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Abstract

In an era overwhelmed by a deluge of global information, it is often challenging for people
to grasp the relationships that an event develops over time. The background summariza-
tion (BS) task facilitates a profound understanding of the relationships between the current
background of an event at any given time and its historical backgrounds. To enhance com-
prehension and help news readers and professionals to quickly understand the evolution
of events, we introduce a Historical information-driven Retrieval-Augmented Generation
framework (HiRAG). This framework is designed to extract the most relevant informa-
tion from historical backgrounds and supplement it to generate precise background sum-
marization. HiRAG employs state-of-the-art retrieval-augmented generation technologies
to produce relevant background summarization. We implement a multi-strategy similarity
calculation and introduce a sliding window mechanism to optimize retrieval construction.
Our framework has been rigorously tested through a series of experiments and extensive
analyses of the latest datasets. The promising results affirm the effectiveness of our pro-
posed HiRAG framework and its retrieval capabilities.
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1. Instruction

With the rapid advancement of technology, the volume of information generated globally
is expanding exponentially, presenting people with unprecedented amounts of data. Con-
sequently, swiftly and effectively extracting pertinent information has become increasingly
challenging. Research such as (Babar and Patil, 2015; El-Kassas et al., 2021; Yang et al.,
2023) addresses this issue by identifying and condensing the most crucial parts of exten-
sive texts into concise, coherent summarizations, thereby enabling readers to grasp the core
content quickly. In scenarios involving events driven by multiple occurrences, capturing the
evolving relationships within an event becomes essential. Traditional document summa-
rization methods are inadequate for these situations. Unlike conventional summarization,
timeline summarization (TS) emphasizes the progression and interconnection of events along
a given timeline (Swan and Allan, 2000). At the core of the TS task is the creation of a
series of concise summarizations for news articles published across different periods (Li and
Li, 2013), facilitating a quicker and more comprehensive understanding of news evolution.

Most research on TS tasks focuses on enhancing the performance of timeline summa-
rization (Nguyen et al., 2014) or improving the summarization of events from time-stamped
news articles (Yu et al., 2021). However, these research often overlooks that it is difficult for
readers who first read a news event to quickly understand the entire content of a news event
and that readers must quickly grasp the complexity of a large amount of information about
new events in a short period of time. To address this issue, Pratapa et al. (2023) proposed
a novel task, known as the background summarization (BS) task. The summarization in
the BS task is a crucial tool for readers to grasp the relation of the latest news. These
summarizations offer plentiful historical information relevant to the current background,
effectively capturing the relationships with its past backgrounds. As illustrated in Fig.
1, each background summarization on the timeline effectively articulates the connections
between historical and current backgrounds, bridging past developments with the current
background.

When dealing with the timeline of news events, a significant challenge arises due to
the extensive duration and numerous historical backgrounds. Large language models have
become essential tools in natural language processing, excelling in complex language un-
derstanding and generation tasks due to their extensive internal corpus knowledge (Chang
et al., 2023; Naveed et al., 2023; Minaee et al., 2024). These models perform exceptionally
well on various tasks, such as summarization generation. However, despite their powerful
language processing capabilities, they still face limitations in acquiring and precisely ma-
nipulating knowledge. Using all historical backgrounds as input to train a large model not
only significantly increases the training time but also risks the model learning excessive
information that is not directly related to the current background. This can result in back-
ground summarization that is inconsistent with the current background. As illustrated in
Fig. 2, existing methods often generate background summarization using nearby historical
backgrounds (Pratapa et al., 2023). However, this approach has clear shortcomings, leading
the model to learn irrelevant information and increasing redundancy.

To address this issue, this paper focuses on the retrieval method that automatically filters
out the most relevant and representative historical information for the current background.
We propose a Historical information-driven Retrieval-Augmented Generation framework
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Figure 1: Illustration of the background summarization task.

(HiRAG), designed to enhance the generation of background summarization for event
timelines. By leveraging retrieval-augmented generation (RAG) technology, the HiRAG
framework effectively utilizes historical information to improve the quality of timeline back-
ground summarization. This approach not only helps readers gain a deeper understanding
of the historical background of an event but also produces more precise and targeted back-
ground summarization by focusing on key information and current background.

In this work, our main contributions are as follows:

1. We propose the HiRAG framework, designed to generate background summarizations
that are more consistent with factual accuracy.

2. We adopt a multi-strategy similarity calculation method and introduce a sliding win-
dow mechanism as a retriever. This enables the model to selectively extract the most
pertinent backgrounds concerning recent events from extensive historical backgrounds,
thus providing more accurate and detailed background summarization.

3. Experimental results from the LLAMA2-7B and LLAMA3-8B models confirm that
HiRAG framework effectively guides models in producing background summarization
that are more pertinent to the current background.

2. Relative Work

2.1. Timeline Summarization

Timeline summarization, a crucial tool for information retrieval and event organization,
has consistently garnered significant attention. (Swan and Allan, 2000; Sipos et al., 2012)
proposed an automated approach to process vast quantities of time-related textual data,
extract event and time information, and organize it into a structured timeline summariza-
tion. Subsequent research focused more on generating timeline summarization, that is,
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constructing or enhancing timeline (Allan et al., 2001; Althoff et al., 2015; Swan and Allan,
2000; Yan et al., 2011; Yu et al., 2021). Chieu and Lee (2004) first proposed that given a
query, events related to the query are extracted from a collection of documents and placed
in a timeline, and a key sentence is extracted from the collection to represent an event.
Piskorski et al. (2020) employed an entity-centered event extraction method for extracting
event timelines from online news. This method aims to clearly display the development
of events in the form of a timeline and help users quickly understand the ins and outs of
events.

2.2. Background Summarization

Dang et al. (2008) initially hypothesized that readers are familiar with the first ten arti-
cles, which enables the generation of new information about the topic for the following ten
articles. In the work of Aslam et al. (2015), it was proposed that in some application sce-
narios, such as news events such as natural disasters or large-scale protests, which need to
release backgrounds to users over time, an optimal background is to the minimum number
of sentences covers all the information space of the event that the user may want to know.
Wang et al. (2018) proposed a new news summarization method, which divides news arti-
cles into different event stages, such as event occurrence, event development, event results,
etc., and then extracts the most critical information for each stage. Hayashi et al. (2020)
proposed a decoupled paper summarization. One summarization specifically described the
contribution of the paper, and the other summarization summarized the background and
contextual information of the paper. This method allows readers to have a deeper under-
standing of the content of the paper. Pratapa et al. (2023) introduced a novel event timeline
background summarization task, aimed at generating background summarization based on
historical background information. This approach allows one to understand the relation-
ship between the current background and its historical backgrounds by simply reading the
current background summarization.

2.3. Retrieval-augmented Generation

Retrieval-augmented generation technology leverages the huge corpus in LLM to perform
precise information retrieval, providing detailed background knowledge and rich contextual
information for the text generation process. This technology enhances the reliability and
accuracy of the text produced by large models, and it is extensively applied in open question
and answer fields (Du and Ji, 2022; Siriwardhana et al., 2023; Hei et al., 2024), dialogue
Thulke et al. (2021) and other aspects (Zeng et al., 2024; AI4Science and Quantum, 2023).
Lewis et al. (2020) proposed a retrieval-augmented generation framework that integrated
pre-trained language models with external knowledge bases, enabling the full utilization of
relevant knowledge in the generation process. Parvez et al. (2021) proposed a framework
for retrieval-augmented generation. A retrieval-augmented generation framework was pro-
posed, which retrieved relevant codes or summarizations from the retrieval database and
used them as a supplement to the code generation or summarization model to imitate the
development at a time. Human code or summarization generation behavior makes it easier
for developers to review it and improve efficiency. Wang et al. (2023) Interactively fused
pre-trained large language models with external knowledge bases, and the self-knowledge-
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Figure 2: Illustration of the selection of the historical backgrounds adjacent to the current
background.

guided fusion module can use the internal knowledge of the language model to effectively
select and integrate retrieval results.

3. Method

As shown in Fig. 3., our proposed HiRAG framework fully utilizes the historical back-
ground information of events to generate comprehensive background summarization. By
integrating historical background information, we enhance the coherence and accuracy of
the generation of background summarization, allowing for a deeper understanding of the
connections between the current background and its historical backgrounds.

3.1. Task Definition

Given an evolving series of background information, denoted as <U1, ..., UT>, our objective
is to produce a sequence of background summarization, <B2, ..., BT>. Each summarization
Bt corresponds to the accumulated historical backgrounds from U1 through Ut. For each
background Ut, our goal is to craft the most informative prompt template based on our
custom-built retriever and generate a summarization, Bt, that is intimately aligned with
the current background.

In executing this process, we utilize the current background, Ut, to guide the retriever
toward extracting the most pertinent historical backgrounds. This strategy ensures that
each generated summarization Bt is not only highly relevant to the current background
but also accurately reflects the interplay between historical and current backgrounds, thus
providing a deeper understanding of the evolving narrative.
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Figure 3: Illustration of the HiRAG framework.

3.2. Retriever

Our retriever incorporates three finely segmented modules. Initially, we employ a sliding
window mechanism to define the scope for retrieving historical background information.
Subsequently, we utilize a multi-strategy similarity calculation to assess and select the
most relevant historical backgrounds based on their similarity scores. Finally, these chosen
backgrounds are integrated with common task prefixes to construct a prompt template that
guides the model in generating summarizations. An overview of these modules is presented
in this section.

The complete operational workflow of our retriever is illustrated in Fig. 4. Specifically,
we process the background through entity extraction and word segmentation. Subsequently,
we apply a multi-strategy similarity calculation to the historical background information
within the specified window. This process involves scoring each historical background sim-
ilarity based on U(t) and selecting the highest score as the subsequent query. The diagram
suggests that the most relevant historical background is identified as t

′
, prompting an ad-

justment of the window range to [t
′−L, t

′
+L−1]. Through this cyclical process, we identify

the TOP K most relevant historical backgrounds, which are then concatenated with the task
prefix to create a comprehensive prompt template.

3.3. Historical Backgrounds Scoring

In geometric space, entities and texts are positioned within a multi-dimensional space where
similarity measures the relationships between entities as well as between texts (Szmeja et al.,
2018). Entity similarity typically quantifies the likeness between two or more entities, while
text similarity is generally employed to compare two texts or multiple text segments. Our
objective is to identify the most relevant and informationally complementary historical back-
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ground to the current background. To achieve this, we employ a multi-strategy approach
that finds historical background with high entity similarity but low text similarity.

Initially, by loading an English model through SpaCy, we utilize named entity recog-
nition (NER) technology for entity extraction and tokenization of the backgrounds, and
process backgrounds by tokenizing and subsequently removing stop words. Subsequently,
we use the current background, Ut, as a query q, and apply the Jaccard similarity calculation
to evaluate the relationships between entities and texts within their historical backgrounds
relative to q. The formula for this calculation is:

es =
{eq | eq ⊂ EntityExtraction(q)} ∩ {eUi | eUi ⊂ EntityExtraction(Ui)}
{eq | eq ⊂ EntityExtraction(q)} ∪ {eUi | eUi ⊂ EntityExtraction(Ui)}

(1)

ts =
{wq | wq ⊂ Tokenizer(q)} ∩ {wUi | wUi ⊂ Tokenizer(Ui)}
{wq | wq ⊂ Tokenizer(q)} ∪ {wUi | wUi ⊂ Tokenizer(Ui)}

(2)

Among the terms defined, eq represents the entity extracted from the current back-
ground, while wq denotes the vocabulary processed from the current background. The
variable i serves as the index for historical backgrounds. Additionally, eUi is the entity ex-
tracted by the i-th historical background, and wUi refers to the vocabulary processed after
the i-th historical background.

score = es− ts (3)

The score we ultimately calculate quantifies the correlation between the current background
and its historical backgrounds.

3.4. Historical Backgrounds Selection

The application of the sliding window mechanism in natural language processing predomi-
nantly spans various domains such as text analysis (Yao et al., 2019), information extraction
(Huang et al., 2015), and sentiment analysis (Zhang et al., 2018). This mechanism enables
models to concentrate on fixed-length segments of text—known as windows and progres-
sively shift across the text to encompass it entirely. The Swin Transformer further refines
this approach by limiting self-attention calculations to smaller windows (Liu et al., 2021),
significantly reducing computational demands.

When dealing with exceedingly long event timeline summarization, we cannot overlook
the issue that arises as the timeline extends: the information and significance of earlier
background elements diminish (Chen et al., 2015). Consequently, historical backgrounds
that are more distant from the current background, Ut, increasingly reduce their influence
and relevance to Ut. To address this challenge, we have adapted this concept to our approach
to background summarization.

Specifically, we initiate with a window size of L, setting Ut as query, and defining the
initial window range as [t − L, t − 1]. A scoring module is then employed to identify the
historical background most pertinent to Ut within this range. After each selection of the
most relevant historical background (U

′
t ), we adjust query to U

′
t and modify the window

size to span [t
′ − L, t

′
+ L − 1]. It is crucial to respect historical boundaries, which we

maintain between [0, t− 1]. If extending t
′
+ L− 1 surpasses t− 1, we truncate it at t− 1.

Similarly, if t
′ − L falls below zero, we adjust it to zero.
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Figure 4: Illustration of the retriever. Here, L represents the initial window size, and t
denotes the current background index, establishing the search range for histor-
ical backgrounds as [t − L, t − 1]. In this setup, we use the t-th background as
the query. The blue squares indicate the entity information extracted from the
backgrounds, while the small green squares denote the word segmentation and
processed segmentation data.

3.5. Prompt Input Construction Based on Historical Backgrounds

At a time when the issue of hallucinations in large models is becoming increasingly prevalent,
the essence of RAG lies in the construction of effective prompt templates for these models.
In this section, we employ the task prefix ‘Provide a short summary of the below articles.’
to enhance the accuracy of the summarizations produced. Furthermore, we concatenate
this with relative historical backgrounds alongside the current background, Ut. Specifically,
the prompt template is formulated as:‘Instruction: Provide a short summary of the below
articles. Input:<current background><relative historical backgrounds>’.

4. Experiments

4.1. Datasets

We utilize the dataset introduced by Pratapa et al. (2023) for background summarization,
which has been meticulously annotated by experts across three well-regarded news timeline
summarization datasets, encompassing 14 significant news events. The rigorous annotation
process ensures that for each timestep in the timeline creation, there are three pairs of
expertly rewritten backgrounds and corresponding background summarization.
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Table 1: Effect of Retrieving Relative Backgrounds: STS and PSS are methods introduced
in the latest paper, with the first four entries showing the results of their appli-
cation on the Flan-T5-XL and GPT-3.5 models. Subsequently, we applied these
methods along with HiRAG to the LLAMA2-7B and LLAMA3-8B models.

Method ROUGE-1 ROUGE-2 ROUGE-L

Generic (Flan-T5-XL) 43.5 20.4 39.9
Generic (GPT-3.5) 40.5 15.5 36.6

Query-focused (Flan-T5-XL) 43.0 20.6 39.5
Query-focused (GPT-3.5) 40.2 15.4 36.1

STS (LLAMA2-7B) 21.8 3.9 19.9
STS (LLAMA3-8B) 23.7 4.7 21.2
PSS (LLAMA2-7B) 24.4 5.2 22.3

HiRAG-v1 (LLAMA2-7B) 29.2 7.3 26.7
HiRAG-v2 (LLAMA2-7B) 28.0 6.0 25.5
HiRAG-v1 (LLAMA3-8B) 30.6 8.5 27.3
HiRAG-v2 (LLAMA3-8B) 32.3 9.1 28.9

4.2. Experimental Settings

Generative Model For our task of background summarization, we employ two substan-
tial open-source models: LLAMA2-7B and LLAMA3-8B as the backbone of the HiRAG
framework.

• LLAMA2-7B. LLAMA2-7B represents a key installment in the LLAMA2 series of
large language models (LLMs) developed by Meta AI, boasting a parameter scale of
7 billion (7B) Touvron et al. (2023). This model, both pre-trained and fine-tuned,
demonstrates robust performance across a diverse array of NLP tasks.

• LLAMA3-8B. LLAMA3-8B represents a significant advancement over its predeces-
sor, LLAMA2, in numerous respects. It has been trained on approximately 15 trillion
tokens and supports text inputs up to 8,000 characters in length Meta (2024). This
enhancement is particularly beneficial for processing extended text scenarios.

Evaluation Metrics In this paper, we employ the Recall-Oriented Understudy for Gist-
ing Evaluation (ROUGE) series of metrics to assess the quality of the summarizations
generated by our system. The ROUGE index, as defined by Barbella and Tortora (2022),
utilizes n-gram overlap to measure the similarity between the system-generated summariza-
tion and their corresponding reference summarization. We focus primarily on three specific
metrics: ROUGE-1, ROUGE-2, and ROUGE-L, each of which evaluates summarization
quality based on different n-gram lengths.

• ROUGE-1 ROUGE-1 measures the extent of single-word (1-gram) overlap between
the generated summarization and reference summarization. (Ganesan, 2018). Higher
values in these metrics indicate greater lexical similarity between the generated sum-
marization and the reference summarization.
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• ROUGE-2 ROUGE-2 evaluates the overlap of two consecutive words (2-grams) (Ng
and Abrecht, 2015). This enables ROUGE-2 to capture phrase-level similarities that
are not evident when only single-word comparisons.

• ROUGE-L ROUGE-L is based on the Longest Common Subsequence (LCS) ap-
proach (Schluter, 2017). This metric considers not only the overlap of words or char-
acters but also their sequential order, thus placing a greater emphasis on the coherence
and contextual consistency of the summarization.

Training Settings We propose guiding the construction of prompt templates under two
settings, denoted HiRAG-v1 and HiRAG-v2. The first, HiRAG-v1, involves arranging
both the historical and current background in chronological order, followed by the addition
of a task prefix to form the prompt template for the generation model. The second configu-
ration, HiRAG-v2, directly inputs the retrieved historical information which directly creates
a prompt template by appending a task prefix to the retrieved historical background before
inputting it into the generation model. Both parameter exploration and ablation studies
are conducted using the HiRAG-v1 method.

4.3. Comparison Method

We have compared several methods recently proposed in background summarization re-
search. The specific methods include:

• Generic: Pratapa et al. (2023) use the task prefix ‘summarize:’ to guide the model
in generating a summarization.

• Query-focused: Pratapa et al. (2023) employ ‘Generate a short query-focused sum-
mary of the background.’ as the task prefix and form the prompt with ‘Query:
<query>Background: <historical backgrounds>’. By combining the task prefix with
the prompt, a prompt template is created to guide the model in generating sum-
marization. The historical backgrounds selected are closely related to the current
background, with the query representing the current background.

• Single-Step Summarization (STS): According to the method proposed by Pratapa
et al. (2023), we use the current background as the query and add a task prefix to
create the prompt template, as follows: ‘Instruction: Provide a short summary of the
below articles. Input: <query>’.

Table 2: Exploration of the Number of Backgrounds Parameter.
Number of Backgrounds ROUGE-1 ROUGE-2 ROUGE-L

3 24.7 5.5 22.7
4 26.5 6.2 24.2
5 27.5 5.7 24.9
6 28.2 9.2 26.0
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• Preceding-Steps Summarization (PSS): Following the method proposed by Prat-
apa et al. (2023), we choose the nearby historical backgrounds from previous back-
grounds to incorporate into the prompt template, specifically: ‘Instruction: Provide
a short summary of the articles below. Input: <query><nearby historical back-
grounds>’.

4.4. Main Results

We apply both comparative methods and our proposed methods on the two backbone mod-
els, LLAMA2-7B and LLAMA3-8B. According to the results shown in Table 1, the ROUGE
scores of HiRAG-v1 and HiRAG-v2 are significantly higher than those of the baseline meth-
ods STS and PSS on both backbone models. These results demonstrate the effectiveness
of our proposed HiRAG model in reducing redundancy in the selection of historical back-
grounds and enhancing the model’s focus on the information most relevant to the current
background. On LLAMA3-8B, HiRAG-v2 outperforms HiRAG-v1, whereas, on LLAMA2-
7B, the former is inferior to the latter. Although open-source language large models do
not achieve the performance levels of current pre-trained language and proprietary large
language models tailored for BS tasks, this nevertheless demonstrates that our method can
improve the performance of these open-source models to a certain degree.

4.5. Parameter Exploration

Number of Backgrounds. The configuration of background quantity is intended to
manage the complexity of the input document. To ensure optimal experimental outcomes
with a reduced number of backgrounds, we conduct a series of experiments on the LLAMA2-
7B model with background counts set at 3, 4, 5, and 6. The data shown in Table 2
demonstrate that selecting six backgrounds yields superior ROUGE scores compared to
other configurations.

Window Size. The window mechanism proves to be an effective strategy for prevent-
ing the dilution of relevant and important information in the background as the timeline
extends. Consequently, to optimize the window size, we conducted studies using three dif-
ferent window sizes—5, 10, and 15—on the LLAMA2-7B model. As indicated in Table
3, we observed that constraining the window size to 15 enhances the effectiveness of our
method.

Table 3: Exploration of Window Size Parameters

Window Size ROUGE-1 ROUGE-2 ROUGE-L

5 25.6 5.7 23.3
10 25.7 6.4 23.4
15 26.5 6.2 24.2
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Table 4: Our comprehensive approach utilizes the HiRAG framework we proposed for train-
ing, where the ‘w/o’ sign denotes the omission of a specific feature within our
framework. For instance, ‘w/o Sliding Window Mechanism’ indicates the removal
of the sliding window mechanism from our HiRAG framework for experimental
purposes.

Methods ROUGE-1 ROUGE-2 ROUGE-L

HiRAG-v1 29.2 7.3 26.7
w/o Sliding Window Mechanism 26 6.2 23.8

w/o Entity Similarity 25.7 5.6 23.5
w/o Text Similarity 27.5 6.5 25.1

4.6. Ablation Study

As detailed in Table 4, we conduct experiments on the LLAMA2-7B model. Our findings
reveal a considerable decrease in effectiveness when historical backgrounds are selected based
solely on entity similarity or text similarity. Meanwhile, when using only a multi-strategy
similarity approach, the ROUGE scores are substantially lower compared to results obtained
from integrating the window mechanism. This underscores the efficacy of our proposed
method.

4.7. Case Study

We conduct a case study to evaluate the strengths and weaknesses of our method in the
BS task. The experimental results are presented in Fig. 5. HiRAG framework effectively
generates background summarization by utilizing sufficient important information as sup-
port. However, it also tends to produce redundant information. In contrast, the comparison
method PSS does not generate redundant information, but it has a tendency to directly
copy content from the current background, focusing excessively on the present background.

5. Conclusion

We introduce the HiRAG framework, designed to maximize the use of historical background
information for generating summarization highly relevant to the current background. We
employ a sliding window mechanism to limit the retrieval range of historical backgrounds,
effectively mitigating the reduced utility of distant historical backgrounds. Additionally,
our method utilizes a multi-strategy similarity approach to identify the most pertinent his-
torical background. Central to our approach is the deployment of a prompt template that
melds a specific task prefix with dynamically retrieved content, including both current and
historical backgrounds. This structured alignment of input data with the model’s prompts
sharpens the focus of the BS task, facilitating the creation of precise and appropriate back-
ground summarization. In future work, we will focus on optimizing our method to reduce
redundancy in the generated summarization.
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Figure 5: Prediction results of HiRAG and PSS for the example.
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