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ABSTRACT

Gradient boosting is the most popular method of constructing ensembles that al-
low getting state-of-the-art results on many tasks. One of the critical parameters
affecting the quality of the learned model is the number of models in the ensemble,
or the number of boosting iterations. Unfortunately, the problem of selecting the
optimal number of models still remains open and understudied. In this paper, we
propose a new look at the hyperparameter selection problem in ensemble models.
In contrast to the classical approaches that select the universal size of the ensemble
from a hold-out validation subsample, our algorithm uses the hypothesis of hetero-
geneity of the sample space to adaptively set the required number of steps in one
common ensemble for different regions of data points individually. Experiments
on popular implementations of gradient boosting show that the proposed method
does not affect the complexity of learning algorithms and significantly increases
quality on most standard benchmarks up to 2%.

1 INTRODUCTION

There are still many areas where classical machine learning algorithms prevail over deep neural
networks despite the dramatic growth of their usage in artificial intelligence research. One of such
classical algorithms is Gradient Boosting (GB) (Friedman (2001)). It allows to obtain high-quality
models on table data with no multimedia (e.g., images, audios, videos), with samples full of cate-
gorical features, noisy features and labels, missing data (Zhang & Haghani, 2015; Li et al., 2007;
Babajide Mustapha & Saeed, 2016). Also, the undoubted advantage of the boosting method is the
low computational complexity of training and inference (Deng et al., 2018). For these reasons, Gra-
dient Boosting is widely used in ranking (Chapelle & Chang, 2011), recommender systems (Cheng
et al., 2014), meta-learning (LeDell & Poirier, 2020), and many other tasks (Touzani et al., 2018;
Trofimov et al., 2012; Ling et al., 2017).

In recent years, many hyperparameters and additional options have been proposed for GB influenc-
ing the performance of the learned model (Ke et al., 2017; Ibragimov & Gusev, 2019). But the
learning rate (weight of each model in the ensemble) and the size of the ensemble are the key ones.
Large models are responsible for revealing complex dependencies in the data but require more time
for training and inference (Friedman, 2002). In comparison, the smaller ones are less expressive
but more time-efficient. The standard approach to select an optimal number of training steps is to
control the quality of the model by measuring it on a hold-out sample called validation set, which
is separate from the training data. The idea is to set a large enough size of the model and find the
moment (overfitting point) when the validation score stops growing and begins going down. Then
one can prune the ensemble to the retrieved number of iterations.

The described method has a significant and surprisingly understudied weakness. The approach as-
sumes the existence of a universal ensemble size equally effective for any instance in the sample. In
other words, the hypothesis is that all samples require approximately the same number of learners
to fit them well. However, in practice, the learning task can consist of different subtasks, which
correspond to different regions in the input space of the dataset, where examples follow different
distributions with diversified complexities and functional dependencies. In particular, the data space
may contain regions of both simple and complex surfaces for training. For the first ones, the ensem-
ble needs a relatively small number of boosting rounds to be trained well, while the latter requires a
way longer path until convergence. In this case, the generic boosting size selected by the least regret
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principle is a compromise between simple and complex areas. This approach encourages models
with a composition of overfitted and underfitted regions in the dataset.

To handle this issue, we propose a new method to prune large GB models based on an adaptive choice
of the optimal size of the ensemble. As in the standard version of GB (Friedman, 2001), we train
one sequence of learners in an ensemble but apply a different number of learned models to different
regions in the dataset. Namely, we build an additional model that divides the input space into regions
where the distribution of data points has homogeneous complexity and representativity. Then we
optimize the ensemble size to each region individually. Our method incurs meager computational
costs and can be easily incorporated into any existing learning pipeline. We apply the proposed
approach to state-of-the-art open-source GB algorithms and demonstrate its ability to outperform
on popular publicly available benchmarks consistently. We show that the described problem of
the universal stopping moment highly affects the quality of trained models. To the best of our
knowledge, this is the first research devoted to adaptive, instance–wise early stopping in GB, and we
hope this paper will encourage further research of the GB algorithm.

The rest of the paper is organized as follows. Section 2 introduces notations and background on GB.
Previous works on early stopping and ensemble pruning are discussed in Section 3. In Section 4,
we reveal the details of the proposed approach and present theoretical reasoning and discussions. In
Section 5, the effectiveness of the algorithm is empirically studied using several popular datasets.
Section 6 makes conclusions and proposes ideas for future work.

2 BACKGROUND

In this section, we introduce necessary notations and briefly discuss basic concepts concerning gra-
dient boosting and cross-validation for clarity and independent reading reasons.

2.1 GRADIENT BOOSTING

Let S = {xi, yi}ni=1 be a sample from some fixed but unknown distribution P (x, y), where xi =
(x1i , ..., x

m
i ) ∈ X is an m-dimensional feature representation and yi ∈ Y is a target value of the i-th

observation. The classical formulation of the learning problem consists in constructing a function
F : X→ Y minimizing the expected target prediction error, which is calculated using a loss function
L : Y× Y→ R+:

L(P, F ) := E(x,y)∼P [L(F (x), y)]→ min
F

Since the distribution P is not given and the sample S is the only source of data, the task reduces to
empirical risk minimization problem:

L̂(S, F ) = Ê(x,y)∼S [L(F (x), y)] =
1

n

n∑
i=1

L(F (xi), yi)→ min
F

The ability to achieve smaller value of an empirical risk is bounded by the complexity of the set F
from which the desired function F ∈ F is selected. A common approach to increase the expres-
siveness of the learned model is to build a composition (or an ensemble) of functions from F .
Gradient Boosting (GB) constructs an ensemble FB of size B as a weighted sum of base functions
{f1, f2, ..., fB} ⊂ F :

FB(x) =

B∑
i=1

αifi(x) (1)

When the set of available base functions F is closed under scalar multiplication, multipliers αi

are usually fixed and equal: ∀i αi = α, where α is a hyperparameter of the GB algorithm called
learning rate. Having constructed the first t − 1 terms, the learning algorithm aimes to select the
next function ft sequentially as a solution of:
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L̂(S, Ft−1 + ft) =
1

n

n∑
i=1

[L(Ft−1(xi) + ft(xi), yi)]→ min
ft

The approximate solution of the latter equation in GB is usually constructed as follows. Algorithm
calculates first and second order derivatives of L̂ at the point Ft−1 w.r.t. predicted values ŷ: gti =

∂L(ŷi,yi)
∂ŷi

∣∣∣∣
ŷi=Ft−1(xi)

, hti =
∂2L(ŷi,yi)

∂ŷ2
i

∣∣∣∣
ŷi=Ft−1(xi)

, and selects a least squares estimator to Newton’s

gradient step in the functional space:

ft = argmin
f∈F

N∑
i=1

hti(~xi, yi)

(
f(~xi)−

(
− g

t
i(~xi, yi)

hti(~xi, yi)

))2

, (2)

see (Chen & Guestrin, 2016) for details.

2.2 MODEL SELECTION VIA CROSS-VALIDATION

Since the quality estimation based on a train set used in the learning process is biased
(Prokhorenkova et al., 2017) (the inference is performed on the unseen data), it is conventional
to use a separate independent set, called validation set, to control the generalization ability of the
algorithm. The whole dataset S is split into two disjoint sets Strain and Svalid, where the first one
is used for learning and the latter for quality estimation.

The final result of this procedure is often highly dependent on the particular train-validation split
and, therefore, quality estimation can be very noisy. To tackle this issue, one can use cross-
validation (Stone, 1974) method: split the data S into k subsets of approximately equal size, or

folds, (S1,S2, ...,Sk) s.t. S =
k⊔

i=1

Si, and perform k rounds of training-evaluation cycle using

S−i := S/Si as the training set and Si as the validation data for each i ∈ {1, 2, ..., k}. Then the
estimated quality is calculated as the mean value of qualities on validation sets over all iterations of
described procedure.

Another source of bias in the quality estimator is mismatch of target distributions in the training
and validation samples. Because the splits in the standard cross-validation procedure are generated
randomly the weights of positive samples (in binary classification tasks) in the trained model may
differ from the data on which quality control is performed. To avoid this effect stratified sampling
scheme (preserving the proportions of the target) is usually applied.

3 RELATED WORK

3.1 EARLY STOPPING

Early stopping is a task of controlling the learning process and interrupting it to avoid unnecessary
boosting steps, which increase complexity of the model and can lead to overfitting. Since the num-
ber of learning steps is directly connected to the complexity of the model, larger ensemble sizes
lead to models of smaller bias but larger variance (bias–variance tradeoff). One of the ideas pro-
posed in the literature (Chang et al. (2010), Mayr et al. (2012)) is to penalize the complexity of the
models, e.g., via AIC-based methods by approximating the ensemble’s degrees of freedom. Some
works use generalization bounds of the algorithm employing VC-dimension (Freund & Schapire
(1997)), Rademacher complexity (Cortes et al. (2019)), or in the PAC setting (Yao et al. (2007),
Wei et al. (2017)). These methods do not require separate validation control, but in most cases, are
not applicable in real-world tasks since the obtained bounds are distribution-agnostic. Therefore the
approximations are very rough.

Standard approaches of early stopping mentioned in most of the well-known implementations of GB
utilize the simple ”waiting” idea: if the validation quality does not change for some ”reasonable”
number of iterations, then the training must be stopped (see, e.g., Click et al. (2016)). It is important
to note that this kind of early stopping may be performed simultaneously with the boosting learning
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procedure step-by-step so that the training is stopped at the same time when a specific criterion is
met. Unfortunately, this method has nothing to do with the double–descent problem (Belkin et al.,
2019), and the choice of the required number of waiting rounds remains at the researcher’s discretion
based on experience or heuristic assumptions.

3.2 ENSEMBLE PRUNING

Pruning often refers to various techniques for compressing models for more efficient storage and
inference compexity. Several papers addressed this topic in ensembles, since they usually contain a
large number of models. For example, some studies address the problem of adaptive online pruning
in Multiple Classifier Systems setting, where classifiers are learned independently like in bagging,
see Cruz et al. (2015) and (Cruz et al., 2018) for review; (Oliveira et al., 2017) and (Hernández-
Lobato et al., 2008) propose an instance–wise pruning methods that allows to halt some models at
inference time, while in (Soto et al., 2014) both static (training time) and dynamic (inference time)
pruning in AdaBoost are investigated. In this paper, we consider Gradient Boosting, where a crucial
regularisation technique is early stopping based on (cross–)validation.In practice and in other works
on pruning (e.g. (Fan et al., 2002)), we can see that it also have regularizing effect, it is often
noticeable that we can get the ensemble with significantly better quality. The latter can be provided
by eliminating the flaws of the model obtained due to the greedy learning algorithm.

The classic work on this task (Margineantu & Dietterich, 1997) compared five different pruning
methods applied to boosting algorithm. In most cases pruned models were able to maintain and
increase the original quality with a moderate reduction in the size. Most of modern pruning tech-
niques are based on the fact that similar learners in the ensemble duplicate the information about the
dataset, so they can be eliminated from a model sequence (Cavalcanti et al., 2016; Li et al., 2012).
There also have been tries to formulate ensemble pruning as an optimization problem and apply
genetic algorithms (Zhou & Tang, 2003) or semi-definite programming (Zhang et al., 2006) to find
a solution.

In this paper we follow a standard pruning scheme described in (Margineantu & Dietterich, 1997):
shrink the model to the first M learners, giving the best validation score. But unlike all previous
works on gradient boosting, instead of a universal constant, we strive to select this number adaptively
for different regions at training time, taking into account the distribution of the training data.

4 ADAPTIVE EARLY STOPPING

In Section 2, we have described the boosting ensemble in the form FB(x) =
∑B

i=1 αfi(x), where
B is the total number of models in the ensemble. When we apply k-fold cross-validation scheme to
determine the optimal number M of addends, we get k different B-sized models {F j

B}kj=1:

F j
B(x) =

B∑
i=1

αf ji (x),

learned by k training sets {S−j}kj=1.

The j-th cross–validation step provides quality estimator lj = (l
(1)
j , l

(2)
j , ..., l

(B)
j ) obtained by ap-

plying all the prefixes of the model F j
B to validation set Sj . In other words,

l
(b)
j =

1

|Sj |
∑

(x,y)∈Sj

L
(
F j
b (x), y

)
,

where F j
b =

∑b
i=1 αf

j
i . The final estimator l = 1

k

∑
lj is further used to define estimated value of

M as M̂ := argmin
1≤i≤B

l(i). The model shrinked to the first M̂ iterations provides an estimator with

the test quality close to min
M

E(x,y)∼P [L(FM (x), y)]. But the problem is that the desired estimator

should be selected with the goal to be an approximation to E(x,y)∼P min
M

[L(FM (x), y)], due to an

obvious inequality:

4



Under review as a conference paper at ICLR 2022

E(x,y)∼P min
M

[L(FM (x), y)] ≤ min
M

E(x,y)∼P [L(FM (x), y)]. (3)

This simple mathematical fact convinces us that the existing pruning scheme is being used ineffec-
tively. Adaptive selection of numbers for specific examples can achieve better quality by eliminating
the theoretical gap given by inequality 3. In the following sections, we describe possible approaches
to adaptive iteration count selection and evaluation of its effect.

4.1 MAIN IDEA

Suppose the input space D is divided into C disjoint regions (D1,D2, ...,DC) in such a way that
all samples in Di are close to each other in some sense (they follow the same latent distribution or
geometry). Note that this partition is unrelated to the split induced by cross-validation, since the
latter split is done randomly and there is no reason to expect closeness of samples inside a single
fold. We assume that (D1,D2, ...,DC) is a clustering in the sense that data points of the same cluster
Di behave similarly during the procedure of training an ensemble. In particular, the optimal number
of boosting iterations M̂i estimated forDi may differ a lot from the one estimated forDj . Therefore,
by analogy with the inequality 3, we can conclude that ensemble size selection based on partitionD,
where the size is chosen individually for each cluster Di, can have better quality compared to one
”universal” common size:

EP min
M

[L(FM (x), y)] ≤ EDi∼Dmin
M

E[L(FM (x), y)|Di] ≤ min
M

EP [L(FM (x), y)]. (4)

Setting C = n may achieve the theoretical lower bound on the left-hand side of Equation 4. How-
ever, the sizeM of the ensemble will be optimized based on the empirical estimation of the loss, and
the growth in C is accompanied by the growth of the variance of this estimation for each region Di.
So the number of regions should be selected reasonably (we discuss it further in the text).

The upper-level training algorithm consists of 4 steps: 1) Cross-validated training of k models; 2)
Distributed-based partition (D1,D2, ...,DC) of the sample space; 3) Selecting optimal number of
iterations (M̂1, M̂2, ..., M̂C) for each region obtained on the step 2; 4) Retraining the model on the
whole training data. The formal description is presented in the Algorithm 1.

The framework described above has two additional hyperparameters: number of clusters C and the
minimal size of a cluster (optional), both can be tuned. In Section 4.4, we describe a tuning approach,
which makes a minor contribution to the total computational cost comparing to the ensemble training
as our tuning method does not require any retraining.

Algorithm 1 Adaptive stopping procedure
Input: S = (X,y)

folds← (S1,S2, ...,Sk)← CvSplit(k,S)
cvPredictions← CvPredict(folds)
partition← (D1,D2, ...,DC)← GetPartition(S)
bestIterations← EstimateBestIterations(folds, cvPredictions, partition)
finalModel← Train(X,y, partition, bestIterations)
return finalModel

4.2 UNSUPERVISED PARTITION

As it was mentioned in Section 4.1, the partition should reflect the internal structure of the data to
be sophisticated enough to select a proper number of models. Let us use a reasonable assumption
that observations that are close in the feature space are also close in their properties. Then we
can use one of clusterization algorithms (e.g., KMeans (Lloyd, 1982), EM (Dempster et al., 1977),
agglomerative method (Sibson, 1973)) to get data partition (functionGetPartition in Algorithm 1).

It is essential to preserve the initial geometry of the input space since most of the modern implemen-
tations of Gradient Boosting use Decision Tree (Breiman et al., 2017) as a base learner. Decision
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Tree constructs piecewise-constant approximations at each step, and it is more likely for close in-
stances to get into the same leaves during training and inference, so they tend to fit equally. The
unsupervised partition method allows controlling the number of partition regions and their sizes via
setting the desired number of clusters and minimal samples count in each cluster.

This method being applied to real data exhibits several disadvantages. First, clustering does not work
well with data in which non-numeric categorical features are present. Numeric encoding of high-
cardinality categorical features leads to sparse input space and dramatically affects clusterization’s
capacity. Second, unsupervised partition does not consider the labels of the data points, although
they may contain valuable information about the required number of boosting steps. Last, some
advanced clusterization algorithms require high computational costs what can become a bottleneck
when training a model.

4.3 TREE-BASED PARTITION

To avoid issues described in the previous paragraph, the partition unit (function GetPartition in
Algorithm 1) should be scalable, interpretable in terms of built subspaces, and tolerant to heteroge-
neous feature input. We find the Decision Tree model to be a suitable candidate since it satisfies all
the listed properties: training algorithm is parallelizable and not memory consuming (Sharp, 2008),
cluster manifolds are similar to the ones built by base learners, there are efficient categorical feature
supporting methods (Prokhorenkova et al., 2017).

The partition procedure boils down to training a single decision tree on the initial training samples
and targets. Then, we denote each leaf as a separate cluster of the data forming the partition. Since
the tree learning process utilizes both geometry of feature space and target distribution in leaves to
split the data, this method is encouraged to find the regions similar by feature representation and
label. In other words, it uses all available information about the data.

This partition tree may be trained separately from the primary boosting model as well as be the
first booster in the ensemble. The latter means that this step does not affect the training time at all.
However, since Gradient Boosting usually consists of hundreds and thousands of trees, the effect on
time costs of using a separate partition model is negligible.

The number of clusters and cluster sizes can be controlled via setting an appropriate number of
leaves in the tree and minimal leaf size.

4.4 VALIDATION PROTOCOL

It is still an open question how to select the values M̂1, ..., M̂C for each cluster (function
EstimateBestIterations in Algorithm 1). Also, adopting new options to any machine learning
algorithm raises questions on the limits of applicability and the possibility of extending experimen-
tal results and theoretical calculations to real problems and data. New hyperparameters, as a rule,
make training procedure more complex and increase the tuning time due to enlarged hyperparame-
ter search space. In this section, we demonstrate that evaluation and tuning of the proposed method
require only one model training step and one inference. All the rest of the work can be done just
with the help of precalculated cross-validated predictions, so it is cheap to determine the optimal
parameters and estimate the possible effect on the quality of the final model.

Let us denote Di,j = Di ∩ Sj the set of observations from the j-th fold belonging to the cluster Di

and ni,j = |Di,j |. Naive approach (Algorithm 2) of evaluation consists of applying cross–validation
model trained on the sample S−j to the validation set Sj for any j, obtaining quality estimators li,j :

l
(b)
i,j =

1

ni,j

∑
(x,y)∈Di,j

L
(
F j
b (x), y

)
.

The resulting estimator Li for each cluster i is a weighted sum of corresponding cluster estimators
over all folds:
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L
(b)
i =

k∑
j=1

ni,j · l(b)i,j

k∑
j=1

ni,j

,

then M̂i := argminLi and the cross–validation score of cluster i equals to minLi. The total
complexity of the described procedure is O(C(B + k) + nB), which is meager compared to the
ensemble training complexity, which is at least O(nmdB) (Friedman, 2001) (for m binary features
and trees of depth d).

Algorithm 2 Best Iteration Selection
procedure ESTIMATEBESTITERATIONS(folds, cvPredictions, partition)

for Di ← partition do
Li ← ~0 . vector of B zeros
ni ← 0
for Sj ← folds do
Di,j ← Di ∩ Sj
ni,j ← |Di,j |
Li ← Li + Eval(cvPredictions[Di,j ]) · ni,j . elementwise vector sum
ni ← ni + ni,j

end for
Li ← Li/ni
Mi ← argminLi

end for
return {Mi}

end procedure

Obviously, the quality assessment obtained in the way described above is biased and always gives
an optimistic estimate. In particular, it is impossible to use this quality estimator to determine
an optimal number of clusters, as it always monotonically increases with finer clustering. For a
more accurate assessment of generalization ability, we suggest using the following cross-validation
evaluation procedure in Algorithm 3, which does not allow target leakage and strong bias. For each
fold Sq , we compute an optimal stopping moment for cluster i by averaging evaluation metrics for
all observations from cluster i that do not belong to fold Sq . More formally, we compute Li,−q as

L
(b)
i,−q =

∑
j 6=q ni,j · l

(b)
i,j∑

j 6=q ni,j
,

by applying EstimateBestIterations (Algorithm 2) to all folds except the q-th one (ignoring Sq
from folds). After this step, we have (M̂q

1 , ..., M̂
q
C) estimated on S−q . Then we use Sq as a set

validating the quality of predicted (M̂q
1 , ..., M̂

q
C). After averaging the obtained results over folds Sq ,

we get a more accurate estimation of the quality of clustering, which is used to select the number
and size of clusters and to estimate the possible profit of applying adaptive stopping procedure, all
this with a minor additional time consumption relative to the training time of the ensemble model.
There is still some bias because fold Sq is used both to train models applied to S−q and to estimate
the performance of stopping points. However, the desired property of not using the same set for both
tuning and evaluating M is satisfied and allows us to get useful estimations.

5 EXPERIMENTS

In this section, we perform numeric experiments, analyze the effectiveness of the proposed frame-
work, and validate statements made in Section 4. We take a popular open–source Gradient Boosting
library, CatBoost (CatBoost, 2017). It is known for achieving SOTA results on a large number of
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Algorithm 3 Evaluation Procedure
procedure EVALUATE(folds, cvPredictions, partition)

for Sq ← folds do
{Mq

i } ← EstimateBestIteration(folds \ Sq, cvPredictions, partition)
predictionsq ← cvPredictions[Sq]
for Di ← partition do

Shrink(predictionsq[Sq ∩ Di],M
q
i )

end for
Lq = Eval(predictionsq)

end for
return Mean({Lq})

end procedure

Table 1: Datasets

Adult Amazon KDD Upselling Kick KDD Internet Click Higgs Marketing Default HEPMASS
#samples 49K 33K 50K 73K 10K 400K 11KK 45K 30K 840K
#features 15 10 231 36 69 12 28 16 23 25

benchmarks (Bentéjac et al., 2021) with the use of default settings and an efficient integrated cate-
gorical feature handler. We train each model for B = 5000 iterations with the learning rate set in
such a way that the cross validated optimal point is close to the 2500-th iteration to ensure conver-
gence of the training proceess. Datasets used in this investigation and their properties are listed in
Table 1, their links can be found in references. Most of them are taken from the list of benchmarks
of the original CatBoost paper (Prokhorenkova et al., 2017) and the proposed tuned hyperparameters
from the paper were used.

We hold out 20% from each dataset for the test. The 5–fold stratified cross-validation is utilized
to determine the optimal stopping moment. We use the standard pruning algorithm as a baseline
and compare it with the method proposed in Section 4. The clustering is performed by training
a separate non-symmetric decision tree (”Lossguide” training policy) on the train data and initial
labels, where each leaf is an individual cluster. To control cluster count and minimal cluster size, we
utilize ”num leaves” and ”min data in leaf” decision tree parameters respectively.

Does it matter to select a different number of iterations for different regions? To address this
question, we train boosting and clustering models on the train data, apply the model to the test set and
evaluate metrics after each prediction step (iteration). Then we compare the universal optimal step
number, calculated as the minimum point of the whole test data loss, and adaptive by independently
calculating the optimal size for each cluster. The described procedure was carried out 20 times
for different train/test splits. If the assumption from Section 4 is false, we would see that step
numbers calculated for clusters are not diversified a lot and distributed close to the general optimal
iteration. Nevertheless, in reality, we face the situation when the best iteration differs from the ones
obtained for each cluster. For example, Figure 3 in Appendix (each line is a different train/test split)
demonstrates evaluation history for the whole dataset and its two clusters with discrepant optimal
stops.

These observations motivate our research and confirm the inefficiency of the classical approach.
Also, it is interesting to note that many clusters and instances are well-trained long before the optimal
moment is reached. Therefore, subsequent iterations work in vain, wasting time on their training, not
to mention that these examples add additional noise to the predictions for the remaining examples.
It is also easy to notice that a significant part of the clusters has the best iteration value close to the
size of the ensemble B. The latter means that there are plenty of underfitted data points (B steps is
not enough) that can not be caught by the classical method. However, the partitioning proposed in
this article allows them to be detected and trained for an additional number of steps.

Does the validation protocol proposed in Section 4.4 have good generalization ability? For this
investigation we applied naive validation control, described in Section 4.4, and advanced evaluation
procedure (briefly in Algorithm 3) to every dataset. As we can see from Figure 1 and Figure 2 naive
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Table 2: Quality estimation, 0-1 loss / logloss, relative error change

Adult Amazon KDD Upselling Kick KDD Internet
Baseline 0.1264 / 0.2723 0.0447 / 0.1400 0.0494 / 0.1666 0.0496 / 0.2857 0.1004 / 0.2202

Adaptive pruning -0.24% / -0.24% -1.37% / -0.53% -0.20% / -0.10% +0.11% / -0.19% -2.46% / -0.52%
Click Higgs Marketing Default HEPMASS

Baseline 0.1564 / 0.3916 0.2364 / 0.4810 0.0926 / 0.1937 0.1865 / 0.4327 0.1258 / 0.2768
Adaptive pruning +0.04% / -0.03% -0.14% / -0.14% -2.27% / -0.71% -2.50% / -0.07% -0.17% / -0.16%

validation protocol monotonically decreases with the number of clusters, as it was expected, and it
gives no insight about the optimal cluster count and possible improvement compared to the baseline.
In contrast, the quality estimation produced by the advanced approach is highly correlated with test
quality. The quality patterns for test and validation are repeated, and there is an opportunity to make
an informed choice of a number of clusters and other parameters affecting clustering.

Figure 1: Upsel, validation Figure 2: Kick, validation

Does the proposed algorithm help to increase the quality of boosting models? In this paragraph,
we carry out an extensive search of the best partition in terms of two loss metrics (lower is better):
Logloss and 0-1 loss. The number of clusters is tuned according to the procedure from Section 4.4.
Then we find the optimal iteration count for each cluster and apply the corresponding number of trees
(boosters) to each test sample (as in Algortithm 1). The comparison with the baseline is presented
in the Table 2. The results show the superiority of the proposed technique over the classic early
stopping on most settings. The improvements are significant according to Wilcoxon signed-rank
test with p − value � 0.001, except for datasets Click and Kick. From this, we can conclude
that modern Gradient Boosting implementations do not use the full power of the models, limiting
themselves to the shared stopping moment for all examples. At the same time, the personalized
selection of this parameter allows significant improvements in the algorithm’s performance. In this
paper, we select the optimal number of clusters under the assumption of using a separate clustering
tree. However, at the same time, we firmly believe that the optimal construction of the clusters
themselves (for example, taking into account the learning history of the instance) can bring even
greater success.

6 CONCLUSION AND FUTURE WORK

In this paper, we discovered a problem of ensemble pruning previously uncovered in the literature.
We discussed possible problems that the simultaneous stopping rule brings to the modern boosting
models and proposed a cluster-based framework of early stopping that can be directly applied to any
implementation of Gradient Boosting (and possibly other ensemble methods) without harming its
quality and training/inference time. We proposed an evaluation protocol for our method, so it is sim-
ple and at the same time computationally cheap to determine whether the adaptive stopping works
well for any particular data. Our experiments with the well-known implementation of boosting
demonstrate the validity of the assumptions and conclusions made in the paper and great potential
for applications and further research since this work still uncovers many problems.
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7 APPENDIX

Figure 3: Click, evaluation history. Blue lines indicate runs for different train/test splits, red lines
are averages over all runs. Dots specify the minimum.
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