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Abstract

Despite recent advances in multimodal pre-001
training for visual description, state-of-the-art002
models still produce captions containing errors,003
such as hallucinating objects that are not present004
in a scene. The existing prominent metric for005
object hallucination, CHAIR, is limited to a006
fixed set of MS COCO objects and synonyms.007
In this work, we propose a modernized open-008
vocabulary metric, ALOHa, which leverages009
large language models (LLMs) to measure ob-010
ject hallucinations. Specifically, we use an LLM011
to extract groundable objects from a candidate012
caption, measure their semantic similarity to ref-013
erence objects from captions and/or object detec-014
tions, and use Hungarian matching to produce a015
final hallucination score. We show that ALOHa016
correctly identifies 13.6% more hallucinated ob-017
jects than CHAIR on HAT, a new gold-standard018
subset of MS COCO Captions annotated for hal-019
lucinations, and 30.8% more on nocaps, where020
objects extend beyond MS COCO categories.021

1 Introduction and Background022

In recent years, vision-language models have023

demonstrated remarkable performance. Unfortu-024

nately, even state-of-the-art models for visual de-025

scription still generate captions with object halluci-026

nations – objects or entities that are present in the027

caption yet are not explicitly supported by visual028

evidence in the image (Dai et al., 2023). In order029

to reduce the occurrence of object hallucinations in030

vision-language models, it is helpful to understand031

and quantify the problem through reliable, localiz-032

able, and generalizable measures of object halluci-033

nation. Reliable measures are capable of correctly034

indicating if a given caption contains an object hallu-035

cination. Localizable measures are capable of indi-036

cating which object in a particular caption is halluci-037

nated. Generalizable measures are capable of eval-038

uating captions from a wide range of input datasets,039

across a wide range of object and entity categories.040

Figure 1: (Top) The SOTA prior object hallucination metric,
CHAIR, is limited to MS COCO objects, and fails to detect
the hallucinations in this image caption while ALOHa
(ours, bottom) correctly assigns low similarity scores to the
hallucinations “baseball player” and “bat”. ALOHa does not
penalize the caption for “catcher”, “umpire”, and “bass drum”,
as the caption indicates uncertainty of their presence.

Recent works that measure object hallucinations 041

in generated text generally fall into two categories: 042

measures that find hallucinations by explicitly 043

matching from a set of objects, and measures that 044

compute distances between latent image and/or 045

text embeddings, indicating a hallucination if the 046

embeddings are too distant. In the first category, 047

CHAIR (Rohrbach et al., 2018) is a measure that 048

explicitly extracts objects from candidate sentences 049

using simple string matching against MS COCO 050

classes and a small set of synonyms. It compares 051

these extracted objects against the ground truth 052

detections, and objects extracted from the ground 053

truth reference captions. CHAIR is both reliable, as 054

string matching on a fixed set of objects is accurate 055

and consistent, and localizable, as individual 056

non-matching strings are identified. However, as 057

seen in Figure 1, CHAIR is not generalizable, as it 058

can only handle a fixed set of predetermined objects. 059

Other uni-modal measures in this category include 060

those for abstractive summarization (Durmus et al., 061

2020; Kryscinski et al., 2020; Maynez et al., 2020; 062

Son et al., 2022; Sridhar and Visser, 2022; Yuan 063

et al., 2021), dialogue (Huang et al., 2022; Shuster 064

et al., 2021), and structured knowledge (Dhingra 065

et al., 2019). These often generalize poorly to 066
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vision-language tasks as they require grounding the067

generated text into inputs of the same modality.068

In the second category, CLIPScore (Hessel069

et al., 2021) employs CLIP (Radford et al., 2021)070

embeddings to assess image-text matches. While071

it is generalizable and reliable, it lacks localization072

as it does not pinpoint incorrect spans of text.073

CLIPBERTS (Wan and Bansal, 2022) and Ref-074

CLIPScore (an extension of CLIPScore accounting075

for reference captions) face similar limitations.076

POPE (Li et al., 2023) evaluates vision-language077

models’ likelihood to hallucinate objects with078

machine-generated queries consisting of samples079

extracted from both reference object detections and080

nonexistent objects. The POPE approach, while a081

useful object hallucination score for model compar-082

ison, addresses a fundamentally different problem083

from that which we investigate here – it measures084

how often models hallucinate rather than localizes085

and detects hallucinations within a single caption.086

Inspired by recent successes using LLMs for087

evaluation in language-only tasks (Zhang et al.,088

2020; Yuan et al., 2021; Bubeck et al., 2023; Chiang089

et al., 2023; Zheng et al., 2023), we introduce090

Assessment with Language models for Object091

Hallucination (ALOHa), a modernized measure092

for object hallucination detection that is reliable,093

localizable, and generalizable. ALOHa extends the094

reliability and localization of CHAIR to new input095

domains by leveraging in-context learning of LLMs096

combined with semantically-rich text embeddings097

for object parsing and matching (Figure 1).098

For a given image caption, we generate two099

measures: ALOHao, a numeric score for each100

object rating the degree to which that object is a hal-101

lucination, and ALOHa, an aggregated score rating102

the degree to which the whole caption contains a103

hallucination. We demonstrate the performance of104

ALOHa on a new gold-standard dataset of image105

hallucinations, HAT, and show that ALOHa is more106

accurate than CLIPScore at detecting object halluci-107

nations, and more accurate than CHAIR at correctly108

localizing those hallucinations. We conclude by109

demonstrating that ALOHa remains reliable and110

localizable when generalizing to out of domain data.111

2 ALOHa: Reliable, Localizable, and112

Generalizable Hallucination Detection113

ALOHa produces numeric scores rating the degree114

of hallucination for each object in a candidate115

caption as well as an overall caption score, given a 116

set of ground-truth reference captions and predicted 117

(or ground truth) image object detections. ALOHa 118

consists of three stages (Figure 2). (1) Objects 119

are extracted from the image, reference set, and 120

candidate caption using a combination of an object 121

detector and LLM. (2) We filter the object sets 122

and compute semantic representations of each 123

object. (3) We compute a maximum-similarity 124

linear assignment between candidate and reference 125

objects. The scores from each of the pairs in the 126

linear assignment, which we call ALOHao, measure 127

the degree of hallucination for each of the candidate 128

objects. The minimum similarity in this linear 129

assignment (the ALOHa score) measures the degree 130

of hallucination of the caption. 131

(1) Extracting objects from candidates, refer- 132

ences, and images: Parsing visually grounded 133

objects in a caption in an open-domain context is a 134

surprisingly difficult task. CHAIR (Rohrbach et al., 135

2018) relies on a fixed set of MS COCO objects and 136

synonyms, requiring considerable effort to extend to 137

other datasets, and sometimes failing at ambiguous 138

parses (such as mistaking the adjective “orange” for 139

a noun). SPICE (Anderson et al., 2016) relies on 140

standard grammar-based object parsing, which can 141

have similar issues, as purely text-based methods 142

fall short at identifying which nouns are visual – for 143

instance, avoiding “picture” and “background” in 144

Figure 2. Captions may also indicate uncertainty 145

around object presence, such as “a bowl or plate”, 146

or “a dog biting something, possibly a Frisbee.” We 147

aim to handle such uncertain objects to avoid unfair 148

hallucination penalties. 149

With the understanding that open-domain 150

parsing is the primary factor in CHAIR’s lack 151

of generalization, we leverage the capability of 152

zero-shot in-context learning in large language 153

models. Following Brown et al. (2020), we use an 154

LLM (ChatGPT, OpenAI (2022)) along with the 155

prompt given in Appendix A to turn the parsing 156

task into a language completion task easily solvable 157

by an LLM. We encourage the LLM to extract 158

visual objects in the scene, consisting primarily of 159

noun phrases (including any attributes, such as “big 160

dog” and “purple shirt”), from the candidate and 161

reference captions. We run the LLM against the 162

candidate caption to produce the unfiltered object 163

set C, and again for the corresponding reference 164

captions to produce object set R. To extract objects 165

from the image context, similar to CHAIR, we 166
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Figure 2: Overview of ALOHa. We prompt an LLM to extract visually-grounded nouns from a candidate machine-generated
description and a set of references. We consider uncertain language (e.g., “goat or sheep”), add reference objects with and without
modifiers (e.g., both “field” and “grassy field”), and avoid non-visual nouns (e.g., “picture” and “background”). Then, we
compute a maximum-similarity linear assignment between candidate and reference object sets, the weights of which form the
ALOHao. Matched pairs with low ALOHao are likely hallucinations (e.g., “black cat”, ALOHao =0.2). We additionally output
the minimum ALOHao as a caption-level ALOHa score.

augment the set of reference objects with objects167

detected directly from the image using DETR168

(Carion et al., 2020) fine-tuned on MS COCO.169

(2) Object filtering: We further refine candidate170

(C) and reference (R) object sets to better reflect171

specific challenges of object hallucination detection.172

Ideally, hallucination measures should penalize173

specificity when candidate attributes are not174

supported by references (e.g., if “purple shirt” ∈C,175

yet “white shirt” ∈ R), but should not penalize176

generality (e.g., “shirt” ∈C, yet “white shirt” ∈R).177

Thus, we use spaCy (Honnibal et al., 2020a) to178

augment R with the root nouns from each reference179

noun phrase, but leave the candidates unchanged.180

Beyond specificity, captions may also express181

uncertainty about the presence of objects in an182

image. For conjunctions (e.g., “fork or knife”),183

we aim to avoid unfair penalties if at least one184

of the objects is grounded. ALOHa considers all185

combinations of selecting a single object from each186

conjunction, denoted as C{1...M} and R{1...N} (e.g.,187

“fork” ∈R0 and “knife” ∈R1). Additionally, we188

prompt the LLM to indicate uncertain grounding189

by including “possibly” after the object (e.g., “there190

may be a Frisbee” becomes “Frisbee (possibly)”)191

and we remove uncertain objects from Ci to192

avoid penalties while maintaining them in Rj for193

maximum coverage of more general objects.194

(3) Object Matching: Once we have extracted and195

parsed the candidate and reference object sets, we196

aim to measure the degree of hallucination for each197

candidate object. While we could match objects198

based on string alone (resulting in a binary decision),199

as does CHAIR, often it is useful to understand200

a continuous scale of hallucination – e.g., for a201

reference object “dog”, hallucinating “wolf” should202

be penalized less than “potato.” To capture this scale203

of semantic similarity, for each object text o, we204

generate oemb =ϕ(o)∈RK , where ϕ is a semantic 205

text embedding model. In our work, we use 206

S-BERT (Reimers and Gurevych, 2019). We then 207

compute a similarity score for each pair of objects 208

(usually the cosine similarity, see Appendix B.3). 209

For each (Ci,Rj) pair, we store these scores in 210

a similarity matrix Si,j ∈ [0,1]|Ci|×|Rj |. We then 211

use the Hungarian method (Kuhn, 1955) to find 212

an optimal maximum-similarity assignment Mi,j 213

between candidate and reference sets of objects. 214

To determine the ALOHao score for each object, 215

we take the maximum score across all possible 216

parsings, giving the candidate caption the benefit 217

of the doubt, for an object c∈Ci 218

ALOHao(c)=max
i,j

wci,j∈Mi,j (1) 219

While 0 ≤ ALOHao ≤ 1 indicates the degree of 220

hallucination for each object, we also want to 221

indicate if an entire caption contains a hallucination. 222

We thus define: 223

ALOHa=min
c∈C

ALOHao(c) (2) 224

We choose the minimum as the presence of any 225

hallucinated object indicates that the full caption is 226

a hallucination, and even several correct detections 227

should not compensate for a hallucination. 228

3 Evaluation & Discussion 229

HAT: To promote the development of high-quality 230

methods for hallucination detection, we collect 231

and release HAT (HAllucination Test), a dataset of 232

labeled hallucinations in captions. HAT consists of 233

490 samples (90 validation and 400 test) labeled by 234

in-domain experts for hallucination on both a word 235

level and caption level (See Appendix D). Measures 236

are evaluated on two metrics: Average Precision 237

(AP) and Localization Accuracy (LA). The AP 238
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Method LA AP

Baseline (Majority Vote) - 33.75
CHAIRs 6.70 36.85
CLIPScore - 40.10
RefCLIPScore - 48.40

ALOHa (No Detections) 19.55 48.40
ALOHa (Oracle Detections) 19.55 47.86
ALOHa (DETR Detections)* 20.30 48.62
ALOHa (Oracle+DETR Detections) 21.05 48.78

Table 1: Test set performance for binary hallucination
detection on HAT. LA: Localization Accuracy. AP: Average
Precision. * indicates the version of ALOHa used throughout
this paper, unless noted otherwise. Oracle detection are
human-generated reference detections.

of the method measures reliability, and is defined239

as how well the measure identifies captions with240

hallucinations. For CHAIR, decisions are binary,241

so AP=accuracy. For ALOHa, AP is the weighted242

mean of precisions across all thresholds. The LA,243

measured on samples containing hallucinations244

in HAT, measures localization and is defined as245

the accuracy of correctly indicating which of the246

specific objects were hallucinated. For CHAIR, a247

hallucination is correctly localized when at least248

one detected string mismatch is a hallucination,249

and for ALOHa when the minimum ALOHao score250

corresponds to a hallucinated object.251

ALOHa’s performance on HAT is shown in252

Table 1. On AP, ALOHa with DETR detections253

outperforms both CHAIR and CLIPScore by 11.8%254

and 8.5% respectively. RefCLIPScore attains a255

similar AP; however, is not localizable. ALOHa256

achieves more than twice the LA on HAT CHAIR,257

a particularly challenging task as HAT includes258

non-object hallucinations, such as incorrect verbs259

or relations (see Figure A7). Table 1 further ablates260

the choice of image detections, and indicates that261

ALOHa is robust to missing detections.262

FOIL object hallucinations: To indicate generaliz-263

ability we evaluate our method on two machine-264

generated object hallucination datasets. FOIL265

(Shekhar et al., 2017) contains MS COCO images,266

where objects are randomly replaced with simi-267

lar ones (e.g., “bus“ and “car”), and nocaps-FOIL,268

a similar dataset that we construct on the nocaps269

dataset (Agrawal et al., 2019) for novel object cap-270

tioning beyond MS COCO (see Appendix D.1).271

While both methods are strong on the FOIL dataset,272

CHAIR fails to transfer to the nocaps-FOIL dataset,273

as the object set becomes out of scope. CHAIR274

achieves an AP of only 58.33 (only slightly bet-275

ter than chance) and LA of 14.42, compared to276

Figure 3: Qualitative Flickr30k examples. (Left) ALOHa
correctly assigns low scores to the hallucinated “nun” and
“bread”, whereas CHAIR does not detect any hallucinations.
(Right) Although ALOHa assigns high similarity between the
hallucinated “electric guitar” and reference “(acoustic) guitar”,
it assigns low scores to the other 3 hallucinations. CHAIR
detects only the hallucination “chair”, missing the others.

ALOHa’s AP of 69.52, and LA of 45.17 (213% rel- 277

ative improvement). See Appendix C.2 for details. 278

Flickr30k: In Figure 3 and Figure A5, we visualize 279

the behavior of CHAIR and ALOHa on several 280

Flickr30k samples (Young et al., 2014), using cap- 281

tions generated by a recent captioning model (Chan 282

et al., 2023) that often produces complex captions 283

with phrases expressing uncertainty. 284

Additional results: As LLMs can hallucinate 285

themselves (Bubeck et al., 2023), we annotate the 286

parsing error rate on HAT in Table A1 and find that 287

GPT-3.5 introduces extraneous objects in 2.97% of 288

samples. In Appendix B we investigate the choice 289

of LLM, similarity measure, and parsing approach. 290

4 Conclusion 291

This paper introduces ALOHa, a scalable LLM- 292

augmented metric for open-vocabulary object 293

hallucination. ALOHa correctly identifies 13.6% 294

more hallucinated objects on HAT and 31% on 295

nocaps-FOIL than CHAIR. ALOHa represents an 296

important modernization of caption hallucination 297

metrics, and detecting complex hallucinations in 298

actions, quantities, and abstract concepts remains an 299

exciting and challenging task for future exploration. 300
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5 Limitations301

While ALOHa represents a strong step towards302

open-domain localized hallucination detection, it303

comes with several limitations which we discuss304

in this section.305

Non-determinism A primary concern with using306

large language models for an evaluation measure307

is the natural nondeterminism that comes with308

them. While in theory language models sampled at309

a temperature of zero (as we do in this work) are de-310

terministic, it is well documented that small random311

fluctuations can still occur (OpenAI, 2023). Beyond312

random fluctuations, the availability of language313

models long-term can impact the reproducibility314

of the measure. In this work, we primarily rely on315

closed source language models, which can change316

or become unavailable without notice. In Table A1,317

we demonstrate that ALOHa still functions with318

open source models such as Koala (Geng et al.,319

2023), however the performance is significantly320

degraded due to the parsing capabilities of the321

model. With time, and more powerful open source322

LLMs, this will become less of an issue, however re-323

lying on a nondeterministic metric for comparative324

evaluation can easily become a liability.325

Availability of Reference Captions (Reference-326

Free vs. Reference-Based Measures) One of327

the primary limitations of the ALOHa evaluation328

method is the requirement that reference captions329

are available for the evaluation dataset (an issue330

shared by CHAIR). Not only must reference331

captions be available, but they also must sufficiently332

cover the salient details in the reference image.333

When the references are impoverished (as can334

easily happen with a single reference sentence335

(Chan et al., 2023)) or when there are no references,336

and ALOHa must rely entirely on detections, the337

method under-performs more general methods such338

as CLIPScore which are reference free, and rely339

on a large pre-training dataset to encode vision and340

language correspondences. We strongly believe that341

the area of reference-free localized hallucination342

detection is an important area of future research;343

how can we leverage the tools from large vision344

and language pre-training in a localized way to345

understand and interpret where hallucinations346

lie in hallucinated text? That being said, there347

is also a place for reference-based measures, as348

reference-based measures focus on what humans349

believe to be salient details in the image, whereas 350

reference-free measures always rely on downstream 351

models which approximate what humans believe 352

to be important. This means that reference-based 353

measures can often transfer better to new domains 354

than reference-free measures, which often must be 355

trained/fine-tuned in-domain with human-labeled 356

data to achieve strong performance. 357

General costs associated with LLMs The use of 358

large language models for any task incurs significant 359

compute, monetary, environmental, and human 360

costs . ALOHa is a significantly slower evaluation 361

measure than methods like CHAIR (however not 362

that much less efficient than CLIPScore), leading to 363

increased power consumption, and cost during eval- 364

uation. In addition, the models that we rely on are 365

generally closed source, and represent a non-trivial 366

monetary expenditure (Experiments in this paper, in- 367

cluding ablations, testing, and prototyping required 368

approximately $120 USD in API fees). Such factors 369

can be limiting to researchers who wish to evaluate 370

large datasets, however we hope that with the 371

advent of larger open source models, and continued 372

investment in hardware and systems research, the 373

cost will decrease significantly. Beyond compute 374

and financial costs, there are environmental and 375

human costs associated with using large language 376

models for evaluation, see Bender et al. (2021) for 377

a detailed discussion of these factors. 378

Limited Control of Bias In this work, we do 379

not evaluate the performance of ALOHa on Non- 380

English data, nor do we explicitly control for or mea- 381

sure bias in the creation of HAT (Which is a labeled 382

subset, randomly selected of the MS COCO dataset), 383

or the Nocaps-FOIL dataset (which operates on 384

the same samples as the Nocaps validation dataset). 385

While HAT is a subset of the common MS COCO 386

dataset, we recognize that the creation of such po- 387

tentially biased datasets has the potential to lead 388

researchers to engineer features and methods which 389

are unintentionally biased against underrepresented 390

groups. We aim to address these shortcomings in the 391

next iteration of HAT, which will not only contain 392

out of domain data for MS COCO trained models, 393

but also aims to better control for bias in the under- 394

lying image and caption data. Note that our work, 395

including HAT, is intended for research purposes. 396
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Appendix640

Appendix A describes the prompt of the language641

model, including the exact language used, the642

design choices, and the in-context examples.643

Appendix B describes several explorations of644

the hyperparameters, including the language645

model chosen for ALOHa, the semantic646

embedding method, and the parsing approach.647

Appendix C contains additional detailed results648

and experimental details for experiments in649

the paper.650

Appendix D describes the datasets that we col-651

lected and constructed, including HAT and652

nocaps-FOIL.653

A Prompt654

The choice of prompt for a large language model655

using in-context learning is critical to the perfor-656

mance of the model. Each component of the prompt657

has some ability to shape the downstream language658

distribution. In this work, we use the prompt shown659

in Figure A1. This prompt has several rules, which660

we discuss here.661

Attributes: We ask that the language model662

include all attributes attached to the object if663

they are present. By doing so, we can catch664

hallucinations such as those shown in Figure 3,665

where “electric guitar" appears in the candidate, but666

an acoustic guitar is shown in the image. Attributes667

are handled differently between reference captions668

and candidate captions. For reference captions, we669

add both the object with attributes, and the object670

You are an assistant that parses
visually present objects from
an image caption. Given an image
caption, you list ALL the objects
visually present in the image or
photo described by the captions.
Strictly abide by the following
rules:
- Include all attributes and
adjectives that describe the object,
if present
- Do not repeat objects
- Do not include objects that
are mentioned but have no visual
presence in the image, such as light,
sound, or emotions
- If the caption is uncertain
about an object, YOU MUST include
’(possibly)’ after the object
- If the caption thinks an object can
be one of several things, include
’or’ and all the possible objects
- Always give the singular form of
the object, even if the caption uses
the plural form

Figure A1: The prompt that we use for parsing objects
from both captions and sets of reference captions.

without attributes to the set, so the candidate is not 671

penalized for being more general. For the candidate, 672

however, we add only the object with attributes, 673

so if the candidate produces attributes, they must 674

match with something in the reference set. 675

Repeated Objects: In this work, our primary 676

goal is to determine if a particular object is 677

hallucinated, and not focus on the quantity of 678

hallucinations. Thus, we de-duplicate the object 679

set in both the candidate and reference captions, 680

as well as detections coming from the image. By 681

doing this, we focus on if the objects can possibly 682

exist in the image, rather than focus on getting the 683

exact count, which may be incorrect if a candidate 684

caption mentions the same object more than once 685

(and that object is parsed twice). 686

Intangible Object: In many cases, objects 687

mentioned in the candidate or reference set may be 688

intangible, such as color, light, sound, or emotion. 689

To improve the accuracy of the model, we explicitly 690

suggest that such objects should not be included. 691
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Caption: This image shows two pink
roses in a tulip-shaped vase on a
wooden kitchen counter, next to a
microwave and a toaster oven.
Objects:
- pink rose
- tulip-shaped vase
- wooden kitchen counter
- microwave
- toaster oven

Figure A2: An example of a single-caption parsing result.

Or/Possibly: Modern captioning methods such692

as Chat-Captioner (Zhu et al., 2023) and IC3 (Chan693

et al., 2023) are capable of encoding uncertainty694

into their approach through the use of words like695

“possibly" or “maybe". Additionally, they may make696

judgments that are uncertain such as “an apple or an697

orange." Existing captioning and hallucination de-698

tection measures fail to account for this uncertainty,699

and match both objects, even though the semantics700

of the caption suggests that the object is uncertain,701

or may be one of many objects. To account for this,702

we encourage the LLM to indicate uncertainty in703

a fixed way, as well as list multiple alternatives on a704

single line. We then account for this in our matching705

method, by giving the candidate the benefit of706

the doubt, scoring only the best match from an707

alternative set, and ignoring any uncertainty.708

Singularization: While it is possible to singular-709

ize objects using rule-based methods, rule-based710

methods struggle with challenging nouns, and711

we found that in general, the LLM was better712

at performing the singularization set of the713

post-processing before object matching.714

A.1 In-Context Examples715

In addition to the core prompt text, we provide716

several contextual samples, which help with717

in-context learning (Brown et al., 2020). The718

contextual samples help to align the label space719

of the model correctly with the target output720

distribution (Min et al., 2022). An example of such721

contexts is given in Figure A2 and Figure A3.722

B Hyperparameter Exploration723

In this section, we explore the choices of hyperpa-724

rameters for ALOHa including the object parsing,725

semantic embedding, and language model.726

Captions:
- Several people riding on a
motorcycle with an umbrella open.
- Couples riding motor cycles
carrying umbrellas and people
sitting at tables.
- A group of people riding scooters
while holding umbrellas.
- Some tables and umbrellas sitting
next to a building.
- Pedestrians and motorcyclists near
an open outdoor market.
Objects:
- person
- couple
- motorcycle
- umbrella
- table
- scooter
- building
- pedestrian
- motorcyclist
- open outdoor market

Figure A3: An example of a multi-caption parsing result.

B.1 Object Extraction 727

and Semantic Embedding Methods 728

In the primary work, we leverage LLMs (OpenAI, 729

2023) for object extraction, and a BERT-based 730

model (Reimers and Gurevych, 2019) for semantic 731

word embedding. These are, however, not the 732

only choices that can be made for these two com- 733

ponents. In Figure A4, we explore the difference 734

in overall performance on HAT’s validation set 735

when using different combinations of object 736

extraction and semantic embedding. Namely, 737

we compare LLM-based extraction to the parse- 738

tree-based noun extraction in SpaCy (Honnibal 739

et al., 2020b), and compare SentenceTransformer 740

(BERT-Based model, (Reimers and Gurevych, 741

2019)) to Word2Vec (Mikolov et al., 2018), GPT-3 742

(Ada) embedding, and string matching (strings are 743

case-normalized and lemmatized). In general, we 744

found that combining LLMs with the Sentence- 745

Transformer (BERT-Based) model performed better 746

than other methods, and that fuzzy embedding 747

methods often significantly outperform exact string 748

matching when determining hallucination as judged 749

by human raters. This is generally expected: hu- 750

mans have a wide vocabulary that is poorly captured 751
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Figure A4: Performance on HAT validation set filtered
for hallucinated objects, when comparing embedding
methods and object extraction approaches.

by exact string matching. Interestingly, Word2Vec752

outperforms GPT-3 embeddings. We believe that753

this is because the GPT-3 embeddings are optimized754

for sentence-level structures, and may fail to seman-755

tically embed single words in a meaningful way.756

B.2 Choice of Large Language Model757

The choice of the language model is critical to the758

overall performance of ALOHa- if the language759

model does not have sufficient zero-shot parsing760

capability, it will lead to reduced downstream761

performance. We investigate the performance of762

the language model in Table A1 on HAT. In these763

experiments, we measure the average precision764

(AP) and LA (see Appendix C.1), as well as the765

“Parsing error rate" (PER), which is the rate of766

errors made when parsing objects from reference767

captions on HAT. We calculate PER (Parsing Error768

Rate) with manual annotation by taking the fraction769

of objects output by the LLM that did not exist in770

the caption (in other words, measuring 1-precision771

of parsed objects). We additionally annotate and772

compute the recall - the fraction of objects in the773

caption that are included in the objects parsed by774

the LLM. This gives a recall for GPT-3.5 of 98.63%.775

In these experiments, we find that while Koala776

(Geng et al., 2023) has strong LA performance on777

HAT, however ChatGPT (GPT-3.5) (OpenAI, 2023)778

has both the best average precision, and makes the779

fewest errors, thus we leverage GPT-3.5 for our780

primary experiments in the main paper.781

B.3 Semantic Similarity Measure782

In ALOHa, we compute the similarity between ob-783

jects using the cosine distance between embedding784

vectors generated using the all-MiniLM-L6-v2785

S-BERT implementation in the Sentence-786

Lanugage Model LA ↑ AP ↑ PER ↓ PRR ↑

GPT-3.5 20.30 48.62 2.97 98.63
Claude (Instant) 20.74 41.48 3.31 -
Koala 22.22 38.70 5.07 -

Table A1: Exploration of LLM choice for parsing
within ALOHa, on HAT. AP: Average Precision, LA:
Localization Accuracy, PER: Parsing Error Rate (%),
PRR: Parsing Recall Rate.

Transformers1 library (Reimers and Gurevych, 787

2019). While in theory cosine distances should lie in 788

the interval [−1,1], in this library, for optimization 789

stability, models are trained with positive samples 790

having similarity 1, and negative samples having 791

similarity 0. This (unintentionally) induces a model 792

which (by optimization) only produces positive 793

cosine similarity scores. ALOHa can still be 794

adapted to negative similarity: our algorithms for 795

maximal assignment and equations 1 and 2 both 796

support negative values (even though they don’t 797

appear in this instantiation of the algorithm). 798

It is further worth noting that S-BERT is not a 799

word similarity measure, and was instead designed 800

to measure distances between sentences. This 801

means that the underlying metric may not be 802

sufficiently optimized at a word level, however, 803

in Figure Figure A4, we give an ablation on the 804

parsing method and examined the effectiveness of 805

different embedding models for semantic similarity. 806

We found among the explored approaches that 807

S-BERT was most effective and that simple word 808

embedding methods such as GLoVe are insufficient. 809

That being said, we acknowledge that leveraging 810

a model trained specifically for semantic similarity 811

between words would be an exciting and powerful 812

extension to the ALOHa framework. With the 813

development of better word embedding models 814

for semantic similarity, we see greater potential in 815

localizing hallucinations with ALOHa. 816

C Experimental 817

Details & Additional Experimentation 818

C.1 Metrics 819

We employ several measures in the paper, which 820

we describe in detail here. 821

Average Precision We measure the Average 822

Precision (AP) of each hallucination metric to 823

detect sentence-level hallucinations. Specifically, 824

1https://www.sbert.net/
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FOIL nocaps-FOIL

Overall In-Domain Near-Domain Out-Domain Overall

Method LA AP LA AP LA AP LA AP LA AP

CHAIRs 79.00 92.50 13.47 57.82 17.55 59.14 12.24 58.06 14.42 58.33
CLIPScore - 76.44 - 71.81 - 70.17 - 78.73 - 73.48
RefCLIPScore - 80.64 - 79.63 - 78.70 - 85.89 - 81.31

ALOHa 40.00 61.35 47.35 71.80 47.30 66.67 48.84 70.91 45.17 69.52

Table A2: Breakdown of results by domain on nocaps FOIL. AP: Average Precision. LA: Localization Accuracy.
Bold and underlined values represent the best and second-best methods respectively.

we label each sample with 1 if it contains a825

hallucination and 0 otherwise. We then measure AP826

between those labels and per-sample hallucination827

measures. For ALOHa, this is:828

AP=
1

N

N∑
i=1

I[label]·ALOHa(i) (3)829

For CHAIR, this is:830

AP=
1

N

N∑
i=1

I[label]·I[CHAIR Prediction] (4)831

Localization Accuracy Localization accuracy832

(LA) measures the fraction of samples where833

a metric can correctly identify a hallucinated834

object, among samples that are known to contain835

hallucinated objects.836

LA=
|{ ≥1 correctly identified halluc.}|

|{≥1 halluc.}|
(5)837

A sample receives a LA of 1 if at least one of the838

predicted hallucinated objects was correct (for839

CHAIR), or if the object with the minimum match-840

ing score was a true hallucination (for ALOHa).841

We do not measure LA for CLIPScores, as they do842

cannot provide hallucination scores per object.843

C.2 FOIL844

Table A2 breaks down the results of ALOHa on845

the FOIL and nocaps-FOIL dataset. The results846

illustrate a set of subtle results: while ALOHa847

under-performs CHAIRs in both AP and LA on the848

original FOIL dataset, this is primarily due to the849

construction of the dataset itself. FOIL constructs850

new samples by replacing string-matched COCO851

objects with a set of hand selected “foil” objects,852

objects that are visually distinct from the original853

object, but are near semantic neighbors. This is a854

best case scenario for CHAIR, as CHAIR relies855

on string matching alone, and thus, is easily able to 856

both detect and localized the replaced samples. The 857

inaccuracies in LA and AP come from the synonym 858

set that CHAIR uses for matching, along with 859

parsing errors such as parsing the color “orange” 860

as the object “orange”. In much the way that FOIL 861

is the perfect dataset for CHAIR, FOIL perfectly 862

exploits the strengths of ALOHa. Because of the 863

semantic similarity score, we assign less weight to 864

in-domain hallucinations, making it less likely that 865

the replaced FOIL objects will be detected. 866

When we move to nocaps-FOIL with non- 867

MS COCO data, however, we see starkly contrast- 868

ing results. ALOHa significantly outperforms 869

CHAIR, as now the object set that was a strength for 870

in-domain FOIL becomes a liability, and CHAIR is 871

unable to detect any hallucinations at all, due to the 872

restricted string matching. RefCLIPScore, while 873

extremely competitive in the hallucination detection 874

task, cannot perform localization, and thus, serves 875

only as a benchmark for the performance of ALOHa 876

on the FOIL and nocaps-FOIL datasets. 877

D Datasets 878

In this section, we discuss further the data that we 879

use and go into detail on the dataset collection pro- 880

cess for HAT (Appendix D.2) and the nocaps-FOIL 881

dataset (Appendix D.1) 882

D.1 nocaps-FOIL 883

The FOIL dataset (Shekhar et al., 2017) is a 884

synthetic hallucination dataset based on samples 885

from the MS-COCO (Xu et al., 2016) dataset. In 886

this dataset, for each candidate-image pair, a “foil" 887

caption is created which swaps one of the objects 888

(in the MS-COCO detection set) in the caption with 889

a different, and closely related neighbor (chosen 890

by hand to closely match, but be visually distinct). 891

While the FOIL dataset provides a useful bench- 892

mark for many hallucination detection methods, 893
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it is overly biased towards methods optimized for894

the MS-COCO dataset. To help evaluate methods895

that are more general, we introduce a new dataset896

“nocaps-FOIL" based on the nocaps (Agrawal897

et al., 2019) dataset. The nocaps dataset consists898

of images from the OpenImages (Kuznetsova et al.,899

2020) dataset annotated with image captions in a900

similar style to MS-COCO. nocaps is split into three901

sets: an in-domain set, where objects in the images902

are in the MS-COCO object set, near-domain,903

where the objects in the image are related to those904

of MS-COCO, and out-of-domain, where objects905

in the image are not contained in MS-COCO.906

To build the nocaps-FOIL dataset, for each image,907

we generate the baseline caption by removing a908

single caption from the reference set. We then909

generate the foil caption as follows. First, we find910

any words in the baseline caption that are contained911

in either the openimages class list (there are 600)912

or a near neighbor in wordnet. We then randomly913

select one of these classes to replace. Because there914

are 600 classes, we do not hand-pick the foil classes,915

and rather, select a near neighbor class based on916

sentence embeddings from (Reimers and Gurevych,917

2019). We find that in practice, the nearest neighbor918

is often a synonym, thus, to avoid selecting919

synonyms, we take the 10th furthest sample, which920

is often a near neighbor, but is visually distinct. We921

replace this word in the caption, matching case, and922

then perform a filter for grammatical correctness923

using the Ginger2 API. Any captions which are not924

grammatically correct are filtered. This leaves us925

with 2500 image/caption/foil pairs, which we use926

for evaluation in Table A2.927

The OpenImages dataset annotations are under928

a CC BY 4.0 license, and the images are under a CC929

BY 2.0 license.930

D.2 HAT931

HAT is based on MS-COCO and aims to be a gold-932

standard benchmark for the evaluation of hallucina-933

tion in image captioning methods. While it is rela-934

tively small, it is densely annotated by in-domain ex-935

perts for several types of hallucination including ob-936

ject hallucination, action hallucination, and numeric937

hallucination among others. HAT consists of 90 val-938

idation samples, and 400 test samples, each contain-939

ing a machine candidate caption generated by one of940

BLIP (Li et al., 2022), OFA (Wang et al., 2022), IC3941

2https://www.gingersoftware.com/

(Chan et al., 2023) or Chat-Captioner (Zhu et al., 942

2023), and annotations which mark which word 943

in the captions are hallucinated (See Figure A8 944

for exact instructions given to annotators). An 945

image/caption pair is considered a hallucination if at 946

least one of the words in the caption is hallucinated. 947

Screenshots of the interface for data collection 948

are given in Figure A8. While initial versions of 949

the dataset were collected using AMT workers, 950

we found that the quality of annotations was not 951

sufficiently high, and thus, trained experts explicitly 952

in hallucination detection, and leveraged expert 953

ratings for the samples in the test dataset. 954

MS-COCO is under a Creative Commons 955

Attribution 4.0 License. 956

E Qualitative Examples 957

We provide additional qualitative examples from 958

the following scenarios: 959

E.1 Flickr30k Examples 960

Figure A5 shows several examples on the Flickr-30k 961

dataset Young et al. (2014) with captions generated 962

by IC3 (Chan et al., 2023), a modern image 963

captioning model that often generates longer, more 964

complex captions including uncertain language 965

such as “possibly.” We highlight objects with 966

ALOHao ≤ 0.5 as likely hallucinations. For 967

samples going from left to right: 968

1. The caption hallucinates the word “mother”, 969

as there is no visual evidence that the woman 970

is specifically a mother. CHAIR does not 971

capture this, as “mother” is mapped to a 972

synonym for “person”, which it counts as a 973

grounded (non-hallucinated) object. ALOHa 974

matches “mother” to the reference “person”, 975

assigning a borderline ALOHao of 0.5. 976

2. The image does not contain a hallucination. 977

CHAIR flags “table” as hallucinated, yet 978

the caption expressed uncertainty with 979

a conjunction: “chair or table.” ALOHa 980

successfully parses this conjuction and 981

selects “cloth” with ALOHao = 1.0 to the 982

exact reference match. 983

3. CHAIR does not detect the hallucinated 984

“bridge”, which is successfully assigned a 985

low ALOHao =0.35. 986
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4. The caption hallucinates the word “father”.987

In most cases, the specific relationship of988

“father” is unlikely to be grounded (similar989

to “mother” in sample 1); yet, in this image,990

it is even more clear as there are only children991

present. CHAIR maps “father” as another992

synonym for “person” and does not consider993

it a hallucination, whereas “father” has a low994

ALOHao =0.34.995

E.2 HAT Examples996

We present 4 random samples from HAT each997

for cases without hallucinations (Figure A6) and998

with hallucinations (Figure A7). Because these999

examples contain more nuance that we discuss1000

below, we do not indicate binary hallucination1001

decisions as in Appendix E.1.1002

Starting with Figure A6), samples with captions1003

that were labeled as correct, from left to right:1004

1. Both CHAIR and ALOHa successfully do1005

not find any hallucinations.1006

2. CHAIR does not flag any hallucinations.1007

ALOHa assigns a low ALOHao = 0.36 for1008

“sun“, an incorrect parse from the phrase1009

“sunny day”. However, the other objects are1010

successfully matched. Interestingly, ALOHa1011

adds “snowboard” as an object, inferring that1012

the physical item would need to be present1013

given the verb “snowboarding”.1014

3. CHAIR again does not flag any hallucina-1015

tions. ALOHao for “tall building” is the1016

mid-range 0.59, matched with the reference1017

“building”, indicating a somewhat uncertain1018

attribute. This may be reasonable given the1019

point of view in the image.1020

4. CHAIR finds no hallucinations. “Cloudy sky”1021

receives a somewhat low ALOHao = 0.45.1022

Although this phrase is accurate given the1023

image, this is a failure case in which the1024

references are incomplete.1025

Next, we discuss Figure A7, showing samples1026

that were labeled to contain a hallucination. Recall1027

that labels capture all types of caption errors, includ-1028

ing those other than object hallucinations, to serve1029

as a valuable source for research around general1030

caption correctness. As a result, there exists non-1031

object hallucinations in HAT that are impossible for1032

CHAIR or ALOHa to localize. From left to right:1033

1. The attribute “tall” is labeled as a hallucination, 1034

as the building next to the bus is only one story. 1035

Similar to sample 3 in Figure A6, ALOHao for 1036

“tall building” is somewhat uncertain at 0.59. 1037

Other objects are correctly grounded. 1038

2. The object “table” is a hallucinated, misclas- 1039

sified object; e.g., one reference opts for the 1040

more general “wooden surface.” However, the 1041

reference mentions a “table” that it is placed 1042

on, leading CHAIR to avoid considering it 1043

as a hallucination. For ALOHa, this example 1044

shows one of the 2.97% of cases (Table A1) 1045

where ALOHa hallucinates a reference object, 1046

“dining table”. The candidate “round wooden 1047

table” is matched to it, with an erroneously 1048

high ALOHao of 0.74. 1049

3. This sample contains a complex error, in which 1050

the arrow is not, in fact, “pointing in different 1051

directions.” This non-object hallucination 1052

is impossible for the object-specific CHAIR 1053

and ALOHa to localize correctly. However, 1054

it demonstrates ALOHa’s capability to extract 1055

more complex attributes such as “red street 1056

sign” and “orange detour sign.” 1057

4. The cat’s location “on top of a small chair” 1058

is labeled as an error. CHAIR does not flag 1059

any hallucinations. ALOHao for “small chair” 1060

is 0.59, yet both metrics cannot capture the 1061

specific relation. 1062
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Figure A5: Qualitative samples of ALOHa evaluated on the Flickr-30k dataset, with candidate captions generated by
IC3 (Chan et al., 2023). Hallucinated objects in the caption text are red and bolded. See Appendix E.1 for discussion.

Figure A6: Randomly selected qualitative examples of ALOHa evaluated on the HAT dataset when there is no
hallucination in the ground truth. See Appendix E.2 for discussion.
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Figure A7: Randomly selected qualitative examples of ALOHa evaluated on the HAT dataset when there is a halluci-
nation in the ground truth. These hallucinations are generally challenging to detect. See Appendix E.2 for discussion.
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Figure A8: The hallucination dataset collection interface.
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