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Abstract

Addressing the challenges of irregularity and concept drift in streaming time series is cru-
cial in real-world predictive modelling. Previous studies in time series continual learning
often propose models that require buffering of long sequences, potentially restricting the
responsiveness of the inference system. Moreover, these models are typically designed for
regularly sampled data, an unrealistic assumption in real-world scenarios. This paper in-
troduces ODEStream, a novel buffer-free continual learning framework that incorporates a
temporal isolation layer that integrates temporal dependencies within the data. Simultane-
ously, it leverages the capability of neural ordinary differential equations to process irregular
sequences and generate a continuous data representation, enabling seamless adaptation to
changing dynamics in a data streaming scenario. Our approach focuses on learning how the
dynamics and distribution of historical data change with time, facilitating direct processing
of streaming sequences. Evaluations on benchmark real-world datasets demonstrate that
ODEStream outperforms the state-of-the-art online learning and streaming analysis base-
lines, providing accurate predictions over extended periods while minimising performance
degradation over time by learning how the sequence dynamics change. Our code is available
at: https://anonymous.4open.science/r/ODEStream-2BAC.

1 Introduction

In today’s data-driven world, the rapid growth of interconnected devices and systems has led to an explosion
of time series data generated in real time. These data streams offer invaluable insights across diverse domains,
including finance (Kovacs et al., 2021; Sezer et al., 2020), healthcare (Zhang1a et al., 2021; Kaushik et al.,
2020), environmental monitoring (Depuru et al., 2011), and industrial processes (Maschler et al., 2020).
Being able to analyse the streaming data in real-time provides more accurate and up-to-date information,
allowing us to react to changes as they happen and adding a significant value to the outputs (Almeida et al.,
2023).

Handling streaming analysis requires an effective continual online learning approach. Recently few studies
have addressed streaming analysis for regression and forecasting (Cossu et al., 2021), by relying on buffer
memory to apply a replay method for continual learning (Matteoni et al., 2022; Kwon et al., 2021; Kiyasseh
et al., 2021; Xiao et al., 2022; Chen et al., 2021). Using the replay method, a training set initialises the
model’s parameters, and a selected subset of this data, as well as future incoming data samples, is saved to
be used later when the model is retrained (Hoi et al., 2021; Fekri et al., 2021; He, 2021). This process focuses
on avoiding catastrophic forgetting issues by continuously updates the model knowledge while retraining on
both incoming and historical data. However, the effectiveness of this method is questionable when applied
to time series data, as it primarily focuses on preventing the loss of previously learned information. This
may lead to an insufficient learning on new dependencies evolving in the data over time (Cossu et al., 2021;
Pham et al., 2023). Additionally, these reply-based frameworks involve many complexities as it needs to
carefully determine what data samples are important to store in the buffer, when to update the importance
weights, and how to allocate memory and resources effectively. These complexities underscore the need for
a more streamlined approach to managing streaming time series data. Furthermore, catastrophic forgetting
impact differs when dealing with time series data and predictive modelling compared to non-temporal data
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and classification tasks where class and task-incremental learning are common scenarios (Ao & Fayek, 2023;
Pham et al., 2023). For such tasks the model objective is to learn new tasks or classes where it is important
to make sure that the old tasks and classes are not forgotten. In the context of developing a lifelong learning
model for streaming time series data, a relevant consideration arises related to the extent to which we should
prioritise preserving historical information that represents data that has evolved and changed (Cossu et al.,
2021; Pham et al., 2023).

Streaming time series forecasting faces significant challenges, including (1) Concept Drift Phenomenon,
where underlying patterns or relationships within the data change over time, posing a substantial challenge
for predictive modelling (Fekri et al., 2021). This issue extends beyond online learning models to impact batch
learning approaches, as models initially proven accurate can quickly become obsolete as the data continues to
evolve. (2) Temporal Irregularity which is common in streaming data, especially in real-world applications
where the data lacks a specific time frame. (3) Dynamic Preservation where emphasises the importance
of striking the right balance between old and new data. This balance is critical to preventing biases towards
outdated data while effectively adapting to the dynamic nature of streaming time series data. Building a
robust framework that can adeptly address these challenges is essential for maintaining model accuracy over
time.

This paper aims to overcome the restrictive boundaries of streaming time series data processing by presenting
a novel model (ODEStream) for online learning. Our focus lies in the model’s ability to adapt to changes
without a complicated framework while maintaining good performance over time. Specifically, we investigate
how the novel neural ODE methods can be leveraged for memory-free online forecasting on a streaming time
series. This paper includes the following contributions:

• Unique Perspective: We redefine the context of continuous time series forecasting where our
approach revolves around a unique perspective that emphasises the importance of learning the
dynamic patterns and distribution of the time series data. By prioritising these aspects, our model
shows a higher potential compared to traditional methods that focus on preserving historical data
samples.

• Utilising Neural ODE: To the best of our knowledge, our work represents the first attempt to
leverage novel neural Ordinary Differential Equation (ODE) models in the context of continuous
learning and online forecasting. Due to their ability to dynamically adapt and provide a continuous
hidden state, ODEs offer a more flexible approach compared to traditional discrete-time models,
especially in handling irregularly sampled data.

• Streamlined Buffer-Free Framework: We introduce ODEStream, a buffer-free continual learn-
ing framework designed to have a straightforward and efficient training process. Unlike other frame-
works that require intricate decision-making for upcoming data samples, our approach eliminates the
need to define thresholds, trigger values, or buffering samples to regulate the algorithm’s flow and
parameter updates. This simplification not only enhances the model’s ease of use but also eliminates
the burden of complex decision requirements associated with existing frameworks.

• Comprehensive Evaluation: We evaluate ODEStream against the state-of-the-art continual
learning models and show that ODEStream prevents performance from being affected by irregu-
larity and effectively adapts to the drift that occurs in the data as well as maintaining a stable
performance over very long streaming periods.

2 Related Work and Background

2.1 Continual Learning

Continual learning, also known as incremental learning or lifelong learning in several articles (Ao & Fayek,
2023), is the process of training a model on a sequence of tasks over time without forgetting previously learned
tasks (Lopez-Paz & Ranzato, 2017). The method should maintain a balance between preserving the knowl-
edge acquired from prior tasks and acquiring new knowledge for future tasks while having restricted access
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to historical experiences (Grossberg, 2013).There are several scenarios for continual learning systems, includ-
ing Instance-Incremental Learning (IIL), Task-Incremental Learning (TIL), and Online Continual Learning
(OCL), among others (Wang et al., 2023). Regardless of the scenario in which continual learning is applied,
the strategies and methods that have been used are summarised as Regularization, Replay, Optimisation,
and Representation-based approaches (Wang et al., 2023).

Replay-based, also known as Memory-based approaches, is the most common for various fields and has proven
to be highly effective. In these approaches, a subset of past examples is saved and can be replayed when
the model is trained in the future, relying on dynamic external memory. An example of this approach is
Experience Replay (ER), which relies on a fixed-sized replay buffer (Lopez-Paz & Ranzato, 2017; Chaudhry
et al., 2019a). ER methods are commonly used in reinforcement learning (Lin, 1992; Rolnick et al., 2019;
Foerster et al., 2017), but they have also been applied to supervised learning (Chaudhry et al., 2019b; Riemer
et al., 2019; Buzzega et al., 2020).

Regularization approaches (Li & Hoiem, 2017; Rebuffi et al., 2017; Kirkpatrick et al., 2017; Aljundi et al.,
2018) add explicit regularization terms to balance the learning of the old and new tasks. They work by
regulating the learning process through either penalising feature drift on previously learned tasks or reducing
changes in previously learned parameters (Li & Hoiem, 2017; Rebuffi et al., 2017; Kirkpatrick et al., 2017;
Aljundi et al., 2018). Regularization methods often require storing a static version of the old model for
reference (Wang et al., 2023). Finally, Model-based methods are applied by changing network structure or
applying multiple models to respond to different tasks (Fernando et al., 2017; Mallya & Lazebnik, 2018).
This method faces a challenge with the potential growth of network parameters. A comprehensive survey
on general continual learning methods is provided in (Wang et al., 2023).

While extensive work has been conducted on continual learning, there has been limited focus on its application
to time series. Recently, In (Sun et al., 2022), a novel concept known as Continuous Classification of Time
Series (CCTS) was introduced, driven by the necessity for early classification of time series, as highlighted
by Gupta et al. (2020). Following this, a recent article has addressed the issues of CCTS (Sun et al.,
2023). To evaluate the continuous learning methods on time series data, Maschler et al. (2021; 2022) put
several regularization methods undergoing testing for time series anomaly detection and classification; both
studies’ finding indicates that Online Elastic Weight (OEW) outperformed other regularization methods.
In (Matteoni et al., 2022), the authors proposed new benchmark datasets for time series continual learning
for classification on human state monitoring; using the proposed data, the authors tested several continual
learning methods and found that experience replay proves to be the most efficient approach, A similar
conclusion was reached in (Kwon et al., 2021), where the main goal of the study is to check if methods
developed for image-based continual learning classification will work on time series. The authors explored
different replay and regularization-based methods on six datasets. The study found that if storage is not
an issue, then the replay method gives the best performance. Another comparison of continual learning
methods was applied in (Cossu et al., 2021) where RNN’s performance for continual learning was explored
across various scenarios.

In (Maschler et al., 2020), the authors presented a model for continuous learning fault prediction. The
method was applied to the NASA turbofan engine dataset, and the results demonstrated the model’s effective
performance with distributed datasets without the need for centralised data storage. At the same time, two
replay methods have recently been presented for time series (Kiyasseh et al., 2021; Xiao et al., 2022). In
(Kiyasseh et al., 2021), CLOPS was proposed for clinical temporal data, (Xiao et al., 2022) proposed method
for streaming traffic flow sensor data. Finally, the work (He & Sick, 2021) was the first to describe continual
learning and catastrophic forgetting for regression tasks. The model utilised a neural network with buffers
and was deployed with OEW consolidation. Then, the same authors extended their work and focused on
power forecasting. In (Gupta et al., 2021), the author focused, for the first time, on multivariate time series
and multi-task continual learning. They addressed the issues using a memory-based method for the seen
data and proposed an RNN-GNN model.
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2.2 Time Series Streaming Data

In general, online time series forecasting has not been widely studied using deep learning models. Most of
the traditional works have focused on machine learning models (Jiménez-Herrera et al., 2023; Li et al., 2019;
Chen et al., 2020; Pham et al., 2023; Melgar-García et al., 2023; Cossu et al., 2021; Fekri et al., 2021; Ao &
Fayek, 2023), or statistical forecasting techniques (Alberg & Last, 2018), either using online-offline learning
(Chen et al., 2020; Pham et al., 2023; Melgar-García et al., 2023), or by applying incremental learning
(Alberg & Last, 2018; Li et al., 2019). However, using machine learning is not sufficient for multivariate
real-world data, where the temporal dependence and pattern are complex and hard to discover. Recent
work has focused on online time series forecasting using deep learning. The work in (Wambura et al., 2020)
introduced a model named OFAT, which stands for One Sketch Fits All-Time Series. The method was
designed for long-range forecasting in feature-evolving data streams, which involve data that changes over
time and has varying features. The model employs deep neural networks to learn from a small sample of
data streams and subsequently applies the learned patterns to new data streams. For that work, CNN
is used to extract features from the input data, while the LSTM is used to predict future values of the
output data. In another work (Pham et al., 2023), the authors introduced a novel framework for online
time series forecasting that combines the strengths of deep neural networks and Complementary Learning
Systems (CLS). The framework, named FSNet, consists of two components: a slowly-learned backbone and
a fast adapter. The backbone is responsible for learning long-term temporal dependencies, while the adapter
is responsible for learning short-term changes. The two components are dynamically balanced to ensure that
the model can adapt to both new and recurring patterns. When the data distribution changes, the adapter
is updated to learn the new patterns. When the data distribution is stable, the backbone is updated to
improve the accuracy of the prediction, while memory is used to store the historical data that the model has
learned. Nevertheless, these works continue to face challenges when dealing with irregular samples. More
Recent studies have focused on the temporal distribution shift problem. In (Du et al., 2021), the concept
of Temporal Covariate Shift (TCS) was introduced, and the AdaRNN framework was proposed. AdaRNN
combines Temporal Distribution Characterisation (TDC) and Temporal Distribution Matching (TDM) to
adaptively manage distribution changes. While the experimental results show that AdaRNN significantly
improves forecasting accuracy, it relies heavily on correctly segmenting the data into diverse periods. Bai
et al. (2022) introduced the DRAIN framework, which also focuses on adapting to changing data distributions
over time by addressing the challenge of temporal domain generalization. DRAIN uses a Bayesian approach
to jointly model data and neural network dynamics. It employs a recurrent graph generation scenario to
encode and decode dynamic neural networks, capturing temporal drifts in both data and model parameters.
A major drawback of the model is its requirement to encode and decode the entire network parameters,
which adds significant complexity to the model, making it computationally intensive.

2.3 Neural ODEs

Neural Ordinary Differential Equations (Neural ODEs) (Chen et al., 2018) represent a significant advance-
ment in deep learning by integrating differential equations and neural networks. They provide a flexible
framework for modelling complex dynamical systems, treating neural networks as continuous processes. Re-
cent research in this field has made remarkable progress, showcasing the effectiveness of neural ODEs in
various applications, especially for modelling irregularly sampled time series and partially observed data
such as ODE-RNN, latent-ODE, NJ-ODE and GRU-ODE models (Rubanova et al., 2019; Herrera et al.,
2020; De Brouwer et al., 2019). These models leverage the ODE’s capability to provide continuous hidden
states, unlike the traditional discrete approach used in traditional sequence models such as RNN.

In recent years, several models based on differential equations (DE) have been introduced to address different
issues, including modifying the hidden trajectories (Kidger et al., 2020; Morrill et al., 2021; Schirmer et al.,
2022) or reducing computational overhead (Habiba & Pearlmutter, 2020). However, these models have
typically been evaluated and applied in batch learning and fixed datasets; hence, we do not consider them
in this work. Despite the progress in applying neural ODEs to various domains, a critical gap exists in
their application to streaming time series data. Existing works primarily focus on batch learning and
fixed datasets, lacking exploration of the dynamic and evolving nature of streaming data. The intricacies of
adapting neural ODEs to real-time processing of continuously changing data remain unexplored. Our research

4



Under review as submission to TMLR

aims to bridge this gap by introducing ODEStream, a novel framework for continual learning in streaming
time series, effectively utilising the strengths of neural ODEs in this challenging context. Moreover, while a
recent work (Giannone et al., 2020) proposed real-time classification from event-camera streams using neural
ODEs (INODE), its focus on high-frequency event data and real-time classification does not comprehensively
address the broader spectrum of challenges associated with streaming time series prediction, which we aim
to tackle in this study.

3 Preliminaries

In this section, we outline the essential principles of ODE-based models and the concept of ODE solvers.
the theory of the neural ODE and ODE Solver, and how they represent the irregular time series

ODE (Ordinary Differential Equation): An ODE is a mathematical equation that describes the rate
of change of a variable with respect to an independent variable, typically time. In the context of time series
data, ODEs represent the dynamics and interactions between variables over time. A simple example of an
ODE is: dx(t)

dt = f(x(t), t), where x(t) denotes the state of the system at time t, and f(x(t), t) specifies the
rate of change at that time.

ODE Solvers: Solving an ODE involves determining the function x(t) that satisfies the given differential
equation. ODE solvers are numerical methods that approximate the solution over a defined time interval by
numerically integrating the ODE using discrete time steps. Starting from an initial condition x(t0), an ODE
solver estimates the values of x(t) at subsequent time points.

Neural ODEs: Neural ODEs extend traditional ODEs by parameterise the function f(x(t), t) with a
neural network. This allows for modelling complex, continuous-time dynamics in a data-driven manner. The
formulation of a neural ODE is:

dh(t)
dt

= fθ(h(t), t), where h(t0) = h0 (1)

h0, . . . , hn = ODESolve(fθ, h0, (t0, . . . , tn)), (2)

where fθ is a neural network function with parameters θ, and h(t) represents the system’s state at time t.
Given the function fθ and an initial condition h0, the ODESolve function computes the values of h at the
sequence of time points t0, . . . , tn.

4 Methodology

Problem statement: Let us consider a dynamic environment where streaming time series data is contin-
uously generated as X = {x1, x2, . . . , xt, . . . } with observations arriving in sequence over time. The goal is
to develop a continual learning system for time series forecasting that adapts to the evolving nature of the
data stream. Each observation xt represents the input at time t for univariate data, xt represents a vector of
inputs at time t for multivariate data, such as xt = [xt1, xt2, ..., xtd], where xtd is the value of the dth feature
at time t. The objective is to predict the future values of the time series. The challenge lies in the continual
learning setting, where the model must adapt and learn from the continuously incoming data without access
to past observations.

4.1 Neural ODEs for Continual Learning

Our goal is to design a training method for memory-free continual learning. As mentioned before, in the
context of online learning, we want our model to keep learning and adapting as new data arrives while avoiding
the problem of forgetting what it has previously learned. Typically, complex model setups with buffers have
been employed to store a subset of past data to address this problem. As previously discussed, studies in time
series continual learning have shown that memory-based approaches yield the best performance, especially
in classification tasks. The models in this framework continuously monitor incoming data and retrain on
both old and new samples to maintain accuracy in a dynamic environment, as demonstrated by Fekri et al.
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Figure 1: The ODEStream Framework leverages Neural ODEs to encode prior knowledge in the initial
training phase. Subsequently, the learned model parameters are transferred and complemented by the
temporal isolation layer for continuous online learning. In real-time, streaming data samples are used to
predict future values, and concurrently, the model dynamically updates its parameters to adapt to newly
observed samples.

(2021). However, when these models are applied to a continuous data stream, particularly one with gradually
shifting data distributions, their effectiveness becomes uncertain. This uncertainty arises because the model
only has one opportunity to train on each data sequence, unlike batch learning. Furthermore, in the presence
of evolving temporal patterns, it remains unclear how the information stored in the buffer memory can still
contribute to future prediction tasks.

After studying the neural ODEs method, we found that it can provide a foundational network for online
learning due to the following characteristics (Chen et al., 2018): (i) Continuous-depth representation:
Neural ODEs allow the modelling of flexible continuous-depth neural networks. Unlike traditional discrete-
depth neural networks, neural ODEs define the network architecture as a continuous function, making them
suitable for tasks where the depth of the network is not predefined. This means they can adapt their depth
and complexity as new data points become available. (ii) Memory efficiency: Neural ODEs do not
require storing a large number of intermediate activations, which is valuable when processing streaming data
with limited memory resources. (iii) Handling irregular sampling: Neural ODEs can handle irregularly
sampled time series data, which is common in streaming scenarios where data arrive at uneven time intervals
or when the features have different temporal representations. This flexibility ensures that the model can
adapt to the timing of incoming data points.

4.2 Overview of ODEStream

We proposed a streamlined model for continual learning and forecasting of time series, consisting of two
main phases. (i) an offline learning phase, commonly referred to as model warm-up, designed to initialise the
model parameters. (ii) online learning and forecasting, which generate predictions based on new sequence
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flow while adopting and learning from the new changes in the data. The first phase is instrumental in
obtaining prior knowledge of the available time sequences. For this part, the model utilises variational
autoencoders to capture the distribution, dynamics, and temporal dependencies of historical data, while an
ODE is employed to model evolving dynamics. The trained model is then transitioned to online learning,
functioning as a dynamic adaptive network for continuous analysis of streaming sequences. In this primary
phase, we leverage pre-trained NeuralODE weights. The model dynamically adapts to changes in the data
distribution by continuously updating its understanding of the underlying dynamics. As in Figure 1, it’s
noteworthy that the model framework acks external memory for storing samples lacks a decision node and
threshold values to control the flow of the learning process. In the following section, we provide a detailed
description of the model framework.

4.3 Obtaining Prior Knowledge.

Online learning is more complex than batch learning, where the model learns feature representations from
sample data and applies them to unseen data. The primary objective of the streaming model is to forecast
future values using specific horizontal windows over an extended period. Since the data is unavailable during
training, the model does not have the opportunity to process and learn from the sequences over many
iterations. In this case, when the data distribution eventually changes, and the sequences evolve over time,
the learned features from former historical sequences may no longer be helpful in predicting future values. In
the initial training phase of the model, often referred to as a warm-up, the model is pre-trained on historical
data from the entire previous period before online learning commences. However, as discussed earlier, this
data may have already changed or may change in the near future, so whatever the pre-trained model learns
might not remain very relevant.

For the ODEStream model warming-up phase, we do not warm up and train the model on a forecasting
task with the goal of solely learning the relationship between historical data and future time steps. Instead,
we follow a new approach. Since the prior data contains information about the distribution, dynamics, and
temporal dependencies, our focus lies in initialising our model by utilising the available data to understand
how this data evolves and how the dynamics change over time. To achieve this, we leverage the variational
autoencoders (VAEs) (Liu et al., 2020) model as shown in the model framework in Figure 1. In contrast to
traditional autoencoders, where an encoder layer e maps the data x to a latent vector Z = e(x), in VAE,
samples are transformed into an ideal data distribution P (Z|X), and the encoder is used to generate the
distribution rather than a single latent representation. For VAE, the model applies a prior constraint to
the latent vector Z using a multivariate Gaussian distribution G. The encoder e, parameterised with θ,
maps the data to a normal distribution rather than mapping it to a point in a latent space. The data x
distribution can be expressed as a multivariate Gaussian with mean Zµ and log variance Zσ vectors where
the probability function of this Gaussian distribution is:

q(x|z) = N (Zµ, Zσ), (3)

here, q(x|z) is the conditional distribution of the data x given the latent variable z, and N is the Gaussian
distribution with mean Zµ and standard deviation Zσ. Following that, the latent representation z is sampled
from the standard Gaussian distribution as:

Z = zµ + ϵ
⊙ √

exp(0.5 · zσ) , (4)

where ϵ is a random sample drawn from a standard normal distribution N (0, 1). The sampled latent variable
z is then fed to the decoder, which generates the final output y by sampling the latent variable z and mapping
it to the final output y as:

p(x|z) = N (zµ
′, zσ

′), (5)

where zµ
′ and zσ

′ are the mean and variance of the output data distribution.

To be able to obtain the dynamics and learn how the sequence distribution and dynamics change over time,
we use neural ODEs. As ODEs can learn the dynamics over time, they are suitable for tracking changes
in time series data. The RNN encoder processes the input sequence x to obtain the hidden state h0. The
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hidden state is then mapped to the mean Zµ and log variance Zσ discussed above using a linear layer. The
latent variable z is sampled from a Gaussian distribution as:zt0 ∼ N (zµ, zσ)

Given a sequential data sequence {x1, x2, · · · , xT } with a sequence length of T , a neural RNN encoder
processes each time step t to produce a hidden state ht. The encoder estimates the parameters Zµ and Zσ

of the variational posterior distribution p(zt|xt) for the latent variable zt. Subsequently, a fully connected
layer maps the hidden state to h0, and samples zt0 using the following equation:

zt0 ∼ p(zt0|xt0, . . . , xT ; t0, . . . , tT ; θp) = N (zt0|zµt
, zσt

) (6)

The latent trajectories, which represent the evolution of the latent variable zt over time, are computed using
an ODE solver as Equation 7 (using the Euler method in our case). This solver is employed to model how
the latent space changes and adapts as the sequential data is processed using the initial latent state zt0. The
ODE solver, represented as dz

dt = f(z, t; θf ), is a mathematical tool that describes how the latent variable z
changes concerning time t and is parameterised by θf . Therefore, it captures the dynamic behaviour of the
latent space over the entire sequence (the data for the initial training) before the online learning commences.

zt1, zt2, · · · , zT = ODESolve(zt0, f, θf , t0, · · · , tT ) (7)

4.4 Online Learning

After the initial training phase, where the neural ODEs model learns from historical data, the model switches
into the online learning phase. In this phase, the trained model is deployed to serve as a dynamic adaptive
network to provide continuous analysis for new streaming sequences as they emerge as in Figure 2. (For
simplicity, we denote the sequence of X = {xi+1, xi+2, xi+3, . . . }, as X = {x1, x2, x3, . . . , xj , . . . }, where j
represents the time point after i assuming that i is the last point of the data used for initial training.) The
primary role of the network now is two-fold: first, to generate forecasts based on the recent available data xj ,
and second, to adapt to changes in the data distribution. This adaptation is driven not only by prediction
accuracy but also by the evolution of the data distribution, which will be discussed in Section 4.5. The model
is meticulously designed to facilitate an ongoing understanding of how the underlying dynamics change over
time. This is achieved by continuously incorporating new data sequences using the neural ODEs, allowing
the model to learn and adapt to shifts in the data distribution. Particularly, the pre-trained neural ODE
weights and architecture will be loaded, and the model will again used to model the dynamics of the latent
space z(j) of the streaming sample xj -where j is the last available value of the stream. Then, the latent
space is linearly mapped to the hidden space (hj). Finally, the hidden space is linearly mapped to the output
space (yj) as:

z(j) = NeuralODE(z0, j) (8)
hj = Linear(z(j)) (9)
yj = Linear(hj) (10)

Based on the learned dynamics, the model parameters θ are updated as θnew = θold − η · ∇θLoss

Temporal Isolation Layer: To further enhance the model’s adaptability and responsiveness, we incorpo-
rated it with a specialised component known as the temporal isolation layer. This neural network serves two
purposes: (i) Focus on new information, as it resembles a dynamic “window” into the most recent data sam-
ples. Its primary objective is to extract and learn from the unique temporal patterns and features embedded
within the recent data. By closely monitoring the look-back windows and forecast horizon of the data, this
layer ensures that the model effectively captures emerging trends and patterns. (ii) Avoid historical bias
where, in addition to the focus on new information, we also manage the influence of past patterns learned
by the pre-trained model that may have become obsolete or inaccurate. By independently processing and
learning from the most recent data samples, this layer reduces the risk of the model being unduly guided
by outdated historical data, ensuring its predictions remain relevant and reliable. The input of this layer is
the current stream sequence with a specific look back window (lag) (xj−lag, ..xj), where j is the most recent
time point of a stream. As shown in Equation 11 and 12, the temporal isolation layer (f) generates the
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Figure 2: The continual learning process of ODEStream, The model processes the incoming observation
using the pre-trained VAE-ODE and continuously changes its parameters based on new dynamics

latent representation of that sample hj , and a concatenate layer (g) will combine the latent samples learned
h′

j along with the neural ODE representation hj of that sample to generate the final prediction. cj is a cell
state as we are using LSTM for this layer.

h′
j , cj ⇒ f(xj , hj−1, cj−1) (11)

h′′
j = g(h′

j , hj) (12)

Incorporating the temporal isolation layer allows the model to maintain a delicate balance between preserving
valuable insights from historical data and staying attuned to the evolving nature of the data stream. This
adaptive approach positions the model as a robust and adaptable tool for real-time forecasting and concept
adaptation in dynamic environments.

4.5 Model Regularisation

To ensure that the model comprehensively grasps the underlying data distribution, we used Kullback-Leibler
(KL) divergence loss as Equation 13 (Csiszár, 1975) to guide the pre-trained model and encourage the con-
tinual learning process to adapt to distribution changes. KL divergence measures the disparity between two
probability distributions, which facilitates the transformation of data into a latent space while encouraging
the latent variables to adhere to a specific distribution. In other words, it ensures that the model compre-
hensively captures the data distribution, unlike the Mean Squared Error (MSE) loss, which typically focuses
solely on optimising output quality. However, as the final output is a future prediction, it is still important
to evaluate the prediction performance of the model while learning new dynamics. Hence, a combination of
KL and MSE loss was utilised in the continual learning process.

LKL = −0.5 ∗
N∑

i=1
1 + log(Z2

σi
) − Z2

µi
− Z2

σi
(13)

Furthermore, to control overfitting, we used regularisation methods that play a significant role in enhancing
the robustness and generalisation of machine learning models and encouraging the development of simpler,
more adaptable models. We used L1 regularisation in Equation 14 as an additional protection for enhanced
model simplicity. L1 regularisation penalises the absolute values of neural network weights.

LL1 = 0.01 ∗
N∑

i=1
|zi| (14)
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5 Experiments

In our experiments, we aim to address three primary questions that collectively offer a comprehensive as-
sessment of the model’s performance:

• Does ODEStream outperform other recent methods, including ER and online forecasting techniques?

• What is the model adaptability to incoming data, how does it evolve over extended periods of
streaming and, how does the concept drift in the data influence the performance?

• Will ODEStream preserve its performance even when applied to irregular and sparse streaming
data?

5.1 Experimental Setup

5.1.1 Datasets

To evaluate the performance of our proposed model, we employed several benchmark real-world forecasting
datasets. We used (1) Electricity Consumption Load (ECL) 1 which is a public dataset describes the
electricity consumption (Kwh) of 321 clients. (2) Electricity Transformer Temperature (ETT) (Zhou et al.,
2021)2 which is multivariate time series records two years of data, focusing on predicting the electrical
transformers’ oil temperature based on load capacity. The dataset includes six features, and we utilised both
the available hourly (h) dataset (two sites separately) and minute (m) dataset. (3) Weather Data (WTH)3

which describes local climatological conditions for various US sites. It includes 11 climate features and the
target value (a wet-bulb temperature).

5.1.2 Baseline

We address a set of baselines for continual learning time series forecasting. As FSNET (Pham et al., 2023)
is the most recent state-of-the-art model, we consider it as our main baseline along with its variant naive
that showed better performance for one step ahead forecasting. We also include a basic buffer-based model
(Chaudhry et al., 2019b) Experience Replay (ER). ER enhances the OnlineTCN by incorporating an episodic
memory that preserves past samples, subsequently interleaving them during the learning of more recent ones.
Additionally, we consider a recent variant of ER, Dark experience replay DER++ (Buzzega et al., 2020),
that Enhances the conventional ER by introducing a knowledge distillation loss on the previous logits.

5.1.3 Setup

For all the experiments, we applied non-shuffled splitting to divide the data into a training set (25% ) for
initialising the model (warm-up training) and a streaming dataset (75%) for online testing and training. We
rescaled (normalised) the features using a standard normal distribution that fits on the training set only.
We used a look-back window of 24 for our model and the baselines, while the learning rate was set to 0.001,
and we employed the Adam optimiser for model optimisation. For warm-up, we used a batch size of 64. To
simulate a streaming environment for online learning, the batch size and epoch were set to one.

5.2 Evaluation Results

The results of the ODEStream performance compared to the baseline models are presented in Table 1. Our
experimental encompassed multiple tasks, including univariate and multivariate forecasting tasks, denoted
as (•) and (*) respectively in the table, along with a multivariate-multivariate forecasting task (represented
as ^) where the model predicts the future target value with the future feature list as applied in (Pham et al.,
2023).

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoad
Diagrams20112014

2https://github.com/zhouhaoyi/ETDataset
3https://www.ncei.noaa.gov/ data/local-climatological-data
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Table 1: Cumulative MSE results of several datasets using ODEstream and the baseline models for different
tasks, including: (•) univariate predict univariate, (*) multivariate predict univariate, (^) multivariate
predict multivariate.

Method ECL• ECL^ ETTh1* ETTh1^ ETTh2* ETTh2^ ETTm1* ETTm1^ WTH* WTH^
ER 2.8142 2.8359 1.9785 0.2349 6.7558 0.5044 3.055 0.082 0.3138 0.1788
DER++ 2.8107 2.81 1.9712 0.24 6.738 0.5042 3.0467 0.0808 0.3097 0.1717
FSnetNaive 2.9943 3.0533 2.001 0.2296 6.7749 0.5033 3.0595 0.1143 0.3843 0.2462
FSnet 2.8048 3.6002 1.9342 0.2814 6.681 0.4388 3.0467 0.0866 0.3096 0.1633
ODEStream 0.1173 4.095 0.0594 0.105 0.164 0.1879 0.0625 0.2178 0.0441 0.222

In the case of the ECL dataset, which is naturally univariate data, we conducted univariate forecasting
by analysing the historical data of a specific variable (a single client). All other datasets are multivariate
data, where we leverage multiple features to predict future values of a single target variable as multivariate
forecasting tasks. For all datasets, we used all available features to predict a set of future values for these
features for multivariate-multivariate forecasting. It is important to note that while reviewing the baseline
models and the proposed model described in (Pham et al., 2023), we observed that the reported performance
metrics were primarily for the multivariate-multivariate forecasting task where a multivariate predict mul-
tivariate. However, we extended our analysis to include the prediction performance for other tasks as well.
Upon closer examination, the performance shown by the baseline models was not as high as anticipated
in tasks other than multivariate-multivariate forecasting. For this task, the performance of our method
closely approximated that of the baseline models. However, we achieved a substantial enhancement in the
performance of univariate forecasting tasks when compared to the baseline models. Figure 3 and 4 illustrate
the performance of ODEStream, FSNet and DER++ over a massive period of streaming, and we can see
how well ODEStream and the baseline models adapt to gradual changes in the datasets through continuous
learning. It is evident that FSNet and DER++ struggle to adapt to all the data changes over an extended
period, resulting in predictions that diverge significantly from ground truth values for most of the dataset by
the end of the streaming sequence. Conversely, ODEStream continuously adapts to new dynamics across the
entire duration, which explains why it achieved lower cumulative MSE values. It is also worth mentioning
that DER++ outperforms in multivariate forecasting due to the complex and non-stationary nature of the
relationships between different variables. DER++ leverages a replay buffer that stores a small subset of past
data points, allowing the model to rehearse past experiences. This mechanism helps maintain performance
on previous data distributions while adapting to new patterns, which is crucial for handling the intricacies
of multivariate time series data.

5.3 Performance on Irregular Data

In this section, we assess the model performance on irregular sparse data, essentially evaluating its ability
to continuously learn from samples with uneven time intervals. To simulate irregular sparse data, we apply
a cut-out function to the benchmark dataset, following the work in (Rubanova et al., 2019). Specifically, we
remove 30% of the data points for each attribute in the sequences. Thus we ensure that there is no fixed
time interval between observations, and not all samples are fully observed at every time point. Figure 5
illustrates the model performance with regularly sampled data compared to irregularly sampled data. We
observe that the error drops by an average of less than 0.020 score. While most cases experience a minor
increase in error, this could imply that the model adapts well to irregularities in the sampling pattern.

5.4 ODEStream Adaptability

In order to assess the robustness of our proposed model in the presence of concept drift, we employed the
Adaptive Windowing (ADWIN) method for concept drift detection to the testing set of all datasets under
consideration and evaluated the performance of our model in adapting to these drifts. Figure 6 provided a
visual representation of how our model responded to changing data patterns compared to a baseline model.
The red vertical lines represent a drift in the data detected by ADWIN. The predictions generated by
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Figure 3: ODEStream against FSNet: Adapting dynamics evolution for the entire stream sequence of several
datasets.

0 5000 10000 15000 20000 25000
stream time points

5

4

3

2

1

0

1

2

Ob
se

rv
at

io
ns

 v
al

ue
s

Ground truth
ODEStream
Der++

(a) WTH

0 2000 4000 6000 8000 10000
stream time points

4

3

2

1

0

1

Ob
se

rv
at

io
ns

 v
al

ue
s

Ground truth
ODEStream
Der++

(b) ETTh1

0 2000 4000 6000 8000 10000
stream time points

10

8

6

4

2

0

2

Ob
se

rv
at

io
ns

 v
al

ue
s

Ground truth
ODEStream
Der++

(c) ETTh2

0 2000 4000 6000 8000 10000
stream time points

5

4

3

2

1

0

1

2

Ob
se

rv
at

io
ns

 v
al

ue
s

Ground truth
ODEStream
Der++

(d) ETTm1

Figure 4: ODEStream against DER++: Adapting dynamics evolution for the entire stream sequence of
several datasets.

ODEStream shed light on the model’s ability to maintain effectiveness and accuracy even in dynamic and
evolving data environments.
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Figure 5: Model performance on irregularly sampled data.
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Figure 6: Predictions by ODEStream compared to the baseline model FSNet amid concept drift (indicated
by red vertical line).

6 Ablation study

For the ablation study, we systematically examined the performance of three model configurations: (1)
the full framework with both the temporal isolation layer and the combination of MSE and KL loss for
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convergence, (2) the model without the temporal isolation layer, but still utilising the MSE and KL loss, and
(3) the model without the temporal isolation layer, with only the MSE loss for convergence. By comparing
these configurations, we gained insights into the effectiveness and necessity of the temporal isolation layer
and the impact of different loss functions on the model’s performance in handling concept drift and dynamic
time series data. The results of the ablation study are shown in Table 2, demonstrating the significant
effectiveness of the temporal isolation layer, which improved performance by more than 50% on average
across all datasets.

Table 2: Cumulative MSE results of the ablation study with/without a temporal isolation layer and with
using different loss functions (1) MSE, (2) MSE-KL.

Method ECL ETTH1 ETTH2 ETTM1 WTH
W/O TIL1 0.299 0.127 0.372 0.10 0.200
W/O TIL2 0.369 0.084 0.347 0.098 0.178
W/ TIL1 0.119 0.054 0.176 0.09 0.060
ODEStream 0.117 0.059 0.164 0.062 0.044

7 Model Robustness

7.1 MSE Convergence

Figure 7 illustrates the convergence of MSE values during streaming prediction on all datasets for both
ODEStream and FSNet. It is evident that ODEStream maintains lower MSE values even after an extended
period of time. This indicates the model’s ability to continuously learn from new observations as they become
available over time. Additionally, in certain cases, ODEStream’s MSE values decrease over time, in contrast
to the baseline model, where the error values tend to increase with time.
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Figure 7: MSE convergence using ODEStream compared to FSNet for several datasets.

7.2 Computational Resources

In Figure 8, we show the required resources in terms of time and memory. In the first three plots, we present
the required time needed to process a stream of sequences for each dataset. We have added the FSnet required
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time as a reference to show the improvement and provide insights into the efficiency of ODEStream. For
example, Figure 8a shows the average time per second required to process one stream sequence. ODEStream
requires 88% less on average. In Figure 8d, the average memory usage in megabytes is calculated using the
‘psutil qlibrary for each process.

(a) Execution time in seconds per one sequence. (b) Execution time in seconds for the whole stream-
ing period.

(c) Execution time in hours for the whole streaming
period.

(d) The average memory usage for each sequence
processing.

Figure 8: ODEStream computational resources in terms of time and memory. FSNet is used as a reference.

8 Conclusion

In this article, we introduce a new approach to buffer-free online forecasting from streaming time series
data, addressing the critical need for real-time adaptability to changes. The proposed model, ODEStream,
leverages the capabilities of neural ordinary differential equations (ODEs) to dynamically adapt to irregular
data, and concept drift, eliminating the necessity for complex frameworks. Through continuous learning and
incorporating a temporal isolation layer, ODEStream stands out in processing streaming data with irreg-
ular timestamps and efficiently handles temporal dependencies and changes. Our evaluation of real-world
benchmark time series datasets in a streaming environment demonstrates that ODEStream consistently out-
performs a range of online learning and streaming analysis baselines, confirming its effectiveness in providing
accurate predictions over extended periods while reducing the challenges associated with stream time series
data processing. This research marks a significant stride in advancing the capabilities of online forecasting,
offering a promising solution for real-time analysis of dynamic time series data. Looking ahead, our future
work aims to extend the applicability of the proposed methodology to various time series continual learning
scenarios. This includes exploring task incremental learning scenarios where a sequence of m tasks arrive,
each task consisting of N instances of labelled time series data. For each task, ODEStream will be employed
to learn a solver for each task with no access to the data of previous tasks.
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