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ABSTRACT

Honey bees are critical to our ecosystem and food security as a pollinator, con-
tributing 35% of our global agriculture yield (Klein et al., 2007). In spite of their
importance, beekeeping is exclusively dependent on human labor and experience-
derived heuristics, while requiring frequent human checkups to ensure the colony
is healthy, which can disrupt the colony. Increasingly, pollinator populations are
declining due to threats from climate change, pests, environmental toxicity, mak-
ing their management even more critical than ever before in order to ensure sus-
tained global food security. To start addressing this pressing challenge, we de-
veloped an integrated hardware sensing system for beehive monitoring through
audio and environment measurements, and a hierarchical semi-supervised deep
learning model, composed of an audio modeling module and a predictor, to model
the strength of beehives. The model is trained jointly on audio reconstruction and
prediction losses based on human inspections, in order to model both low-level
audio features and circadian temporal dynamics. We show that this model per-
forms well despite limited labels, and can learn an audio embedding that is useful
for characterizing different sound profiles of beehives. This is the first instance
to our knowledge of applying audio-based deep learning to model beehives and
population size in an observational setting across a large number of hives.

1 INTRODUCTION

Pollinators are one of the most fundamental parts of crop production worldwide (Klein et al., 2007).
Without honey bee pollinators, there would be a substantial decrease in both the diversity and yield
of our crops, which includes most common produce (van der Sluijs & Vaage, 2016). As a model
organism, bees are also often studied through controlled behavioral experiments, as they exhibit
complex responses to many environmental factors, many of which are yet to be fully understood.
A colony of bees coordinate its efforts to maintain the overall health, with different types of bees
tasked for various purposes. One of the signature modality of characterizing bee behavior is through
the buzzing frequencies emitted through the vibration of the wings, which can correlate with various
properties of the surroundings, including temperature, potentially allowing for a descriptive ’image’
of the hive in terms of strength (Howard et al., 2013; Ruttner, 1988).

However, despite what is known about honey bees behavior and their importance in agriculture and
natural diversity, there remains a substantial gap between controlled academic studies and the field
practices carried out (López-Uribe & Simone-Finstrom, 2019). In particular, beekeepers use their
long-tenured experience to derive heuristics for maintaining colonies, which necessitates frequent
visual inspections of each frame of every box, many of which making up a single hive. During each
inspection, beekeepers visually examine each frame and note any deformities, changes in colony
size, amount of stored food, and amount of brood maintained by the bees. This process is labor in-
tensive, limiting the number of hives that can be managed effectively. As growing risk factors make
human inspection more difficult at scale, computational methods are needed in tracking changing
hive dynamics on a faster timescale and allowing for scalable management. With modern sensing
hardware that can record data for months and scalable modeling with state-of-the-art tools in ma-
chine learning, we can potentially start tackling some of challenges facing the management of our
pollinators, a key player in ensuring food security for the future.

1



Under review as a conference paper at ICLR 2021

2 BACKGROUND AND RELATED WORKS

Our work falls broadly in applied machine learning within computational ethology, where automated
data collection methods and machine learning models are developed to monitor and characterize
biological species in natural or controlled settings (Anderson & Perona, 2014). In the context of
honey bees, while there has been substantial work characterizing bee behavior through controlled
audio, image, and video data collection with classical signal processing methods, there has not been
a large-scale effort studying how current techniques in deep learning can be applied at scale to the
remote-monitoring of beehives in the field.

Part of the challenge lies in data collection. Visual-sensing within beehives is nearly impossible
given the current design of boxes used to house bees. These boxes are heavily confined with narrow
spaces between many stacked frames for bees to hatch, rear brood, and store food. This makes it
difficult to position cameras to capture complete data, without a redesign of existing boxes. Envi-
ronment sensors, however, can capture information localized to a larger region, such as temperature
and humidity. Sound, likewise, can travel across many stacked boxes, which are typically made
from wood and have good acoustics. Previous works have explored the possibility of characterizing
colony status with audio in highly stereotyped events, such as extremely diseased vs healthy bee-
hives (Robles-Guerrero et al., 2017) or swarming (Krzywoszyja et al., 2018; Ramsey et al., 2020),
where the old Queen leaves with a large portion of the original colony. However, we have not seen
work that attempt to characterize more sensitive measurements, such as population of beehives,
based on audio. We were inspired by these works and the latest advances in hardware sensing and
deep learning audio models to collect audio data in a longitudinal setting across many months for
a large number of managed hives, and attempt to characterize some of the standard hive inspection
items through machine learning.

While audio makes it possible to capture a more complete picture of the inside of a hive, there are
still challenges related to data semantics in the context of annotations. Image and video data can be
readily processed and labeled post-collection if the objects of interest are recognizable. However,
with honey bees, the sound properties captured by microphones are extremely difficult to discrimi-
nate, even to experts, due to the fact that the sound is not semantically meaningful, and microphone
sensitivity deviations across sensors makes it difficult to compare data across different hives. Thus,
it is not possible to retrospectively assign labels to data, making humans inspections during data
collection the only source of annotations. As beekeepers cannot inspect a hive frequently due to the
large number of hives managed and the potential disturbance caused to the hive, the task becomes
few-shot learning.

In low-show learning for audio, various works have highlighted the usefulness of using semi-
supervised or unsupervised objectives and/or learning an embedding of audio data, mostly for the
purpose of sound classification or speech recognition (Jansen et al., 2020; Lu et al., 2019). These
models typically capture semantic differences between different sound sources. We were inspired by
the audio classification work with semi-supervised or contrastive-learning objectives to build an ar-
chitecture that could model our audio and learn an embedding without relying only on task-specific
supervision. Unlike previous audio datasets used in prior works, longitudinal data is unlikely to
discretize into distinct groups due to the slower continuously shifting dynamics across time on the
course of weeks. Therefore, we make the assumption that unlike current audio datasets which con-
tain audio from distinct classes that can be clustered into sub-types, our data more likely occupy a
smooth latent space, due to the slow progression in time of changing properties, such as the transition
between healthy and low-severity disease, or changes in the size of the population, as bee colonies
increase by only around one frame per week during periods of colony growth (Russell et al., 2013;
Sakagami & Fukuda, 1968).

3 METHODS

Hive Setup Each hive composes of multiple 10-frame standard Langstroth boxes stacked on top
of one another, with the internal sensor located in the center frame of the bottom-most box, and
the external sensor on the outside side wall of the box. This sensor placement is based on prior
knowledge that bees tend to collect near the bottom box first prior to moving up the tower (Winston,
1987). Due to difficulties in obtaining data that would span the spectrum of different colony sizes
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without intervention in a timely manner, we set up hives of varying sizes in the beginning to capture
a range of populations. This allowed our dataset to span a number of frame sizes, from 1 to 23
for bee frames, and 0 to 11 for brood frames. Aside from these manipulations, all other observed
effects, such as progression of disease states, are of natural causes free from human intervention.

3.1 DATA COLLECTION
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Figure 1: Collected multi-modal data from our custom hardware sensor for one hive across one
month. The sensor records a minute-long audio sample and point estimates of the temperature,
humidity, and air pressure for both inside and outside the hive every 15 minutes during all hours of
day. Black line indicates measurements recorded internal of bee box; gray line indicates external
of box. Internal measurements are consistent for temperature and humidity as bees thermoregulate
internal hive conditions (Stabentheiner et al., 2010).

Sensor Data Given prior works that showed the possibility of characterizing honey bee colonies
through audio, we developed battery-powered sensorbars that can be fitted to a single frame of a
standard Langstroth bee box. Each sensor is designed for longitudinal data collection over the span
of many weeks on a single charge. The sensor records sub-sampled data every 15 minutes, at all
hours of day. Each multi-modal data sample composes of a one-minute audio sample and point
estimates of the temperature, humidity, and pressure, for both inside and outside the box (Fig. 1).
For the purpose of the daily-snapshot model described in this work, we use data from all days with
96 samples collected. In sum, we have collected ∼1000 total days of data, across 26 hives, with
up to 180 corresponding human inspection entries. These inspection entries captured information
related to hive status, which for our purpose are frames of bees, frames of brood, disease status, and
disease severity.

Inspections We used data from one inspector for all collected data used in this work in order to
increase annotation consistency. The inspector performed observation in each hive roughly once per
week, during which they visually examine each individual frames in all boxes for that hive. The hives
are placed 2 meters apart from one another such that cross contamination of audio is unlikely, given
the sensor is isolated to within each stack of boxes. For frame labels, the inspector visually examine
each frame to determine if that frame is at least 60% covered, given which it would be added to the
total frame count. We prevent overcrowding on each frame by introducing empty frames whenever
necessary, such that each frame is covered at most up to 90%, as is common practice. This allows
us to obtain a lowerbound on the error range of our inspections at around ±20%. During the same
inspection, the inspector also check for the presence of any diseases and its severity. Severity scores
between none, low, moderate, and severe, where low corresponds to a single observation of diseased
bees, moderate for several observations of disease, and severe for prevalent signs of disease.

4 GENERATIVE-PREDICTION NETWORK

Given the difficulty of collecting ground truths due to the nature of our data, we sought out to develop
a semi-supervised model and leverage our large number of audio samples. Additionally, behavior
from bees leaving and returning to beehives means that data from one full-day circadian cycle must
be used for predictions in order to model same-day variations. Therefore, we developed a model
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trained on hierarchical objectives to allow for modeling both low-level audio features on a minute-
long basis, as well any complex temporal dynamics within a given day. We do not consider longer
time horizon for this work as the focus is in modeling a snapshot of the hive’s current state, not where
it will be in the future. Given prior works characterizing beehive sound profiles in lab settings,
we know that local audio features are critical, as audio strength along certain known frequencies
correlate with different behaviors and types of bees, which could potentially allow for discerning
population sizes and disease statuses.

4.1 ARCHITECTURE
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Figure 2: Hierarchical Generative-Prediction Network. s: point estimates of environmental factors
(temperature, humidity, air pressure), z: latent variables. The encoder has 4 convolutional layers
with max-pooling in between, and the decoder has 7 transposed-convolutional layers. The Predictor
receives concatenated inputs from the encoder’s latent variables as well as sensor data for 96 samples
across one day. The predictor attaches to multiple heads, sharing parameters to encourage shared-
representation learning and regularize based on a multi-task objective.

The model composes of two components in hierarchy and purpose: an audio embedding module,
and a temporal prediction module (Fig. 2). The embedding module learns a very low-dimensional
representation of each one-minute long audio samples, while sharing its parameters across all 96
samples across each day. Each encoder-decoder is a convolutional variational autoencoder. This
embedding module outputs a concatenated audio latent space, which is 96 × dz , representing all
samples from the beehive across one day. The embedding module is trained via variational infer-
ence on maximizing the log likelihood of the reconstruction, which is a 56 x 56 downsampled mel
spectrogram, same as the input. The embedding module is pre-trained to optimize each sample sep-
arately, and not capture temporal dynamics explicitly. It is used to learn feature filters that are less
dependent on the prediction loss downstream, which can bias the model due to limited data that has
assigned inspection entries.

The predictor is a shallow feed-forward network, designed to prevent overfitting and model simple
daily temporal dynamics. It is trained only on data with matching inspection labels. The predictor
takes in all concatenated latent variables from 96 audio samples of each day, along with correspond-
ing 96 samples of environmental data, which includes temperature, humidity, and pressure for inside
and outside the box. The sensor input is less important for predicting the momentary population and
disease status than to normalize the observed audio, given that activity is known to vary with respect
to temperature and humidity. The predictor is then connected to multiple heads, jointly-trained on
multi-task objectives. The parameter sharing used in the predictor is also designed to reduce overfit-
ting and to capture similar representations, as the predicted tasks are likely similar in nature (disease
and population).
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Objectives The embedding module is trained jointly on audio sample reconstruction via the ev-
idence lowerbound (Eq. 1) as well as a global prediction loss across a given day, backpropagated
through the latent variables. The generator is pre-trained for ∼8000 iterations in order to learn a
stable latent representations before prediction gradients are propagated. The predictor is trained via
a multi-task prediction losses. This training then continues until all losses have converged and sta-
bilized. The multi-task objective is composed of Huber loss (Eq. 2) for frames and disease severity
regressions and categorical cross-entropy for disease classification.

log p(x) ≥ L(x) = Ez∼q(z|x) log p(x|z)−DKL[q(z|x)||p(z)] (1)

L(y, f(x)) =

{
1
2 [y − f(x)]

2 for |y − f(x)| ≤ δ,
δ (|y − f(x)| − δ/2) otherwise.

(2)

4.2 EVALUATION

Due to the nature of our annotation collection, deviations can be expected in our ground truths
for both diseases and frames. In particular, inspections often occur on days with incomplete data
samples. In order to reduce uncertainty around our inspection entries, we curated our training and
validation sets by excluding inspections that were recorded more than two days away from the
nearest day with a complete set of sensor data, due to hardware or battery issues causing some
days to record incomplete data. This led us to a inspection-paired dataset of 38 samples across
26 hives, spanning 79 days. Recognizing the limited sample size, we carry out 10-fold validation
with all models evaluated in our model comparisons. In addition, to reduce the possibility of cross
contamination between the training and test set due to sensor similarities, we do not train and validate
on the same sensor / hive, even if the datapoints are months apart. This is done despite our sensors
not being cross-calibrated, as we wanted to see whether our predictions are able to fully generalize
across completely different hives without the need for fine-tuned sensors, which can be costly to
implement.

To account for the variance around ground truths of frames, we compute cumulative density func-
tions for percentage differences between all frame predictions and inspections, in order to exam-
ine the fraction of predictions that fall within our ground truth error range’s lowerbound, which is
∼ ±20% of the assigned label (Fig. 4). We compute validation scores for each partitioned validation
set, averaged across all 10 groups and for each training iteration, in order to gather a more complete
understanding of how each model’s training landscape evolves, and also to assess how easily each
model overfits (Fig. 9). For all evaluation results, we show mean losses / scores across 10 separate
runs, each composed of training a model 10 times on a 10-fold validation scheme.

5 RESULTS

5.1 MODEL COMPARISONS

We compared several versions of the model with ablation in order to understand the effect of each
module or objective on prediction performance (Table 1). First, we compared GPN without the
sound-embedding module, and trained it on environment features and hand-crafted audio features,
which is the norm in prior literature. These handcrafted audio features include fast Fourier trans-
formed (fft) audio and mean audio amplitude, where fft is sampled across 15 bins between 0 to
2667 Hz, which is just above what prior literature have shown bee related frequencies to be under
(Howard et al., 2013; Qandour et al., 2014). We also trained a version of GPN purely on audio with-
out any environment data, which we expect is needed to remove the confounding effects of external
environment on bee behavior.

MLP trained on sensor data and fft features. We found that the fully supervised MLP trained
on handcrafted features worked well, given a carefully selected bin size, performing slightly worse
than GPN trained on spectrograms (Fig. 3). We think this is evidence that the GPN is learning filters
across the frequency domain rather than the temporal domain, as frequencies likely matter more
than temporal structure within each minute-long sample given the sound lack any fast temporal
variations.
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Figure 3: Model predictions on combined 10-fold validation set, where each fold validates on 1-3
hives that the model was not trained on. Ranges / crosses indicate inspection, circles indicates pre-
dictions. We indicate frame inspection label with a range of±20%, which represents an approximate
lowerbound on the error range of the ground truth. These samples comes from 26 hives sampled
across the span of 79 days.

Table 1: Task prediction performance. Env: environment data. fft: fast Fourier transformed features.
labeled: data with assigned inspections. Unlabeled: all data samples. Metric for frames and disease
severity: Huber loss; disease type: accuracy.

Task MLP
Env, fft

GPN
Labeled

GPN
Unlabeled

Frames 0.0206± 2.7e−3 0.227± 4.2e−1 0.0166± 2.1e−3
Disease Type 0.757± 1.6e−2 0.689± 1e−1 0.781± 1.2e−2
Disease Severity 0.0343± 6.7e−3 0.259± 5.1e−1 0.0331± 4.7e−3

GPN trained on all vs only labeled data. As we collect 96 audio samples per day across many
months, many of these datapoints are not associated with matching annotations for task predictions.
However, given that our model can be trained purely on a generative objective, we compared models
training on all of our data on days with complete 96 samples, vs only on the data with assigned
inspection entries. By including unlabeled data, we are able to increase our valid dataset from 38
to 856. We found that this model performed better for all tasks, likely attributable to learning more
generalizable kernels in the encoders (Fig. 3).

5.2 EFFECTS OF ENVIRONMENT MODALITIES ON PERFORMANCE

As this is the first work we have seen using combined non-visual multi-modal data for predicting
beehive populations, we wanted to understand which modalities are most important for prediction
performance. Thus, we tested the effects of sensor modality exclusion on performance. We trained
multiple GPNs, removing each environmental modality from the sensor data used for predictor
training, and observe the increases in validation loss or decrease in accuracy (Table 2). We found
that when compared to a GPN trained on all sensor modalities in Table 1, removing temperature
had the greatest effect on performance, while humidity and pressure had less effect. This is possibly
because thermoregulation is an important behavioral trait that is highly correlated with a healthy
hive. Since air pressure is unlikely to capture this property, humidity and temperature are likely the
most important, with temperature being sufficient. We do believe that these modalities are important
for prediction if hives are placed in radically different geographic locations with varying altitudes
and seasonal effects, which is beyond the scope of our dataset.

5.3 LEARNED EMBEDDING AND AUDIO PROFILES

Due to the nature of the purely observational data resulting in limited samples of diseased states,
we examined the generative model’s embeddings and outputs from the decoder to evaluate the gen-
erative model’s ability to model diseased states. In particular, we wanted to understand if it has
learned to model variations in audio spectrograms, and if a purely unsupervised model trained on
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Figure 4: Frame prediction performance comparing supervised MLP on fft audio features and semi-
supervised GPN. CDFs of absolute differences and percentage difference shown.

Table 2: Environment modality exclusion’s effect on performance. Mean shown with standard
deviation computed for 10 runs of each group, validated 10-fold.

Task Humidity Temperature Pressure

Frames 0.0189± 1.6e−3 0.143± 4.3e−1 0.0207± 4e−3
Disease Type 0.763± 4e−9 0.724± 1.4e−1 0.763± 1e−2
Disease Severity 0.0366± 9e−2 0.220± 6.7e−1 0.0315± 4.9e−3

spectrograms alone or with prediction signal would show inherent differences between diseased and
healthy states.

We sampled audio spectrograms from the test set and examined how well our embedding model has
learned to reconstruct the spectrograms, and in general, we found that the embedding model has
learned to model the frequency bands we see in our data (Fig. 5) as well as the magnitude of each
band. We also sampled from our latent variables and examined the differences in learned sound
profiles extracted from the decoder, and found that the two dimensions correspond to differences
across the frequency spectrum (Fig. 6 a).

We also projected audio data from the dataset into the embedding space across each day, representing
96 audio samples × 2 latent dimensions. For visualization, we then compute PCAs of each full-day
latent representation. The first two PCA components captured significant portion of the variance
of the embedding space, with PC-1 and PC-2 representing respective 74.17% and 10.61% of the
variance. We color-mapped this PCA space with disease severity: healthy, low disease, medium
disease, and high disease, with the goal of observing how these diseased states are organized in
the latent space. We found that within each disease class there was relatively consistent organiza-
tion. The audio samples that are classified as healthy occupied a more distinct region within this
space, and the samples classified as diseased separated out primarily along PC-1. The low disease
severity class was the most discriminated within the space, followed by the medium disease sever-
ity, then high disease severity. We were interested in what features of the frequency spectra were
learned within the embedding model, thus extracted spectrograms across 24 hour window for each
projected point and computed the mean across each disease severity class. We compared these fre-
quency spectra to the corresponding latent variables. Within the healthy audio samples, we observed
changes in magnitude and broadening of spectral peaks across the day, which could be associated

Test

Figure 5: Sampled test spectrograms (top) and reconstructions (bottom).
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Figure 6: left: Sampled latent space decoding. The jointly trained generative model on audio data
allows us sample the space occupied by the two latent variables. Distinct audio profiles show the
model captured a range of beehive sound profiles. center: Visualization of audio samples in latent
space across one day reduced to two PCA dimensions, color-mapped to disease severity. right: The
average frequency spectra for each disease class synchronized across a 1-hour window.

with honey bee circadian rhythms, and similar changes are observed in the corresponding latent
variables (Eban-Rothschild & Bloch, 2008; Ramsey et al., 2018). The low disease severity class,
which shows the most separation in PCA space, has the most distinct spectrogram signatures. In
particular, within the low-disease severity we see the peak at 645 Hz broadening and increasing in
magnitude that was consistent across 24 hours. As the disease class progressed from low to medium
and high severity, we observed reduction in magnitude and any circadian changes become less ap-
parent. These characteristics appear to be consistent with studies comparing healthy and disease
auditory and behavioral modifications within bee hives, and the embedding model is capturing some
of the differences in acoustic profiles between the disease severity classes (Kazlauskas et al., 2016;
Robles-Guerrero et al., 2017).

6 CONCLUSION

We have shown for the first time the potential of using custom deep learning audio models for
predicting strengths of beehives based on multi-modal data composed of audio spectrograms and
environment sensing data, despite collecting data across 26 sensors in 26 hives without cross-sensor
calibration and ground truth uncertainties for downstream prediction tasks. We believe that properly
calibrated microphones with improved signal, better sensor placement, and better managed inspec-
tion labels would further improve the predictions, reducing the need for frequent human inspections,
a major limitation of current beekeeping practices. We have also shown the usefulness of semi-
supervised learning as a framework for modeling beehive audio, of which is easy to collect large
amounts of samples but difficult to assign inspections, making annotation collection only possible
during data collection. The learned latent space allows us to characterize different sound profiles
and how they evolve over time, as shown with the progression in disease severity of pollinators in
this work. Future efforts may explore how similar frameworks can be used to study the dynam-
ics of beehives across longer time horizons combined with geographic data, and explore its use in
forecasting, which can be used to improve labor and time management of commercial beekeeping.
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A APPENDIX

A.1 DATA VALIDATION

We examine the quality of collected sensor data in several ways. For environmental sensor data,
which composes of temperature, humidity, and pressure, we developed a dashboard to examine all
datapoints to ensure smoothness across time and check all values to ensure they are within plausible
range. For audio data, we looked for features that could characterize mean activity across day. Bees
have rigid circadian rhythms and are active during the day. By looking at a simple metric such as
audio amplitude, we were able to see that the peak amplitude occurred on average around midnight,
when bees are mostly in the hive. This is congruent with established literature, which also suggests
that bees often vibrate their wings to modulate the hive temperature, which we have verified through
the inside temperature sensed for hives with bees compared to without bees (Weiss et al., 2017;
Southwick, 1983; Stabentheiner et al., 2010). Boxes with bees have consistent inside temperatures
due to thermoregulation by healthy colonies, whereas an empty box we tested captures the same
internal and external temperatures.

We also computed Pearson correlation coefficients between pairwise features to verify the plausi-
bility of the linear relationships between our data features (Fig. 8), and trained linear models to
predict each feature based on other features. We additionally examined conditional probabilities in
order to verify each relationships in greater detail. In summary, we find that there is some sensitivity
differences across microphone, other sensor modalities were most likely self and cross-consistent.
We also inspect audio spectrograms and remove data samples with failed audio captures.

Train

Figure 7: Sampled training spectrograms (top) and reconstructions (bottom).

A.2 DATA PREPROCESSING

Each 56-second audio sample is converted into a wav file and preprocessed with the python package
Librosa to obtain a full sized mel spectrogram which is 128×1680 with a maximum frequency
set at 8192 Hz, half of the sampling rate of the data at 16,384. This spectrogram is then down-
sampled through mean pooling to 61 by 56, with 61 representing the frequency dimension, and 56
representing second-long time bins. Given the spectrogram captures frequencies well beyond bee
sounds established in prior literature (Ramsey et al., 2020; Howard et al., 2013; Ferrari et al., 2008),
we crop this spectrogram at 56 dimensions, representing a 56 by 56 downsampled spectrogram,
which is used to feed into the embedding module after normalizing to between 0 and 1. We did not
use some common transformations such as Mel-frequency cepstrum (MFCC), as it enforces speech-
dominant priors that do not apply to our data and would likely result in bias or data loss. We also
normalize each environmental sensor feature separately and as well as prediction ground truths to
between 0 and 1 for more stable training.

A.3 DATASET PREPARATION

It can be difficult to assign data to each inspection given often inspections tend to correspond to gaps
in data collection. We worked with our inspector to understand the nature of each inspection entry
for each hive. For each inspection entry, we match that entry to the closest date we have a full 96
samples for. We realized after doing this that a number of inspections could not be matched to any
sensor data, and unfortunately had to discard those labels from the dataset. In order to be stringent
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Figure 8: Feature’s Pearson correlation coefficients. Ext: external sensor, In: internal sensor. Aside
from several expected strong correlations, there does not appear to be other bivariate linear con-
founders.

about our label assignment, we only pair labels to data if the difference in time is under 2 days. This
led to a dataset of 40 days with labels.

A.4 HYPERPARAMETERS

Training Adam was used as the optimizer for all objectives. We found that training with 4 objec-
tives was relatively stable, given sufficient pretraining. We used a learning rate of 3e-5 for all except
for disease classification, which we found required a slightly larger learning rate to converge at 1e-
4. The multiple objectives seems to have regularized the model from overfitting as evident in the
validation curves, with the exception of diseases likely because there is significant class imbalance
and insufficient number of examples for diseased, due to the nature of the dataset. The number of
pretrain iterations was determined empirically based on the decrease in validation loss. This pre-
training is useful in order to prevent the network from overfiting to the prediction loss from the very
beginning and not learn to model the audio spectrogram.
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Figure 9: Tracking validation metrics for GPN across training iterations, averaged across 10-folds.
Generative model pretraining occupies the bulk of the training iterations, after which the validation
loss quickly plateaus.

Architecture We found that the predictor could overfit to the training set very easily, thus de-
cided on using a single layer which attaches to multiple heads to allow for parameter sharing. We
swept over different numbers of latent variables for the generative module, and found two latent

12



Under review as a conference paper at ICLR 2021

variables worked best when considering prediction performance and also reconstruction quality and
interpretability of the latent space.

A.5 AUDIO FEATURES CAPTURED BY THE EMBEDDING MODEL

Magnitude After projecting audio data from the dataset into the embedding space across each day,
and computing PCAs of each full-day latent representation, we found the first two PCA components
captured significant portion of the variance of the embedding space, with PC-1 and PC-2 represent-
ing respective 74.17% and 10.61% of the variance. To understand what specific audio features were
captured by the embedding model, we swept in ascending order across PC-1 and created a 24 hour
average frequency spectra for each sample. We observed the broadening of a peak around 675 Hz
and increase in magnitude across all spectra. We plotted integrated magnitudes for frequency spec-
tra from 0 to 8196 Hz against order on PC-1, and found high correlation of magnitude within the
defined region to position on PC-1, demonstrating that the embedding model captured variation in
magnitude across this frequency range.

1 38
Ascending order on PC-1

512

1024

2048

4096

8196

Fr
eq

ue
nc

y 
(H

z)

20 10 0 10 20 30
Ascending PC-1 values

10

12

14

16

18

20

In
te

gr
at

ed
 M

ag
ni

tu
de

Figure 10: The average 24 frequency spectra for each of the 38 samples within the embedding space
organized by ascending value on PC-1. Integrating the magnitude from 0 - 8196 Hz for each point
and plotting against the order on PC-1
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