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Abstract

Segmentation is an important analysis task for biomedical images, enabling the study of
individual organelles, cells or organs. Deep learning has massively improved segmentation
methods, but challenges remain in generalization to new conditions, requiring costly data
annotation. Vision foundation models, such as Segment Anything Model (SAM), address
this issue through improved generalization. However, these models still require finetuning
on annotated data, although with less annotations, to achieve optimal results for new con-
ditions. As a downside, they require more computational resources. This makes parameter-
efficient finetuning (PEFT) relevant. We contribute the first comprehensive study of PEFT
for SAM applied to biomedical images. We find that the placement of PEFT layers is more
important for efficiency than the type of layer for vision transformers and we provide a
recipe for resource-efficient finetuning.
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1. Introduction

Segmentation is a fundamental analysis task for biomedical images. It enables the study
of individual objects, such as cells and organelles in microscopy, or organs and lesions in
medical imaging. Deep learning has massively advanced the field. However, the large
diversity of modalities and tasks so far required different methods for specific applications,
such as CellPose (Pachitariu and Stringer, 2022) and Stardist (Schmidt et al., 2018) for
cell and nucleus segmentation, or nnU-Net (Isensee et al., 2020) and TotalSegmentator
(Wasserthal et al., 2023) for segmentation in radiology. Adapting any of these models to
a new modality or a new task requires further data annotation for training due to limited
generalization. Annotations can only be provided by experts and are time-consuming,
making adaptation costly and preventing the wider use of automatic segmentation.

Vision foundation models for image segmentation, e.g. Segment Anything Model (SAM)
(Kirillov et al., 2023) or SEEM (Zou et al., 2023), promise a more unified solution. These
models have been trained on large annotated datasets and address both interactive and
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automatic segmentation. They were recently adapted to biomedical images, resulting in
foundation models for microscopy (Archit et al., 2025a; Israel et al., 2024) and medical
imaging (Ma et al., 2024; Zhao et al., 2024; Archit et al., 2025b). These models are applicable
to many tasks in their respective domain without adaptation, but specific finetuning can
further improve them (Archit et al., 2025a). Notably, they need fewer annotated data
compared to other models, requiring as few as a single labeled image (Zhou et al., 2024).

Most vision foundation models use a vision transformer (ViT) (Dosovitskiy et al., 2021)
as encoder. Hence, they typically have more parameters than previous architectures, making
training more resource demanding and requiring a high-end GPU, even for small training
sets. To enable efficient adaptation, parameter-efficient finetuning (PEFT) has emerged, for
example through low rank adaptation of attention layers (LoRA) (Hu et al., 2022). Instead
of updating all model parameters, these methods either update only a small subset of
parameters, or they introduce a few new parameters that are updated, while freezing the rest
of the model. While PEFT has been extensively studied for large language models (Pu et al.,
2023; Xu et al., 2023; Balne et al., 2024), its application in computer vision, particularly
for segmentation tasks, is less explored. Several approaches that adapt SAM to biomedical
segmentation use PEFT, e.g. (Archit et al., 2025a; Zhou et al., 2024) for microscopy and
(Gu et al., 2025; Zhang and Liu, 2023; Wei et al., 2024; Wu et al., 2025) for medical
imaging. However, they primarily use LoRA without investigating its hyperparameters or
alternatives. To our knowledge, none of this prior work studied the practical efficiency gains
through PEFT, relying on the trainable parameter count as a measure for efficiency. Other
prior work has studied PEFT for classification in natural images (Xin et al., 2024) as well
as classification and text-to-image generation in medical images (Dutt et al., 2024).

We address this gap by studying PEFT for biomedical segmentation; for SAM and its
variants µSAM (Archit et al., 2025a) and MedicoSAM (Archit et al., 2025b). We contribute:

• An evaluation of several PEFT methods on microscopy and medical imaging.

• A thorough evaluation of efficiency gains due to PEFT.

• Implementation of more efficient “late PEFT” approaches based on these finding and
an implementation of quantized LoRA (QLoRA) (Dettmers et al., 2023) for ViTs.

• Recommendations for the use of PEFT and a recipe for efficient adaptation of SAM.

• A detailed ablation of hyperparameters for several PEFT methods, including LoRA.

Our workflow and improvements from efficient adaptation are shown in Fig. 1. We believe
that our study will facilitate the use of foundation models for biomedical image segmenta-
tion. Further, it will inform future developments of PEFT for computer vision. Our code
is available at https://github.com/computational-cell-analytics/peft-sam.

2. Methods

2.1. Additive and Selective Finetuning

We distinguish two types of methods: additive and selective PEFT. Selective methods
update a subset of the model parameters, while freezing the rest. A simple example is
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PEFT-SAM

Figure 1: Overview of PEFT-SAM. a) We study PEFT of domain-specific SAMs to enable
interactive correction and efficient finetuning for improved segmentation. b) Seg-
mentation results for three datasets from µSAM, µSAM finetuned with LoRA
and CellSeg1, all trained on two images (Zhou et al., 2024).
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freezing parts of the model, for example SAM’s image encoder, mask decoder, or prompt
encoder. Freezing the image encoder, which contains most parameters, yields the greatest
efficiency gain. (Archit et al., 2025a) have shown that this approach does not have a large
negative impact on segmentation quality after finetuning. We refer to this approach as
Freeze Encoder. The other selective PEFT methods we study are LayerNorm Tuning (LN
Tune) (Basu et al., 2024), Bias Tuning (Bias Tune) (Cai et al., 2020), and Attention Tuning
(Attn Tune). (Touvron et al., 2022), which update only the parameters of the normalization
layers, the biases, or the attention weights, respectively.

Additive PEFT methods introduce a few additional parameters, while freezing the exist-
ing ones. Among these methods, LoRA (Hu et al., 2022) reduces the number of parameters
via a low rank decomposition of the attention weight matrix:

W = Wpretrained + αAB , (1)

where A ∈ Rd×r, B ∈ Rr×d. Here, the rank r is much smaller than the original dimension d
of W. α scales the learned weights. Further efficiency gains can be obtained by quantizing
the frozen weights, i.e. Wpretrained and others, to 4 bit during training, as in QLoRA
(Dettmers et al., 2023). We adopt this approach for ViTs, providing, to our knowledge,
its first application to this architecture; see also App. B. AdaptFormer (Chen et al., 2022)
adds a lightweight module, consisting of two fully connected layers, in parallel to the MLP
layers of the ViT. The outputs of the adapter are scaled by a factor α and added to the
original MLP outputs. Scale-Shift Features (SSF) (Lian et al., 2022) performs a linear
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Figure 2: The original architecture of SAM, comprising image encoder, mask decoder and
prompt encoder, with an additional segmentation decoder, proposed by µSAM.
The image encoder is fine-tuned through additive PEFT, which introduces a few
additional parameters, or selective PEFT, which updates only selected parame-
ters. We also introduce late PEFT, which adapts only layers at the end of ViT.

transformation, introducing a scale and a shift parameter to the output of each layer in the
transformer block. Factor Tuning (FacT) (Jie and Deng, 2023) combines multiple weight
matrices into a single tensor and then applies a low rank decomposition to it. Here, we adopt
the implementation of (Chen et al., 2024a), which tensorizes the attention weight increment
matrices (corresponding to A,B in Eq. 1) and then decomposes the tensor according to:

∆W = UΣVT , (2)

where U ∈ Rd×r, V ∈ Rd×r and Σ ∈ Rr×r. The factors U and V are shared across layers.
Fig. 2 shows an overview of these 9 PEFT methods. We apply them only to the image

encoder; prompt encoder and mask decoder are always updated. Further, we study an ap-
proach we call “late PEFT”, where we insert trainable parameters / unfreeze weights only
in the late layers of the image encoder. This is motivated by our findings on computational
efficiency, see App. A. Specifically, we study “late LoRA”, “late QLoRA“ and “late finetun-
ing”. We compare all PEFT methods with normal parameter updates (Full FT). We use
SAM (Kirillov et al., 2023) and two domain-specific models, µSAM (Archit et al., 2025a)
for microscopy, and MedicoSAM (Archit et al., 2025b) for medical imaging, to initialize
weights. The latter two models have finetuned SAM on a large annotated dataset for the
respective domain.

2.2. Interactive Segmentation

SAM has introduced a novel formulation for interactive segmentation, where users can
provide input prompts, points (positive or negative), a bounding box or a rough mask,
to identify an object. The model then predicts the corresponding mask by processing
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the image with its image encoder, a ViT, the prompts with its prompt encoder, and the
outputs of image encoder and prompt encoder with its mask decoder. Model predictions
can be corrected by providing further prompts.

SAM is trained on a large dataset with annotations using an objective that simulates
interactive segmentation. In each iteration, this objective first samples prompts from an
annotated mask, predicts the object mask, and then iteratively corrects the prediction
with additional prompts sampled from the annotation. Predictions and annotations are
compared with a loss function for each iteration, and the average loss is used to update
parameters. We use the implementation of this procedure from (Archit et al., 2025a).

To evaluate interactive segmentation, we automatically derive prompts from annotations
to segment the object and then iteratively correct it, similar to the training objective. We
perform 7 correction iterations. We compute the metric (App. D) between annotations and
predictions for the initial prompt and corrections. We report the results for an initial point
prompt, an initial box prompt, and the last correction iteration, when starting from a point
(IP , appendix only), and when starting from a box (IB, appendix only).

2.3. Automatic Instance Segmentation

For automatic instance segmentation (AIS) we use the implementation of µSAM, which
adds a UNETR decoder (Hatamizadeh et al., 2022) to SAM to predict outputs for instance
segmentation. The decoder consists of four blocks, with two convolutional layers and a
transposed convolution for upsampling each. The blocks also receive the image encoder’s
output as input. The decoder predicts three channels: the distance to the object center,
the distance to the object boundary, and foreground probabilities. During training, it is
updated jointly with the rest of SAM, using the annotations to derive targets for its outputs.

During inference, the segmentation is computed by deriving seeds from the distance
predictions, a mask from foreground predictions, and applying a seeded watershed inside
this mask. For evaluation, the instance segmentation is compared with annotations using
the mean segmentation accuracy, see App. D.

2.4. Data

We use 6 microscopy and 6 medical imaging datasets. For light microscopy (LM), we
use Covid-IF (Pape et al., 2021) with 49 immunofluorescence microscopy images and cell
annotations, HPA (Ouyang et al., 2019) with 276 confocal microscopy images and cell an-
notations; using the channel that stains cytosol. We use GoNuclear (Vijayan et al., 2024)
with 5 fluorescence microscopy and nucleus annotations. We use OrgaSegment (Lefferts
et al., 2024) with 231 brightfield microscopy images and organoid annotations. We use two
electron microscopy (EM) datasets: Platynereis (Vergara et al., 2021) with 3 EM volumes
and cilia annotations, and a subset of MitoLab (Conrad and Narayan, 2023) with a vol-
ume of glycolytic muscles and mitochondria annotations. For the 3D datasets (GoNuclear,
Platynereis, MitoLab), we perform 2D segmentation by treating slices as individual images.

For medical imaging, we use AMD-SD (Hu et al., 2024) with 3049 optical coherence
tomograms and annotations for lesions. We use JSRT (Shiraishi et al., 2000) with 247
images and lung and heart annotations. We use Mice TumSeg (Jensen et al., 2024) with
452 micro-CT volumes and tumor annotations. We use Papila (Kovalyk et al., 2022) with
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488 fundus images and optic cup annotations. We use MOTUM (Gong et al., 2024) with 64
brain MRI volumes and tumor annotations. We use PSFHS (Chen et al., 2024b) with 1358
ultrasound images and fetal head and pubic symphysis annotations. For the 3D datasets
(MOTUM and Mice TumSeg), we perform 2D segmentation (see above).

3. Results

3.1. Comparison of PEFT methods

We evaluate the PEFT methods (Sec. 2.1) on 6 microscopy and 6 medical datasets (Sec. 2.4),
using the complete datasets with a train / test split. We use SAM as base model in all
cases, µSAM (either LM or EM model) for microscopy, and MedicoSAM for medical data.
For microscopy we evaluate interactive and automatic segmentation via AIS (Sec. 2.3), for
medical data we only evaluate interactive segmentation. Models are trained with a batch
size of 2 and 25 objects per image, using a A100 GPU with 80GB of VRAM.

Figure 3: PEFT results for microscopy (left) and medical (right) segmentation. Methods
are ordered by parameter count, SAM and µSAM / MedicoSAM are used as base
models. Circles show the best three results per dataset / task. See also Fig. 8
and Fig. 9.
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The results are shown in Fig. 3. Finetuning always improves, with the magnitude de-
pending on the task / dataset and the base model. Full FT yields the most consistent
improvement, with Attention Tuning, LoRA, Late LoRA and Late FT typically improving
similarly. The improvements from other PEFT methods are not quite as consistent. In-
terestingly, (Late) QLoRA shows worse performance with SAM as base model, but not for
µSAM / MedicoSAM. The results are summarized and discussed in more detail in App. E.1,
including results for further segmentation tasks (IB, IP ) and further medical datasets. We
perform ablation studies for LoRA, Adaptformer and FacT in App. G.

We also evaluate the computational efficiency of PEFT methods. The detailed results on
efficiency are given in App. E.2. Our most notable finding is that our tasks are constrained
by the size of activations rather than trainable parameter count, see App. A. Consequently,
most prior PEFT methods yield only a marginal efficiency gain, with the exception of
freezing the encoder. We introduced ”late LoRA“, ”late QLoRA“, and ”late finetuning“
(late FT) due to this observation. They achieve meaningful efficiency gains while improving
segmentation quality compared to full freezing of the encoder, see the respective results in
Fig. 3. We analyze different late PEFT settings in detail in Fig. 4 and chose the best
parameter settings based on these results for other experiments.

3.2. Resource-efficient Finetuning

Building on the evaluation of PEFT methods, we propose resource-efficient finetuning by
adopting a similar workflow to CellSeg1 (Zhou et al., 2024), who finetune SAM for automatic
segmentation on a single image using LoRA. We compare their method with our finetuning
approach, explained in detail in App. C for automatic and interactive segmentation, using
Freeze Encoder, QLoRA, LoRA (including late PEFT settings for all 3), and Full Fine-
tuning, which offer the best efficiency-quality trade-offs. To reduce hardware demand, we
lower the number of objects per image to 5, otherwise using the same settings as in Sec. 3.1.
We use one image for training, one for validation, and the same test sets as before. Fig. 4
shows the results for microscopy and medical data (only interactive segmentation for the
latter). SAM improves for all tasks, µSAM mainly for AIS. Our approach is on par with
CellSeg1, for which we also use both base models, while also improving interactive segmen-
tation. Interestingly, full finetuning is on par with PEFT, despite the small training data
and having more trainable parameters. For large domain shifts (Platynereis) it outperforms
PEFT. We also benchmark efficiency, see Tabs. 8, 9, 10. Here, we again see major gains
when freezing the encoder, small gains from other PEFT, and a good trade-off using “late
PEFT”. Further, we investigate the effect of adding more training images in Fig. 12.

4. Discussion

We conducted a thorough study of PEFT for segmentation in biomedical images with SAM.
Our experiments show that PEFT achieves a similar quality as full finetuning. Contrary
to observations made by others, e.g. (Dutt et al., 2024), it does not lead to better results
for limited training data compared to full FT. The performance of PEFT methods varies
across datasets, LoRA is the best overall, QLoRA is good for small domain gaps. Efficiency
gains are marginal for standard PEFT, with the exception of encoder freezing, due to the
fact that our tasks are activation rather than parameter bound. Based on these findings
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Figure 4: Resource-efficient training for microscopy and medical segmentation. We compare
several PEFT methods in data limited settings. Our methods use one image for
training, one for validation, CellSeg1 uses only a single image.

we introduce late PEFT, which improves efficiency with only small loss of quality. Given
these results, we recommend freezing the encoder in very limited resource settings (e.g. on
a CPU), using late PEFT for limited resources (e.g. consumer GPU), and otherwise using
full finetuning (high-end GPU). See App. E.3 for more detailed recommendations.

We proposed an approach for resource-efficient finetuning, which can improve SAM
with only two annotated image, similar to (Zhou et al., 2024), but also improves interactive
segmentation. We believe that this approach will speed up many practical segmentation
tasks, by enabling finetuning SAM previously hindered by resource demands. We have
integrated this approach in the µSAM tool, which provides interactive data annotation,
enabling efficient human-in-the-loop annotation and training in one tool.

We believe that our work will benefit future work on PEFT for (vision) foundation
models, e.g. for SAM2 (Ravi et al., 2025). Our results on late PEFT show how such
strategies need to be adapted for vision transformers, which are activation rather than
parameter bound, offering a clear direction for future research.
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Figure 5: a) Parameter count vs. memory requirements during training for Late LoRA,
Late QLoRA and late finetuning (Late FT) for microscopy finetuning on HPA.
We report two different LoRA approaches, where adapters are applied only to the
attention layer (LoRA-C) or also to the MLP (LoRA-A). b) Same as a., but for
finetuning on medical data (PSFHS). Note that the overall memory requirement
is significantly lower because we do not train the encoder for automatic segmen-
tation, which requires an additional forward and backward pass during training.
c) Segmentation quality as a function of late finetuning on HPA and PSFHS.
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Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment
anything in images and videos. ICLR, 2025. URL https://openreview.net/forum?id=

Ha6RTeWMd0.

Uwe Schmidt, Martin Weigert, Coleman Broaddus, and Gene Myers. Cell Detection with
Star-Convex Polygons, page 265–273. Springer International Publishing, 2018. ISBN
9783030009342. doi: 10.1007/978-3-030-00934-2 30. URL http://doi.org/10.1007/

978-3-030-00934-2_30.

Junji Shiraishi, Shigehiko Katsuragawa, Junpei Ikezoe, Tsuneo Matsumoto, Takeshi
Kobayashi, Ken-ichi Komatsu, Mitate Matsui, Hiroshi Fujita, Yoshie Kodera, and Kunio
Doi. Development of a digital image database for chest radiographs with and without a
lung nodule: Receiver operating characteristic analysis of radiologists’ detection of pul-
monary nodules. American Journal of Roentgenology, 174(1):71–74, January 2000. ISSN
1546-3141. doi: 10.2214/ajr.174.1.1740071. URL http://doi.org/10.2214/ajr.174.

1.1740071.

Hugo Touvron, Matthieu Cord, Alaaeldin El-Nouby, Jakob Verbeek, and Hervé Jégou.
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Appendix A. Efficiency of PEFT

For the optimal use of PEFT methods in vision transformers, it is important to understand
the main contributors to the memory footprint during training. Unlike typical LLM training,
where trainable parameters dominate memory usage, training SAM (and likely other ViT
applications) is primarily constrained by activation gradients. The distinction becomes
evident if we consider the ratio of parameters and sequence length, which controls the size of
activations. To illustrate this, consider the following: GPT-3, with a sequence length of 2048
tokens and 175B parameters (Brown et al., 2020), yields a ratio of approximately 85.5M.
LLaMa-2 (Touvron et al., 2023), with a sequence length of 4096 and 70B parameters has a
ratio of 17M. BERT-base, used with a sequence length of 512 and 110M parameters (Devlin
et al., 2019), results in a ratio of 215,000. In contrast, for the Segment Anything Model
(SAM), an input image size of 1024x1024 (Kirillov et al., 2023), divided into 16x16 patches,
results in a sequence length of 64x64 (4,096). For ViT-B, with 86M parameters (Dosovitskiy
et al., 2021), this corresponds to a parameter-to-sequence length ratio of approximately
20,000.

While methods like LoRA effectively reduce the number of trainable parameters, they
do not address activation gradients directly. Meaningful memory savings only occur when
the initial layers of the model are frozen, allowing the optimizer to discard the corresponding
activation gradients.

To test this hypothesis, we conducted an experiment using SAM trained on LIVECell
(Edlund et al., 2021) data with a batch size of 1. We froze the entire image encoder except
for a single block and observed the following results: unfreezing the first block of the image
encoder reduced memory usage by approximately 500MB, while unfreezing the last block
saved around 5GB compared to full fine-tuning.
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These findings motivated the concept of Late PEFT. For the example in Late LoRA,
LoRA adapters are applied only from a certain point onward in the image encoder, reducing
memory usage by limiting activation gradient calculations, while still providing updates to
the image encoder.

(Dettmers et al., 2023) suggest that once memory constraints are taken care of, per-
formance can be further optimized by introducing additional trainable parameters through
more low-rank adapters. Rather than limiting LoRA to the query and value matrices of the
attention blocks, which is a common practice recommended by the original LoRA authors
(Hu et al., 2022), we explore the application of LoRA to all linear layers within the at-
tention blocks. We distinguish these approaches as “LoRA Classic” (LoRA-C) and “LoRA
All” (LoRA-A) in Fig. 4.

We explore late PEFT methods by applying PEFT only from a specific attention block
onward in the encoder, avoiding backpropagating gradients through the entire encoder,
thereby reducing memory usage. We evaluate this approach using LoRA, QLoRA and full
fine-tuning, applying each method to 50%, 25%, and 8% of the attention blocks. Our results
in Fig. 13 and 14 show that the latter approach, applied to 50% of the blocks achieves the
best trade-off between performance and memory efficiency.

Appendix B. Implementation of QLoRA

For the implementation of QLoRA, we make use of bitsandbytes (https://huggingface.
co/docs/bitsandbytes/main) for quantizing the linear layers. The implementation expects
users to indicate linear layers to map to a lower precision (we reduce the precision down to 4
bit and freeze them, as training for this precision is a technical limitation in PyTorch). This
necessitates converting the pretrained weights to the target precision (4 bit), initializing the
quantized layers accordingly, and finally injecting LoRA to update the attention matrices.
During training, the quantized layers are frozen, i.e. not updated through gradients. Their
primary task is to improve efficiency; the LoRA matrices are learned at full precision.
Another important finding is to avoid compound operations with tensors which require
gradients, otherwise the PyTorch optimizer cannot trace gradients due to quantization in the
computation graph, a known limitation of in-place operations in PyTorch. This contributed
to the challenge of setting up a proper training implementation with quantization and mixed
precision, combined with PyTorch optimizer specifics, in such a sensitive setup.

In inference, the approach to use the finetunined QLoRA model with quantized 4-bit
layers, except for LoRA parameters of the attention matrices, did not work. After some
empirical investigation, our analysis led us to introduce a new setup, where inferring with
QLoRA model expects all layers to be initialized with the pretrained weights in the original
precision, and replace the attention matrices with the learned LoRA weights. This resulted
in meaningful improvements and comparable results to other PEFT methods in settings
with small domain shifts.

Appendix C. Implementation of Resource-efficient Finetuning

For microscopy, the choice of the 2 images for training was done manually by selecting images
with a good representation of the overall task. CellSeg1 (Zhou et al., 2024) has shown that
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the choice of image is crucial in this setting. Once these two images are selected, we use
1 image for training and the other exclusively for validation, and test our trained model
on the entire test set, for consistency with other experiments. The same goes for medical
imaging, however for 3D images, e.g. MOTUM and Mice TumSeg, we choose one plane
with the foreground object annotations for training, and another from a different volume
for validation. This step in particular is critical to avoid any negative bias, e.g. selecting
an image with underrepresented / sparsely distributed cells or a 3D plane with an odd
morphology of an organ.

We use CellSeg1 for benchmarking purpose with our data efficient experiments. Unlike
CellSeg1, we improve SAM both for interactive and automatic segmentation. CellSeg1 only
improves automatic segmentation, and is thus also not applicable for our medical exper-
iments. Furthermore, we offer easy-to-use example scripts and a command line interface
for finetuning. Our models are compatible with µSAM and the finetuning strategies with-
out PEFT are directly compatible in several other annotation softwares, which is a clear
limitation of CellSeg1 that can only be used within their tool.

Appendix D. Evaluation Metric

We use the mean segmentation accuracy, following the definition of (Caicedo et al., 2019),
to evaluate instance segmentation results for the microscopy datasets. It is computed based
on true positives (TP ), false negatives (FN), and false positives (FP ), derived from the
intersection over union (IoU) of predicted and true objects. Specifically, a TP (t) is defined
as the number of matches between predicted and true objects with an IoU above threshold
t, FP (t) correspond to the number of predicted objects minus TP (t), and FN(t) to the
number of true objects minus TP (t). The mean segmentation accuracy is computed over
multiple thresholds:

Mean Segmentation Accuracy =
1

|# thresholds|
∑
t

TP (t)

TP (t) + FP (t) + FN(t)
.

Here, we use thresholds t ∈ [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]. For each dataset,
we report the average mean segmentation accuracy over images in the test set.

We use the dice coefficient to evaluate segmentation results for medical imaging be-
cause the segmentation tasks we evaluate typically only contain a single object, or objects
belonging to different classes, per image. It is defined as

Dice Coefficient =
2 ·

∑
pi ti∑

pi +
∑

ti
,

for per-pixel prediction values pi and per pixel target values ti. For each dataset, we report
the average dice coefficient over images in the test set.

Appendix E. PEFT Evaluation

E.1. Segmentation Quality

Fig. 3 presents a comparison of various PEFT methods across microscopy and medical
datasets respectively. The PEFT methods are arranged from left to right in the order of
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the number of trainable parameters, with full finetuning having the most parameters. Table
5 lists the number of parameters for each method. We evaluate the methods using training
from the default SAM (Kirillov et al., 2023) and from the generalist µSAM models (Archit
et al., 2025a), where we use either the electron microscopy or light microscopy model, and
from MedicoSAM (Archit et al., 2025b) for medical imaging. The models are evaluated
on automatic instance segmentation (AIS) for microscopy experiments, and point and box
prompts for both microscopy and medical imaging experiments. We also report a simulated
interactive segmentation setup, which we call the iterative prompting task, i.e. starting with
either a single point (IP ) or a box prompt (IB) for each object, and iterative rectification
with additional points to improve the segmentation quality

As an overall trend, we observe that as the number of trainable parameters increases,
the segmentation quality also tends to increase across the different datasets, demonstrating
a trade-off between model complexity, capacity, and performance. The relative performance
of the PEFT methods varies between datasets, indicating that the suitability of different
PEFT methods may depend on the dataset’s characteristics, such as complexity, size, and
the model’s initial performance. Despite this variation, Full Finetuning, Attention Tuning,
and LoRA consistently show good performance. Two of the late PEFT methods, Late LoRA
and Late FT, show some reduction in performance, but with relative minor differences
to their “non-late” counterparts. (Late) QLoRA shows good performance for the domain
specific foundation models (µSAM, MedicoSAM), but performs bad for default SAM, which
has a larger domain gap.

To simplify these observations, we averaged the performance of the different PEFT
methods over all datasets in Tabs. 1 (microscopy, SAM), 2 (microscopy, µSAM), 3 (medical
imaging, SAM), and 4 (medical imaging, MedicoSAM). These averaged results validate our
observations from above, highlighting that Attention Tuning, (Late) LoRA and Late FT
show consistently good improvements. While some PEFT methods excel for specific tasks
- such as Bias Tuning for MitoLab - they are not competitive with these other methods.
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Figure 6: Results for iterative prompting on 6 different microscopy datasets, starting with
point or box prompts. The accuracy is evaluated after 8 iterations of predicting
and correcting prompts.
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Figure 7: Results for iterative prompting on 9 different medical imaging datasets, starting
with point or box prompts. The accuracy is evaluated after 8 iterations of pre-
dicting and correcting prompts. The late finetuning experiments are only run on
the core 6 datasets.
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Figure 8: Qualitative comparison of interactive segmentation for the default µSAM model
and the finetuned model with LoRA and Full Finetuning. For all three models
ViT-B was used. The yellow outlines show the ground truth, red the model
prediction and cyan shows the input prompts.
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Figure 9: Qualitative comparison of interactive segmentation for the default MedicoSAM
and the finetuned model with LoRA and Full Finetuning. For all three models
ViT-B was used. The yellow outlines show the ground truth, red the model
prediction and cyan shows the input prompts.
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Table 1: The mean segmentation accuracy of different PEFT methods, trained from default
SAM, for microscopy segmentation and averaged over all 6 datasets. (*): 1st Place;
(**): 2nd Place; (***): 3rd Place.

PEFT Method AIS Point Box Ip Ib
Full FT **0.352 **0.303 ***0.665 0.727 0.796
Attn Tune *0.352 *0.308 *0.673 **0.735 **0.809
Late FT 0.336 ***0.300 0.615 0.675 0.753
Late LoRA 0.294 0.275 0.632 0.693 0.764
Late QLoRA 0.297 0.203 0.562 0.197 0.299
AdaptFormer 0.334 0.287 0.672 0.788 0.837
AdaptFormer 0.291 0.255 0.636 0.718 0.795
LoRA **0.343 0.296 **0.667 *0.741 *0.810
QLoRA 0.281 0.218 0.529 0.206 0.288
FacT 0.328 0.270 0.644 ***0.730 ***0.797
SSF 0.291 0.245 0.625 0.710 0.779
Bias Tune 0.334 0.279 0.644 0.724 0.788
LN Tune 0.329 0.281 0.635 0.717 0.789
Freeze Encoder 0.309 0.267 0.620 0.690 0.768

Table 2: The mean segmentation accuracy of different PEFT methods, trained from µSAM,
for microscopy segmentation and averaged over all 6 datasets. (*): 1st Place; (**):
2nd Place; (***): 3rd Place.

PEFT Method AIS Point Box Ip Ib
Full FT **0.406 *0.351 ***0.696 0.793 0.849
Attn Tune *0.414 **0.337 **0.695 **0.803 **0.852
Late FT 0.371 0.315 0.639 0.752 0.829
Late LoRA ***0.393 0.333 0.675 0.790 0.844
Late QLoRA 0.334 0.295 0.621 0.746 0.807
LoRA 0.390 ***0.336 *0.702 *0.804 ***0.852
QLoRA 0.334 0.302 0.657 0.761 0.823
FacT 0.379 0.317 0.693 ***0.799 *0.854
SSF 0.324 0.274 0.670 0.789 0.842
Bias Tune 0.357 0.307 0.690 0.796 0.843
LN Tune 0.366 0.318 0.684 0.789 0.842
Freeze Encoder 0.330 0.268 0.655 0.763 0.824
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Table 3: The dice coefficient of different PEFT methods, trained from default SAM, for
medical segmentation and averaged over all 9 datasets. (*): 1st Place; (**): 2nd
Place; (***): 3rd Place.

PEFT Method Point Box Ip Ib
Full FT **0.511 ***0.685 0.709 0.779
Attn Tune *0.522 *0.647 *0.709 **0.779
Late FT 0.405 0.687 0.685 0.756
Late LoRA 0.391 **0.709 ***0.717 *0.797
Late QLoRA 0.288 0.560 0.169 0.272
AdaptFormer 0.335 0.648 0.678 0.753
LoRA ***0.424 0.694 **0.726 ***0.788
QLoRA 0.296 0.518 0.218 0.286
FacT 0.373 0.667 0.703 0.765
SSF 0.302 0.636 0.669 0.754
Bias Tune 0.367 0.647 0.710 0.772
LN Tune 0.335 0.653 0.684 0.749
Freeze Encoder 0.255 0.581 0.607 0.705

Table 4: The dice coefficient of different PEFT methods, trained from MedicoSAM, for
medical segmentation and averaged over all 9 datasets. (*): 1st Place; (**): 2nd
Place; (***): 3rd Place.

PEFT Method Point Box Ip Ib
Full FT **0.513 0.717 0.772 0.835
Attn Tune *0.516 *0.733 *0.815 ***0.858
Late FT 0.406 **0.731 0.803 **0.859
Late LoRA 0.365 0.723 0.763 0.847
Late QLoRA 0.389 0.707 0.798 0.851
AdaptFormer 0.443 0.707 ***0.805 0.842
LoRA ***0.485 ***0.730 **0.812 *0.863
QLoRA 0.422 0.708 0.797 0.854
FacT 0.445 0.709 0.802 0.855
SSF 0.408 0.699 0.790 0.843
Bias Tune 0.414 0.692 0.785 0.841
LN Tune 0.409 0.697 0.781 0.835
Freeze Encoder 0.345 0.653 0.740 0.822
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E.2. Computational Efficiency

We measure the efficiency of PEFT methods, in terms of number of trainable parameters,
training time per iteration and in total, and VRAM memory usage during training. Tab. 5
reports these measures for ViT-B and all PEFT methods, Tab. 6 and Tab. 7 report them
for ViT-L and ViT-H respectively, for only a subset of PEFT methods. These results were
obtained from finetuning default SAM on the LIVECell (Edlund et al., 2021) dataset, a
large dataset with annotations for cell segmentation in phase-contrast microscopy. Note
that we perform all experiments for segmentation quality with the smallest model, ViT-B,
because it was shown e.g. in (Gu et al., 2025; Archit et al., 2025b) that using it does not
have a noticeable impact compared to the larger models ViT-L and ViT-H for segmentation
quality in biomedical imaging. However, we evaluate the computational efficiency for all
model sizes, as this observation may not hold true for other domains, for which finetuning
the larger models may be beneficial. We report efficiencies only for a single dataset, as
these measurements are largely independent of the data specifics. The exception is the
overall training time because we use early stopping. Specifically, we stop the training after
10 epochs without an improvement in the validation score. Hence, the overall training time
depends on dataset characteristics. We report the training time across datasets in Fig. 10
and report the average over all datasets for each PEFT method in the same figure.

We see that all PEFT methods lead to a clear reduction in the number of trainable pa-
rameters, from 30% (Attn Tune) to less than ca. 5% (all others). However, this reduction in
trainable parameters does not result in a clear reduction of memory requirements or train-
ing time per iteration. This fact is especially noticeable for ViT-B, for the larger models,
especially ViT-H, the reduction in memory becomes a bit more pronounced. The exception
is freezing the encoder, which clearly reduces the memory demand and also reduces training
time per iteration, for all model sizes. With our new findings reported in Appendix A for
Late PEFT, a future direction is quite clear for increasing efficiency of parameter efficient
finetuning methods.
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Table 5: Number of trainable parameters, training times, and allocated VRAM during
training for different PEFT methods. Here, Train Time refers to the time un-
til the best epoch is reached during training. Training times and memory are
reported for finetuning default SAM with ViT-B on LIVECell. The number of
parameters is shown as # Params w/o decoder | # Params with decoder. (*):
selective PEFT; (**): additive PEFT

.

PEFT Method #Params [M] Time / it [s] Train Time [h] Memory [GB]

Full FT 93.7 | 104.8 1.44 14.33 52.1
Late FT 46.6 | 57.7 1.48 20.01 45.1
Late LoRA 6.42 | 17.45 1.49 17.51 43.6
Late QLoRA 6.42 | 17.45 1.53 21.31 45.8
Attn Tune (*) 32.5 | 43.5 1.42 19.72 51.4
AdaptFormer (**) 5.3 | 16.3 1.43 18.75 50.8
LoRA (**) 5.3 | 16.3 1.44 17.59 51.2
QLoRA (**) 5.3 | 16.3 1.50 18.34 51.1
FacT (**) 4.4 | 15.4 1.45 19.60 51.2
SSF (**) 4.3 | 15.3 1.49 16.12 53.3
Bias Tune (*) 4.2 | 15.2 1.42 8.34 50.1
LN Tune (*) 4.1 | 15.1 1.41 15.29 50.9
Freeze Encoder (*) 4.1 | 15.1 1.24 16.79 35.5

Table 6: Number of trainable parameters, training times, and allocated VRAM during
training for different PEFT methods. Here, Train Time refers to the time un-
til the best epoch is reached during training. Training times and memory are
reported for finetuning default SAM with ViT-L on LIVECell. The number of
parameters is shown as # Params w/o decoder | # Params with decoder.

PEFT Method #Params [M] Time / it [s] Train Time [h] Memory [GB]

Full FT 312.3 | 323.4 1.92 21.68 65.8
Late FT 79.68 | 90.7 1.66 10.52 57.5
LoRA 7.2 | 18.2 1.84 21.05 63.4
QLoRA 7.2 | 18.2 2.06 20.18 63.3
Freeze Encoder 4.1 | 15.1 1.37 18.55 36.3
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Table 7: Number of trainable parameters, training times, and allocated VRAM during
training for different PEFT methods. Here, Train Time refers to the time un-
til the best epoch is reached during training. Training times and memory are
reported for finetuning default SAM with ViT-H on LIVECell. The number of
parameters is shown as # Params w/o decoder | # Params with decoder.

PEFT Method #Params [M] Time / it [s] Train Time [h] Memory [GB]

Full FT 641.1 | 652.1 2.20 27.86 76.9
Late FT 122.2 | 133.2 2.02 17.34 67.5
LoRA 9.3 | 20.3 2.21 18.97 71.2
QLoRA 9.3 | 20.3 2.49 19.43 69.7
Freeze Encoder 4.1 | 15.1 1.51 14.29 37.8
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Figure 10: Time until convergence (early stopping) when training µSAM and SAM on the
microscopy datasets, including LIVECell, for the PEFT methods. The dashed
line in black represents the average train time taken by each PEFT method.
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Figure 11: Time until convergence (early stopping) when training MedicoSAM and SAM
on the 6 medical datasets for the PEFT methods. The dashed line in black
represents the average train time taken by each PEFT method.
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E.3. PEFT Recommendations

After comparing the improvements in segmentation quality from different PEFT methods,
compared to full finetuning (App. E.1) and their computational efficiency (App. E.2), we
summarize our overall findings on PEFT for biomedical segmentation with SAM:

• PEFT methods that update the attention matrix weights, namely LoRA, Attention
Tuning and their variants, lead to the most consistent improvement in segmentation
quality, with improvements close to full finetuning.

• The newly introduced “Late” PEFT methods, which unfreeze parameters or insert
adaptation layers only in the late ViT layers, yield almost as good results as their
counterparts (i.e. adaptation applied to all ViT layers).

• PEFT does not lead to better segmentation quality than full finetuning, even when
using only very small training datasets (see also App. F). Note that this observation is
not trivial; for limited data one might expect advantages of less trainable parameters
due to reduced overfitting.

• Only late PEFT yields meaningful improvements in computational efficiency during
training, due to the fact that SAM finetuning is activation-bound rather than param-
eter bound (see also App. A).

Given these observations, we give the following recommendations for finetuning SAM
for biomedical segmentation:

• With limited hardware resources (CPU): Use full freezing of the image encoder (Freeze
Encoder); as this is the only viable option in this setting.

• With medium hardware resources (Consumer-grade GPU): Use Late Finetuning (Late
FT), which provides the best quality-efficiency trade-off. Other Late PEFT ap-
proaches (e.g. Late LoRA) do not provide a meaningful improvement in efficiency
and do not yield to better results.

• With high-end hardware resources (Server GPU): Use full finetuning, as PEFT does
not provide any advantages in this setting.

While our recommendations where only tested for finetuning SAM for biomedical seg-
mentation, we believe that they are also relevant for other tasks that involve ViT finetuning,
as they will likely also be activation-bound rather than parameter-bound.

Appendix F. Resource-efficient Finetuning

Fig. 4 shows the results for training on a single annotated image (with another used for
validation). These results show that the performance of LoRA, when trained on a single
image is highly dataset-dependent. For datasets like Platynereis (Vergara et al., 2021),
which feature sparse instances within a single image, single-image training shows some limi-
tations. Similarly, in the case of 3D datasets such as Platynereis, MitoLab, and GoNuclear,
training on a single slice of one volume poses the additional challenge of selecting a suitable
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slice. However, the performance achieved for MitoLab in this setting was notably strong.
Here, when trained from the µSAM model, both LoRA and full fine-tuning achieved a mean
segmentation accuracy of 0.54 when trained on a single image. Using all available images
outperformed single-image training by only 6% for full finetuning and 2% for LoRA. As
shown in Tab. 8, LoRA consistently reduces memory usage by approximately 500 MB com-
pared to full fine-tuning. Thus, in resource constrained training settings, LoRA can be a
practical solution, potentially enabling training scenarios that would otherwise be infeasible.
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Figure 12: Data scaling experiments: SAM models are trained on n training images and
evaluated on the same test set.
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Figure 13: Quantitative results of µSAM models trained with late finetuning and late LoRA
across different settings on 6 different microscopy datasets.
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Figure 14: Quantitative results of MedicoSAM models trained with late finetuning and late
LoRA across different settings on 9 different medical datasets.
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Table 8: Allocated memory (in gigabytes) for each microscopy dataset during training on
one image, comparing full fine-tuning, LoRA, QLoRA and freezing the encoder
when training from SAM and µSAM.

Allocated Memory [GB] C
o
v
id
-I
F

P
la
ty

n
e
re

is

M
it
o
L
a
b

O
rg

a
S
e
g
m
e
n
t

G
o
N
u
c
le
a
r

H
P
A

SAM

Full FT 13.3 13.3 13.3 13.3 13.3 13.3
Late FT 9.7 9.6 9.6 9.7 9.7 9.7
LoRA 12.8 12.8 12.8 12.8 12.8 12.8
QLoRA 12.5 12.5 12.5 12.5 12.5 12.5
Freeze Encoder 5.8 5.8 5.2 5.8 5.8 5.8
CellSeg1 7.0 7.7 8.4 11.3 9.6 8.0

µSAM

Full FT 13.3 13.3 13.3 13.3 13.3 13.3
Late FT 9.7 9.7 9.7 9.7 9.7 9.7
LoRA 12.8 12.8 12.8 12.8 12.8 12.8
QLoRA 12.6 12.5 12.6 12.5 12.6 12.5
Freeze Encoder 5.8 5.8 5.8 5.8 5.8 5.8
CellSeg1 7.0 7.7 8.3 11.3 9.7 8.0
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Table 9: Training time on one training image until convergence in minutes for each mi-
croscopy dataset, comparing full fine-tuning, LoRA, QLoRA and freezing the en-
coder when training from SAM and µSAM. For CellSeg1 the training time amounts
to approximately 30 minutes, for 300 epochs, without early stopping.

Train Time [min] C
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v
id
-I
F
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ty
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G
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N
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H
P
A

SAM

Full FT 3.10 11.32 18.90 16.63 7.50 3.18
Late FT 4.31 15.97 11.58 8.37 15.39 2.20
LoRA 18.42 10.97 13.65 19.61 10.59 12.55
QLoRA 9.73 10.99 9.79 16.48 12.15 20.69
Freeze Encoder 2.38 19.81 12.77 16.56 10.73 9.38

µSAM

Full FT 5.41 8.33 2.35 1.18 5.57 1.04
Late FT 13.44 18.89 0.51 3.00 5.60 0.55
LoRA 5.34 18.48 3.39 5.55 2.26 3.11
QLoRA 13.20 25.36 2.32 7.04 3.54 2.14
Freeze Encoder 4.67 15.32 0.93 3.67 5.94 6.54
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Table 10: Time per iteration in seconds on one training image for each microscopy dataset,
comparing full fine-tuning, LoRA, QLoRA and freezing the encoder when training
from SAM and µSAM.

Train Time per Iteration [s] C
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v
id
-I
F
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ty
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it
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b
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rg
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e
g
m
e
n
t

G
o
N
u
c
le
a
r

H
P
A

SAM

Full FT 0.74 0.71 0.69 0.71 0.69 1.27
Late FT 0.65 0.64 0.63 0.63 0.64 0.66
LoRA 0.71 0.73 0.68 0.69 0.67 1.25
QLoRA 0.73 0.73 0.73 0.73 0.69 1.31
Freeze Encoder 0.57 0.55 0.55 0.54 0.56 1.13

µSAM

Full FT 0.72 0.71 0.71 0.71 0.67 1.25
Late FT 0.65 0.63 0.62 0.60 0.61 0.66
LoRA 0.71 0.69 0.68 0.67 0.68 1.24
QLoRA 0.75 0.74 0.70 0.70 0.71 1.28
Freeze Encoder 0.56 0.54 0.56 0.55 0.55 1.12
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Appendix G. Ablation Study

G.1. LoRA
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Figure 15: Inference results on OrgaSegment for LoRA with different combinations in α and
rank. Results are shown in mean segmentation accuracy and evaluated across
different tasks.

In this section, we conduct a series of experiments to investigate the influence of two key
hyperparameters in LoRA: the rank and the scaling factor α, as described in Section 2.1.
Specifically, we aim to understand how these parameters impact segmentation accuracy and
model performance.

(Hu et al., 2022) suggest that the scaling factor α behaves similarly to the learning rate,
with both influencing the optimization process and model convergence. We explore this
relationship through a series of experiments that vary α and rank in conjunction with the
learning rate.

Figure 15 presents the impact of rank on segmentation accuracy for various values of
α. Intuitively, one might expect that increasing the rank would lead to improved accuracy,
as it expands the parameter space. However, our experiments show that rank has only a
marginal influence on iterative prompting. However, there is a noticeable improvement in
the AIS and single point metrics as rank increases. Based on these findings, we choose a
rank of 32 for all other experiments that use LoRA.
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Figure 16: Inference results on OrgaSegment for LoRA with different learning rates and
scaling factors α. The colorbars represent mean segmentation accuracy.
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Figure 17: Inference results for LoRA with different scaling factors α on four datasets.
Circles highlight he best results per dataset and task

Next, we investigate the relationship between the scaling factor α and the learning rate.
Figure 16 illustrates that smaller learning rates tend to yield better performance across
various values of α. From this experiment, we select a learning rate of 1 × 10−5 for all
further experiments, as it provides the best trade-off between convergence and accuracy.

Our findings also suggest that using both a high learning rate and a large α simulta-
neously is detrimental to performance, potentially leading to instability in optimization.
However, the precise influence of α remains ambiguous, as its impact is not as pronounced
as that of the learning rate.

To further investigate the role of α, we run experiments on four different datasets, as
shown in Figure 17. The optimal value for α varies across datasets, and no consistent
pattern emerges. However, we observe that using α = 1 does not harm performance in any
case, and we recommend using this default value for practical applications. In general, the
scaling factor α appears to have a limited impact on the model’s performance, and tuning
it is not always necessary for achieving good results. We conclude:

• Rank has a marginal effect on iterative prompting but improves AIS and weak prompt
performance, so we opt for rank 32.

• Learning rate is a more critical factor, with smaller learning rates being more favorable.
A high learning rate and high α should be avoided.

• The optimal α value is dataset-dependent, but setting α = 1 is a safe and effective
choice across all datasets.
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G.2. AdaptFormer
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Figure 18: Inference results on OrgaSegment for different projection sizes and scaling factors
and dropout values for AdaptFormer.

To find the best hyperparameters for AdaptFormer a grid-search was run on 3 pa-
rameters. The scaling factor, which scales the output of the Adapter module and therefore,
similarly to LoRA, balances the impact of the features from the frozen branch with the task-
specific features from the tunable parameters. Secondly, we try different projection sizes,
meaning the middle dimension of the AdaptFormer module, which controls the number of
learnable parameters that are introduced by this finetuning method. Lastly we introduce
an optional dropout layer, between the down and up projection of the AdaptFormer branch.

Fig. 18 indicates that the dropout factor does not exhibit a consistent pattern in its
impact on the inference results. Considering this lack of clarity and the additional stochas-
ticity introduced by dropout during inference, we recommend setting the dropout to None
by default, effectively excluding the dropout layer altogether. Assuming that the dropout
value does not significantly influence the results, we average across the different dropout
settings to achieve a more stable analysis of the alpha values and projection sizes. This
is visualized in a heatmap for various inference tasks in figure 19. The results suggest a
slight preference for larger projection sizes. However, the performance margin is minimal.
Thus, we recommend a smaller projection size of 64 to reduce the number of parameters,
balancing performance and complexity.

For the alpha parameter, the best results are observed when it is either learned by the
model or set to one. Notably, the alpha values learned by the model are consistently close
to one. To maintain flexibility for diverse datasets, we suggest using alpha as a learnable
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Figure 19: AdaptFormer inference results, trained on OrgaSegment for different scaling
factors and projection sizes. The results are averaged over different dropout
factor experiments.

parameter. However, if reducing the number of parameters is a priority, setting alpha to 1
is a suitable alternative.

G.3. FacT

Table 11: Mean segmentation accuracy for dropout factor and rank parameter search for
FacT on LIVECell.

ais ip ib point box

Dropout Factor (Rank = 4)

0.25 0.386388 0.783651 0.828160 0.408460 0.646480
None 0.383379 0.779622 0.822782 0.400679 0.64233
0.1 0.389440 0.787556 0.830561 0.413252 0.649592
0.5 0.385142 0.779190 0.821817 0.397363 0.640852

Rank (dropout=0.1)

1 0.379699 0.774329 0.822471 0.382696 0.630324
2 0.383812 0.775398 0.822041 0.387330 0.638050
4 0.389440 0.787556 0.830561 0.413252 0.649592
8 0.393855 0.783390 0.826328 0.415375 0.648752
16 0.398600 0.792422 0.833112 0.426964 0.655786
32 0.397353 0.782903 0.831328 0.431270 0.657162
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To analyze the impact of hyperparameter tuning in the FacT parameter-efficient fine-
tuning method, we conducted an extensive search over two parameters: dropout factor and
rank, using the LIVECell dataset. The dropout factor controls an optional dropout layer in
the forward function of the FacT methods. We tested dropout factors of 0.1. 0.25, 0.5 and
no dropout, finding that a dropout factor of 0.1 achieved the best overall performance. It led
to consistent improvements across all tasks. For rank, we observed that increasing its value
improved performance up to a rank of 16, which achieved the highest results across most
tasks. Further increasing the rank to 32 provided only marginal improvements for weak
prompts, while for AIS and iterative prompting, rank 16 remain superior. We therefore
recommend using rank 16 for this method.
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