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ABSTRACT

Retrieval-augmented generation (RAG) enhances large language models (LLMs)
by injecting externally retrieved documents into the input context. It significantly
increases inference costs and introduces knowledge conflicts, primarily caused by
the lack of corresponding parametric knowledge in LLMs. Recently, Parametric
RAG (PRAG) proposed to overcome these limitations by embedding symbolic
documents into LLMs parameters, effectively reducing the inference costs and
conflicts through offline training. However, PRAG needs to convert all documents
into parameters in advance, which incurs high training and storage costs and renders
it difficult to generalize to unseen documents. To address these challenges, we
propose Dynamic Parametric RAG (DyPRAG), a novel framework that leverages
a lightweight parameter translator model to efficiently convert symbolic documents
into parametric knowledge online. Specifically, the parameter translator employs
several linear layers to convert document embeddings into LoRA modules of
feed-forward networks of LLMs directly. DyPRAG achieves test-time parametric
knowledge enhancement by dynamically generating the requisite parameters, which
not only reduces the inference cost and mitigates knowledge conflicts inherent
in RAG, but also lowers the training and storage overhead of PRAG. Extensive
experiments on multiple datasets demonstrate the effectiveness and generalization
capabilities of DyPRAG. Furthermore, the combination of contextual knowledge
with test-time generated parametric knowledge offers a practical and more powerful
RAG paradigm which updates parametric knowledge adaptively, enables superior
knowledge fusion and alleviates knowledge conflicts in real-world applications.
Our code is available at https://anonymous.4open.science/r/DyPRAG_ICLR.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across diverse tasks (Liu
et al., 2023), yet their performance on knowledge-intensive applications (Frisoni et al., 2024), such
as question answering, remains constrained by limited access to up-to-date or domain-specific
knowledge and a tendency to hallucination (Joshi et al., 2017; Kwiatkowski et al., 2019). To address
this gap, retrieval-augmented generation (RAG) (Guu et al., 2020a) has emerged as a widely adopted
approach which retrieves documents from external sources (e.g., Wikipedia) and injects them into the
context, referred to as in-context injection (Izacard & Grave, 2021) (as shown in Figure 1 (a)).

While RAG mitigates knowledge gaps (Brown et al., 2020), this in-context injection strategy suffers
from several limitations. As more documents are retrieved, inference costs increase rapidly due to
elongated input sequences. More critically, knowledge conflicts (also known as RAG hallucination)
often occur when external content contradicts the internal parametric knowledge of the LLM. It
is mainly caused by low knowledge overlap, leading to erroneous outputs even in the presence of
relevant documents(Zhang et al., 2024; Sun et al., 2024).

Parametric RAG (PRAG) employs another way of injecting knowledge, which integrates external
knowledge directly into the parameters of LLMs to address these problems, known as parameter
injection (as shown in Figure 1 (b)). The workflow of PRAG is divided into two stages. During the
offline phase, PRAG first augments the retrieved documents to facilitate memorization and manip-
ulation of knowledge (Allen-Zhu & Li, 2023a;b). Then, the augmented documents are fine-tuned
with LoRA (Hu et al., 2022), encoding contextual knowledge directly into parameters. In the online
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phase, retrieved documents are replaced with loadable parameters. Despite its benifit, PRAG faces
critical limitations. Augmentation, training, and storing parameters for each retrieved document incur
high computational and storage costs, coupled with non-generalization which struggles to adapt to
unseen documents, severely limiting scalability in real-world applications (e.g., in frequent knowledge
updates domains). This presents a critical challenge for PRAG: How to achieve more efficient and
generalizable test-time parametric knowledge enhancement with comparable performance?
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Figure 1: Compared to RAG and PRAG, the proposed DyPRAG
generates parametric knowledge dynamically during test-time,
which provides multiple benefits, including lower inference, train-
ing, and storage costs, better generalization, and mitigation of
knowledge conflicts.

To address aforementioned chal-
lenges, we propose Dynamic
Parametric RAG (DyPRAG),
a novel lightweight framework
that enables on-the-fly parame-
ter injection at test time (Fig-
ure 1 (c)). Rethinking PRAG,
its intrinsic goal is to obtain an
underlying mapping function F
which transforms external docu-
ments into parameters by stati-
cally fine-tuning on each docu-
ment. Instead of this, DyPRAG
introduces the parameter trans-
lator F ′

ϕ, a small hypernetwork
trained offline to learn this gen-
eralized mapping. This model,
once trained, can dynamically
generate document-related parameters at inference time to enhance the parametric knowledge of
LLMs. After a detailed analysis of computation and storage overhead, our method significantly
reduces the high inference costs of traditional RAG while eliminating the rigid training and storage
costs of PRAG.

Through extensive experiments, we derive two key findings: 1) DyPRAG enhances the test-time
parametric knowledge of LLMs effectively. During evaluation, DyPRAG outperforms standard
RAG across different scales of LLMs, demonstrating its ability to enhance the internal knowledge of
LLMs. Furthermore, although PRAG learns F by training separately for each document, DyPRAG
achieves comparable or even better performance in various scenarios with significantly lower costs.
2) Combining test-time generated parametric knowledge with contextual knowledge leads to
superior knowledge fusion. Following Su et al. (2025), we further investigate the combination of
in-context injection and parameter injection, referred to as DyPRAG-Combine. In both independent
identically distributed and out-of-distribution settings, DyPRAG-Combine achieves the best results,
showing strong generalization ability. Additionally, we find that DyPRAG-Combine effectively
relieves knowledge conflicts by first injecting context-related parameters to fill the absent parametric
knowledge gap. Based on the experimental results on RAGTruth (Niu et al., 2023) benchmark, we
observe that DyPRAG-Combine enables LLMs to better internalize contextual knowledge, even on
unseen documents. We further provide an in-depth analysis of how the parameter translator maps
knowledge from different sources and how to interpret model performance based on internal signals.
These findings suggest that integrating parametric and contextual knowledge using DyPRAG could
be a promising approach for building a powerful and robust RAG system in real-world applications.
We summarize our contributions as follows:

• We propose Dynamic Parametric RAG (DyPRAG), a novel lightweight framework that efficiently
converts symbolic documents into parameters at test-time. To the best of our knowledge, DyPRAG
is the first approach in the RAG field to enable online transformation of symbolic knowledge into
parametric representations, thereby eliminating the need for offline pre-conversion and storage of
parameterized documents.

• We further develop a practical and powerful RAG paradigm DyPRAG-Combine, which effectively
integrates symbolic documents with dynamically generated parametric knowledge, enabling the
supplementation of requisite parametric knowledge in advance.

• Experimental results demonstrate that DyPRAG not only significantly outperforms in generalization
but also efficiently enhances parametric knowledge and seamlessly integrates contextual knowledge,
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boosting performance while reducing knowledge conflicts. As a result, DyPRAG provides a more
powerful and robust RAG paradigm for real-world applications.

2 RELATED WORK

2.1 RETRIEVAL AUGMENTED GENERATION

Large language models (LLMs) have demonstrated remarkable performance across diverse applica-
tions. However, their inherent knowledge often falls short in handling knowledge-intensive tasks,
highlighting the need for external knowledge integration to ensure robust performance in such con-
texts. A prominent approach to bridging this gap is retrieval-augmented generation (RAG), which
augments LLMs by incorporating relevant external knowledge sources (Borgeaud et al., 2022; Wang
et al., 2024a;b; Guu et al., 2020b). The retrieved documents are appended to the LLM’s input context,
enabling it to leverage knowledge beyond its training data (Lewis et al., 2020). However, this approach
leads to high inference costs as the number and length of retrieved documents increase (Xiong et al.,
2023). To address this issue, a recent study introduces Parametric RAG (PRAG) (Su et al., 2025), a
paradigm that fine-tunes the model on augmented documents, encoding useful information into pa-
rameters. While PRAG mitigates the inference cost, it introduces additional training and storage costs
due to the need to obtain and store LoRA parameters. Our proposed method significantly reduces
the high costs associated with standard RAG and PRAG while achieving superior generalization. By
combining contextual knowledge with test-time generated parametric knowledge via DyPRAG, our
approach enables better knowledge fusion and effectively mitigating knowledge conflicts.

2.2 CONTEXT COMPRESSION

Context compression is widely adopted to improve the efficiency of LLMs in processing contextual
knowledge. Recent studies propose condensing long contexts into soft prompts, allowing LLMs to
utilize information more effectively (Mu et al., 2023; Ge et al., 2023). Meanwhile, other works focus
on transforming context chunks into LoRA modules to improve the understanding ability of extended
contexts (Mao et al., 2024; Wang et al., 2024c; Charakorn et al., 2025). xRAG (Cheng et al., 2024)
integrates context compression by mapping documents into a compact token representation. Similarly,
AAG (Liao et al., 2024b) draws inspiration from human cognition, retrieving and recalling relevant
knowledge to compensate for knowledge gaps. This approach activates relevant information within
LLMs without relying on external resources. Building upon these advancements, we present the first
in-depth investigation into transforming symbolic documents into model parameters within RAG
systems. Our study demonstrates that this approach effectively unifies the contextual and parametric
knowledge, making it highly suitable for the RAG domain. This unification significantly mitigates
knowledge conflicts and enhances overall performance in RAG systems.

3 METHODOLOGY

In this section, we introduce the Dynamic Parametric RAG framework, as shown in Figure 2. We first
formulate the problem and review the previous PRAG framework. Specifically, we revisit the offline
document parameterization process, which transforms documents into parametric representations
through Document Augmentation and Document Parameterizing, following Su et al. (2025).
Subsequently, we present our Parameter Translation process, which learns the underlying function to
map document embeddings into feed-forward networks (FFN) parameters via LoRA (Hu et al., 2022).
Once the translator is well optimized, retrieved documents can be directly converted into parametric
representations online. These parameters can be efficiently integrated into LLMs, enhancing model
parametric knowledge while reducing inference, training, and storage costs at test-time.

3.1 PRELIMINARY OF PARAMETRIC RAG

This subsection introduces the problem formulation of the RAG task and outlines the Parametric
RAG pipeline proposed in Su et al. (2025).

3
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Figure 2: An illustration of the DyPRAG framework. The offline phase consists of two stages:
Stage 1 follows the same parameterization process as PRAG to collect document-parameter (Doc-
Param) pairs. In Stage 2, a parameter translator F ′

ϕ is trained to learn a generalizable mapping from
documents to corresponding parametric representations. During the online phase, Stage 3 leverages
the learned translator F ′

ϕ to dynamically generate LoRA modules for any document at test-time. This
enables DyPRAG to enhance LLMs with external parametric knowledge on demand.

Standard RAG. Let M denote a large language model (LLM) with base parameters Θ. Given a
user query q, the task of LLM is to generate an accurate response augmented by an external corpus C,
expressed as C = {d1, d2, . . . , dN}. Each element di, referred to as a document, represents a text
chunk retrieved from external sources (Izacard & Grave, 2021). To achieve this, a retrieval module
R is employed to compute relevance scores between q and the documents in C. Traditional RAG
approaches select the top-c documents with the highest similarity scores and concatenates them with
the query to form the extended input context. Based on this augmented input, M generates the
response by leveraging both the query and the retrieved documents. This procedure, referred to as
In-context Injection, significantly increases the inference costs as the context length grows.

Parametric RAG. In contrast, Parametric RAG (PRAG) integrates documents directly into the
parameters of M to reduce the cost associated with long contexts. Each document di ∈ C is
transformed offline into a parametric representation Pi = F(di), where F is an underlying map-
ping function that converts each document di into its corresponding parameters Pi. To achieve
a more effective mapping, PRAG employs Document Augmentation, inspired by Allen-Zhu &
Li (2023a;b), to help the model memorize and manipulate the information contained in document
di. Specifically, PRAG uses M to rewrite di into multiple variations, resulting in {d1i , d2i , . . . , dni }.
Additionally, for each original document di, PRAG prompts M to generate m question-answer (QA)
pairs: {(q1i , a1i ), (q2i , a2i ), . . . , (qmi , ami )}, where n and m are hyperparameters. This augmented set
of documents preserves the factual content of the original document while incorporating diverse
linguistic variations, expressed as:

Di =
{
(di

k, qi
j , ai

j)
∣∣ k ∈ [1, n], j ∈ [1,m]

}
, (1)

where each triple (dki , q
j
i , a

j
i ) is then concatenated to a training sample x = [dki ⊕ qji ⊕ aji ]. For

Document Parameterizing, PRAG utilizes LoRA (Hu et al., 2022) to encode parametric knowledge

4
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Pi for each Di where the overall goal is to optimize:

min
Pi

∑
(di

k,qi
j ,ai

j)∈Di

T∑
t=1

− log PΘ+Pi

(
xt

∣∣x<t

)
, (2)

where Pi is the trainable low-rank matrix and only apply to feed-forward network (FFN). During
the inference phase, PRAG directly incorporates the obtained parametric representation Pi into the
model parameters. We refer to this approach as Parameter Injection. Notably, although this method
eliminates the use of documents as context, it further introduces significant training cost and storage
cost, which will be analyzed in Section A.

3.2 DYNAMIC PARAMETRIC RAG

In this section, we describe the detailed process of our proposed Dynamic Parametric RAG
(DyPRAG) paradigm. Rethinking PRAG, its intrinsic goal is to obtain a document-specific mapping
function F through repeated augmentation and training for each document di separately. However,
this process is computationally intensive and impractical in real-world applications, where new
documents require retraining from scratch. We argue that the key to optimization lies in addressing
the question: How to obtain a generalized mapping function F? To this end, we propose a three-
stage framework designed to enable parameter injection in an effective and efficient manner, which
eliminates the need to pre-convert and store parameters for all documents offline.

Doc-Param Pairs Collection. To derive the general mapping function F , we start by collecting
a set of document-parameter (Doc-Param) pairs using the method described in Sec. 3.1. For each
document di, we collect its corresponding parametric representation Pi, forming the alignment set
K = {(d1,P1), (d2,P2), . . . , (dN ,PN )}.

Dynamic Parametric RAG Training. After obtaining the alignment set K, we utilize the original
LLM M to encode textual documents into embeddings. For a given document di, we extract the
last hidden state si ∈ Rh at the last token position before transforming it into the vocabulary space,
where h represents the hidden dimension. To model the implicit transformation, we design a simple
hypernetwork called Parameter Translator F ′

ϕ to translate si into parametric representation Pi.
This hypernetwork consists of several linear layers parameterized by a base parameter ϕ. As an
example, consider the up-project module in FFN. The standard LoRA process as follows:

W′ = W +∆W = W +BA (3)
where W ∈ Rh×k, B ∈ Rh×r and A ∈ Rr×k. k represents the intermediate dimension of FFN and
r is the controllable LoRA rank. At training phase, F ′

ϕ performs separately on B and A. Formally:

Bl = Reshape(Wl,B
up Relu(Wl,B

down(si ⊕ idxl))) (4)

where Wl,B
down ∈ Rp×(h+1) and Wl,B

up ∈ Rhr×p. Here, p represents the tunable intermediate di-
mension of the MLP module in F ′

ϕ, and Reshape(·) reshapes the output vector into the shape of B.
This process is applied at each layer l, so we concatenate the layer index with si. We provide the
visualization of this workflow in Appendix J. A similar procedure is followed for matrices A and in
other modules of FFN. The parametric representation generated by F ′

ϕ is denoted as P′
i. Our goal is

for it to perform as effectively as Pi.

To align with PRAG (Su et al., 2025), we utilize the augmented dataset Di and the same objective
function as presented in Eq. 2 to optimize F ′

ϕ which corresponds to Lpred. Additionally, for the target
LoRA adapter Pi, we employ Lmse to compute the difference between the generated parameters and
the target parameters. The Kullback-Leibler divergence (Polzehl & Spokoiny, 2006), denoted as Lkl,
quantifies the discrepancy in word probability distributions between the two models, with the model
using Pi serving as the target distribution to be imitated. The overall formulation is given by:

Lmse = MSE(Pi,F ′
ϕ(di)) (5)

Lkl = KL(PΘ+Pi(x | Di), PΘ+F ′
ϕ(di)(x | Di)) (6)

Lalign = Lpred + λ1Lmse + λ2Lkl (7)
where we calculate the overall alignment loss for each document di, λ1 and λ2 are tunable hyper-
parameter which set to 100 and 0.01 separately to make loss range similar.

5
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Dynamic Parametric RAG Inference. During the inference stage, once a well-trained parameter
translator F ′

ϕ is obtained, we can efficiently perform parameter injection which significantly reduces
the inference costs. For a test query qt, we rerun the retrieval process using the retrieval module R to
select the most relevant documents. For each selected document dti, we derive its embedding sti and
input it into F ′

ϕ to obtain the dynamic LoRA adapter Pt,′
i , which encodes the relevant information

from the document in parameter. We then merge this as the LoRA parameter for inference, resulting
in low inference costs without requiring the concatenated documents.

4 EXPERIMENTS

4.1 EXPERIMENTS DETAILS

Datasets. We validate our approach using various benchmarks to evaluate distinct reasoning
abilities, including multi-hop reasoning and commonsense inference. The selected datasets are
2WikiMultihopQA (2WQA) (Ho et al., 2020), HotpotQA (HQA) (Yang et al., 2018), PopQA
(PQA) (Mallen et al., 2022) and ComplexWebQuestions (CWQ) (Talmor & Berant, 2018). We
provide detailed information about these datasets in Appendix B.1.

Evaluation Metrics. For evaluation, we use the Exact Match (EM) score (%) to compare the
extracted answer with the reference answer at the exact match level. Additionally, we employ the
F1 score (%), which balances precision and recall by considering partially correct answers. Both
2WQA and HQA categorize questions by reasoning type, with 2WQA having four categories and
HQA two. To compare DyPRAG with other RAG baselines across reasoning tasks, we use the first
300 questions from each sub-dataset for evaluation.

Implementation Details. To ensure broad effectiveness across models, we select LLMs of
varying scales and series, including Qwen2.5-1.5B-Instruct (Yang et al., 2024), LLaMA-3.2-1B-
Instruct (Meta, 2024b) and LLaMA-3-8B-Instruct (Meta, 2024a). For our base experiments, we
collect 200 additional questions from each non-overlapping sub-dataset. The number of retrieved
documents c is set to 3, resulting in a alignment set K of 4,800 samples. The intermediate size p is
set to 32. All experiments were conducted using PyTorch on NVIDIA A100 GPUs (80GB). Please
refer to Appendix B.1 for more detailed settings.

4.2 BASELINES

We select the following baselines to compare with our proposed DyPRAG, detailed in Appendix B.1:

• Vanilla represents the answer from original LLMs without any external knowledge.
• RAG appends top-retrieved documents to the LLM’s input prompt, explicitly instructing the model

to reference them when answering.
• PRAG injects relevant documents into the LLM’s parameters via offline parameterization, reducing

reliance on retrieved documents.
• SFT fine-tunes LLMs with same setting in DyPRAG to encode all knowledge without context.
• Context-DPO (Bi et al., 2024) aligns LLMs through direct preference optimization (DPO) (Rafailov

et al., 2023) to enhance context-faithfulness of LLMs and inference with retrieved documents.

Following the approach in Su et al. (2025), we conduct experiments that combine both in-context and
parameter injection to explore their interaction. Specifically, the retrieved documents are appended to
the input context, and their corresponding parametric representations are integrated into the model.
This results in two additional baselines, referred to as PRAG-Combine and DyPRAG-Combine.

4.3 MAIN RESULTS

In this section, we present the main experimental results and a detailed analysis of DyPRAG in com-
parison with the selected baselines. Additionally, we provide efficient RAG baselines in Appendix C.
Notably, the vanilla model occasionally outperforms RAG in certain situations. We analyze the
reasons for this in Appendix H and confirm that it won’t affect the subsequent analysis.
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Table 1: The experimental results of DyPRAG are compared with parametric RAG, standard RAG
and two training-based methods. All metrics are reported as EM scores (%) and F1 scores (%). The
best performance is bolded, while the second-best is underlined. The Avg is the average performance
over all tasks.

Base LLM Method 2WQA HQA PQA CWQ Avg

EM F1 EM F1 EM F1 EM F1 EM F1

LLaMA3.2-1B

Vanilla 17.47 22.87 18.56 24.10 0.67 2.26 23.67 34.94 16.74 21.04
SFT 8.67 11.25 1.67 2.96 0.00 1.33 7.67 12.77 5.60 7.92

Context-DPO 19.33 24.14 17.00 23.35 4.00 12.79 7.67 13.00 15.93 21.66
RAG 17.93 24.77 21.44 30.33 9.67 17.65 25.67 37.39 18.93 26.99

PRAG 20.13 25.92 19.00 25.35 12.00 23.58 26.00 35.86 19.57 26.51
PRAG-Combine 20.60 26.94 23.33 30.81 20.33 31.07 28.33 39.63 22.17 29.78
DyPRAG (ours) 24.27 29.91 19.56 25.97 7.33 11.33 28.33 36.86 21.57 27.57

DyPRAG-Combine (ours) 26.33 32.53 23.33 30.80 21.33 29.93 29.33 38.96 25.23 31.80

Qwen2.5-1.5B

Vanilla 20.87 27.20 14.78 23.13 0.67 2.87 18.00 26.47 16.74 25.79
SFT 18.60 22.61 8.78 13.63 0.00 6.95 4.67 13.96 12.40 17.49

Context-DPO 17.60 24.35 15.00 24.35 0.33 14.18 12.33 19.20 14.57 22.82
RAG 16.33 23.89 14.89 24.68 0.67 9.97 18.64 28.23 14.56 23.17

PRAG 21.93 29.38 16.00 24.04 1.33 3.87 22.31 30.82 18.13 25.37
PRAG-Combine 19.07 27.29 19.33 26.15 2.67 12.61 21.67 32.13 17.77 25.96
DyPRAG (ours) 21.87 28.46 17.11 24.93 3.00 6.64 22.67 31.94 18.64 25.56

DyPRAG-Combine (ours) 18.87 25.87 20.67 30.13 7.33 22.69 23.67 33.57 18.74 27.60

LLaMA3-8B

Vanilla 30.00 36.43 19.89 28.64 4.67 7.96 30.00 42.44 24.43 31.85
SFT 1.53 13.09 0.33 2.19 0.00 0.00 0.00 5.92 0.86 7.80

Context-DPO 14.93 24.42 12.45 21.67 4.33 18.68 8.00 13.81 12.43 21.96
RAG 28.40 34.20 19.13 28.67 5.67 16.13 25.33 35.45 23.04 30.86

PRAG 33.20 40.54 35.55 45.88 20.33 26.13 32.67 43.54 32.57 41.00
PRAG-Combine 34.47 42.20 40.11 50.82 11.33 26.23 28.00 36.41 33.20 42.61
DyPRAG (ours) 32.07 39.17 24.67 37.33 11.00 13.60 32.67 41.87 27.80 36.23

DyPRAG-Combine (ours) 36.33 47.68 33.22 43.22 21.00 32.86 29.67 39.07 33.20 43.69

Overall Analysis. Since PRAG learns the mapping function F by training separately for each
document, it can be considered as a upper bound of DyPRAG. Remarkably, our proposed DyPRAG
achieves comparable or even superior results across various tasks, as shown in Table 1. For instance,
using LLaMA3.2-1B, DyPRAG achieves an average score of 27.57% (21.57%), surpassing PRAG
by 1.06% (2.00%), RAG by 0.58% (2.64%) and vanilla by 5.18% (4.83%) in F1 (EM) scores. This
demonstrates that our method learns more useful information when trained on diverse datasets. We
also compare DyPRAG with efficient RAG baselines, including FLARE (Jiang et al., 2023) and DRA-
GIN (Su et al., 2024). As shown in Table 8, both DRAGIN and FLARE outperform standard RAG in
most 2WQA settings. However, DyPRAG achieves even better results, demonstrating its superiority.
For example, when using LLaMA3-8B as the base model, DyPRAG outperforms DRAGIN and
FLARE by 1.56% and 2.63% on 2WQA in F1 scores, respectively. However, Context-DPO proves
less effective in resolving knowledge conflicts, while SFT experiences severe collapse, failing to
encode such a large amount of knowledge, which leads to significant performance degradation. These
results highlight the consistent performance improvements offered by DyPRAG over all baselines,
underscoring its effectiveness for test-time parametric knowledge enhancement.

DyPRAG-Combine Leads to Superior Performance. By combining in-context injection with
parameter injection, DyPRAG-Combine achieves the best performance across all models, outperform-
ing all baselines. For instance, DyPRAG-Combine outperforms PRAG-Combine by 2.02% (3.06%)
on LLaMA3.2-1B, 0.55% (0.17%) on Qwen2.5-1.5B and 1.08% (0.00%) on LLaMA3-8B on average
in F1 (EM) scores. Moreover, combining these two types of knowledge results in shorter responses,
effectively reducing costs due to improved knowledge internalization ability, as shown in Figure 4.
These results demonstrate the dynamic parameters generated by our approach effectively intergrade
with contextual knowledge, enabling these two information sources to complement each other.

4.4 OUT-OF-DISTRIBUTION PERFORMANCE

To further demonstrate the generalization ability of the DyPRAG method, we evaluate it in the
out-of-distribution (OOD) scenario. Notably, PRAG can not handle this OOD scenario without
additional offline training. We conduct the OOD performance on commonsense datasets: StrategyQA
(SQA)(Geva et al., 2021), IIRC(Ferguson et al., 2020), and OpenBookQA (OBQA)(Mihaylov et al.,
2018). Additionally, MedMCQA (MQA)(Pal et al., 2022) focuses on a completely unseen domain
about medical. All OOD datasets are provided with ground-truth passages.

As shown in Table 2, the vanilla model performs poorly due to a lack of sufficient relevant knowledge,
particularly in the IIRC dataset. DyPRAG effectively enhances parametric knowledge, resulting
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Table 2: The OOD performance on three open-
domain datasets for F ′

ϕ trained on K is reported.

Base Model Method IIRC SQA OBQA MedQA Avg

LLaMA3.2-1B

Vanilla 10.99 21.67 40.33 39.00 28.00
SFT 2.83 0.00 0.00 0.00 0.71
RAG 40.38 27.67 52.00 50.33 42.60

DyPRAG 14.04 39.67 43.00 40.67 34.35
DyPRAG-Combine 41.91 50.33 52.00 52.67 49.23

Qwen2.5-1.5B

Vanilla 8.78 1.00 40.09 33.67 20.89
SFT 7.39 0.00 9.67 0.00 4.27
RAG 30.52 39.00 45.00 52.67 41.80

DyPRAG 10.23 15.67 43.38 34.67 25.99
DyPRAG-Combine 38.25 43.33 48.57 52.67 45.71

LLaMA3-8B

Vanilla 13.23 33.33 52.33 55.00 38.47
SFT 2.42 0.00 0.00 0.00 0.61
RAG 43.27 45.67 60.00 55.67 51.15

DyPRAG 18.16 45.67 53.00 55.00 42.96
DyPRAG-Combine 57.90 58.67 60.67 56.67 58.48

0 20 40 60 80 100
Number of Examples

Qwen-1.5B

LLaMA-1B

LLaMA-8B

89 9 2

85 9 6

47 26 27

Knowledge Internalization Comparison (RAGTruth)

Win
Tie
Loss

Figure 3: Comparison of knowledge internal-
ization between DyPRAG-Combine vs RAG
judged by GPT-4o.

Table 3: Ablation study of alignment loss. The backbone model is the LLaMA3.2-1B.

Method 2WQA HQA PQA CWQ Avg
Compare Bridge Inference Compose Total Bridge Compare Total

DyPRAG 51.25 48.15 17.35 7.54 25.31 14.05 43.9 19.97 8.37 36.86 25.28
Ablation Study
w/o Lkl 29.54 37.74 12.94 5.78 20.27 7.35 35.28 13.12 1.93 22.85 18.68
w/o Lmse 56.06 36.96 17.29 8.40 27.28 12.78 42.11 17.65 5.94 32.98 23.38
w/o Lkl,Lmse 45.23 24.84 16.74 7.48 23.43 12.66 39.46 18.26 2.42 34.92 22.54

in a moderate improvement in performance. However, when the model heavily relies on critical
information from documents to answer questions, DyPRAG struggles to accurately reconstruct this
information. This loss of information primarily stems from the encoding and translation processes,
which contributes to the model’s suboptimal performance (e.g., in IIRC). Notably, DyPRAG-Combine
which incorporates golden passages with document-related parametric knowledge leads to deeper
knowledge fusion, achieving best performance across all scenarios, even in hardest IIRC task. For
example, DyPRAG-Combine improves performance on SQA (MQA) by 22.66% (2.34%) using
LLaMA3.2-1B, on IIRC by 13.63% using LLaMA3-8B and on OBQA by 3.57% using Qwen2.5-
1.5B. We believe that the observed performance gain comes from the coarse-grained parametric
transformation of document knowledge. This transformation increases the overlap between the two
distinct types of knowledge, thereby improving the model’s ability to understand unseen documents.
We further investigate DyPRAG’s performance on non-QA tasks in Appendix C. Additionally,
Appendix F presents textual similarity analyses across datasets to validate a reliable OOD setting,
while Appendix G examines the generated LoRA matrices to explore the parameter translator’s
underlying generalization ability.

4.5 ABLATION STUDY

Effect of Alignment Loss. The alignment loss Lalign is composed of three components: Lpred, Lmse,
and Lkl. We investigated which component contributes the most to the effectiveness of DyPRAG. As
shown in Table 3, removing any single loss component negatively impacts the model’s performance.
For instance, when Lkl is removed, the model’s performance drops significantly, demonstrating that
aligning with the target output distribution is an effective strategy (Liao et al., 2024a). While removing
Lmse has the smallest impact, ensuring that F ′

ϕ generates P′ values as close as possible to the trained
P still proves beneficial. Furthermore, even when only Lpred is retained, DyPRAG maintains stable
performance, indicating that the Lpred loss plays a central role in the overall alignment. We further
present several ablation studies, including the effects of training dataset size, injected documents
number to performance, intermediate dimension p, different retrievers, and data augmentation, as
detailed in Appendix D.

Effect of Data Augmentation. In Section 3, we introduce data augmentation to improve the
model’s ability to memorize and process information from documents. To assess the impact of data
augmentation on the DyPRAG method, we remove it during the Doc-Param pair collection phase and
compare the results with those of the original method. The results in Table 4 indicate that removing
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Table 4: Ablation study of effectiveness in data augmentation. All metrics are reported as F1 scores
(%). The backbone model is the Qwen2.5-1.5B.

Method 2WQA (Total) HQA (Total) PQA CWQ IIRC SQA OBQA MQA

Vanilla 26.87 17.76 2.87 26.47 8.78 1.00 40.09 33.67
RAG 24.31 20.73 9.97 28.23 30.52 39.00 45.00 52.67

PRAG-Combine 27.49 23.10 23.43 32.13 – – – –
w/o Aug 22.79 19.00 10.74 28.54 – – – –
Change -17.1% -17.7% -54.2% -11.2% – – – –

DyPRAG 26.46 19.67 6.64 31.94 10.23 15.67 43.38 34.67
w/o Aug 28.36 15.71 3.35 28.04 8.49 0.30 38.36 22.94
Change +7.2% -20.1% -49.5% -12.2% -17.0% -98.1% -11.6% -33.8%

DyPRAG-Combine 25.18 27.57 22.69 33.57 38.25 43.33 48.57 52.67
w/o Aug 23.00 19.88 9.84 27.97 29.41 30.67 43.90 34.03
Change -8.7% -27.9% -56.6% -16.7% -23.1% -29.2% -9.6% -35.4%

data augmentation greatly diminishes the quality of offline parameterization, which in turn affects
the parameter translator’s ability to convert documents into parametric knowledge. This degradation
results in a significant performance drop for both PRAG, which relies on offline parameterization,
and DyPRAG, which dynamically converts parameters.

Effect of Parameter Translators Size. As illustrated in Section A, the total storage cost for F ′
ϕ

is 3L(phr + 2p(h+ 1) + pkr), which scales linearly with p. Therefore, we conducted an ablation
study on p. As shown in Table 11, DyPRAG consistently outperforms both standard RAG and PRAG.
Surprisingly, p = 2 achieves the second-best performance with a storage cost of only 7.71MB. In
contrast, PRAG requires 9.33GB to store data for all test questions in main experiments, resulting in
a significant overhead. The experiments demonstrate that our proposed DyPRAG not only drastically
reduces storage costs but also enhances performance, showcasing exceptional robustness. Notably,
DyPRAG significantly reduces the inference cost compared to RAG, while introducing only minimal
overhead (i.e., encode and translate processes). We further present an end-to-end latency analysis in
Table 12, demonstrating that both DyPRAG and DyPRAG-Combine achieve faster inference. This
improvement is attributed to shorter responses and the asynchronous mode, which mitigates the
latency introduced by the encoding and translation processes in real-world scenarios.

4.6 ANALYSIS OF CONTEXTUAL AND PARAMETRIC KNOWLEDGE CONFLICTS AND FUSION

Pre-inject Converted Parameters Enhances Knowledge Overlap. When LLMs struggle to
identify the more reliable information source (Tao et al., 2024; Zhang et al., 2024), it is primarily
due to conflicts between contextual knowledge and parametric knowledge, which fundamentally
stem from low overlap between these two types of knowledge. We further investigate how internal
signals, such as entropy, can detect RAG conflicts and how dynamic parametrization effectively
mitigates these issues. As shown in Table 5, we leverage Entropy (EN), Length Normalized Entropy
(LEN) (Malinin & Gales, 2020), and Lexical Similarity (LS) (Lin et al., 2022) to evaluate the
likelihood of knowledge conflicts. Our findings indicate that EN and LEN increase, while LS
decreases, when in-context injection is applied, suggesting that retrieved passages in RAG systems
often exhibit low overlap with the model’s internal knowledge that increasing the uncertainty during
generation. Notably, a comparison between RAG and DyPRAG-Combine shows that employing
the parameter translator to inject converted parametric knowledge significantly reduces knowledge
conflicts, underscoring the effectiveness of DyPRAG.

In contrast, DyPRAG-Combine effectively integrates contextual knowledge with transformed para-
metric knowledge, enabling it to provide correct answers and demonstrating its ability to leverage
both types of knowledge effectively. Compared to RAG, DyPRAG-Combine transforms the retrieved
documents into parameters before concatenated into the input prompt. This approach ensures that the
LLM already contains relevant knowledge when answering the questions, mitigating the well-known
conflicts issues (Sun et al., 2024).
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Table 5: We present the experimental results for the knowledge conflicts metrics of DyPRAG and
DyPRAG-Combine, in comparison with Vanilla and Standard RAG. In these metrics, ↑ indicates
that higher values are better, while ↓ indicates the opposite. The best performance for each metric is
highlighted in bold. The backbone model is the LLaMA3.2-1B.

Metric Method 2WQA (total) HQA (total) PQA CWQ SQA IIRC

EN ↓
Vanilla 3.187 3.176 3.251 3.163 3.178 3.011

DyPRAG (ours) 2.199 1.999 1.757 2.860 2.805 2.544
RAG 3.565 3.453 3.778 3.619 3.398 3.030

DyPRAG-Combine (ours) 2.755 2.470 3.584 3.467 3.136 2.555

LEN ↓
Vanilla 0.637 0.635 0.650 0.633 0.636 0.602

DyPRAG (ours) 0.440 0.400 0.586 0.572 0.561 0.509
RAG 0.713 0.691 0.756 0.724 0.680 0.606

DyPRAG-Combine (ours) 0.551 0.494 0.719 0.693 0.627 0.511

LS ↑
Vanilla 0.923 0.936 0.723 0.730 0.497 0.963

DyPRAG (ours) 0.915 0.933 0.842 0.859 0.527 0.966
RAG 0.945 0.956 0.936 0.962 0.812 0.966

DyPRAG-Combine (ours) 0.953 0.959 0.966 0.988 0.853 0.975

Table 6: Case study about contextual and para-
metric knowledge conflicts in 2WQA where only
DyPRAG-Combine answers correctly (11.33%).
The backbone model is the LLaMA3.2-1B. 1 : de-
ficiency in parametric knowledge, 1 : knowledge
conflicts, 1 : successful knowledge manipulation.

Question: Which film whose director was born first,
The Snake Brothers or Olympus Has Fallen ?

Ground truth: Behind Prison Gates
Retrieved top-1 document: Roman Waugh
was announced as director for the film.
Olympus Has Fallen (film series)...

Method Answer Status
Vanilla David R %

RAG The Snake Brothers %

DyPRAG (ours) The Snake Brothers %

DyPRAG-Combine (ours) Olympus Has Fallen !

DyPRAG Enables LLMs to Internalize Un-
seen Knowledge. The retrieved documents
in our experiments are primarily sourced from
Wikipedia, which are already encountered by
LLMs during pre-training. In this section, we
further investigate how DyPRAG performs on
unseen documents using the RAGTruth bench-
mark (Niu et al., 2023). Specifically, we ran-
domly sample 100 examples from the QA-type
sub-dataset, which presents greater challenges
(e.g., the required answers are only accessible
in carefully crafted context). As shown in Fig-
ure 3, DyPRAG-Combine significantly outper-
forms RAG. This demonstrates that DyPRAG ef-
fectively enables LLMs to better internalize con-
textual knowledge and mitigate conflicts, even
when handling unseen data. Additionally, we
present a further detailed analysis of contextual
and parametric knowledge in Appendix I.

These experiments further validate our explanation in Section 4.4, demonstrating that DyPRAG
struggles with fine-grained information reconstruction due to the inherent constraints of compression.
However, the current results are sufficient to show that injecting transformed parametric knowledge
increases its overlap with contextual knowledge while effectively mitigating the issue of uncertain
responses caused by knowledge conflicts.

5 CONCLUSION

In this work, we propose Dynamic Parametric RAG (DyPRAG), a novel framework that addresses the
high inference cost of RAG, the high training and storage costs of parametric RAG, while effectively
mitigating knowledge conflicts. DyPRAG successfully learns the underlying mapping function from
documents to parameters by leveraging a hypernetwork, enabling effective parametric knowledge
enhancement at test-time. Extensive experiments conducted on multiple datasets demonstrate the
superior performance, flexibility, and practicality of DyPRAG. By dynamically combining test-time
generated parametric knowledge with contextual knowledge, DyPRAG enables adaptive parametric
knowledge updates, superior knowledge fusion, and effective mitigation of knowledge conflicts.
These advantages establish DyPRAG as a powerful and cost-efficient framework, highlighting its
potential for real-world RAG applications.
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Table 7: Comparison of cost metrics for different baselines. ATTN denotes the time complexity of
the self-attention module as O(|I|2h), and FFN represents the FFN with O(|I|h2), where context
length |I| = 1 and |R| denotes the response length. ii indicates significantly high cost, denotes
negligible cost, and�� represents temporal storage.

Method Inference Cost Training Cost Storage Cost

RAG |R| × ((c|d|+ |q|)2 × ATTN + (c|d|+ |q|)× FFN) - -

PRAG |R| × (|q|2 × ATTN + |q| × FFN)
M × (9|d|2 × ATTN + 3|d| × FFN)+

M × E1 × (81|d|2 × ATTN + 9|d| × FFN)
M × 3Lr(h+ k)

DyPRAG
c× (|d|2 × ATTN + |d| × FFN)+

c×O(p(h+ 1 + hr))+

|R| × (|q|2 × ATTN + |q| × FFN)

N × (9|d|2 × ATTN + 3|d| × FFN)+
N × E1 × (81|d|2 × ATTN + 9|d| ∗ FFN)+

N × E2 × (9(|qa|+ |d|)2 × ATTN + 3(|qa|+ |d|)× FFN) +O(p(h+ 1 + hr))

(((((((
N ∗ 3Lr(h+ k)+

3L(phr + 2p(h+ 1) + pkr)

A COMPUTATION AND STORAGE COST ANALYSIS

We present an initial pilot analysis and a broad evaluation of computation and storage costs across
three baseline methods. More detailed analysis of time complexity is provided in Appendix A.1.

Computation Cost. The computation cost in RAG is primarily the inference cost, whereas PRAG
introduces additional training and inference costs due to augmentation and offline training. Suppose
the average token count of document d is |d|. As noted in Su et al. (2025), the augmentation process
typically generates about 2|d| tokens, leading to an augmentation cost of 3|d|. When training the
target LoRA, a forward pass over 3|d| tokens and a backward pass over 6|d| tokens (typically twice
the forward cost) result in a total training cost of 9|d|. Although these tasks can be performed offline,
it still requires a long time and do not generalize to new questions with unseen documents. In contrast,
DyPRAG offers a more practical solution by requiring only N Doc-Param pairs while even a small
N can achieve powerful performance, significantly reducing costs for augmentation and training. The
cost of MLP-based F ′

ϕ is negligible compared to transformer-based LLMs (Vaswani et al., 2017).

The primary advantage of PRAG is the reduction of inference cost. Let |q| denotes the length of
the question, c represents the number of retrieved documents. The inference context of PRAG and
DyPRAG is |q|, whereas RAG requires c|d|+ |q|. The parameterization process significantly reduces
the inference cost, especially when |d| and c grow larger. Notably, the inference cost is also closely
tied to the length of model response. DyPRAG demonstrates an improved ability to internalize
knowledge, resulting in shorter responses that effectively reduce costs, as shown in Figure 4.

Storage Cost. One of the main shortcomings of PRAG is the storage cost associated with Pi. Let r
denote the LoRA rank, L the number of Transformer layers, h the hidden size, and k the intermediate
size of the FFN. The number of parameters in the parametric representation of a document is
3Lr(h+ k). For instance, in the Qwen2.5-1.5B model (which has 28 layers, a hidden dimension of
1536, and an intermediate size of 8960), setting r to 2 results in approximately 1.76M parameters,
storing 3.36MB in 16-bit precision for each parametric representation. In our following experiments,
we need to store 9.33GB offline parameters for Qwen2.5-1.5B, presenting a significant storage cost.

In contrast, our DyPRAG only needs to save the weights of F ′
ϕ. As we set the intermediate size p of

the F ′
ϕ to 2, the total number of parameters for the Qwen2.5-1.5B model is 3L(phr+2p(h+1)+pkr)

as we configure separate translators for up-proj, down-proj, and gate-proj. This amounts to about
4.04M parameters, storing only 7.71MB (0.08% of PRAG) in 16-bit precision. The reduced storage
cost makes it negligible compared to its generalization ability when used in real applications.

A.1 DETAILED COST COMPARISON

In this section, we provide a detail comparison of several cost metrics for standard RAG, PRAG and
our proposed DyPRAG, as shown in Table 7.

Inference Cost. We first analyze the inference cost across three baselines. Intuitively, the RAG
method requires more resources for inference due to its context length of c|d| + |q|, compared to
only |q| for PRAG and DyPRAG. In our experimental settings, |q| is usually less than 100, while
|d| is typically larger than 600, with c set to 3. This results in an attention cost of at least 271x
and a FFN cost of 19x for RAG. For DyPRAG, there is additional cost incurred for encoding and
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translating. The encoding cost is c × (|d|2 × ATTN + |d| × FFN), as each document should be
encoded separately. As shown in Table 11, the encoding time is significantly lower than the inference
time because encoding requires only a single forward pass. Additionally, the translation time is also
negligible. Moreover, the response length |R| exhibits a linear relationship with the LLM inference
loss. As illustrated in Figure 4, the response length decreases when DyPRAG is employed, enabling
LLMs to better internalize knowledge. Notably, DyPRAG-Combine achieves much shorter response
lengths, significantly reducing inference costs compared to standard RAG.

Training Cost. PRAG (Su et al., 2025) introduces further training for each document to obtain
corresponding LoRA parameters. In Section A, we hypothesize that after augmentation, there are
a total of 3|d| tokens, resulting in a cost of N × (9|d|2 × ATTN + 3|d| × FFN) for DyPRAG
and M × (9|d|2 × ATTN + 3|d| × FFN) for PRAG, where N represents the size of the training
dataset K and M denotes the size of the test set. The common divisor of offline parametrization is
E1 × (81|d|2 × ATTN + 9|d| × FFN), where E1 is the number of epochs for LoRA training.

Additionally, to train our F ′
ϕ for E2 epochs, we need to perform both forward and backward passes

(the backward pass requires twice the cost of the forward pass) on one QA pair and its corresponding
document in each step. This results in a cost of N×E2×9(|qa|+|d|)2×ATTN+3(|qa|+|d|)×FFN,
with a negligible cost for translation. As shown in Figure 6 and 7, our DyPRAG achieves stable
results with as few as 480 examples (even fewer is powerful), while M = 3000 in our experiments,
and this value would be significantly larger in real-world applications.

For instance, using LLaMA3-8B as the backbone, producing a Pi requires 88 seconds, while one
step for F ′

ϕ only takes an average of 15 seconds. Therefore, the total cost for training (excluding
augmentation) is M ×88s in PRAG and N ×103s in DyPRAG. Assuming N = 480 and M = 3000,
DyPRAG is 5.34x faster than PRAG. The low requirement for a large N makes DyPRAG highly
effective and generalizable for real-world scenarios, with extremely low costs that can be handled
during offline training.

Storage Cost. As illustrated in Section A, each Pi requires 3.36MB for PRAG using Qwen2.5-1.5B,
resulting in a total storage cost of 9.33GB in our main experiment. However, we significantly reduce
this cost by imitating the underlying function between the document and parameters. Notably, the
cost for Pi is a temporary cost in DyPRAG, which can be removed after collecting data or training
one Pi and then updating F ′

ϕ by one step. Consequently, the overall cost of DyPRAG is substantially
lower than that of PRAG (e.g., DyPRAG achieve better performance with only 7.71MB of storage as
shown in Table 11).

B EXPERIMENT SETUP

B.1 IMPLEMENTATION DETAILS

QA Datasets. To ensure a comprehensive evaluation, we assess our method using the following
datasets:

• 2WikiMultihopQA (2WQA) (Ho et al., 2020) is designed to evaluate a model’s capability in
multi-hop reasoning by synthesizing information from multiple Wikipedia passages.

• HotpotQA (HQA) (Yang et al., 2018) similarly targets multi-hop reasoning, requiring models to
amalgamate information from various contexts to answer a single query.

• PopQA (PQA) (Mallen et al., 2022) focuses on factual question answering, posing challenges that
test the model’s ability to recall precise knowledge and navigate ambiguities in entity representation.

• ComplexWebQuestions (CWQ) (Talmor & Berant, 2018) entails answering complex, multi-step
questions sourced from the web, further challenging the model’s capacity to retrieve and reason
over extensive web content.

Offline Doc-Param Pairs Collection. Following (Jiang et al., 2023; Su et al., 2025), we utilize
Wikipedia dumps as the external knowledge corpus, adopting the dataset proposed by DPR (Karpukhin
et al., 2020). For document augmentation, each document is rewritten once, and three QA pairs are
generated based on the document. Unless explicitly stated otherwise, the downstream LLM is used
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for this purpose. During LoRA fine-tuning, the learning rate was set to 3× 10−4, and training was
conducted for a single epoch (except PQA for 2). The LoRA modules were integrated exclusively
into the feed-forward network (FFN) matrices, while the query, key, and value (QKV) matrices were
excluded. The scaling factor α was set to 32, the LoRA rank r was configured to 2, and no dropout
was applied to ensure training stability and maximize parameter updates. The LoRA weights were
randomly initialized following the settings outlined in the original LoRA paper (Hu et al., 2022).

Baselines Implementation. To conduct comprehensive experiments, we compare our DyPRAG
with two commonly used baselines: SFT and Context-DPO, alongside parametric and non-parametric
RAG baselines. For SFT, widely regarded as a standard approach for adapting models to various
downstream tasks, is included to evaluate the generalization ability of DyPRAG. Specifically, we
use the exact same hyperparameters as DyPRAG, setting the learning rate to 3× 10−4, fine-tuning
on the same dataset (i.e., 36,000 samples) with a batch size of 1 for 1 epoch. For Context-DPO, we
follow the implementation described in Bi et al. (2024). To ensure a fair comparison, we configure
the trainable LoRA modules for both methods to match those in DyPRAG, maintaining equivalent
parameter learning capacity. The LoRA modules are integrated exclusively into the FFN, while the
query, key, and value matrices are excluded. The scaling factor α is set to 32, and the LoRA rank r is
configured as 2.

Inference Settings. All experiments use the publicly available Hugging Face implementations of
LLaMA and Qwen. To ensure fairness, DyPRAG and all baselines share the same prompt template in
Figure 11 and 12 following Su et al. (2025) and adopt of greedy decoding for result reproducibility.
The max number of new tokens is set to 128.

Retrieval Module R. Recent research on retrieval-augmented generation (RAG) (Ram et al.,
2023) has shown that BM25 matches or even surpasses state-of-the-art dense retrieval models in
certain scenarios. Following Su et al. (2025), we adopt BM25 as the retriever in our approach and
Elasticsearch is used as the backend for implementing BM25.

Training F ′
ϕ. Motivated by Liao et al. (2024a), we use simple MLP hypernetwork to transform

embedding into adapter parameters. Through cross validation, the learning rate was set to 1× 10−5,
and the training epoch was set to 1 which making the overall alignment process quickly. The
truncation max length of text is set to 3000, which is larger than most retrieved documents. The
performance reports for Qwen2.5-1.5B and LLaMA3.2-1B in Table 1 are based on training with 4,800
examples, while LLaMA3-8B is trained on 2,400 examples (except for 480 examples on 2WQA).

Implementation of OOD Experiment. To evaluate the generalization ability of our proposed
DyPRAG, we select to out-of-distribution (OOD) datasets to conduct.

• StrategyQA (SQA) (Geva et al., 2021): A QA benchmark where reasoning steps are implicit in
the question and must be inferred through strategic reasoning, including human-curated evidence
paragraphs from Wikipedia.

• IIRC (Ferguson et al., 2020): A dataset comprising over 13,000 questions based on English
Wikipedia paragraphs that provide only partial information and supplemented with samples from
SQuAD 2.0 (Rajpurkar et al., 2016) and DROP (Dua et al., 2019), requiring retrieval of missing
details from linked documents.

• OpenBookQA (OBQA) (Mihaylov et al., 2018): A multiple-choice QA dataset derived from a
subset of WorldTree (Jansen et al., 2018), mainly focus on common knowledge.

• MedMCQA (MQA) (Pal et al., 2022): A multiple-choice QA dataset designed to address real-
world medical domain entrance exam questions.

• CNNDailymail1: A summarization datasets containing just over 300k unique news articles as
written by journalists at CNN and the Daily Mail.

For each dataset, we select the first 300 examples for testing and evaluate performance using F1
score for IIRC, Accuracy for SQA, Recall for OBQA and MQA and Rouge-L (Lin, 2004) for

1https://huggingface.co/datasets/ccdv/cnn_dailymail
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Table 8: The experimental results of DyPRAG are compared with other effective RAG methods. All
metrics are reported as F1 scores (%). The best performance is bolded, while the second-best is
underlined. The evaluation is conducted on 2WQA and HQA datasets, focusing exclusively on the
total sub-task.

Base LLM Method 2WQA HQA Avg
Total Total

LLaMA3.2-1B

RAG 23.12 27.14 25.13
DRAGIN 21.73 12.50 17.12
FLARE 21.55 19.38 20.47

DyPRAG (ours) 25.31 19.97 22.64
DyPRAG-Combine (ours) 29.18 26.58 27.88

Qwen2.5-1.5B

RAG 24.31 20.73 22.52
DRAGIN 25.01 8.51 16.76
FLARE 21.56 7.97 14.77

DyPRAG (ours) 26.46 19.67 23.07
DyPRAG-Combine (ours) 25.18 27.57 26.38

LLaMA3-8B

RAG 34.55 24.23 29.39
DRAGIN 35.69 12.16 23.93
FLARE 34.62 29.43 32.03

DyPRAG (ours) 37.25 22.55 29.90
DyPRAG-Combine (ours) 45.17 38.35 41.76

Table 9: The experimental results of DyPRAG are compared with standard RAG based on Qwen3-8B
and Qwen3-4b-Instruct. All metrics are reported as EM scores (%) and F1 scores (%). The best
performance is bolded, while the second-best is underlined. The Avg is the average performance over
all tasks.

Base LLM Method 2WQA (Total) HQA (Total) PQA CWQ Avg

EM F1 EM F1 EM F1 EM F1 EM F1

Qwen3-8B

Vanilla 24.67 31.33 21.00 28.12 0.00 0.40 22.33 36.01 17.00 23.97
RAG 35.33 42.26 32.33 44.00 0.33 9.17 23.00 35.79 22.75 32.81

DyPRAG 21.00 27.94 20.33 27.82 0.00 0.46 17.67 29.12 14.75 21.34
DyPRAG-Combine 31.00 38.37 29.67 39.81 0.33 4.54 20.00 31.37 20.25 28.52

Qwen3-4B-Instruct

Vanilla 21.00 28.97 15.00 23.32 8.67 12.10 0.00 1.58 11.17 16.49
RAG 25.67 32.81 25.33 36.62 18.67 26.32 2.00 7.36 17.92 25.78

DyPRAG 27.00 35.44 16.33 24.00 10.00 13.49 0.33 4.47 13.42 19.35
DyPRAG-Combine 31.00 38.37 29.67 39.81 20.67 27.33 8.67 19.14 22.50 31.16

CNNDailymail (except for 100 examples) as metrics. Both datasets provide with ground-truth
passages which indicate a more rigorous evaluation setting. For IIRC, we adopt the few-shot prompts
from Su et al. (2024), while SQA, OBQA, MQA and CNNDailymail are evaluated in a zero-shot
setting. Notably, the same prompt format (in Figure 11 and 12) from the main experiment is used to
ensure a fair comparison, expect CNNDailymail using summarization template in Figure 13.

Implementation of RAGTruth Experiment. RAGTruth (Niu et al., 2023) is a benchmark dataset
designed to evaluate the extent of hallucination in models. For our evaluation, we randomly select 100
QA-type subsets from RAGTruth, ensuring alignment with the training data of F ′

ϕ. Notably, some
questions in RAGTruth require the provided documents to be answerable which are more difficult.
Interestingly, during evaluation, we observe that F ′

ϕ with fewer trained parameters perform better in
such scenarios. Specifically, we train only 480 examples for LLaMA3.2-1B and Qwen2.5-1.5B, and
240 examples for LLaMA3-8B. We use GPT-40 as judge using prompt template in Figure 14.

C SUPPLEMENT EXPERIMENT RESULTS

Comparison with effective RAG baselines. To compare our DyPRAG with effective RAG methods,
we introduce two powerful baselines:

• FLARE (Jiang et al., 2023) is a multi-round retrieval augmentation method that triggers retrieval
whenever it encounters an uncertain token. The query is defined as the last generated sentence
excluding the uncertain tokens.
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• DRAGIN (Su et al., 2024) improves multi-round retrieval by triggering only when an uncertain
token has semantic significance and strongly influences subsequent tokens. It formulates queries
using the model’s internal state and preceding context.

The experimental results are presented in Table 8. Compared to standard RAG, DRAGIN and
FLARE do not demonstrate significant performance advantages when the model size is smaller
(e.g., LLaMA3.2-1B and Qwen2.5-1.5B). However, as the model size increases (e.g., LLaMA3-8B),
DRAGIN achieves the best performance on the 2WQA dataset, while FLARE performs best on
the HQA dataset comparing with RAG baseline. This indicates that effective RAG methods are
often constrained by the model’s inherent capabilities and lack robust generalization. In contrast,
our proposed DyPRAG consistently delivers superior performance in most cases, demonstrating the
effectiveness of our approach. Furthermore, when combined with in-context injection, DyPRAG
achieves an average improvement of 6.54% over standard RAG, highlighting the substantial potential
of integrating parametric knowledge with contextual knowledge.

OOD Performance in Summarization Task. Since our training primarily focused on QA data,
we are curious whether the parameter translator F ′

ϕ can generalize effectively to other tasks. To
evaluate DyPRAG’s performance on non-QA tasks, we conducted additional experiments using the
CNNDailymail dataset for a summarization task. This task employed the prompt template outlined
in Figure 13 and was evaluated using the Rouge-L (Lin, 2004). As presented in Table 10, we
utilized the parameter translator to first transform documents into parametric knowledge, enhancing
the overlap between knowledge and model inputs. This step encouraged LLMs to better leverage
document-specific knowledge. Across all model scales, our DyPRAG-Combine approach achieved
an average improvement of 0.21 in performance, demonstrating that our method is effective beyond
QA tasks. This result highlights the capability of our approach to perform general mapping from
textual embeddings to the parametric space.

Comparison of Response Length. Notably, we consider only the context length when calculating
inference cost. However, in practice, the response length from LLMs also affects inference time. As
shown in Figure 4, we compare DyPRAG-Combine with RAG across four benchmarks, considering
the average response length. DyPRAG-Combine significantly reduces response length, by 20% in
2WQA and up to 90% in CWQ. This demonstrates that DyPRAG-Combine can answer questions
correctly with fewer tokens, thereby lowering inference costs and avoiding redundant information.

Performance of DyPRAG on Non-Instruct Models. With the rapid advancement of reinforcement
learning, a growing number of long-context models, referred to as large reasoning models (LRMs)
have emerged (Guo et al., 2025; Yang et al., 2025). Our goal is to evaluate whether the current
design of DyPRAG can adapt effectively to such up-to-date models. For this purpose, we selected
Qwen3-8B2 (a reasoning model) and Qwen3-4B-Instruct3 (an instruct model) for experiments. As
shown in Table 9, the performance of Qwen3-8B decreases significantly when DyPRAG generated
parameters are applied. This decline is primarily due to differences in answer patterns. LRMs tend
to generate extremely lengthy reasoning trajectories, whereas our method only augments simple
and short QA pairs. In contrast, the results for the instruct model, Qwen3-4B-Instruct, align with
our main experiments, demonstrating that the current method is well-suited for instruct models. To
enable compatibility with LRMs, the parameter translation process needs to be integrated into the
reinforcement learning training pipeline. Addressing this challenge will be a focus of our future work.

D ADDITIONAL ABLATION EXPERIMENT RESULTS

Effect of Training Dataset Size. We adjust the pre-selected size of the training dataset composed
of Doc-Param pairs, increasing it from 480 to 4800. As shown in Figure 6 and 7, DyPRAG achieves
strong performance even with just 480 training examples. The performance remains remarkably stable

2https://huggingface.co/Qwen/Qwen3-8B
3https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507
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Table 10: The OOD performance on summa-
rization dataset CNNDailymail. The metric is
reported as Rouge-L (%) (Lin, 2004).

Base LLM Method CNNDailymail

LLaMA3.2-1B RAG 21.09
DyPRAG-Combine 21.21

Qwen2.5-1.5B RAG 19.86
DyPRAG-Combine 20.38

LLaMA3-8B RAG 22.34
DyPRAG-Combine 22.33

Table 11: Ablation study of intermediate di-
mension p of F ′

ϕ. The backbone model is the
Qwen2.5-1.5B. The inference time is computed
by average time of CWQ with batch_size of 1.
The encode time is highlighted in red, while the
translate time is marked in blue.

Method CWQ
F1

Inference Time
(s)

Storage Cost
(MB)

Vanilla 26.47 0.56 (0.47x) -
RAG 28.32 1.20 (1x) -
PRAG 30.82 0.56 (0.47x) 19107.84 (1x)

DyPRAG (p = 2) 32.66 0.56+0.13+0.060 (0.625x) 7.71 (0.04%x)
DyPRAG (p = 4) 33.26 0.56+0.13+0.062 (0.627x) 15.42 (0.08%x)
DyPRAG (p = 16) 32.08 0.56+0.13+0.055 (0.621x) 61.70 (0.32%x)
DyPRAG (p = 32) 31.94 0.56+0.13+0.060 (0.625x) 123.39 (0.64%x)

across different dataset sizes, indicating that our design, F ′
ϕ, is capable of learning the underlying

mapping between documents and parameters with minimal data.

Performance Effect of Retrieved Documents Number. For standard RAG, the number of retrieved
documents, denoted as c, is a crucial hyperparameter to tune. Recent studies (Leng et al., 2024; Wei
et al., 2024) have investigated the impact of longer context lengths on standard RAG. As shown in
Figure 8, the performance fluctuates as the number of retrieved documents increases, with the best
value generally achieved at c = 3. This demonstrates that introducing more less-relevant context can
negatively impact the model’s ability to extract key information.

However, the effect of the number of injected documents in parametric form remains underexplored.
Our proposed DyPRAG framework can seamlessly adapt to this scenario due to its inherent flexibility.
As shown in Figure 9, the performance of DyPRAG does not significantly improve as the number of
injected documents increases. For instance, in the 2WQA and CWQ datasets, the best performance is
achieved when using only the top-1 document. This indicates that the most relevant document, as
determined by the retriever R, is sufficient to provide the knowledge needed to answer the question
effectively. On the other hand, in datasets such as HQA and PQA, the best performance is observed
when c = 3, suggesting that when more relevant information is retrieved, simple averaging of LoRA
parameters can effectively integrate the knowledge. Additionally, in three out of four datasets (except
PQA), the model’s performance declines when too many documents are injected. This observation
aligns with the findings in Shi et al. (2023), which suggest that task-irrelevant redundant information
can degrade the model’s performance, especially the compression of documents is lossy.

Computation Effect of Injected Documents Number. We have specifically designed the code of
DyPRAG to enable the rapid loading of document-specific LoRA modules, ensuring minimal delays
during operation. As demonstrated in Table 12, DyPRAG achieves superior inference efficiency
compared to standard RAG, particularly as the number of injected documents increases. While
the inference time of standard RAG grows significantly with more injected documents, DyPRAG-
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Figure 6: Ablation study of varying train-
ing dataset size for DyPRAG. The backbone
model is the LLaMA3.2-1B.
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Combine maintains consistently lower inference times due to its shorter response lengths (as shown
in Figure 4). Furthermore, DyPRAG significantly outperforms standard RAG in inference time which
passages are excluded from the context.

However, the design of DyPRAG introduces an increase in encoding and translation time as the
injected documents number grows. Currently, the encoding and translation processes are not fully
optimized. In real-world applications, RAG-based queries are typically managed via message queues
(e.g., Kafka (Kreps et al., 2011)), which provide a natural asynchronous execution environment.
By leveraging this architecture, document embeddings can be extracted and transformed during the
waiting period using separate process and model instance. Consequently, when the query reaches
the processing stage, there is no additional encoding or translation delay. This allows DyPRAG to
outperform standard RAG in both performance and inference efficiency.
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Table 12: Ablation study of varying number of injected documents to computation cost. The backbone
model is the Qwen2.5-1.5B.

Documents Method Inference Time Loading Time Translate Time Encode Time

3
DyPRAG 0.84 0.0037 0.056 0.132
RAG 1.23 - - -
DyPRAG-Combine 0.36 0.0037 0.055 0.132

10
DyPRAG 0.80 0.0044 0.185 0.433
RAG 1.54 - - -
DyPRAG-Combine 0.78 0.0045 0.185 0.432

20
DyPRAG 0.80 0.0057 0.361 0.862
RAG 1.74 - - -
DyPRAG-Combine 1.40 0.0057 0.361 0.862

30
DyPRAG 0.80 0.0067 0.545 1.295
RAG 2.18 - - -
DyPRAG-Combine 1.96 0.0067 0.545 1.294

Table 13: Ablation study of retriever. All metrics are reported as EM scores (%) and F1 scores (%).
The backbone model is the LLaMA3-8B.

Method Retriever 2WQA HQA PQA CWQ Avg

EM F1 EM F1 EM F1 EM F1 EM F1

Vanilla None 30.00 36.43 19.89 28.64 4.67 7.96 30.00 42.44 24.43 31.85

RAG Sparse 28.40 34.20 19.13 28.67 5.67 16.13 25.33 35.45 23.04 30.86
Dense 22.20 27.82 11.66 20.60 6.33 12.15 24.67 36.48 17.70 24.95

DyPRAG Sparse 32.07 39.17 24.67 37.33 11.00 13.60 32.67 41.87 27.80 36.23
Dense 22.20 28.48 15.67 23.34 8.33 11.09 30.33 41.10 19.67 26.46

DyPRAG-Combine Sparse 36.33 47.68 33.22 43.22 21.00 32.86 29.67 39.07 33.20 43.69
Dense 23.73 28.92 11.44 21.10 7.33 14.85 26.67 38.97 18.70 26.17

Effect of Different Retriever. Retrieval plays a critical role in RAG by determining whether the
retrieved documents contain the necessary information to answer a given question. In the field of
information retrieval, the two dominant retrieval methods are lexical matching(Robertson et al., 2009)
and dense retrieval(Su et al., 2024). Among lexical matching techniques, BM25 stands out for its
widespread adoption and proven effectiveness. In contrast, despite advancements in dense retrieval
methods, none have achieved the same level of popularity or reliability as BM25. To explore the
performance of these approaches, we employ the well-known all-MiniLM-L6-v24 model as the
dense retriever which maps sentences into a 384-dimensional dense vector space, enabling dense
retrieval tasks. As shown in Table 13, our experiments reveal that BM25 consistently outperforms
dense retrieval methods across various datasets within the DyRPAG framework, despite the dense
retrieval methods often excel in many other information retrieval tasks. These findings align with prior
research (Su et al., 2024; Ram et al., 2023), which highlights BM25’s robustness and effectiveness in
RAG tasks. Despite significant advancements in dense retrieval technologies, our results reaffirm
that the simpler, lexicon-based BM25 algorithm remains a strong baseline for improving LLM
performance in RAG tasks.

E EXPLORING METRICS FOR KNOWLEDGE CONFLICTS DETECTION

Can Perplexity Reflects Knowledge Conflicts? Recent studies have explored methods to detect
hallucinations in LLMs and RAG systems by leveraging various metrics (Chen et al., 2024; Sun
et al., 2024). Among these, we first adopt the simplest yet effective metric which only need single
generation, Perplexity (PPL) (Ren et al., 2022), to evaluate knowledge conflicts. As illustrated in
Figure5, Vanilla and DyPRAG exhibit higher PPL, while DyPRAG-Combine and RAG demonstrate
significantly lower PPL. However, these results are inconsistent with the findings in Table 1 and
Table 2. For instance, although DyPRAG-Combine achieves the best performance on IIRC, its
calculated PPL suggests a higher probability of knowledge conflicts, which is clearly incorrect. We
hypothesize that this discrepancy primarily stems from variations in model parameters introduced
by parameter injection in DyPRAG, which cannot be detected using the simple PPL method. Given

4https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Table 14: Textual similarity matrix (%) across both IID and OOD datasets. This matrix is computed
based on the hidden states of retrieved documents and is symmetrical. It exhibits a significantly
different trend when comparing documents from two distinct sources.

Dataset 2WQA HQA PQA CWQ IIRC SQA RAGTruth OBQA CNNDailymail MQA
2WQA 100 99.6 99.7 99.2 95.1 85.2 26.9 83.1 87.9 84.9

HQA – 100 99.6 99.6 95.2 85.6 27.1 83.7 88.1 85.4

PQA – – 100 99.3 95.9 86.1 28.2 83.6 88.7 86.1

CWQ – – – 100 94.5 84.3 26.3 84.1 86.6 84.8

IIRC – – – – 100 90.7 44.5 88.9 91.9 92.6

SQA – – – – – 100 38.6 72.2 95.9 88.1

RAGTruth – – – – – – 100 51.3 40.4 54.3

OBQA – – – – – – – 100 74.6 90.0

CNNDailymail – – – – – – – – 100 88.8

MQA – – – – – – – – – 100

that different tokens contribute unequally to the overall semantics of a sentence, the PPL, which is
calculated as the average of token-level uncertainty, fails to effectively capture the uncertainty of the
entire sequence.

Effective Detection with Sentence-Level Metrics. Given the limitations of PPL, we decided to
explore alternative metrics that leverage multiple generations. Research has shown that generating
multiple outputs for a single input is beneficial for estimating sequence-level uncertainty. To this end,
we set the temperature to 1.0, top_p to 0.95, and top_k to 20, generating five responses to calculate
Entropy (EN), Length Normalized Entropy (LEN) (Malinin & Gales, 2020), and Lexical Similarity
(LS) (Lin et al., 2022) to evaluate the probability of knowledge conflicts5. As shown in Table 5, our
approach demonstrates reduced knowledge conflicts in most scenarios, especially in our strongest
DyPRAG-Combine.

We observed that both EN and LEN increase when in-context injection is applied, suggesting that in
RAG systems, the retrieved passages often conflict with the model’s internal knowledge. In contrast,
utilizing DyPRAG to inject converted parametric knowledge significantly reduces the likelihood of
knowledge conflicts, demonstrating the effectiveness of DyPRAG. However, the LS results indicate
that adding context reduces conflicts, which contradicts the established definition of knowledge
conflicts. We argue that EN and LEN are more suitable for effective knowledge conflicts detection in
DyPRAG settings. Exploring more effective detection methods remains an important direction for
future work.

F DIVING INTO GENERALIZATION ABILITY OF DYPRAG

To train our parameter translator, we utilized datasets, including 2WikiMultihopQA, HotpotQA,
PopQA, and ComplexWebQuestions. To evaluate generalization, we conducted OOD experiments on
datasets such as IIRC, StrategyQA, RAGTruth, OpenBookQA, and CNNDailymail.

For IID datasets, the documents were retrieved exclusively from Wikipedia. In contrast, the OOD
datasets exhibit diverse sources: IIRC primarily draws from English Wikipedia, supplemented with
samples from SQuAD 2.0 (Rajpurkar et al., 2016) and DROP (Dua et al., 2019). StrategyQA includes
human-curated evidence paragraphs from Wikipedia. RAGTruth is based on the QA set of MS
MARCO (Nguyen et al., 2016), which originates from Bing search results. OpenBookQA is a
multiple-choice QA dataset derived from a subset of WorldTree (Jansen et al., 2018). CNNDailymail
is a summarization dataset comprising unique news articles authored by journalists at CNN and the
Daily Mail.

To quantify the differences across datasets, we computed the vector similarity of the mean hidden
states (i.e., the last-layer outputs of the final token) across them. As expected, the IID datasets exhibit
extremely high similarity (>99%) due to their shared reliance on Wikipedia. In contrast, the OOD
datasets show significantly lower similarity with the IID datasets. Although StrategyQA and IIRC

5We use the implementation in https://github.com/alibaba/eigenscore
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Table 15: Parameter similarity matrix (%) across both IID and OOD datasets generated by parameter
translator. This matrix is computed based on the generated parameters and is symmetrical. It exhibits
a significantly different trend when comparing parameters from two distinct sources.

Dataset 2WQA HQA PQA CWQ IIRC SQA RAGTruth OBQA CNNDailymail MQA
2WQA 89.15 88.27 85.29 88.19 88.49 87.66 47.15 83.16 89.25 86.39

HQA – 83.45 84.84 85.50 84.66 84.95 49.55 82.99 86.27 84.29

PQA – – 88.55 86.88 88.57 86.31 47.45 82.40 87.98 85.78

CWQ – – – 88.55 88.55 87.13 48.66 84.82 88.89 86.71

IIRC – – – – 90.43 87.58 47.93 82.88 88.48 86.34

SQA – – – – – 89.01 48.87 84.75 89.63 86.75

RAGTruth – – – – – – 77.52 56.73 48.89 53.03

OBQA – – – – – – – 92.95 86.02 88.56

CNNDailymail – – – – – – – – 91.97 88.47

MQA – – – – – – – – – 89.42

primarily depend on Wikipedia, they include additional samples from other sources or incorporate
human-curated content, which reduces their similarity to the IID datasets. Notably, RAGTruth
demonstrates particularly low similarity, as its samples are carefully selected from MS MARCO to
focus exclusively on content related to daily life. This underscores the substantial differences between
the training corpora and our OOD evaluation datasets.

These findings further suggest that DyPRAG exhibits strong generalization capabilities, effectively
adapting to the diverse characteristics of OOD datasets, as shown in Table 2.

G DOES PARAMETER TRANSLATOR REALLY LEARN TO GENERALIZE?

After obtaining the parameter translator, a natural question arises: does the parameter translator F ′
ϕ

truly learn to generalize, or does it simply generate nearly identical LoRA matrices every time?

To investigate this, we collect 20 generated parameters across all datasets and compute the inter-
average and intra-average parameter similarity. Since the parameter space itself is non-semantic,
we measure similarity using the Frobenius norm: 1 − ||A−B||F

max(||A||F ,||B||F ) . As shown in Table 15,
the similarity of the generated LoRA parameters strongly correlates with the textual similarity
of the inputs. In particular, the model produces significantly different outputs when exposed to
distinct contexts, even from the same dataset. Although hypernetwork still lacks well-established
interpretability methods, this simple comparison provides evidence that the hypernetwork is indeed
mapping from different textual embeddings to diverse parameter space. We hope that future research
will develop more comprehensive approaches to explain hypernetwork behavior.

H WHY VANILLA OUTPERFORMS RAG OCCASIONALLY?

In this section, we provide a detailed analysis of why the vanilla model occasionally outperforms
RAG. As shown in Table 1, the vanilla model surpasses RAG most significantly in 2WQA, as the
results vary across different models. For instance, the vanilla model outperforms RAG by 2.62% and
0.99% in Qwen2.5-1.5B and LLaMA3-8B on average in F1, respectively. After analyzing the cases,
we identify two key issues that most affect RAG’s performance: 1) Poor Retriever. Following Su
et al. (2025), we use BM25 as the retriever. However, in many cases, the retrieved documents
contain only similar words rather than relevant content. This results in the provided content being
unhelpful or even detrimental to LLMs. 2) Already Seen Data. During the pre-training stages of
the selected LLMs (Yang et al., 2024; Meta, 2024a;b), the external source we use (i.e., Wikipedia)
has already been seen. This allows LLMs to answer certain questions independently, especially in
simpler tasks like 2WQA. Moreover, the inclusion of incorrect or irrelevant context further degrades
the performance, as observed in Table 1.

A more rigorous evaluation setting should include ground-truth passages and ensure no or less data
leakage. Under this setting, as shown in Table 2, the performance of the vanilla model is significantly
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lower than that of RAG, which aligns with our hypothesis. For instance, the vanilla model achieves
only 8.78% and 1.00% accuracy on Qwen2.5-1.5B for IIRC and SQA, respectively. In contrast,
DyPRAG demonstrates a notable improvement in test-time knowledge, achieving 10.23% and 15.67%
accuracy on Qwen2.5-1.5B for IIRC and SQA, respectively. These results underscore the critical
role of RAG while showcasing the ability of our proposed DyPRAG to seamlessly enhance OOD
knowledge effectively. Furthermore, DyPRAG-Combine establishes a superior RAG paradigm by
delivering even better performance under these more challenging conditions. In summary, we believe
that this more rigorous experimental setting better validates our proposed method.

I FURTHER ANALYSIS OF CONTEXTUAL AND PARAMETRIC KNOWLEDGE
CONFLICTS

Parameter Injection Makes LLMs Trust Themselves. As shown in Table 16, while vanilla LLMs
contain accurate parametric knowledge regarding which director was born later, the introduction
of retrieved documents about each director causes contextual knowledge to mislead M, resulting
in the incorrect answer "William Lustig" while DyPRAG stays the same. This demonstrates that
DyPRAG can effectively reduce the knowledge conflicts problem. In this case, standard RAG often
introduces redundant or incorrect information from the context, a phenomenon commonly referred to
as RAG hallucination (Sun et al., 2024). In contrast, our proposed DyPRAG effectively incorporates
accurate information into parametric knowledge. This allows DyPRAG-Combine to align parametric
knowledge with contextual knowledge, thereby reducing the likelihood of conflicts and enabling
LLMs to rely more consistently on its own knowledge.

Dynamic Parametric Knowledge Enhances LLMs at Test-time. Our DyPRAG serves as an
effective plug-and-play technique for enhancing parametric knowledge during test-time. As demon-
strated in Table 17, DyPRAG successfully manipulates the original parametric knowledge of LLMs in
14.67% of cases. Therefore, it can directly enhance the model’s knowledge during inference without
the need for further fine-tuning.

Proportion of Different Combinations. Furthermore, as shown in Table 18, when both Vanilla
LLMs and RAG give incorrect answers, DyPRAG provides the correct answer 26.33% of the time.
This indicates that DyPRAG can effectively inject missing parametric knowledge and outperforms
in-context injection methods. Additionally, in cases where the vanilla LLM provides the correct
answer (i.e., the model possesses accurate internal knowledge), RAG achieves a correct answer rate
of 5.33%, while DyPRAG performs better with a rate of 6.33%, showing that parameter injection
leads to lower conflicts. Similar trend of DyPRAG-Combine is presented in Table 19.

These results demonstrate that our proposed DyPRAG injects parametric knowledge successfully
and mitigates conflicts between internal parametric knowledge and external contextual knowledge
through the injection of knowledgeable LoRA adapters.
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Table 16: Case study about contextual and
parametric knowledge conflicts in 2WQA
(Bridge sub-task) where only standard RAG
answers wrongly (6.67%). The backbone
model is the LLaMA3.2-1B. 1 :deficiency
in parametric knowledge, 1 : knowledge con-
flicts, 1 : successful knowledge manipula-
tion.

Question: Which film has the direc-
tor born later, Diary Of A Maniac or

Return Of The Hero ?
Ground truth: Return Of The Hero
Retrieved top-1 document: Maniac
(1980 film) Maniac is a 1980 Ameri-
can psychological slasher film directed
by William Lustig and written by C. A.
Rosenberg...
Method Answer Status
Vanilla Return Of The Hero !

RAG William Lustig %

DyPRAG (ours) Return Of The Hero !

DyPRAG-Combine (ours) Return Of The Hero !

Table 17: Case study about contextual and para-
metric knowledge conflicts in 2WQA (Bridge
sub-task) where only DyPRAG and DyPRAG-
Combine answer wrongly (14.67%). The back-
bone model is the LLaMA3.2-1B. 1 :deficiency
in parametric knowledge, 1 : knowledge con-
flicts, 1 : successful knowledge manipulation

Question: Which film has the director born
later, Miss Sloane or Time Changer ?

Ground truth: Time Changer
Retrieved top-1 document: production bud-
get of $13 million. " Miss Sloane " is ranked
number 75 by per-theater average on Box Of-
fice...
Method Answer Status
Vanilla John Frankenheimer %

RAG Miss Sloane %

DyPRAG (ours) Time Changer !

DyPRAG-Combine (ours) Time Changer !

Table 18: Right/Wrong answer combinations
of Vanilla, RAG, DyPRAG and corresponding
proportional distribution in 2WQA (Bridge Sub-
task). The backbone model is the LLaMA3.2-1B.
! indicates a correct answer, while% indicates
an incorrect answer. The "Ratio (%)" column
on the right represents the percentage of each
combination across the dataset (300 examples).

Vanilla RAG DyPRAG Ratio(%)
! ! ! 4.67
% % % 34.67
! % ! 6.33
! ! % 5.33
% ! ! 8.33
% % ! 26.33
% ! % 7.67
! % % 6.33

Table 19: Right/Wrong answer combinations
of Vanilla, RAG, DyPRAG-Combine and cor-
responding proportional distribution in 2WQA
(Bridge Sub-task). The backbone model is the
LLaMA3.2-1B. ! indicates a correct answer,
while% indicates an incorrect answer. The "Ra-
tio (%)" column on the right represents the per-
centage of each combination across the dataset
(300 examples).

Vanilla RAG DyPRAG-Combine Ratio(%)
! ! ! 5.33
% % % 35.00
! % ! 6.33
! ! % 4.67
% ! ! 8.00
% % ! 26.00
% ! % 8.00
! % % 6.67
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Table 20: The experimental results of DyPRAG are compared with parametric RAG, standard RAG
and two training-based methods. All metrics are reported as F1 scores (%). The best performance is
bolded, while the second-best is underlined. The Avg is the average performance over all sub-tasks.

Base LLM Method 2WQA HQA PQA CWQ Avg
Compare Bridge Inference Compose Total Bridge Compare Total

LLaMA3.2-1B

Vanilla 42.89 24.17 16.91 7.87 22.52 13.25 40.26 18.79 2.26 34.94 22.39
SFT 25.36 10.87 6.05 3.35 10.60 1.86 4.51 2.51 1.33 12.77 7.92

Context-DPO 37.28 39.39 16.29 4.86 22.89 17.03 32.86 20.17 12.79 13.00 21.66
RAG 41.23 26.78 22.51 10.21 23.12 21.38 42.46 27.14 17.65 37.39 26.99

PRAG 50.20 24.34 19.11 8.24 27.73 13.65 40.90 21.50 23.58 35.86 26.51
PRAG-Combine 40.50 31.30 22.85 9.77 30.30 22.56 41.55 28.31 32.59 39.63 29.94
DyPRAG (ours) 51.25 48.15 17.35 7.54 25.31 14.05 43.90 19.97 11.33 36.86 27.57

DyPRAG-Combine (ours) 52.13 46.19 22.54 12.60 29.18 22.05 43.78 26.58 29.93 38.96 31.80

Qwen2.5-1.5B

Vanilla 45.74 39.06 17.04 7.27 26.87 12.18 39.46 17.76 2.87 26.47 25.79
SFT 37.98 43.44 9.06 3.83 18.75 5.82 26.21 8.85 6.95 13.96 17.49

Context-DPO 35.01 40.59 17.88 6.51 21.78 19.12 31.41 22.51 14.18 19.20 22.82
RAG 38.75 38.84 11.87 5.68 24.31 16.19 37.13 20.73 9.97 28.23 23.17

PRAG 44.96 43.96 19.29 11.14 27.55 13.27 40.42 18.42 21.55 30.82 27.14
PRAG-Combine 40.50 44.00 16.30 8.17 27.49 18.86 36.49 23.10 23.43 32.13 27.05
DyPRAG (ours) 43.03 47.20 17.04 8.55 26.46 13.72 41.39 19.67 6.64 31.94 25.56

DyPRAG-Combine (ours) 35.83 44.89 14.81 8.64 25.18 21.56 41.25 27.57 22.69 33.57 27.60

LLaMA3-8B

Vanilla 54.90 55.20 24.59 14.43 33.02 19.00 45.63 21.29 7.96 42.44 31.85
SFT 9.66 26.26 16.79 1.12 11.63 2.04 2.48 2.05 0.00 5.92 7.80

Context-DPO 46.90 25.57 20.83 6.81 21.98 13.86 32.97 18.17 18.68 13.81 21.96
RAG 58.43 47.77 19.20 11.07 34.55 19.68 42.10 24.23 16.13 35.45 30.86

PRAG 57.78 58.93 27.61 19.17 39.19 33.68 65.88 38.08 26.13 43.54 41.00
PRAG-Combine 60.13 56.69 32.71 20.91 40.55 39.41 68.22 44.84 26.23 36.41 42.61
DyPRAG (ours) 57.39 56.43 25.33 18.88 37.80 24.85 58.59 28.56 13.60 41.87 36.23

DyPRAG-Combine (ours) 66.00 59.46 35.78 26.90 50.24 33.37 57.93 38.35 32.86 39.07 43.69
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J VISUALIZATION OF PARAMETER TRANSLATOR WORKFLOW.

To clearly illustrate the workflow of the parameter translator F ′
ϕ, we use the up-proj module in the

FFN as an example, as shown in Figure 10. This visualization demonstrates the transformation of
document embeddings into dynamic LoRAs, consistent with Eq. 4.

Parameter Translator Workflow 
of up-proj in FFN
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Figure 10: Visualization of the parameter translator workflow of up-proj in FFN. The overall process
remains consistent with Eq. 4.
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K PROMPT FOR MAIN EXPERIMENTS EVALUATION

In the main experiments, we used the following prompt to assess the performance of DyPRAG and
other baseline models in Figure 11 and 12:

Prompt Format of No-CoT

You should answer the question by referring to the knowledge provided below and integrating your own
knowledge.

Passage 1: {passages[0]}
Passage 2: {passages[1]}
Passage 3: {passages[2]}

Question: {question}
The answer is {answer}

Figure 11: Prompt format of No-CoT in our expriments.

Prompt Format of CoT

You should reference the knowledge provided below and combine it with your own knowledge to answer
the question. Please follow the format of the example I provided above. Here are some examples about
how to answer the questions.
Question: fewshotq[0]
Answer: fewshota[0]
Question: fewshotq[1]
Answer: fewshota[1]
Question: fewshotq[2]
Answer: fewshota[2]
...

Here are some reference.
Passage 1: {passages[0]}
Passage 2: {passages[1]}
Passage 3: {passages[2]}

Let’s think step by step. Answer the questions in the same format as above.
Question: {question}
Answer: {answer}

Figure 12: Prompt format of CoT in our expriments.

In summarization experiment in CNNDailymail, we used the following prompt to assess the perfor-
mance of DyPRAG and other baseline models in Figure 13:

Prompt Format of summarization

Please summarize the main ideas from the content of Passage 1 in a clear and concise manner.

Passage 1: {passages[0]}

Figure 13: Prompt format of summarization in our expriments.
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L PROMPT FOR KNOWLEDGE INTERNALIZATION EVALUATION

In the knowledge internalization experiments, we used the following prompt to assess the internaliza-
tion ability of RAG generation from DyPRAG-Combine and RAG method evaluated by GPT-4o in
Figure 14:

Prompt Format of Evaluate RAGTruth

Compare DyPRAG and RAG answers to assess which better internalizes knowledge—integrating its
own knowledge with the given context for a natural, informed response.

Evaluation Criteria:
1. Internalization: Does the answer go beyond repetition to integrate knowledge seamlessly?
2. Fluency: Is the response well-structured and readable?
3. Relevance: Does it stay on topic while demonstrating depth?

Mark the Winner: Identify the superior response. If both are equally strong, mark it as a tie.

Question: {question}
Context: {passages}
DyPRAG Answer: {dyprag_answer}
RAG Answer: {rag_answer}

Respond in the following format:
{{
"win model": "DyPRAG or RAG or Tie",
"reason": "Provide a concise explanation of why the selected answer demonstrates better knowledge
integration, referencing the question, context, and specific details from both answers. If one answer has
clear advantages in integration, explain them; if there are errors or weaknesses, specify them."
}}

Figure 14: Prompt format of evaluate RAGTruth using GPT-4o. We compare answer between
standard RAG and DyPRAG-Combine.

M FUTURE DIRECTIONS

In this study, our proposed Dynamic Parametric RAG (DyPRAG) demonstrates superior performance
in both IID and OOD settings across various scales of LLMs. Developing and deploying such RAG
system in real-world applications is a promising and worthwhile avenue for future work. Moreover,
we believe the most promising direction for DyPRAG lies in the integration of memory (Wang et al.,
2024d), which is commonly implemented using external textual databases. This raises a fundamental
question: Can a parameter translator convert any textual knowledge into parametric knowledge? If
the answer is yes, it would enable the replacement of large, text-based memory banks with a simple,
plug-and-play memory translator. This approach opens up an exciting avenue for enhancing the
fine-grained knowledge manipulation capabilities of F ′

ϕ, which we aim to explore in future work.

N REPRODUCIBILITY

In this work, we use open-source LLMs and publicly available datasets to conduct our experiments.
To ensure reproducibility, we provide the implementation details in Section 4.1 and Appendix B.1.
Details of all prompts referenced in this paper are included in Appendix K and L. The full code
and a detailed reproduction procedure of DyPRAG, which can be accessed via the following link:
https://anonymous.4open.science/r/DyPRAG_ICLR. We also provide a well-trained parameter
translator used in our experiments, available through the anonymous link.

O THE USAGE OF LLMS

We used Large Language Models (LLMs) to perform minor language polishing and grammar
refinement on select sections of the paper. The LLMs were not involved in generating core content,
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conducting research, or formulating ideas. All substantive contributions, including analysis, results,
and conclusions, were independently produced by the authors.
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