dataset is autonomous driving, where most tra- 2 /’ \ Low
Jectories are from average drivers, with limited A1 e

data from very good drivers. Due to the dom- / \ o
inance of low-return trajectories, state-action 0 o5 ~ OTO/_WLO 15

pairs (s,a) from these trajectories are over- Return G(T))
sampled in Equation 2. Consequently, optimiz-

ing the regularized objective (Equation 2) would Fjgyre 2: Return distribution of datasets with high
result in a policy that closely imitates the actions 454 Jow RPSV. Low RPSV datasets have returns
from lqw-Performing trajectorifﬁs that constitute centered at the mean, while high RPSV datasets
the majority of dataset D, but ideally, we want haye a wider distribution extending towards higher

the policy to imitate actions only on state-action retyrns. See Appendix A.4 for details.
pairs from high-performing trajectories. How-

ever, current offline RL algorithms [21, 18, 7] use constant regularization weight o (Equation 2). As
a result, each state-action pairs is weighted equally, which leads the algorithm to be unnecessarily
conservative on all data (i.e., imitating all actions of state-action pairs in the dataset). Further analysis
of imbalanced datasets can be found in Appendix A.1.

4 Mitigating Unnecessary Conservativeness By Weighting Samples

In this section, we seek to develop an approach to address the unnecessary conservativeness issue
(Section 3) of regularized offline RL algorithms in imbalanced datasets. Adding more experiences
from high-performing policies to the dataset would regularize the policy to keep close to high-
performing policies and hence easily mitigate the unnecessary conservativeness issue. Though
collecting additional experiences (i.e., state-action pairs (s, a)) from the environment is prohibited
in offline RL, importance sampling [32] can emulate sampling from another dataset D,, since the
weighting can be regarded as the density ratio shown below:

Dy (s,a)

Diea)

w(sa a) =
where D, (s,a) and D(s,a) denote the probability density of state-action pairs (s, a) in dataset
D,, and D. Note that D,, is unknown but implicitly defined through a given weighting function w.
This allows us to adjust the sampling distribution that we train the policy 7 to, as suggested in the
following equivalence:

max J3 (1) — aE (s, o,y [0(s, a)C (51, ar)] <= max J}(7) — aE(s, ap)p,, [C(s1,a0)]. (5)

The remaining question is: how can we determine the weighting w(s, a) so that we emulate sampling
from a better dataset D, collected by a policy that achieves higher return than the behavior policy
Tp that collected the original dataset D?.

4.1 Optimizing the Weightings: Emulating Sampling from High-Performing Policies

Our goal is to discover a weighting function w that can emulate drawing state-action samples from
a better dataset D,, that is collected by an alternative behavior policy wp,, with higher return than
the behavior policy 7p that collected the original dataset D (i.e., J¥(7mp,) > J?(7p)). We make
use of density-ratio-based off-policy evaluation methods [32, 29, 44] to determine if a weighting
function corresponds to a high-return policy. Note that we do not propose a new off-policy evaluation
approach but rather apply the existing off-policy evaluation technique in our problem. By using these

techniques, we can relate the weighting w to the expected return of the alternative behavior policy
J(mp,,) via importance sampling formulation as follows:

JV(mp,,) = E(s,a)~p,, [1(5,0)] = E(5,a)~p [w(s,a)r(s,a)]. 6)

In Equation 6, J7(7p,,) evaluates the quality of a given weighting function w. It also provides a
feasible objective to optimize w, since it only requires obtaining samples from the original dataset
D. However, it is important to note that Equation 6 measures ~y-discounted return only when the the
dataset D,, represents a stationary state-action distribution that satisfies Bellman flow conservation
constraint [35, 32, 44] in the MDP, as shown in the following equation:

Du(s') = (1=7)po(s) +7Y_ T(5|s,a)Du(s,0) Vs’ €S, Dy(s') := Y Dy(s',a') (1)
s,a a’'€eA
where S and A denote the state and action spaces, respectively, and the discount factor determines
what discount factor corresponds to in J7(7p,) in Equation 6. We slightly abuse the notation,
denoting state marginal as D,,(s’).

To estimate J? (mp,,) from the weighting function w, it is required to impose Bellman flow con-
servation constraint (Equaton 7) on w. However, it is difficult to impose this constraint due to the
dependence of initial state distribution py in Equaton 7. Estimating p from the first state of each
trajectory in the dataset is an option, but it is infeasible when the trajectories do not consistently start
from initial states sampled from the distribution pg. While we could make the assumption that all
trajectories begin from initial states sampled from py, it would limit the applicability of our method
to datasets where trajectories start from arbitrary states. We thus choose not to make this assumption
since current offline RL algorithms do not require it.

Instead, since the Bellman flow conservation constraint (Equation 7) only depends on the initial state
distribution pg when «y # 1, it is possible to bypass this dependence, if we maximize the undiscounted
return J(7p,) = J7=(7p,) (i.e., setting v = 1 in Equation 6) of the alternative behavior policy
mp,,. While it deviates from the RL objective presented in Equation 2, undiscounted return is often
more aligned with the true objective in various RL applications, as suggested in [13]. Many RL
algorithms resort to employing discounted return as an approximation of undiscounted return instead
due to the risk of divergence when estimating the undiscounted return using Q-learning [39]. Thus,
we constrain the weighting function w to satisfy the Bellman flow conservation constraint with v = 1
as shown below:

Dy(s") = ZT(S’\S, a)Dy(s,a) Vs € S. €))

To connect the constraint in Equation 8 to the objective in Equation 6, we rewrite Equation 8 in terms
of weightings w according to [29, 32]°, as shown below:

D(s")w(s") = ZT(5’|s,a)w(s,a) Vs’ e S, w(s) == Z Z;U(Sva‘;))
Ss,a aeA 5

where w(s) denotes state marginal weighting. Putting the objective (Equation 6) and the constraint
(Equation 9) together, we optimize w to maximize the undiscounted expected return of the corre-
sponding alternative behavior policy mp_, as shown in the following:

max J(7p,) = E(s,a)vp [w(s,)7 (s, a)] (10)
subjectto E(s 4 o)op [w(s') —w(s,a) |s'] =0 Vs' € S.

As the weightings w can be viewed as the density ratio (Equation 4), we call our method as Density-
ratio Weighting (DW). We then re-weight offline RL algorithm, as shown in Equation 5. Note
that while these weights correspond to (s,a) in the dataset, this is sufficient to reweight policy
optimization for offline RL.

4.2 Practical Implementation

Optimizing weightings. We begin by addressing the parameterization of the weighting function
w(s, a) and its state marginal w(s’) in Equation 10. Though state marginal w(s’) can derived from

2See Equation 24 in [29]

summing w(s, a) over action space A, as defined in Equation 9, it can difficult to take summation
over a continuous or infinite action space. Thus we opt to parameterize the weightings w(s, a) and
its state marginal w(s’) separately. By using the identities [32] D.,(s,a) = Dy (s)7p,, (a|s) and
D(s,a) = D(s)mp(als), we can represent w(s, a) as the product of two ratios:

w(s.a) 2 De5:0) _ Dul)ro,(als) _ Duls) | 7o, (als) a

D(s,a) ~ D(s)mplals) D(s) mp(als)

Michel et al. [31] showed that ratios can be parameterized by neural networks with exponential output.
Thus, we represent state-action weighting w(s, a) as wg (s, a) and its state marginal as wg(s), as
shown below:

We (8, a) = exp ¢(s) exp (s, a), we(s) = exp ¢(s) (12)

where ¢ and 1 are neural networks. Next, we present how to train both neural network models. As
the dataset often has limited coverage on state-action space, it is preferable to add a KL-divergence
regularization D ,(D,||D) to the objective in Equation 10, as proposed in Zhan et al. [43]. This
regularization keeps the state-action distribution D,, induced by the learned weighting w close to the
original dataset D, preventing wy . (s, a) from overfitting to a few rare state-action pairs in D. Note
that this does not prevent the learned weightings to provide a better data distribution for regularized
offline RL algorithms. See Appendix A.2 for the detailed discussion. Another technical difficulty
on training w is that it is difficult to impose Bellman flow conservation constraint in Equation 10
at every state in the state space since only limited coverage of states are available in the dataset.
Thus, we instead use penalty method [3] to penalize the solution of wy ,, on violating this constraint
in expectation. As a result, we optimize wy , for Equation 10 using stochastic gradient ascent to
optimize the following objective (details can be found in Appendix A.3):

I?([;%X E(s,a,s’)N'D w¢,¢(s, a)r(s, a) _)\F (wd,(s’) — ’w¢)w(8, CL))2 —)\K DKL(DwHD)a (13)
’ S— N———

Return Bellman flow conservation penalty KL regularization

where s’ denotes the next state observed after taking action a at state s, and Ap, A\x € RT denote
the strength of both penalty terms. Note that the goal of our work is not to propose a new off-policy
evaluation method, but to motivate ours in the specific objective to optimize the importance weighting
for training offline RL algorithms. Importantly, our approach differs from previous off-policy
evaluation methods [32, 26, 44], as further discussed in the related works (Section 6).

Applying the weighting to offline RL. The weighing function wy, , could be pre-trained before
training the policy, but this would introduce another hyperparameter: the number of pretraining
iterations. As a consequence, we opt to train wy , in parallel with the offline RL algorithm (i.e.,
value functions and policy). In our experiments, we perform one iteration of offline RL update
pairs with one iteration of weighting function update. We also found that weighting both J ()
and C(s, a) at each state-action pairs sampled from the dataset D with wy (s, a) performs better
than solely weighting the regularization term C(s,a). For example, when weighting the training
objective of implicit Q-learning (IQL) [18] (an offline RL method), the weighted objective Jp,, (7)
is: E(s,q)up [Wg,y(5,a)A(s, a)logm(als)], where A(s,a) denotes advantage values. Please, see
Appendix A.3 for implementation details. We hypothesize that weighting both the policy optimization
objective J () and regularization C(s, a) in the same distribution (i.e., same importance weights)

is needed to prevent policy 7 increasing j\%(ﬂ') by exploiting out-of-distribution actions on states
with lower weights wy, (s,), which could lead to poor performance [8]. Appendix A.5.5 compares
weighting both and only one objective. The training procedure is outlined in Algorithm 1.

5 Experimental Evaluation

Our experiments aim to answer whether our density-ratio weighting (DW) (Section 4) approach
can improve the performance of offline RL algorithms with different types of imbalanced datasets
(Section 3). Prior work on imbalanced datasets [12] focused exclusively on imbalanced datasets with
trajectories originating from a similar initial state. However, in real-world scenarios, trajectories can
be collected from diverse initial states. For instance, when collecting datasets for self-driving cars, it
is likely that drivers initiate the recording of trajectories from drastically different initial locations. We

Algorithm 1 Density-ratio weighting with generic offline RL algorithms (details in Appendix A.3)

Input: Dataset D
Initialize policy 7 and weighting function wg 4
while not converged do
Sample a batch B of tuples of states, actions, rewards, and next states (s, a, r, s") from D
Update wgy ., with batch B using Equation 13
Update policy 7 and value function with an offline RL training objective with weights
Wy (s,a) and B (e.g., [22,7, 18])
7: end while

AN A A A

found that imbalanced datasets with diverse initial states exhibit a long-tailed distribution of trajectory
returns, while those with similar initial states show a bimodal distribution (see Appendix A.4 for
details). As diversity of initial states affects the type of imbalance, we focus our experimentation on
the two types of datasets: (i) Trajectories with similar initial states and (ii) Trajectories with diverse
initial states.

Following the protocol in prior offline RL benchmarking [6], we develop representative datasets
of each type using the locomotion tasks from the D4RL Gym suite. Our datasets are generated
by combining 1 — ¢% of trajectories from the random-v2 dataset (low-performing) and ¢% of
trajectories from the medium-v2 or expert-v2 dataset (high-performing) for each locomotion
environment in the D4RL benchmark. For instance, a dataset that combines 1 — 0% of random and
0% of medium trajectories is denoted as random-medium-0%. We evaluate our method and the
baselines on these imbalanced datasets across four o € {1,5, 10, 50}, four environments. Both types
of datasets are briefly illustrated below and detailed in Appendix A.4. Additionally, we present the
results on the rest of original D4RL datasets in Appendix A.5.

(i) Trajectories with similar initial states. This type of datasets was proposed in [12], mixing
trajectories gathered by high- and low-performing policies, as described in Section 3. Each trajectory
is collected by rolling out a policy starting from similar initial states until reaching timelimit or
terminal states. We consider a variant of smaller versions of these datasets that have small number of
trajectories, where each dataset contains 50, 000 state-action pairs, which is 20 times smaller. These
smaller datasets can test if a method overfits to small amounts of data from high-performing policies.

(ii) Trajectories with diverse initial states. Trajectories in this type of dataset start from a wider
range of initial states and have varying lengths. One real-world example of this type of dataset is a
collection of driving behaviors obtained from a fleet of self-driving cars. The dataset might encompass
partial trajectories capturing diverse driving behaviors, although not every trajectory accomplishes
the desired driving task of going from one specific location to the other. As not all kinds of driving
behaviors occur with equal frequency, such a dataset is likely to be imbalanced, with certain driving
behaviors being underrepresented

5.1 Evaluation Setup

Baselines and prior methods. We consider uniform sampling (denoted as Uniform) as the primary
baseline for comparison. In addition, we compare our method with two existing approaches for
improving offline RL performance on imbalanced datasets: advantage-weighting (AW), proposed
in the recent work by [12] and percentage-filtering (PF) [5]. Both AW and PF sample state-action
pairs with probabilities determined by the trajectory’s return to which they belong. The sampling
probabilities for AW and PF are given as follows:

PAW(si, ai) x exp((G(1;) — Vo(sé))/n) (Advantage-weighting) (14)
Ppp(si, ai) x 1[G(1;) > Gkal (Percentage-filtering), (15)

where (s¢, al) denotes the state-action pair at timestep ¢ of trajectory 7;. G i, represents a threshold
for selecting the top-K % of trajectories, with K chosen from {10, 20,50} as practiced in [12].
V (s}) denotes the value of the initial state s in trajectory 7;, and the coefficient 7 represents the
temperature coefficient in a Boltzmann distribution. We consider three levels of n: low (L), medium
(M), and high (H) in our experiments. Further details of the hyperparameter setup can be found
in Appendix A.4. For the following experiments, we implement our DW and the above baselines
on the top of state-of-the-art offline RL algorithms: Conservative Q-Learning (CQL) [22], Implicit

Q-Learning (IQL) [19], and TD3BC [7]. Note that as AW can provide a better initial sampling
distribution to train the weighting function in DW, we initialize training DW with AW sampling
(denoted as DW-AW) and initialize training DW with uniform sampling (denoted as DW-Uniform) in
the following experiments. We refer the readers to Appendix A.3 for the implementation details.

Evaluation metrics. Following the settings of [6], we train all algorithm for one million gradient
steps with three random seeds in each dataset. We evaluate the performance of policies acquired
through each method in the environment corresponding to the dataset by conducting 20 episodes
every 1000 gradient step. To determine the policy’s performance at a given random seed, we compute
the average returns over 20 episodes during the final 10 evaluation rounds, each round separated
by 1000 gradient steps. We chose to average over the performance at the last 10 rounds rather than
solely at the last evaluation round because we observed that the performance of offline RL algorithms
oscillates during gradient steps. The main performance metric reported is the interquartile mean
(IQM) [1] of the normalized performance across multiple datasets, along with its 95% confidence
interval calculated using the bootstrapping method. As suggested in [1], IQM is a robust measure
of central tendency by discarding the top and bottom 25% of samples, making it less sensitive to
outliers.

5.2 Scenario (i): Trajectories with Similar Initial States

Figure 3a shows IQM of the normalized return for thirty-two different datasets where trajectories
start from similar initial states (Section 5). For all the datasets, we use the best hyperparameters for
AW and PF found in [12] and the hyperparameters for DW-AW and DW-Uniform are presented in
Appendix A.4. The results demonstrate that both DW-AW and DW-Uniform outperform the uniform
sampling approach confirming the effectiveness of our method. Moreover, combining DW with AW
enhances the performance of DW, indicating that DW can benefit from the advantages of AW. This is
likely because AW can provide a good initial sampling distribution to start training the weighting
function in DW. While DW-Uniform did not exceed the performance of AW in this experiment, it
should be noted that our method can be applied when datasets are not curated with trajectories such
as reset-free or play style datasets where data is not collected in an episodic manner. This is useful
for continuing tasks, where an agent (data curator) performs a task infinitely without termination (i.e.,
locomotion).

Limited size datasets. Figure 3b presents the results on smaller versions of 8 of these datasets used in
Figure 3a. Note that as we observe the higher temperature 7 enables AW with CQL to perform better
in this type of dataset, we additionally consider AW-XH (extra high temperature) for comparison
to provide AW with as fair a comparison point as possible. Further details on the hyperparameter
settings can be found in Appendix A.4. Our methods consistently achieve significantly higher returns
compared to AW and PF when combined with CQL. This suggests that our methods effectively
utilize scarce data in smaller datasets better than weighted sampling approaches (AW and PF) that
rely on episodic trajectory-based returns rather than purely transition level optimization like DW. In
the case of IQL and TD3BC, we see a clear performance improvement of our methods over uniform
sampling and PF while our methods perform on par with AW. For IQL, we hypothesize that this
is because IQL is less prone to overfitting on small amounts of data due to its weighted behavior
cloning objective [18], which always uses the in-distribution actions. However, it is worth noting that
IQL falls short in performance compared to CQL with DW-Uniform. This suggests that IQL may
primarily focus on replicating behaviors from high-return trajectories instead of surpassing them, as
it lacks the explicit dynamic programming used in CQL.

Takeaway. Since CQL with DW-AW outperforms the other two offline RL algorithms in both dataset
types, our suggestion is to opt for CQL with DW-AW, especially when dealing with datasets that
might exhibit an imbalance and include trajectories originating from comparable initial states.

5.3 Scenario (ii): Trajectories with Diverse Initial States

Figure 4 presents the results on thirty-two datasets of trajectories with diverse initial states (Section 5).
We observe that uniform sampling’s performance drops significantly in these datasets compared to
trajectories with similar initial states, indicating that the presence of diverse initial states exacerbates
the impact of imbalance. Both of our methods consistently outperform all other approaches considered
in Section 5.2, including AW and PF methods. Notably, even the best-performing variant of AW

B Uniform PF-20% . AW-L s AW-H s DW-AW (ours)
mm PF-10% . PF-50% s AW-M . AW-XH mmm DW-Uniform (ours)

CQL IQL

TD3BC

(o]
(e}

()}
o

N
(e}

IQM
normalized return
IS
(@]

o

(a) Results on imbalanced datasets of trajectories with similar initial states (Section 5.1).

=
(e}

w
(e}

—_
o

all -'iii" e ...I-i'- i ..-Ili"

CQL IQL TD3BC

IQM
normalized return

N

(]

o

(b) Results on smaller version of datasets used in Figure 3a.

Figure 3: (a) Our methods, DW-AW and DW-Uniform, achieve higher return than Uniform, indicating
that DW can enhance the performance of offline RL algorithms on imbalanced datasets. Note that
our methods in IQL, although not surpassing AW and PF-10% in performance, ours can be applied to
offline RL dataset that are not curated with trajectories. (b) Our methods outperform Uniform in CQL,
IQL, and TD3BC, indicating no significant overfitting in smaller datasets. DW-AW demonstrates
superior returns compared to AW and PF, particularly in CQL, indicating our method effectively
leverages limited data. IQL shows limited gains likely due to its difficulties in utilizing data from the
rest of low-return trajectories in the dataset (see Section 5.2).

(AW-M) falls short of matching the performance of our DW-AW, demonstrating the effectiveness of
DW in leveraging the initial sampling distribution provided by AW and furthering its performance.
The performance degradation of AW can be attributed to the presence of diverse initial states and
varying trajectory lengths in these datasets. In such cases, state-action pairs in trajectories with high
returns are not necessarily generated by high-performing policies. For instance, a sub-optimal policy
can also easily reach the goal and achieve a high return if it starts close to the goal (i.e., lucky initial
states). Consequently, over-sampling state-action pairs from high-return trajectories can introduce
bias towards data in trajectories starting from lucky initial states. Although AW attempts to address
this issue by subtracting the expected return of initial states (see Section 5.1), our results show that
AW has limited success in addressing this issue. This is because the estimated expected returns of
initial states can be inaccurate since AW uses the trajectories’ returns in the dataset to estimate initial
states’ returns (i.e., Monte Carlo estimates). The trajectories in the dataset are finite in length, which
makes the Monte Carlo estimates of expected returns inaccurate. To conclude, when an imbalanced
dataset consists of trajectories starting from diverse initial states, we recommend using DW-AW to
re-weight the training objectives in offline RL algorithms.

6 Related Work

Our approach builds upon recent advances in off-policy evaluation techniques, specifically density-
ratio importance correction estimation (DiCE) [32]. DiCE has been primarily used for policy
evaluation [29, 32, 10], while our method make use DiCE (i.e., the learned importance weights) to
re-weight samples for offline RL algorithms. Recent works [43, 37, 33, 26] optimize the policy using
DiCE via re-weighting behavior cloning with DiCE, while we found it fails to match offline RL
algorithms’ performance even in datasets with plenty of expert demonstration (Appendix A.5).

Offline imitation learning approaches [15, 30, 41] also consider imbalanced datasets similar to ours.
However, these methods assume prior knowledge of which data points are generated by experts,

Bmm Uniform PF-20% AW-L s AW-H mmm DW-Uniform (ours)

m= PF-10% PF-50% mmm AW-M DW-AW (ours)
£
= 60
-
(]
~
S S 40
o
B ' ' " I
—
o
2, M
0

TD3BC

Figure 4: Results on imbalanced datasets with trajectories starting from diverse initial states (Sec-
tion 5.3). Compared to Figure 3a, the performance of uniform sampling and AW decrease, showing
that diverse initial states exacerbate the issue of imbalance. Our methods, DW-AW and DW-Uniform,
achieve higher return than all the baselines, which suggests DW is advantageous in broader types of
imbalanced datasets.

while our approach does not rely on such information. Furthermore, our method can effectively
handle datasets that include a mixture of medium-level policies and low-performing policies, whereas
existing approaches often rely on expert-labeled data.

Multi-task offline RL algorithms [42, 14] filter data relevant to the current task of interest from
datasets collected from multiple task. For example, Yu et al. [42] employ task relevance estimation
based on Q-value differences between tasks. While our motivation aligns with data filtering, our
problem setting differs as we do not assume knowledge of task identifiers associated with the data
points. Additionally, our dataset comprises varying levels of performance within the same task, while
existing works mix data from different tasks.

Support constraints [20, 38, 2, 40] have been proposed as an alternative approach to prevent offline
RL algorithms from exploiting out-of-distribution actions, distinct from distributional constraints used
in state-of-the-art methods [22, 7, 18]. While support constraints theoretically suit imbalanced data,
the prior work [38] found that support constraints have not shown significant improvements beyond
distributional constraint-based algorithms. Note that our method is independent of the constraint used
in offline RL algorithms. Thus support constraints is orthogonal to our approach.

7 Conclusion, Future Directions, and Limitations

Our method, density-ratio weighting (DW) improves the performance of state-of-the-art offline RL
algorithms [22, 18] over 72 imbalanced datasets with varying difficulties. In particular, our method
exhibits substantial improvements in more challenging and practical datasets where the trajectories in
the dataset start from diverse initial states and only limited amount of data are available. Future works
can explore other optimization techniques to better address the Bellman flow conservation constraint
in importance weights optimization (e.g., Augmented Lagrangian method [37]). Additionally, it
would be valuable to study the impact of violating this constraint on the effectiveness of importance-
weighted offline RL algorithms.

Limitations. Although our method improves performance by optimizing sample weights, we lack
theoretical guarantees due to the absence of a unified theoretical analysis on the dependence of state-
of-the-art offline RL algorithms on imbalanced data distribution. While some theoretical works [4, 36]
have analyzed the interplay between data distribution and offline RL algorithm performance, they
primarily focus on specific algorithms that differ significantly from the practical state-of-the-art
offline RL algorithms.

10

Author Contributions

* Zhang-Wei Hong: Led the project and the writing of the paper, implemented the method, and
conducted the experiments.

* Aviral Kumar: Advised the project in terms of theory, algorithm development, and experiment
design. Revised the paper and positioned the paper in the field.

» Sathwik Karnik: Prepared the datasets and proofread the paper.
» Abhishek Bhandwaldar: Helpd scaling up experiments in the cluster.

* Akash Srivastava: Advised the project in the details of the practical and theoretical algorithm
design and coordinated the compute.

* Joni Pajarinen: Advised the project in the details of the practical and theoretical algorithm design
and experiment designs.

* Romain Laroche: Advised the project in the theory of the algorithms and dataset designs.

* Abhishek Gupta: Advised the project in terms of theory, algorithm development, and experiment
design. Revised the paper and positioned the paper in the field.

 Pulkit Agrawal: Coordinated the project, revised the paper, and positioned the paper in the field.

Acknowledgements

We thank members of the Improbable Al Lab for helpful discussions and feedback. We are grateful
to MIT Supercloud and the Lincoln Laboratory Supercomputing Center for providing HPC resources.
This research was supported in part by the MIT-IBM Watson AI Lab, an AWS MLRA research grant,
Google cloud credits provided as part of Google-MIT support, DARPA Machine Common Sense
Program, ARO MURI under Grant Number W911NF-21-1-0328, ONR MURI under Grant Number
N00014-22-1-2740, and by the United States Air Force Artificial Intelligence Accelerator under
Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Office or the United States Air Force or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

References

[1] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Bellemare. Deep reinforcement
learning at the edge of the statistical precipice. Advances in neural information processing
systems, 34:29304-29320, 2021.

[2] G. An, S. Moon, J.-H. Kim, and H. O. Song. Uncertainty-based offline reinforcement learning
with diversified g-ensemble. Advances in neural information processing systems, 34:7436-7447,
2021.

[3] S.P. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

[4] J. Buckman, C. Gelada, and M. G. Bellemare. The importance of pessimism in fixed-dataset
policy optimization. arXiv preprint arXiv:2009.06799, 2020.

[5] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. arXiv
preprint arXiv:2106.01345, 2021.

[6] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[7] S. Fujimoto and S. S. Gu. A minimalist approach to offline reinforcement learning. Advances
in neural information processing systems, 34:20132-20145, 2021.

[8] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-
ration. arXiv preprint arXiv:1812.02900, 2018.

[9] S.Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. arXiv preprint arXiv:1802.09477, 2018.

11

[10] S. Fujimoto, D. Meger, and D. Precup. A deep reinforcement learning approach to marginalized
importance sampling with the successor representation. In International Conference on Machine
Learning, pages 3518-3529. PMLR, 2021.

[11] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018.

[12] Z.-W. Hong, R. Tachet des Combes, P. Agrawal, and R. Laroche. Harnessing mixed offline rein-
forcement learning datasets via trajectory reweighting. International Conference on Learning
Representations (ICLR), 2023.

[13] S. Kakade. Optimizing average reward using discounted rewards. In Computational Learning
Theory: 14th Annual Conference on Computational Learning Theory, COLT 2001 and 5th
European Conference on Computational Learning Theory, EuroCOLT 2001 Amsterdam, The
Netherlands, July 16—19, 2001 Proceedings, pages 605-615. Springer, 2001.

[14] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and
K. Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at scale. arXiv
preprint arXiv:2104.08212, 2021.

[15] G.-H. Kim, S. Seo, J. Lee, W. Jeon, H. Hwang, H. Yang, and K.-E. Kim. Demodice: Offline
imitation learning with supplementary imperfect demonstrations. In International Conference
on Learning Representations, 2021.

[16] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[17] T. Kloek and H. K. Van Dijk. Bayesian estimates of equation system parameters: an application
of integration by monte carlo. Econometrica: Journal of the Econometric Society, pages 1-19,
1978.

[18] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.
arXiv preprint arXiv:2110.06169, 2021.

[19] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit g-learning. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=68n2s9ZJWF8.

[20] A. Kumar, J. Fu, G. Tucker, and S. Levine. Stabilizing off-policy g-learning via bootstrapping
error reduction. URL http://arxiv.org/abs/1906.00949.

[21] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine. Stabilizing off-policy g-learning via
bootstrapping error reduction. Advances in Neural Information Processing Systems, 32, 2019.

[22] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative g-learning for offline reinforcement
learning. In Proceedings of the 34th International Conference on Neural Information Processing
Systems, NIPS 20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

[23] S.Lange, T. Gabel, and M. Riedmiller. Batch reinforcement learning. In Reinforcement learning,
pages 45-73. Springer, 2012.

[24] R. Laroche and R. T. des Combes. On the occupancy measure of non-Markovian policies in
continuous MDPs. In Proceedings of the 40th International Conference on Machine Learning,
ICML 2023, Proceedings of Machine Learning Research. PMLR, 2023.

[25] R. Laroche, P. Trichelair, and R. Tachet des Combes. Safe policy improvement with baseline
bootstrapping. In Proceedings of the 36th International Conference on Machine Learning
(ICML long oral + EWRL + UAI workshop), 2019.

[26] J. Lee, W. Jeon, B. Lee, J. Pineau, and K.-E. Kim. Optidice: Offline policy optimization via
stationary distribution correction estimation. In International Conference on Machine Learning,
pages 6120-6130. PMLR, 2021.

[27] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[28] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline evaluation of contextual-bandit-
based news article recommendation algorithms. In Proceedings of the fourth ACM international
conference on Web search and data mining, pages 297-306, 2011.

12

https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
http://arxiv.org/abs/1906.00949

[29] Q. Liu, L. Li, Z. Tang, and D. Zhou. Breaking the curse of horizon: Infinite-horizon off-policy
estimation. Advances in Neural Information Processing Systems, 31, 2018.

[30] Y. Ma, A. Shen, D. Jayaraman, and O. Bastani. Versatile offline imitation from observations
and examples via regularized state-occupancy matching. In K. Chaudhuri, S. Jegelka, L. Song,
C. Szepesvari, G. Niu, and S. Sabato, editors, Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages
14639-14663. PMLR, 17-23 Jul 2022. URL https://proceedings.mlr.press/v162/
ma22a.html.

[31] P. Michel, T. Hashimoto, and G. Neubig. Distributionally robust models with parametric
likelihood ratios. International Conference on Learning Representations, 2022.

[32] O. Nachum, Y. Chow, B. Dai, and L. Li. Dualdice: Behavior-agnostic estimation of discounted
stationary distribution corrections. In Advances in Neural Information Processing Systems,
pages 2315-2325, 2019.

[33] O. Nachum, B. Dai, I. Kostrikov, Y. Chow, L. Li, and D. Schuurmans. Algaedice: Policy
gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

[34] F. Pardo, A. Tavakoli, V. Levdik, and P. Kormushev. Time limits in reinforcement learning. In
International Conference on Machine Learning, pages 4045-4054. PMLR, 2018.

[35] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

[36] P. Rashidinejad, B. Zhu, C. Ma, J. Jiao, and S. Russell. Bridging offline reinforcement learning
and imitation learning: A tale of pessimism. Advances in Neural Information Processing
Systems, 34:11702-11716, 2021.

[37] P. Rashidinejad, H. Zhu, K. Yang, S. Russell, and J. Jiao. Optimal conservative offline rl with
general function approximation via augmented lagrangian. arXiv preprint arXiv:2211.00716,
2022.

[38] A. Singh, A. Kumar, Q. Vuong, Y. Chebotar, and S. Levine. Offline rl with realistic datasets:
Heteroskedasticity and support constraints. arXiv preprint arXiv:2211.01052, 2022.

[39] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. 2018.

[40] Q. Vuong, A. Kumar, S. Levine, and Y. Chebotar. Dasco: Dual-generator adversarial support
constrained offline reinforcement learning. Advances in Neural Information Processing Systems,
35:38937-38949, 2022.

[41] H. Xu, X. Zhan, H. Yin, and H. Qin. Discriminator-weighted offline imitation learning from
suboptimal demonstrations. In International Conference on Machine Learning, pages 24725—
24742. PMLR, 2022.

[42] T. Yu, A. Kumar, Y. Chebotar, K. Hausman, S. Levine, and C. Finn. Conservative data sharing
for multi-task offline reinforcement learning. Advances in Neural Information Processing
Systems, 34:11501-11516, 2021.

[43] W. Zhan, B. Huang, A. Huang, N. Jiang, and J. Lee. Offline reinforcement learning with
realizability and single-policy concentrability. In Conference on Learning Theory, pages
2730-2775. PMLR, 2022.

[44] R. Zhang, B. Dai, L. Li, and D. Schuurmans. Gendice: Generalized offline estimation of
stationary values. arXiv preprint arXiv:2002.09072, 2020.

13

https://proceedings.mlr.press/v162/ma22a.html
https://proceedings.mlr.press/v162/ma22a.html

A Appendix

A.1 Additional Discussion on Imbalanced Datasets

We consider imbalanced datasets that mixes the trajectories logged by high- and low- performing
behavior policies, where trajectories from low-performing behavior policies predominate the dataset.
When dealing with such imbalanced datasets, the regularized offline RL objective (Equation 2) tends
to constrain the learned policy 7 to stay close to the overall mediocre behavior policy rather than the
high-performing one, which is an unnecessary form of conservativeness. We illustrate this issue from
intuitive and analytical aspects in the following.

Intuitively, for example, when considering a dataset D that mix the trajectories from two behavior
policies 74 and 75 where 7 significantly outperforms 7% (i.e., J(7H) > J(7%)), if the dataset is
imbalanced such that state-action pairs (s, a;) logged by 5 predominate, the regularized offline RL
objective will penalize deviation from Fé more than deviation from ﬂg . This is because uniform
sampling on the imbalanced dataset oversamples state-action pairs (s, a;) from 7%, leading to an
over-weighting of the regularization term on those state-action pairs (s, a:).

Analytically, the issue of unnecessary conservativeness (Section 3) can be explained by how the
performance of offline RL J(7) is dependent on the performance of the behavior policy J(7p), as
suggested in [12]. In the case of an imbalanced dataset where the behavior policy can be regarded
a mixture of 72 and 75, the performance of the behavior policy J(7p) can be estimated by the
expected return of the distribution of trajectory in the dataset D, as shown below:

N
J(rp) = Er,np [G(7:)] = > D(7:)G(73), (16)

where D(7;) denotes the probability mass of trajectory 7; in D, G(;) := ZtT;gl r(si, al) is the
return (i.e., sum of rewards) of trajectory 7;, and 7T} is its length. Since the trajectories from 75
dominate the dataset, the average return is mostly determined by low-return trajectories, leading to
low J(7p). This prevents pessimistic and conservative algorithms [22, 7, 18, 20, 25] from achieving
high J () with low J(7p). Both types of algorithms aim to learn a policy 7 that outperforms 7p (i.e.,
J(m) > J(7p)), while constraining the policy 7 to stay close to 7p [4]. Recent theoretical analysis
by Singh et al. [38] on conservative Q-learning (CQL) [22] (an offline RL algorithm) shows that the
performance improvements of the learned policy 7 over the behavior policy is upper-bounded by the
deviation of 7 from 7p as shown in: J(7) — J(7p) < CE(, 4)~p [C(s,a)], where C is a constant
and C denotes the regularization penalty (see Section 2). This implies that regularized objective
would constrain the policy 7 from deviating from 7p, thus corroborating the findings in [12] despite
the absence general theoretical guarantees for all offline RL algorithms.

Why our method improves performance on imbalanced datasets? Our importance reweighting
method can be seen as a modification of the performance of the behavior policy, which represents the
lower bound in conservative and pessimistic offline RL algorithms. By adjusting the weights of state-
action pairs sampled from the dataset, we simulate the sampling of data from an alternative dataset D,,
that would be generated by an alternative behavior policy 7p,,. By maximizing the expected return
J(mp,,) of this alternative behavior policy 7p,,, we can obtain a mp,, that outperforms the original
behavior policy 7p, i.e., J(7p,) > J(mwp). As mentioned earlier, most offline RL algorithms aim to
achieve a policy that performs at least as well as the behavior policy that collected the dataset. By
training an offline RL algorithm using a dataset D,, induced by reweighting with w, we obtain a
higher lower bound on the policy’s performance, as J(7p,,) > J(7p).

A.2 Why regularizing the importance weightings with KL divergence does not prevent policy
improvement?

In Section 4.2, we employ a KL divergence penalty denoted as D 1,(D||D.,) to impose a penalty on
the extent to which the weighted data distribution D,, diverges from the original data distribution
D. It is important to note that this penalty does not inhibit the learned weightings from potentially
improving the data distribution for regularized offline RL algorithms. Essentially, our approach
involves optimizing the data distribution for offline RL algorithms first. Subsequently, these offline
RL algorithms are subjected to regularization based on this optimized distribution, thereby further

14

enhancing the policy. This framework enables offline RL algorithms to deviate more significantly
from the original data distribution.

To illustrate this concept, consider a scenario where our density-ratio weightings are constrained
within an € KL divergence margin with respect to the original data distribution. A regularized offline
RL algorithm, which is also subject to an ¢ KL divergence constraint with respect to this weighted
data distribution, can potentially improve its performance even when it deviates by more than 2¢ from
the original data distribution. It is worth noting that some readers might think this as being analogous
to reducing the regularization weight a.. However, reducing « (Equation 2) lets offline RL algorithms
to determine how far they should deviate from the original data distribution on their own. In our
experimental investigations, we have observed that reducing « often results in worse performance
compared to utilizing our DW method, as evidenced by the results presented in Figure [small kI].

A.3 Implementation details

A.3.1 Offline RL algorithms

We implement our method and other baselines on top of two offline RL algorithms: Conservative
Q-Learning (CQL) [22] and Implicit Q-Learning (IQL) [18]. Our baselines, advantage-filtering (AW)
and percentage-filtering (PF), are weighted-sampling methods (see Section 5.1). Therefore, they do
not require changing the implementation of offline RL algorithms. In the following sections, we
explain the details of our importance weighting method for each algorithm.

CQL. We reweight both the actor (policy) and the critic (Q-function) in CQL as follows:
max Eg p amr(.|s) [We(5) (Q(s,a) —logm(als))] (Actor) (17)

ngn aE (s q)~p |‘71,r(,,,1},(s, a) <log Z exp Q(s,a’) — Q(s,a)) + (Critic) (18)

a’€A

E(s,a,s’)N'D,a’Nﬂ(.\s’) |:'LL'@‘,I;,(S, a’) (T(S7 CL) + 7@(8/7 al) - Q(Sa a))2:|

min E;p aon(js) [we(s) (—logm(als) — H)] (Entropy coefficient [11]), (19)
[e3

where H denotes the target entropy used in soft actor critic (SAC) [11] and w¢ and wg , denote
the weights predicted by our method (see Section 4). We follow the notations in CQL paper [22].
The implementation details of computing Equation 17 can be found in [22]. Our implementation is
adpated from open-sourced implementation: JaxCQL>.

IQL. We reweight state-value function (V), state-action value function (i.e,. Q-function, @), and
policy (7) in IQL as follows:

mvin E(s,a)~D [wy(s)L5(Q(s,a) — V(s))] (20)
i E(s 0,0y |00 (5,) (r(s,0) + 7V () = V())°] @b
max E (s oy [105.0.(5, @) exp (8 (Q(s, 0) = V(s))) log w(als)] (22)

where L] denotes the upper expectile loss [18] and 5 denotes the temperature parameter for IQL.
Our implementation is adapted from the official implementation* for implicit Q-learning (IQL) [18].

We attach our implementation in the supplementary material, where CQL and IQL implementations
are in JaxCQL and implicit_q_learning, respectively.

3https://github.com/young-geng/JaxCQL
*https://github.com/ikostrikov/implicit_q_learning

15

A.3.2 Density-weighting function

The following is the training objective of the importance weighting function wg , and wg in our
method, as described in Equation 10 (Section 4.2):

R

max E(s o s)op |Wey(5,a)7(s,a) =Ap (we(s") — we (s, a))2 — Ak Dk r(Dy||D) .
—_———

Return Bellman flow conservation penalty KL regularization
The KL regularization term can be expressed as follows:
(s, a)

Du(s0), Dule.)
_ZD s,a) log D(s,a)

Dy
Dk (D,||D) = ZD s,a)log ——= D(s. (23)

D ,(s a) Dy (s,a)

—E N u 1 s
(s,0)~D { D(s,a) 8 D(s,a)

= E(s,a)ND [w(s, a) 1Og w(sﬂ a)] .

Thus, we can rewrite the training objective (Equation 10) to the follows:

max E(s.a,5)~D |Wo,u(5,a)r(s,a) =Ap (we(s') — we,y(s,a))* — Agwe,y (s, a)logwgs (s, a)

Return Bellman flow conservation penalty KL regularization

(24)

The objective in Equation 24 can be optimized by minimizing the loss function L(¢,)) using
stochastic gradient descent shown below:

L(¢,v) :== Lr(¢,¥) + ArLp($,¢) + Ak Lk (¢,) (25)
B
Lr(p,¥) ==) e y(si,ai)r(si,a;) (26)
i=1
B
Z W (7) = wa,u(si a:)” 27
i=1
B
Z (s,a)logwe (s, a), (28)

where B denote batch size and (s;, a;) denotes the i state-action pair in the batch. wg 4 (s;, a;)
denotes the batch normalized weights predictions [31] that is defined as follows:

w si,ai
W (i, a;) = p(Si @) (29)

B
Zj:l W,y (85, ;)

where wg (i, a;) denotes the importance weights predictions from the network ¢ and ¢ (see
Section 4.2). As [31] suggests, applying batch-level normalization on the importance weights
predictions can make the normalization requirement of importance weights, i.e., E [w] = 1, more
likely being satisfied during optimization than other approaches (e.g., adding normalization penalty
term) (see [31] for details).

A.4 Evaluation detail

A.4.1 Training details

For both the baselines and our method, we train CQL and IQL for a total of one million gradient
steps. The hyperparameters used for CQL and IQL are set to the optimal values recommended in

16

their publicly available implementations. As for the training of our density weighting functions ¢, v,
we employ the same network architecture as the Q-value function architectures in CQL and IQL,
which consists of a two-layer Multilayer Perceptron (MLP) with 256 neurons and ReLU activation
in each layer. To minimize the objective defined in Equation 25, we train ¢ and v using the Adam
optimizer [16] with a learning rate of 0.0001 and a batch size of 256. In each gradient step of CQL
and IQL, we train ¢ and) for one gradient step as well.

We conducted hyperparameter search in the datasets with diverse trajectories. For AW with CQL we
searched temperatue n: 0.01 (L), 0.1 (M, the best from the original paper), 1.0 (H), 5.0 (XH). For AW
with IQL, we searched temperature n: 0.01 (L), 0.2 (M) (the best from the original paper), 1.0 (H),
5.0 (XH). For PF in CQL and IQL, we searched K over 0.1, 0.2, and 0.5. The hyperparameter search
results are all already presented in Figures 3a. For DW-AW, we use the temperature 7 used in AW-M
for CQL and IQL, except for small datasets. In small datasets (Figure 3b), we use the temperature
used in AW-XH for DW-AW. For DW-AW and DW-Uniform, we searched A\ € {0.2,1.0} and
Ar € {0.1,1.0,5.0}. We use the best found hyperparameter by the time we started the large scale
experiments: (Ax, Ap) = (0.2,0.1) for CQL and (Ag, Arp) = (1.0, 1.0) for IQL. We present the
hyperparameter search results of DW-Uniform in Figure 2.

A.4.2 Evaluation details

We follow the evaluation protocol used in most offline RL research [22, 7, 18]. Each offline RL
algorithm and sampling method (including our DW approach) combination is trained for one million
gradient steps with three random seeds in each dataset. We evaluate the policy learned by each
method in the environment corresponding to the dataset for 20 episodes every 1000 gradient step.
The main performance metric reported is the interquartile mean (IQM) [1] of the normalized mean
return over the last 10 rounds of evaluation across multiple datasets, along with its 95% confidence
interval calculated using the bootstrapping method. As suggested in [1], IQM is a robust measure
of central tendency by discarding the top and bottom 25% of samples, making it less sensitive to
outliers.

Compute. We ran all the experiments using workstations with two RTX 3090 GPUs, AMD Ryzen
Threadripper PRO 3995WX 64-Cores CPU, and 256GB RAM.

A.4.3 Dataset curation.

Following the protocol in prior offline RL benchmarking [6, 12], we develop representative datasets
for Scenarios (i) and (ii) using the locomotion tasks from the D4ARL Gym suite.

Scenario (i): Datasets with trajectories starting from similar initial states. This type of datasets
was proposed in [12], mixing trajectories gathered by high- and low-performing policies, as described
in Section 3. Each trajectory is collected by rolling out a policy starting from similar initial states until
reaching timelimit or terminal states. As suggested in [12], these datasets are generated by combining
1 — 0% of trajectories from the random-v2 dataset (low-performing) and o% of trajectories from
the medium-v2 or expert-v2 dataset (high-performing) for each locomotion environment in the
D4RL benchmark. For instance, a dataset that combines 1 — 0% of random and ¢% of medium
trajectories is denoted as random-medium-o%. We evaluate our method and the baselines on these
imbalanced datasets across four o € {1, 5, 10, 50}, four environments. We construct 32 of this type of
datasets in all the combinations of {ant, halfcheetah, hopper, walker2d} x {random-medium,
random-expert} x {o € {1,5,10,50}}. Also, we consider a variant of smaller versions of these
datasets that have small number of trajectories, where each dataset contains 50, 000 state-action pairs,
which is 20 times smaller. These smaller datasets can test if a method overfits to small amounts of
data from high-performing policies. As every method fails to suprpass random policy when ¢ = 1
and o = 5, we only evaluate all the methods in ¢ = 10. Note that the results in ¢ = 50 is not different
from the results in larger version of mixed dataset with o = 50 since the amount of high-performing
trajectories is still sufficient when o = 50.

Scenario (ii): Datasets with trajectories starting from diverse initial states. Trajectories in this
type of dataset start from a wider range of initial states and have varying lengths. This characteristic
is designed to simulate scenarios where trajectories from different parts of a task are available in
the dataset. One real-world example of this type of dataset is a collection of driving behaviors

17

obtained from a fleet of self-driving cars. The dataset might encompass partial trajectories capturing
diverse driving behaviors, such as merging onto a highway, changing lanes, navigating through
intersections, and parking, although not every trajectory accomplishes the desired driving task of
going from one specific location to the other. As not all kinds of driving behaviors occur with
equal frequency, such a dataset is likely to be imbalanced, with certain driving behaviors being
underrepresented. We curate this type of datasets by adapting the datasets from Scenario (i). These
datasets are created by combining 1 — 0% of trajectory segments from the random-v2 dataset
(representing low-performing policies) and 0% of trajectory segments from either the medium-v2
or expert-v2 dataset (representing high-performing policies) for each locomotion environment in
the D4RL benchmark. Each trajectory segment is a subsequence of a trajectory in the dataset of
Scenario (i). Specifically, for each trajectory ;, a trajectory segment is selected, ranging in length
from 10 to 50 timesteps within 7;. We chose the minimum and maximum lengths to be 10 and 50
timesteps, respectively, based on our observation that most locomotion behaviors exhibit intervals
lasting between 10 and 50 timesteps. Since locomotion behaviors are periodic in nature, these
datasets can simulate locomotion recordings from various initial conditions, such as different poses
and velocities.

The datasets in Scenario (ii) capture a different form of imbalance that is overlooked in the datasets
of Scenario (i). The imbalanced datasets in Scenario (i) combine full trajectories from low- and
high-performing policies, starting from similar initial states. These datasets capture the imbalance
resulting from the policies themselves, while overlooking the imbalance caused by different initial
conditions. Even when using the same behavior policy, the initial conditions, i.e., the initial states of
trajectories, can lead to an imbalance in the dataset, as certain initial conditions tend to yield higher
returns compared to others. For example, an agent starting near the goal and another starting far away
from the goal may achieve significantly different returns, even when following the same policy. This
type of imbalance can exist in real-world datasets if certain initial conditions are oversampled during
the dataset collection process.

Figure 5 presents the distribution of normalized returns for both types of datasets in both scenarios.
The trajectory returns are normalized to a range of 0 to 1 using max-min normalization, specifically
(G(73) — Giin)/ (Gmax — Gnin), where G in and G ax denote the minimum and maximum trajectory
returns in the dataset, respectively. From Figure 5, we observe that the two types of datasets exhibit
different return distributions. The return distribution in Scenario (i) (i.e., mixed) is closer to a bimodal
distribution, where a trajectory is either from a high- or low-performing policy. On the other hand,
the return distribution in Scenario (ii) (i.e., mixed (diverse)) follows a heavy-tailed distribution, where
high-return trajectories are located in the long tails. This indicates that in addition to the imbalance
resulting from the combination of trajectories from low- and high-performing policies, the presence
of diverse initial states introduces another type of imbalance in the dataset, where initial states that
easily lead to high returns are much less prevalent than others.

A.5 Additional results

We present the full results in total of 113 datasets in Tables 4 and 5, including original D4RL
datasets [6], mixed datasets (Figure 3a, denoted as Mixed), mixed datasets with diverse initial states
(Figure 4, denoted as Mixed (diverse)), and small datasets (Figure 3b, denoted as Mixed (small)).
As [12] suggested, the original D4RL datasets are not imbalanced and thus weighted sampling and
importance weighting methods perform on par with uniform sampling.

A.5.1 Four room example for trajectory stitching

To assess DW’s trajectory stitching ability, we conducted an experiment in a didactic four-room
environment [26].

Experiment setup: See Figure 6 for the environment illustration. The agent starts from an orange
initial state, traverses non-red cells, gaining +1 reward at the green goal, else zero. To test trajectory
stitching, a suboptimal dataset with 1000 trajectories was generated, where none of each is optimal
trajectory. Due to absence of optimal trajectories, up-weighting trajectories (i.e., AW and PF) with
high-returns won’t produce a state-action distribution matching the optimal policy. Thus, if a method
can generate state-action distribution matching the one of the optimal policy, it indicates that the
method is able to stitch trajectories because it can identify optimal state-action pairs leading to the
goal even though those optimal state-action pairs are not observed in the same trajectory in the dataset.

18

ant-random-medium-0.01-v2
[mixed

30 |
2 h | [mixed (diverse)
220 |
<3
Qo
oL AL DA
0.00 0.25 0.50 0.75 1.00
ant-random-expert-0.01-v2
40 “ [mixed
I ‘ . [mixed (diverse)
£y |
o} |
A Il
N
9000 025 050 075 1.00

hopper-random-medium-0.01-v2
[mixed

75
= [mixed (diverse)
250 ‘
o
Ras |
|
0 | N
0.00 0.25 050 0.75 1.00
hopper-random-expert-0.01-v2
100] mixed
2 [mixed (diverse)
z
g 50
a
|
oL MA
0.00 0.25 050 0.75 1.00

halfcheetah-random-medium-0.01-v2 halfcheetah-random-medium-0.05-v2

[mixed
| [mixed (diverse)

S_X I
0.0 0.5 1.0

halfcheetah-random-expert-0.01-v2 3galfcheetah—random—expert—o .05-v2

40 ‘ [mixed
I [mixed (diverse)
7
520
[=] Al
Al
/Iy
JLA
0 0.0 0.5 1.0
walker2d-random-medium-0.01-v2
150 [mixed
> [mixed (diverse)
2100
a
50
o0 A
0.00 0.25 0.50 0.75 1.00

walker2d-random-expert-0.01-v2

150 [mixed
> [mixed (diverse)
7 100
=
O
2 50
0000 025 050 075 1.00

Normalized return

ant-random-medium-0.05-v2
20 “"‘ | 7 mixed
|

|| /| = mixed (diverse)
|
I
I
‘\ |
Al
o LA . _
0.00 0.25 0.50 0.75 1.00
ant-random-expert-0.05-v2
‘\\ “ [mixed
20 [“ | 7 mixed (diverse)
Il
|

10 Il

L _ —
00.00 0.25 0.50 0.75 1.00

hopper-random-medium-0.05-v2
[mixed

60

‘ 1 mixed (diverse)
40
20 ‘

|

\
oL A

0.00 025 0.50 0.75 1.00

hopper-random-expert-0.05-v2
75 [mixed

[mixed (diverse)

50
25 ‘
o

0.00 0.25 0.50 0.75 1.00

| = mixed

20
|| [mixed (diverse)
10
A\
AN _
0 0.0 0.5 1.0

[mixed
20 [mixed (diverse)
10 il
o AN

0.0 0.5 10

walker2d-random-medium-0.05-v2

100 mixed
[mixed (diverse)
50
0)\ .
0.00 0.25 0.50 0.75 1.00

walker2d-random-expert-0.05-v2

[mixed
1 mixed (diverse)

50‘

|

9000 025 050 0.75
Normalized return

1.00

ant-random-medium-0.1-v2

) | I mixed
15 i | [mixed (diverse)
0]

Bl

[
50

PAINY S S
0 0.00 0.25 0.50 0.75 1.00

ant-random-expert-0.1-v2

| = mixed
20 ﬂ 1 mixed (diverse)
I
10 \“\
J
o
0 i/ S S N
0.00 025 0.50 0.75 1.00

hopper-random-medium-0.1-v2
[mixed

60
[mixed (diverse)
40
20 ‘
|
|
i e
0.00 0.25 0.50 0.75 1.00
hopper-random-expert-0.1-v2
[mixed
] mixed (diverse)
40
20 H
|
o MA_
0.00 0.25 0.50 0.75 1.00

halfcheetah-random-medium-0.1-v2
| = mixed

15 | 7 mixed (diverse)
10
5 ~
\
/BN |
0 0.0 0.5 1.0

halfcheetah-random-expert-0.1-v2

20 [mixed
[mixed (diverse)
10
//7
0 4// —_—

00 05 1.0

walker2d-random-medium-0.1-v2

75 7 mixed
] mixed (diverse)

I

o M/

0.00 025 050 0.75 1.00
walker2d-random-expert-0.1-v2

[mixed
1 mixed (diverse)

60 ‘
w0 |
20 ‘
M

0.00 025 050 075
Normalized return

0 1.00

ant-random-medium-0.5-v2

75 [mixed
mixed (diverse)
5.0
2.5
00" o0 0.5 1.0
10 ant-random-expert-0.5-v2
[mixed
“»\‘ [mixed (diverse)
5
LK N
0 0.0 0.5 1.0

hopper-random-medium-0.5-v2

ﬁ [mixed
[mixed (diverse)

|
20
‘\
|
10 “
I
0 y. U —
0.00 0.25 0.50 0.75 1.00
30 hopper-random-expert-0.5-v2
| [mixed
20 ‘\ 1 mixed (diverse)
I
il
10
Y
A\
0 N
0.00 0.25 0.50 0.75 1.00

halfcheetah-random-medium-0.5-v2

6 [mixed
[mixed (diverse)

4
2 = —

/ y \' [\\\
0 0.0 0.5 1.0

halfcheetah-random-expert-0.5-v2

6 [mixed
|| 1 mixed (diverse)

4

2 N —
g\ ZaN

0 LN L N
0.0 05 1.0

walker2d-random-medium-0.5-v2
| [mixed

20 H‘ 1 mixed (diverse)
|
10|
I
A
ol MV A | _
0.00 0.25 0.50 0.75 1.00
walker2d-random-expert-0.5-v2
20| 1 mixed
H‘ 1 mixed (diverse)
|
o
| |
I
ol AN

000 025 050 075 1.00

Normalized return

Figure 5: Return distributions of mixed datasets with similar initial states (blue, Scenario (i)) and
diverse initial states (orange, Scenario (ii)). Both types of datasets lead to different kinds of imbalance
and return distributions. See Section A.4.3 for details.

Results: Figures 6a, 6b, and 6e display the state-action distributions of behavior policy, optimal
policy, and DW; the number above each plot is expected return under the state-action distribution.
We see that both AW (Figure 6¢) and PF (Figure 6d fail to match the state-action distribution of the
optimal policy in Figure 8(b), hence leading to suboptimal performance. In contrast, DW successfully
approximates the optimal policy’s state-action distribution, confirming DW can identify optimal
state-action pairs observed in different suboptimal trajectories and stitch them to optimal trajectories.

A.5.2 Comparison with OptDICE

OptDiCE [26] and AlgaeDiCE [33], as well as our method, all involve learning importance weights
for policy optimization. However, the usage and learning of importance weights vary across these

19

J=0.17

(a) Behavior policy (b) Optimal policy (c) PF (d) AW (e) DW (ours)

Figure 6: The stationary state-action distributions of behavior policy (a), the optimal policy (b),
percentage filtering (i.e., top K%) (c), advantage weighting (d), and density weighting (e). J denotes
the expected return for each. The agent starts from the orange state and will receive the rewards at the
green state (goal) and episode termination. Figure 6a is the empirical state-action distribution formed
by 1000 suboptimal trajectories without optimal trajectory to the goal. Reweighting trajectories (i.e.,
AW and PF) cannot produce the optimal state-action distribution (Figure 6b) in the absence of optimal
trajectories in the dataset. In contrast, since DW assign weights to transitions rather than trajectories,
it can up-weight good transitions in suboptimal trajectories and stitch them to optimal state-action
distribution. As we see, only DW (Figure 6e) successfully matches the optimal policy. This indicates
that DW has the ability to stitch trajectories from suboptimal data distribution like Figure 6a while
the other methods cannot.

methods. We compare our method with OptDiCE as it is the state-of-the-art method on policy
optimization using DiCE. In the following, we illustrate the difference between our method and
OptDiCE.

Learning importance weights. OptDiCE learns the importance weights through solving the op-
timization problem same as Equation 10 in an approach different from ours. OptDiCE learns the
importance weights through optimizing the following primal-dual objective:

min max E(s,a)~p [e0(s,@)w(s,a) — af(w(s,a))] 4+ (1 = 7)Esgmp, [V(50)] & (30)

v w

min E(g vyon[6(5,0,5) (1) 7 (2eu(s,0,5)) , — af (1) M (Eeu(s,0,50))]+ G

(1 - 7)ESONPU [V(SO)]a
where f can be any convex function (e.g., f(x) := xzlogx), é,(s,a,s’) :=r(s,a) +yv(s') — v(s),
and x4 := max(0, z). The coefficient o denotes the strength of regularization: the higher the « is,
the uniform the importance weights are. The learned importance weights w(s, a) are expressed in

terms of v as follows:
w(s,a) = max <O, (Nt (@,(s,a,s))) . (32)

«

On the other hand, our method learns the importance weights without solving the min-max optimiza-
tion.

Applying importance weights. OptDiCE extracts the policy from the learned importance weights
using information projection (I-projection) [26]. The implementation of I-projection is non-trivial,
while its idea is close to weighted behavior cloning objective shown as follows:

max E(s,a)~D,, [logm(als)] = max E(s,a)~p [w(s,a)logm(als)]. (33)
Differing from OptDiCE, we apply the importance weights to actor-critic offline RL algoritmhs like
CQL [22] and IQL [18].

We present the performance of our methods in CQL and IQL, and OptDiCE in imbalanced datasets
used in Scenario (i) in Figure 7, showing that OptDiCE underpeform all the other methods on
imbalanced datasets and even underperforms uniform sampling approach. This result indicates that
even though OptDiCE learns the importance weights by solving a similar objective with our method,
OptDiCE is not effective on imbalanced datasets.

A.5.3 Comparison with weights learned by OptDiCE

While the policy learned using OptDiCE may not be effective on imbalanced datasets, it remains
uncertain whether the importance weights learned with OptDiCE can enhance the performance of

20

=
F:-,; 80 mmm Uniform
-
60 B PF-10%

S g AW

o N40 B OptDiCE
g 20 DW-AW (ours)
= B DW-Uniform (ours)
g, - | i

CQL IQL

Figure 7: Results on imbalanced datasets of trajectories with similar initial states (Scenario (i) in
Section 5.1). OptDiCE [26] fails to achieve high return on imbalanced datasets and even performs
worse than CQL and IQL with uniform sampling. Note that OptDiCE is a density-ratio importance
correction estimation (DiCE) based offline RL algorithm rather than a sampling or importance
weighting method. While both bars of OptDiCE in this figure denote the same result, we plot the
performance of OptDiCE alongside CQL and IQL with different sampling (or weighting) methods
for comparison.

OptDiCEW (v = 0.1) OptDiCEW (o = 1.0) OptDiCEW (o = 5.0)

hopper-random-expert-diverse-5%-v2 3.3(-17.5) 39.1 (+18.3) 4.0 (-16.8)
hopper-random-expert-diverse-10%-v2 1.5 (-56.4) 29.7 (-28.2) 11.9 (-46.0)
hopper-random-medium-diverse-5%-v2 - 6.4 (-58.5) 57.3 (-7.6)
hopper-random-medium-diverse-10%-v2 2.2 (-52.9) 30.1 (-25.0) 41.0 (-14.1)

(*: training gets terminated due to NaN values)

Table 1: Comparison of the weights learned by our method and that learned by OptDiCE approach.
Each cell in the table denotes the mean return obtained by CQL trained with OptDiCE weights
and the number in the parenthesis indicates the improvements (i.€., SCOr€oppicE — SCOr€ours) OVEr
the performance of DW-Uniform reported in Figure 4. It shows that OptDiCE underperforms our
method in most datasets (i.e,. negative improvements), and is sensitive to the regularization strength
parameter « (see Section A.5.3).

offline RL algorithms. To investigate this hypothesis, we reweight the training objective of CQL
(Equation 17) using the importance weights learned with OptDiCE (Equation 32). We present a
comparison with our method in Table 1, where OptDiCEW refers to CQL trained with OptDiCE
weights, and « represents the regularization strength (Equation 30). We examine different values
of a ranging from 0.1 to 5.0, but none of them consistently outperforms our method. It is worth
noting that each configuration results in a significant performance loss in certain datasets. While
this observation suggests that the importance weights learned using OptDiCE are not effective in
improving the performance of offline RL algorithms, it is important to note that our work does not
aim to propose a new off-policy evaluation method based on DiCE. Therefore, a comprehensive
comparison between different methods for learning importance weights is left for future research
endeavors.

A.5.4 Hyperparameter studies

In this section, we investigate the hyperparameters of KL regularization strength (A) and Bellman
flow conservation strength (Ar). We present the average returns obtained in four specific imbalanced
datasets in Table 2. These datasets are chosen because they exhibit significant performance differences
between uniform sampling and other methods. Our observations indicate that higher penalties for
flow conservation and lower strengths of KL regularization tend to improve performance in both CQL
and IQL.

A.5.5 Comparison of re-weighting both objectives and only regularization objective

In theory, the regularization term E, 4)~p [C(s,a)] (Equation 2) is the only component that can
potentially harm performance on imbalanced datasets, as it encourages the policy to imitate the
suboptimal actions that dominate the dataset. However, our findings suggest that reweighting all
the training objectives in offline RL algorithms leads to improved performance. In this section, we

21

Ak, Ar) (0.2,0.1) (0.2,1.0) (0.2,5.0) (1.0,0.1) (1.0,1.0) (1.0,5.0)

hopper-random-expert-diverse-5%-v2 204 13.8 22.1 9.6 7.5 7.9
hopper-random-expert-diverse-10%-v2 51.7 27.8 42.1 10.9 9.8 53
hopper-random-medium-diverse-5%-v2 64.7 66.1 60.3 16.2 55 254
hopper-random-medium-diverse-10%-v2 55.4 58.9 65.3 3.6 7.2 7.3
(a) CQL
Ok, Ar) (0.2,0.1) (0.2,1.0) (0.2,5.0) (1.0,0.1) (1.0,1.0) (1.0,5.0)
hopper-random-expert-diverse-5%-v2 14.7 56.4 54.2 16.8 68.4 75.1
hopper-random-expert-diverse-10%-v2 16.2 67.8 51.0 78.5 63.0 67.5
hopper-random-medium-diverse-5%-v2 53.8 50.8 51.5 50.9 49.5 52.6
hopper-random-medium-diverse-10%-v2 434 48.8 53.0 425 532 50.8
(b) IQL

Table 2: Hyperparameter studies of our DW method in (a) CQL and (b) IQL. A\x and Ar denote the
strength of KL-regularization and Bellman flow conservation penatly, respectively (see Section A.3).
Lower KL-regularization strength A and higher flow conservation penalty strength A lead to better
performance.

compare the performance of CQL trained with reweighted regularization only (referred to as "Reg.
only") and reweighting all objectives (referred to as "All"). For the "All" approach, we train CQL
using Equation 17. On the other hand, for the "Reg. only" approach, we remove the term wy (s, a)
from the « training and the term wy (s) from the 7 training in Equation 17. Table 3 presents the mean
return of both approaches, indicating that "All" exhibits slightly better performance compared to
"Reg. only".

Reg. only All

hopper-random-expert-diverse-10%-v2 57.1 649
walker2d-random-expert-diverse-10%-v2 14 82

Table 3: Reweighting all terms in Equation 17 shows better performance than reweighting only the
regularization term. See Section A.5.5.

22

Uniform AW PF DW+AW (ours) DW+Uniform (ours)

hopper-random-v2 9.2 79 7.8 6.5 9.6
hopper-medium-expert-v2 104.5 104.6 107.8 104.9 92.9
hopper-medium-replay-v2 85.9 97.0 91.2 97.3 88.6
hopper-full-replay-v2 100.5 101.2 102.1 101.4 99.7
hopper-medium-v2 62.1 67.7 65.7 65.2 66.1
hopper-expert-v2 107.2 108.2 108.6 108.0 105.4
halfcheetah-random-v2 214 16.3 3.0 11.1 12,5
halfcheetah-medium-expert-v2 712 89.4 734 88.8 86.1
halfcheetah-medium-replay-v2 45.3 44.7 42.2 443 45.1
halfcheetah-full-replay-v2 75.1 76.7 75.0 78.3 77.1
halfcheetah-medium-v2 46.5 46.5 454 46.6 46.5
halfcheetah-expert-v2 81.3 87.6 65.2 22.0 57.1
DARLMuloCo 4 random-v2 76 7.7 71 205 324
ant-medium-expert-v2 128.8 129.9 127.8 1313 118.1
ant-medium-replay-v2 96.0 88.6 82.7 85.9 95.3
ant-full-replay-v2 129.3 124.5 127.5 128.4 129.1
ant-medium-v2 100.0 92.3 94.0 91.9 97.9
ant-expert-v2 1245 132.0 130.0 127.2 129.6
walker2d-random-v2 6.1 4.8 132 7.8 8.6
walker2d-medium-expert-v2 109.6 109.3 108.9 109.4 109.7
walker2d-medium-replay-v2 74.4 78.1 71.9 78.4 75.3
walker2d-full-replay-v2 91.2 88.5 90.5 92.7 90.8
walker2d-medium-v2 823 81.3 78.2 81.9 82.1
walker2d-expert-v2 108.9 108.5 109.0 108.8 108.1
antmaze-umaze-v0 76.0 773 69.3 76.7 2.
antmaze-umaze-diverse-v0 48.0 36.0 24.8 40.0 34.0
DA4RL Antmaze antmaze-medium-diverse-v0 0.0 6.0 0.0 53 4.0
antmaze-medium-play-v0 24 10.7 0.0 8.7 1.3
antmaze-large-diverse-v0 0.0 2.0 2.7 1.3 2.0
antmaze-large-play-v0 0.4 1.3 0.0 0.7 0.0
Kitchen-complete-v0 278 302 9.5 9.5 16.5
D4RL Kitchen kitchen-partial-v0 45.0 36.0 50.8 54.0 30.0
kitchen-mixed-v0 41.5 50.5 52.0 47.5 43.8
pen-human-vI T6 30 2.6 46 469
pen-cloned-v1 -1.3 -2.5 8.6 -3.6 9.1
hammer-human-v1 -7.0 -7.0 -6.9 -1.0 -1.0
. hammer-cloned-v1 -7.0 -7.0 -7.0 -6.9 -6.9
D4RL Adroit door-human-v1 94 94 5] 9.4 -9.4
door-cloned-v1 -9.4 -9.4 21.6 -9.4 -9.4
relocate-human-v 1 2.1 -2.1 -0.8 -2.1 -2.1
relocate-cloned-v1 -2.3 -2.4 0.2 -2.1 -2.0
ant-random-medium-1%-vZ 37T 736 6.7 TT.5 62.T
ant-random-medium-5%-v2 53.1 86.1 76.6 90.2 90.0
ant-random-medium-10%-v2 82.8 88.1 93.1 90.3 86.7
ant-random-medium-50%-v2 97.4 94.5 95.7 974 97.2
ant-random-expert-1%-v2 10.0 717 5.0 66.1 42.5
ant-random-expert-5%-v2 35.2 114.8 65.0 115.5 96.3
ant-random-expert-10%-v2 483 120.0 110.0 126.3 110.4
ant-random-expert-50%-v2 117.3 130.6 125.5 132.7 115.6
hopper-random-medium-1%-v2 0.6 55.1 62.2 57.2 68.7
hopper-random-medium-5%-v2 1.5 62.1 42.6 63.1 63.0
hopper-random-medium-10%-v2 1.6 66.6 66.8 69.2 60.7
hopper-random-medium-50%-v2 22.6 46.7 66.9 64.4 64.5
hopper-random-expert-1%-v2 17.5 59.6 17.4 86.1 21.3
hopper-random-expert-5%-v2 16.3 99.7 40.1 107.3 59.7
hopper-random-expert-10%-v2 14.9 109.7 46.6 109.3 55.1
Mixed hopper-random-expert-50%-v2 100.6 109.6 108.5 106.7 84.2
halfcheetah-random-medium-1%-v2 37.1 39.8 18.9 39.6 36.9
halfcheetah-random-medium-5%-v2 41.1 45.4 42.6 45.4 439
halfcheetah-random-medium-10%-v2 44.6 45.8 45.0 45.8 422
halfcheetah-random-medium-50%-v2 46.6 46.5 45.1 46.5 46.5
halfcheetah-random-expert-1%-v2 21.4 26.4 5.1 18.9 18.8
halfcheetah-random-expert-5%-v2 24.8 66.2 79 69.7 20.6
halfcheetah-random-expert-10%-v2 31.7 72.6 754 719 29.3
halfcheetah-random-expert-50%-v2 587 80.7 61.5 86.3 52.8
walker2d-random-medium-1%-v2 2.9 41.9 33 515 0.8
walker2d-random-medium-5%-v2 0.0 75.0 46.8 752 15.9
walker2d-random-medium-10%-v2 0.6 74.6 74.0 79.9 69.2
walker2d-random-medium-50%-v2 76.9 82.0 82.1 81.1 79.5
walker2d-random-expert-1%-v2 4.0 66.3 5.7 89.1 -0.1
walker2d-random-expert-5%-v2 0.2 107.7 32.7 108.3 21.3
walker2d-random-expert-10%-v2 3.1 108.1 343 108.6 0.8
walker2d-random-expert-50%-v2 0.8 108.6 108.2 108.8 96.2
ant-random-medium-diverse-1%-v2 9.6 20.7 59 74T 355
ant-random-medium-diverse-5%-v2 533 85.4 39.5 85.1 78.4
ant-random-medium-diverse-10%-v2 78.0 89.9 932 95.7 93.8
ant-random-medium-diverse-50%-v2 101.9 91.3 93.7 97.7 102.4
ant-random-expert-diverse-1%-v2 7.5 9.8 6.2 335 13.6
ant-random-expert-diverse-5%-v2 12.7 29.1 8.2 102.0 66.8
ant-random-expert-diverse-10%-v2 23.4 76.5 58.1 113.7 89.7
ant-random-expert-diverse-50%-v2 112.5 116.3 121.3 126.8 1239
hopper-random-medium-diverse-1%-v2 3.9 21.1 52.5 61.1 13.8
hopper-random-medium-diverse-5%-v2 24.5 24.5 55.5 65.7 73.0
hopper-random-medium-diverse-10%-v2 72 79 68.8 65.3 64.8
hopper-random-medium-diverse-50%-v2 324 62.0 58.7 61.5 63.2
hopper-random-expert-diverse-1%-v2 12.0 20.0 3.6 21.1 4.3
hopper-random-expert-diverse-5%-v2 52 10.3 27.7 60.0 37.0
hopper-random-expert-diverse-10%-v2 54 61.1 24.5 60.9 80.2
Mixed (diverse) hopper-random-expert-diverse-50%-v2 96.8 107.4 923 109.2 105.5
halfcheetah-random-medium-diverse-1%-v2 39.6 41.2 327 26.0 41.1
halfcheetah-random-medium-diverse-5%-v2 44.5 44.2 44.7 39.8 455
halfcheetah-random-medium-diverse-10%-v2 43.7 45.3 44.9 452 46.2
halfcheetah-random-medium-diverse-50%-v2 46.8 46.8 45.7 454 46.5
halfcheetah-random-expert-diverse-1%-v2 11.8 22.0 75 2.9 17.0
halfcheetah-random-expert-diverse-5%-v2 29.4 354 10.6 7.0 25.7
halfcheetah-random-expert-diverse-10%-v2 24.1 39.5 20.3 16.4 18.7
halfcheetah-random-expert-diverse-50%-v2 533 69.1 8.9 522 71.2
walker2d-random-medium-diverse-1%-v2 2.6 25 26.8 3.1 3.0
walker2d-random-medium-diverse-5%-v2 0.7 8.4 47.3 52.1 18.0
walker2d-random-medium-diverse-10%-v2 0.6 24.7 57.8 75.5 71.7
walker2d-random-medium-diverse-50%-v2 76.9 80.0 71.5 78.4 79.0
walker2d-random-expert-diverse- 1 %-v2 12.3 6.1 0.0 9.1 9.7
walker2d-random-expert-diverse-5%-v2 1.1 3.7 85.3 0.7 5.0
walker2d-random-expert-diverse-10%-v2 1.7 32 49.9 0.9 339
walker2d-random-expert-diverse-50%-v2 79 1.7 79.2 95.9 108.3
ant-random-medium-T0%-small-vZ 6.2 29.9 6.7 19.0 439
ant-random-expert-10%-small-v2 6.2 349 6.8 11.8 20.7
hopper-random-medium-10%-small-v2 39.7 4.8 46.0 55.6 51.5
Mixed (small) hopper-random-expert-10%-small-v2 20.4 10.1 18.4 56.7 472
halfcheetah-random-medium-10%-small-v2 11.2 24.6 30.8 25.6 254
halfcheetah-random-expert-10%-small-v2 22 3.5 32 4.5 4.0
walker2d-random-medium-10%-small-v2 22 0.7 0.6 41.2 42.7
walker2d-random-expert-10%-small-v2 13.6 -0.0 0.2 38.5 56.7

Table 4: Full results of average returns of CQL in total of 113 datasets.

23

Uniform AW PF DW+AW (ours) DW+Uniform (ours)

hopper-random-v2 7.6 6.8 8.0 6.4 8.5
hopper-medium-expert-v2 85.4 111.1 111.8 110.8 81.0
hopper-medium-replay-v2 86.7 98.1 96.0 99.9 79.7
hopper-full-replay-v2 108.1 102.1 88.2 107.5 99.8
hopper-medium-v2 65.7 58.3 64.5 61.7 62.5
hopper-expert-v2 109.7 111.0 110.3 105.7 108.2
halfcheetah-random-v2 12.7 73 4.2 10.7 10.8
halfcheetah-medium-expert-v2 90.6 94.7 94.2 93.9 93.7
halfcheetah-medium-replay-v2 44.0 44.0 29.4 44.1 44.6
halfcheetah-full-replay-v2 73.5 76.3 72.3 76.4 75.9
halfcheetah-medium-v2 47.5 47.8 454 479 47.7
halfcheetah-expert-v2 94.9 953 73.8 95.2 95.1
DARLMuloCo 4 random-v2 119 122 83 1538 163
ant-medium-expert-v2 1333 131.9 133.2 129.3 130.1
ant-medium-replay-v2 93.8 82.9 71.4 86.8 89.8
ant-full-replay-v2 130.1 129.9 128.9 131.4 130.2
ant-medium-v2 100.0 98.9 96.2 98.1 99.6
ant-expert-v2 126.2 131.4 119.6 128.6 127.3
walker2d-random-v2 6.7 2.7 10.4 3.7 7.0
walker2d-medium-expert-v2 110.1 109.7 109.8 109.8 109.7
walker2d-medium-replay-v2 61.3 47.0 422 62.6 65.1
walker2d-full-replay-v2 86.8 84.5 85.6 80.6 95.0
walker2d-medium-v2 719 70.0 653 75.8 80.8
walker2d-expert-v2 109.9 109.9 109.6 109.5 109.4
antmaze-umaze-v0 880 90.7 0.0 89.3 813
antmaze-umaze-diverse-v0 67.3 753 0.0 72.0 61.0
DA4RL Antmaze antmaze-medium-diverse-v0 76.0 61.3 0.0 70.0 78.7
antmaze-medium-play-v0 72.0 22.0 0.0 30.0 64.7
antmaze-large-diverse-v0 36.7 23.3 0.0 20.7 40.0
antmaze-large-play-v0 43.3 9.3 0.0 10.0 42.0
Kitchen-complete-v0 62.8 263 T0.0 19 60.0
D4RL Kitchen kitchen-partial-v0 47.7 73.2 72.3 66.3 57.0
kitchen-mixed-v0 49.8 47.8 52.2 24.3 36.7
pen-human-vI 80.4 837 36.3 883 19
pen-cloned-v1 82.9 89.2 53.8 84.4 91.5
hammer-human-v1 3.1 0.5 32 0.8 1.2
. hammer-cloned-v1 1.1 1.4 1.0 2.3 1.4
D4RL Adroit door-human-v1 25 06 0.1 0.0 14
door-cloned-v1 0.0 0.6 24 -0.0 L5
relocate-human-v 1 0.5 0.0 -0.0 -0.0 0.1
relocate-cloned-v1 -0.0 0.1 0.0 0.0 -0.0
ant-random-medium-1%-vZ 175 56.0 5T 5835 553
ant-random-medium-5%-v2 68.1 833 154 87.6 89.3
ant-random-medium-10%-v2 82.0 88.8 40.2 91.3 88.6
ant-random-medium-50%-v2 93.7 101.4 96.8 94.3 98.9
ant-random-expert-1%-v2 13.7 28.5 55 31.5 435
ant-random-expert-5%-v2 36.3 100.9 55 95.2 105.4
ant-random-expert-10%-v2 73.7 126.0 14.0 125.4 115.0
ant-random-expert-50%-v2 122.5 128.2 127.7 130.3 125.4
hopper-random-medium-1%-v2 522 56.1 424 56.5 51.7
hopper-random-medium-5%-v2 59.0 57.1 63.4 46.2 59.8
hopper-random-medium-10%-v2 63.2 57.1 65.3 63.6 62.8
hopper-random-medium-50%-v2 50.6 56.2 572 61.2 61.9
hopper-random-expert-1%-v2 11.1 74.8 16.4 64.8 222
hopper-random-expert-5%-v2 22.7 111.3 24.9 110.0 22.4
hopper-random-expert-10%-v2 46.7 1115 339 110.6 64.3
Mixed hopper-random-expert-50%-v2 88.0 111.7 92.2 109.4 105.1
halfcheetah-random-medium-1%-v2 31.0 13.9 3.0 22.0 7.2
halfcheetah-random-medium-5%-v2 39.1 41.7 259 422 11.6
halfcheetah-random-medium-10%-v2 40.3 43.1 45.3 45.0 45.1
halfcheetah-random-medium-50%-v2 45.3 47.3 43.4 47.1 46.6
halfcheetah-random-expert-1%-v2 42 3.8 2.3 2.8 3.6
halfcheetah-random-expert-5%-v2 9.1 74.0 4.4 48.7 554
halfcheetah-random-expert-10%-v2 17.0 91.3 81.5 87.1 70.6
halfcheetah-random-expert-50%-v2 83.7 94.8 32.0 94.4 93.8
walker2d-random-medium-1%-v2 54.6 45.4 394 49.4 61.8
walker2d-random-medium-5%-v2 66.2 62.8 47.3 67.8 67.9
walker2d-random-medium-10%-v2 63.4 65.8 62.6 62.8 743
walker2d-random-medium-50%-v2 70.7 70.0 69.6 75.6 74.1
walker2d-random-expert-1%-v2 20.0 9.6 11.4 9.8 359
walker2d-random-expert-5%-v2 25.3 108.6 93.5 104.3 65.0
walker2d-random-expert-10%-v2 64.4 109.3 107.2 109.1 58.1
walker2d-random-expert-50%-v2 109.2 109.4 109.6 109.3 109.4
ant-random-medium-diverse-1%-v2 126 294 117 408 24T
ant-random-medium-diverse-5%-v2 29.1 83.7 24.8 88.1 733
ant-random-medium-diverse-10%-v2 61.0 91.8 54.6 89.3 89.3
ant-random-medium-diverse-50%-v2 91.2 98.0 89.0 97.0 96.8
ant-random-expert-diverse-1%-v2 12.4 20.0 10.1 304 20.7
ant-random-expert-diverse-5%-v2 17.1 77.4 10.9 86.2 71.5
ant-random-expert-diverse-10%-v2 27.9 101.1 22.9 100.5 93.8
ant-random-expert-diverse-50%-v2 101.9 123.3 122.8 127.7 126.9
hopper-random-medium-diverse-1%-v2 37.0 48.2 474 54.9 63.0
hopper-random-medium-diverse-5%-v2 46.7 44.7 493 48.6 49.0
hopper-random-medium-diverse-10%-v2 47.6 47.8 472 51.9 53.2
hopper-random-medium-diverse-50%-v2 512 48.7 53.6 54.6 52.1
hopper-random-expert-diverse-1%-v2 10.5 14.6 6.5 223 17.4
hopper-random-expert-diverse-5%-v2 17.1 59.0 31.4 78.7 41.0
hopper-random-expert-diverse-10%-v2 33.7 92.2 52.3 103.1 63.0
. . hopper-random-expert-diverse-50%-v2 90.1 106.8 227 98.9 109.4
Mixed (diverse)) ifcheetah-random-medium-diverse-1%-v2 14.4 2.7 8.0 22 14.4
halfcheetah-random-medium-diverse-5%-v2 349 20.1 17.1 2.3 15.2
halfcheetah-random-medium-diverse-10%-v2 39.7 39.7 24.0 309 243
halfcheetah-random-medium-diverse-50%-v2 44.4 225 46.6 8.8 35.1
halfcheetah-random-expert-diverse-1%-v2 5.6 45 5.7 32 4.6
halfcheetah-random-expert-diverse-5%-v2 4.8 8.5 3.6 9.9 10.3
halfcheetah-random-expert-diverse-10%-v2 9.6 16.4 43 13.2 28.0
halfcheetah-random-expert-diverse-50%-v2 66.4 70.7 -0.9 729 85.0
walker2d-random-medium-diverse-1%-v2 36.0 333 14.6 61.3 59.8
walker2d-random-medium-diverse-5%-v2 67.5 61.7 64.8 67.9 553
walker2d-random-medium-diverse-10%-v2 58.8 589 59.2 66.2 60.5
walker2d-random-medium-diverse-50%-v2 66.8 49.4 74.6 63.7 64.0
walker2d-random-expert-diverse- 1 %-v2 10.5 13.0 1.6 31.0 26.4
walker2d-random-expert-diverse-5%-v2 19.2 33.1 7.7 66.4 76.4
walker2d-random-expert-diverse-10%-v2 499 61.2 8.5 73.1 86.4
walker2d-random-expert-diverse-50%-v2 64.1 108.8 15.3 108.1 108.6
ant-random-medium-T0%-small-vZ 835 532 43 527 210
ant-random-expert-10%-small-v2 8.1 27.8 4.0 24.0 13.9
hopper-random-medium-10%-small-v2 11.0 51.7 95 49.5 39.0
Mixed (small) hopper-random-expert-10%-small-v2 35 20.6 4.0 29.9 8.0
halfcheetah-random-medium-10%-small-v2 3.7 15.0 22.6 14.6 73
halfcheetah-random-expert-10%-small-v2 24 3.1 -1.9 32 22
walker2d-random-medium-10%-small-v2 1.6 24.1 0.3 37.6 8.4
walker2d-random-expert-10%-small-v2 0.5 2.8 0.2 4.8 1.7

Table 5: Full results of average returns of IQL in total of 113 datasets.

24

Uniform AW PF DW+AW (ours) DW+Uniform (ours)

hopper-random-v2 8.5 9.0 6.4
hopper-medium-expert-v2 95.4 105.6 108.8
hopper-medium-replay-v2 64.2 96.8 89.3
hopper-full-replay-v2 70.4 105.6 103.3
hopper-medium-v2 59.8 63.8 60.6
hopper-expert-v2 110.5 1115 110.0
halfcheetah-random-v2 123 113 10.1
halfcheetah-medium-expert-v2 88.9 97.7 96.8
halfcheetah-medium-replay-v2 44.7 45.1 45.0
halfcheetah-full-replay-v2 74.1 71.7 75.7
halfcheetah-medium-v2 48.4 48.6 48.0
halfcheetah-expert-v2 96.4 97.5 97.4
DARLMuloCo 4 random-v2 352 115 33
ant-medium-expert-v2 113.2 1355 130.5
ant-medium-replay-v2 104.1 100.9 109.2
ant-full-replay-v2 136.3 139.7 139.9
ant-medium-v2 122.9 120.1 115.0
ant-expert-v2 105.4 124.9 123.1
walker2d-random-v2 1.2 2.5 53
walker2d-medium-expert-v2 110.0 110.2 110.3
walker2d-medium-replay-v2 80.2 80.8 81.1
walker2d-full-replay-v2 93.3 96.2 95.7
walker2d-medium-v2 84.4 823 82.6
walker2d-expert-v2 110.2 110.3 110.3
antmaze-umaze-v0 173 323 46.3
antmaze-umaze-diverse-v0 64.7 67.3 66.3
DA4RL Antmaze antmaze-medium-diverse-v0 3.7 10.7 4.0
antmaze-medium-play-v0 0.0 1.0 0.0
antmaze-large-diverse-v0 0.0 0.3 3.0
antmaze-large-play-v0 0.0 0.0 0.0
Kitchen-complete-v0 0.0 0.0 0.0
D4RL Kitchen kitchen-partial-v0 0.0 0.8 9.6
kitchen-mixed-v0 0.0 9.8 24.5
pen-human-vI 3T TS =25
pen-cloned-v1 11.9 22 -1.1
hammer-human-v1 1.1 0.8 1.2
. hammer-cloned-v1 0.2 0.4 0.3
D4RL Adroit door-human-v1 03 03 -03
door-cloned-v1 -0.3 -0.3 -0.3
relocate-human-v 1 -0.3 -0.3 -0.3
relocate-cloned-v1 -0.3 -0.2 -0.4
ant-random-medium-1%-vZ a1z 2T.6 2T.6
ant-random-medium-5%-v2 41.9 84.2 76.1
ant-random-medium-10%-v2 55.6 84.5 84.6
ant-random-medium-50%-v2 85.2 1145 120.0
ant-random-expert-1%-v2 18.7 14.0 16.6
ant-random-expert-5%-v2 27.8 39.6 47.6
ant-random-expert-10%-v2 44.0 65.9 83.5
ant-random-expert-50%-v2 31.6 97.8 117.7
hopper-random-medium-1%-v2 25.7 49.1 51.3
hopper-random-medium-5%-v2 412 58.0 51.7
hopper-random-medium-10%-v2 29.4 56.4 53.8
hopper-random-medium-50%-v2 55.8 64.7 61.1
hopper-random-expert-1%-v2 21.3 36.3 17.3
hopper-random-expert-5%-v2 31.0 97.3 93.3
hopper-random-expert-10%-v2 52.0 107.7 91.3
Mixed hopper-random-expert-50%-v2 87.2 106.5 110.3
halfcheetah-random-medium-1%-v2 15.8 14.8 16.5
halfcheetah-random-medium-5%-v2 21.0 46.9 46.8
halfcheetah-random-medium-10%-v2 36.2 47.8 48.3
halfcheetah-random-medium-50%-v2 48.5 48.3 . 48.7
halfcheetah-random-expert-1%-v2 2.7 3.6 8.2 3.1
halfcheetah-random-expert-5%-v2 20.6 50.2 5.7 44.8
halfcheetah-random-expert-10%-v2 25.9 78.4 82.6 70.9
halfcheetah-random-expert-50%-v2 85.8 96.0 70.0 95.2 E
walker2d-random-medium-1%-v2 6.0 -0.2 7.8 29.9 52
walker2d-random-medium-5%-v2 14.5 74.7 1.9 70.5 1.7
walker2d-random-medium-10%-v2 9.9 742 23 753 3.6
walker2d-random-medium-50%-v2 219 78.2 14.7 785 10.8
walker2d-random-expert-1%-v2 53 15.4 0.3 4.2 -0.3
walker2d-random-expert-5%-v2 6.4 73.1 3.5 109.9 1.9
walker2d-random-expert-10%-v2 3.0 110.1 1.5 110.0 2.7
walker2d-random-expert-50%-v2 8.7 110.3 0.8 110.1 2.4
ant-random-medium-diverse-1%-v2 40.5 439 57 843 64.T
ant-random-medium-diverse-5%-v2 32,6 76.8 34 100.8 97.1
ant-random-medium-diverse-10%-v2 44.5 105.3 3.8 96.7 48.6
ant-random-medium-diverse-50%-v2 95.7 118.3 110.8 1158 107.2
ant-random-expert-diverse-1%-v2 23.7 24.5 6.0 30.3 222
ant-random-expert-diverse-5%-v2 23.5 63.6 1.1 59.0 69.9
ant-random-expert-diverse-10%-v2 28.9 76.6 34 85.0 81.2
ant-random-expert-diverse-50%-v2 282 69.6 63.9 87.0 76.0
hopper-random-medium-diverse-1%-v2 25.9 16.2 24.4 37.1 8.9
hopper-random-medium-diverse-5%-v2 38.5 43.7 493 37.5 373
hopper-random-medium-diverse-10%-v2 29.7 30.0 36.7 439 41.5
hopper-random-medium-diverse-50%-v2 54.4 503 50.9 48.4 472
hopper-random-expert-diverse-1%-v2 15.2 13.7 13.2 32.6 10.3
hopper-random-expert-diverse-5%-v2 11.7 57.6 37.7 84.8 58.1
hopper-random-expert-diverse-10%-v2 482 76.6 75.5 412 86.6
Mixed (diverse) hopper-random-expert-diverse-50%-v2 90.9 953 40.8 109.2 75.4
halfcheetah-random-medium-diverse-1%-v2 39.5 15.1 277 335 39.7
halfcheetah-random-medium-diverse-5%-v2 18.3 36.8 46.0 46.9 44.8
halfcheetah-random-medium-diverse-10%-v2 204 232 46.6 474 455
halfcheetah-random-medium-diverse-50%-v2 48.2 159 48.4 45.0 46.8
halfcheetah-random-expert-diverse-1%-v2 34 23 5.7 10.2 11.9
halfcheetah-random-expert-diverse-5%-v2 44 159 12.2 45.8 62.3
halfcheetah-random-expert-diverse-10%-v2 6.3 13.5 12.3 64.6 80.2
halfcheetah-random-expert-diverse-50%-v2 82.1 49.6 14.2 86.3 93.4
walker2d-random-medium-diverse-1%-v2 -0.4 5.1 79 2.1 8.9
walker2d-random-medium-diverse-5%-v2 4.8 5.8 1.6 0.4 0.2
walker2d-random-medium-diverse-10%-v2 X 10.6 15.0 4.5 0.3
walker2d-random-medium-diverse-50%-v2 12.1 47.4 78.5 132 9.9
walker2d-random-expert-diverse- 1 %-v2 4.4 2.1 1.5 55 22
walker2d-random-expert-diverse-5%-v2 5.6 11.3 1.9 8.3 -0.3
walker2d-random-expert-diverse-10%-v2 55 45 1.0 7.6 8.2
walker2d-random-expert-diverse-50%-v2 6.1 106.1 15.0 0.6 6.1
ant-random-medium-T0%-small-vZ 93 20.0 43 158 1772
ant-random-expert-10%-small-v2 9.3 15.2 04 18.2 17.1
hopper-random-medium-10%-small-v2 6.4 46.7 2.5 43.7 20.2
Mixed (small) hopper-random-expert-10%-small-v2 58 133 4.1 20.4 18.0
halfcheetah-random-medium-10%-small-v2 21.5 11.9 6.5 4.0 232
halfcheetah-random-expert-10%-small-v2 6.5 54 -1.1 6.8 73
walker2d-random-medium-10%-small-v2 1.8 129 0.9 6.4 6.3
walker2d-random-expert-10%-small-v2 0.9 -0.3 0.2 0.4 1.6

Table 6: Full results of average returns of TD3BC in total of 113 datasets.

25

	Introduction
	Preliminaries
	Problem Statement: Unnecessary Conservativeness in Imbalanced Datasets
	Mitigating Unnecessary Conservativeness By Weighting Samples
	Optimizing the Weightings: Emulating Sampling from High-Performing Policies
	Practical Implementation

	Experimental Evaluation
	Evaluation Setup
	Scenario (i): Trajectories with Similar Initial States
	Scenario (ii): Trajectories with Diverse Initial States

	Related Work
	Conclusion, Future Directions, and Limitations
	Appendix
	Additional Discussion on Imbalanced Datasets
	Why regularizing the importance weightings with KL divergence does not prevent policy improvement?
	Implementation details
	Offline RL algorithms
	Density-weighting function

	Evaluation detail
	Training details
	Evaluation details
	Dataset curation.

	Additional results
	Four room example for trajectory stitching
	Comparison with OptDICE
	Comparison with weights learned by OptDiCE
	Hyperparameter studies
	Comparison of re-weighting both objectives and only regularization objective

