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ABSTRACT

Traditional KV cache eviction strategies, which discard less critical KV-pairs
based on attention scores, often degrade generation quality, causing context loss
or hallucinations. Recent efforts shift toward KV merging, merging eviction to-
kens with retention tokens based on similarity. However, in multimodal scenarios,
distributional biases across modality tokens and attentional biases in cross-modal
interactions limit its effectiveness. This work introduces FlowMM, an adaptive
framework for cross-modal information flow-guided multimodal KV cache merg-
ing. FlowMM leverages cross-modal information flow to dynamically apply layer-
specific merging strategies, capturing modality-specific patterns while preserv-
ing contextual integrity. Furthermore, we introduce a sensitivity-adaptive token
matching mechanism that jointly evaluates token similarity and task-critical sen-
sitivity, merging low-risk tokens while safeguarding high-sensitivity ones. Exten-
sive experiments across diverse leading MLLMs show that FlowMM reduces KV
cache memory by 80% to 95% and decoding latency by 1.3-1.8×, while maintain-
ing competitive task performance.

1 INTRODUCTION

Multimodal large language models (MLLMs) based on transformer architecture (Wang et al., 2024a;
Liu et al., 2023; Chen et al., 2024b; OpenAI, 2024) have revolutionized the integration of visual
and textual understanding, enabling sophisticated cross-modal reasoning across tasks such as visual
question answering, image captioning, and multimodal dialogue. Unlike traditional language mod-
els that process sequential text tokens, MLLMs face unique computational challenges due to their
heterogeneous input modalities. Visual inputs, typically encoded as high-dimensional feature maps
or patch embeddings (Dosovitskiy et al., 2021; Liu et al., 2023), generate substantially longer to-
ken sequences than their textual counterparts. This multimodal architecture significantly amplifies
the memory burden of key-value (KV) cache. Addressing these multimodal-specific memory effi-
ciency challenges has become paramount for scaling MLLMs to real-world applications with limited
computational resources. A promising approach involves selectively retaining only the most criti-
cal tokens while evicting others (Zhang et al., 2023a; Li et al., 2024; Xiao et al., 2023b). Though
effective for memory compression, such eviction-based approaches rely heavily on current token
importance assessments. This risks unintentionally and permanently discarding tokens essential for
subsequent decoding steps, leading to contextual degradation.

Recently, KV cache merging techniques (Zhang et al., 2024; Wang et al., 2024b) have gained at-
tention as an alternative strategy. By consolidating eviction-targeted states into compact represen-
tations, these methods preserve richer contextual information. However, existing merging solutions
primarily target unimodal LLMs and exhibit suboptimal performance when naively applied to mul-
timodal scenarios. Specifically, multimodal tokens exhibit significant distributional divergence (Li
et al., 2023), and indiscriminate merging risks information confusion or semantic distortion. Fur-
thermore, intricate cross-modal interactions within MLLMs (Alayrac et al., 2022) necessitate care-
ful consideration of attention patterns and dependencies during merging. These challenges render
traditional unimodal approaches inadequately equipped to accurately identify mergeable state sets
without critical information loss.
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Figure 1: Comparison between Eviction-Based
Compression (a), Traditional Merging-Based
Compression (b), and our Cross-Modal Infor-
mation Flow Guided Merging (c).

To address these challenges, we investigate the
impact of KV cache merging in multimodal set-
tings. We empirically find that merging perfor-
mance varies dramatically across different model
layers, revealing significant differences in how
layers process heterogeneous modalities. This
observation aligns with established principles of
attention information flow in prior works (Zhang
et al., 2025; Ye et al., 2025). Building on this in-
sight, we introduce FlowMM, an adaptive frame-
work for cross-modal information flow-guided
multimodal KV cache merging. FlowMM proac-
tively captures cross-modal interaction patterns
across transformer layers by analyzing multi-
modal attention flow, then dynamically applies
layer-specific merging strategies to consolidate
critical contextual information.

Further, we identify highly sensitive tokens
whose merging substantially degrades model per-
formance. We posit these tokens carry task-
critical information vulnerable to corruption dur-
ing merging. To mitigate this, FlowMM incorporates a sensitivity-adaptive token matching strategy
that jointly evaluates token similarity and sensitivity, prioritizing low-sensitivity tokens for merging
while preserving high-sensitivity, information-rich tokens. Notably, FlowMM operates without fine-
tuning and serves as a plug-and-play solution, delivering adaptive KV cache compression optimized
for multimodal contexts.

We conduct extensive experiments with leading MLLMs, including Qwen2.5-VL (Bai et al., 2025),
InternVL-2.5 (Chen et al., 2024b), and MobileVLM-V2 (Chu et al., 2024). Their performance is
evaluated on MileBench (Song et al., 2024), a comprehensive benchmark encompassing diverse
multimodal long-context tasks: temporal multi-image reasoning, semantic multi-image understand-
ing, needle-in-a-haystack retrieval, and complex image search. FlowMM consistently outperforms
strong baselines at equivalent KV cache sparsity levels. Specifically, FlowMM achieves a 1.3x to
1.8x reduction in decoding latency while simultaneously reducing the KV cache memory footprint
by 80% to 95%. Crucially, these significant efficiency gains are attained while maintaining compet-
itive performance across all evaluated multimodal context tasks.

Overall, our contributions can be summarized as follows:

• We introduce FlowMM, an adaptive framework for cross-modal information flow-guided
multimodal KV cache merging. FlowMM dynamically analyzes cross-modal attention flow
patterns across layers and employs layer-specific merging strategies, effectively consolidat-
ing critical multimodal context.

• To prevent corrupting task-critical information, FlowMM incorporates a sensitivity-
adaptive token matching strategy. This jointly evaluates token similarity and sensitivity,
merging low-sensitivity tokens while preserving high-sensitivity, information-rich ones.

• We validate FlowMM through extensive experiments across various multimodal context
tasks. The results demonstrate that FlowMM reduces KV cache memory usage by up to
80% while consistently surpassing the performance of existing compression methods.

2 RELATED WORK

2.1 EFFICIENT INFERENCE FOR LARGE LANGUAGE MODELS

Achieving efficient inference in large-scale models requires optimizing three critical resources:
model parameters, activation memory, and KV cache size. For parameter reduction, post-training
quantization techniques including GPTQ (Frantar et al., 2022), AWQ (Lin et al., 2024), and
SmoothQuant (Xiao et al., 2023a) significantly compress weight bitwidth with minimal accuracy
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loss, while pruning methods such as SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al.,
2023) remove redundant weights or channels. Activation optimizations similarly employ quantiza-
tion exemplified by ZeroQuant (Yao et al., 2022) alongside dynamic sparsity strategies.

However, the memory footprint of KV cache during autoregressive decoding escalates dramatically
with sequence length and model scale, emerging as a dominant bottleneck. This challenge intensifies
in MLLMs, where vision encoders generate extensive visual tokens, significantly exacerbating KV
cache pressure in subsequent LLM decoding stages.

To alleviate MLLM input burdens, prominent strategies focus on reducing visual tokens fed to the
LLM. MobileVLM (Chu et al., 2023) employs aggressive compression via lightweight projections
and pooling; LLaVA-PruMerge (Shang et al., 2024) and MADTP (Cao et al., 2024) introduce adap-
tive token pruning/merging mechanisms ; FastV (Chen et al., 2024a) combines early-layer attention
with late-layer pruning. These approaches effectively shorten input sequences, indirectly mitigating
downstream KV cache demands. Critically, existing methods primarily target visual token reduc-
tion before LLM processing and often require task-specific fine-tuning. They address KV cache
efficiency only as a secondary effect, lacking direct optimization mechanisms. Specialized tech-
niques for compressing KV caches in MLLMs remain an underexplored research frontier.

2.2 KV CACHE COMPRESSION

To address the critical bottleneck of KV cache memory overhead in MLLM inference, we system-
atically examine three dominant compression paradigms: eviction, quantization, and merging.

Eviction methods aggressively prune KV states by retaining only salient tokens while discarding
others. Representative approaches like H2O (Zhang et al., 2023a) and SnapKV (Li et al., 2024)
leverage attention scores to prioritize token retention. However, this irreversible information loss
frequently induces context fragmentation and hallucinations, severely compromising long-context
modeling capabilities. Quantization techniques preserve full context coverage while reducing bit
precision. MiKV (Yang et al., 2024) retains low-precision representations of evicted states, while
KIVI (Liu et al., 2024b) and GEAR (Kang et al., 2024) employ channel-wise key and token-wise
value quantization. Although memory-efficient, these methods typically require specialized retrain-
ing or calibration, hindering seamless integration with existing LLM infrastructures.

Merging strategies condense multiple KV states into compact representations, minimizing perfor-
mance degradation under memory constraints. MiniCache (Liu et al., 2024a) exploits inter-layer
similarity for intra-layer compression, and CaM (Zhang et al., 2024) aggregates eviction candidates
into preserved states. Crucially, these single-modal optimizations exhibit limited efficacy in MLLMs
due to cross-modal distribution shifts and attention pattern divergence, failing to preserve modality-
specific information fidelity.

3 METHOD

3.1 PRELIMINARY

MLLMs follow an autoregressive inference paradigm similar to text-only LLMs during the reason-
ing process, but they need to process heterogeneous input sequences containing both textual and
visual tokens. Considering a multimodal input prompt consisting of interleaved text and image
tokens, we can represent the concatenated prompt embeddings as :

X = {XT
1 ,X

I
1, . . . ,X

T
N ,XI

M} ∈ RLp×d (1)

where XT and XI denote textual and visual embeddings respectively, Lp is the total prompt length,
and d is the hidden dimension. In the prompt encoding phase, the key and value tensors for each
transformer layer are computed as:

K0 = XWK , V0 = XWV (2)

where WK ,WV ∈ Rd×d are the projection matrices. In the generation phase, the model sequen-
tially produces tokens while maintaining and updating the KV cache. At generation step t, the KV
cache is updated by concatenating new key-value pairs:

Kt = [Kt−1,kt], Vt = [Vt−1,vt] (3)
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Figure 2: Overview of FlowMM. (a) Cross-modal information flow analysis determines whether
each layer exhibits predominantly cross-modal or intra-modal interactions, enabling layer-specific
merging strategies. (b) Sensitivity-adaptive token matching jointly considers token similarity and
sensitivity scores, preserving high-sensitivity tokens while merging similar low-sensitivity tokens to
maintain critical contextual information.
where kt = xtW

K and vt = xtW
V represent the key and value projections of the new token

embedding xt. Finally, the attention output for the current step is computed as:

ot = Softmax
(
qtK

⊤
t√
d

)
Vt (4)

While KV cache eliminates redundant computations in autoregressive generation, it creates substan-
tial memory overhead as the sequence length grows. This challenge is especially severe in multi-
modal settings due to long visual token sequences from image encoders. KV cache Merge addresses
this by compressing the cache through merging semantically similar key-value pairs, preserving vi-
tal attention information. The core principle of KV cache merge involves identifying tokens with
high semantic similarity and consolidating their representations. This process can be formulated as:

Kmerged = fmerge(Kt,S), Vmerged = gmerge(Vt,S) (5)

where S ∈ RLt×Lt represents a similarity matrix that captures pairwise relationships between to-
kens, and fmerge, gmerge are merging functions that aggregate similar representations. This com-
pression strategy effectively reduces memory complexity from O(Lp + t) to O(Lcompressed) where
Lcompressed ≪ Lp + t, enabling efficient processing of long-context multimodal sequences. How-
ever, the success of KV cache merge critically depends on maintaining the integrity of multimodal
information while achieving significant compression ratios, which presents unique challenges in the
context of heterogeneous token representations.

3.2 OBSERVATION

In this section, we explore how attention flow patterns influence KV cache merging of MLLMs in
multimodal scenarios, presenting experimental findings. The study is conducted on the Qwen2.5-
VL-7B (Bai et al., 2025).

3.2.1 CROSS-MODAL INFORMATION PATTERNS.

Unlike traditional unimodal LLMs, MLLMs jointly process encoded visual and textual tokens to
solve multimodal tasks, where cross-modal interactions generate responses. We first analyze pat-
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terns in cross-modal information transfer. Specifically, we conduct zero-shot inference on three
datasets: ALFRED, MMCoQA, and Text Needle In A Haystack, measuring the proportion of atten-
tion scores allocated to tokens originating from the heterogeneous modality. All attention scores are
aggregated through head-wise averaging.
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Figure 3: (a) Layer-wise divergence in cross-modal at-
tention. (b) The performance comparison between full
cache and information-flow merging.

As illustrated in Figure 3(a), our analy-
sis reveals a striking divergence in cross-
modal information flow patterns across the
layers of MLLMs. This pattern exhibits
consistent trends across diverse tasks. In
the shallower layers, token interactions
are predominantly intra-modal, character-
ized by significantly lower cross-modal at-
tention scores. Conversely, deeper lay-
ers undergo a distinct shift, where inter-
modal interactions become dominant, cor-
responding to a substantial increase in
cross-modal attention scores. We posit that shallow layers primarily facilitate low-level, unimodal
feature extraction, while deeper layers progressively specialize in cross-modal fusion and higher-
level semantic abstraction. This inherent functional disparity renders prior KV cache compression
methods that apply uniform merging strategies across all layers inherently suboptimal. Conse-
quently, our findings motivate the development of layer-specific merging schemes explicitly de-
signed to align with these distinct cross-modal dynamics.

3.2.2 CROSS-MODAL INFORMATION FLOW MERGING.

To investigate the significance of cross-modal information patterns for multimodal KV cache merg-
ing, we empirically design merging strategies across diverse tasks. Specifically, we implement
aligned information flow merging, performing intra-modal merging in layers with low cross-modal
interaction and inter-modal merging in layers with high interaction. We contrast this with mis-
aligned merging (applying intra-modal merging at high-interaction layers and inter-modal merging
at low-interaction layers) and compare both against full cache.

As illustrated in Figure 3(b), aligned merging achieves performance comparable to full caching,
while misaligned merging causes significant degradation. For instance, in the ALFRED task, mis-
aligned merging only attain approximately 50% of the accuracy of full cache. We posit that reverse
information flow merging may cause modal information confusion or semantic distortion. For ex-
ample, prematurely merging across modalities without sufficient interaction between heterogeneous
modality tokens at the shallow layers could disrupt the original modality representation of the to-
kens. This insight indicates that effective multimodal KV cache merging requires alignment with
the inherent cross-modal information flow.

3.3 FLOWMM

3.3.1 INFORMATION FLOW GUIDED MERGING.

Cross-modal information flow characterizes the interaction intensity between heterogeneous modal-
ity tokens across different layers within MLLMs. Neglecting this flow significantly impairs KV
cache merging performance. To address this, we introduce a Multimodal Information Flow-Guided
KV Cache Merging strategy. This approach dynamically adjusts layer-specific merging strategy by
quantifying cross-modal interaction intensity at each layer. Specifically, we define the cross-modal
interaction ratio for a layer as the proportion of attention scores allocated to heterogeneous modality
tokens:

ρl =
1

H

∑H
h=1

Al,h
v→t +Al,h

t→v

Al,h
, (6)

where H denotes the number of attention heads, and Al,h represents the sum of attention scores for
the h-th attention head in the l-th layer. We define the cross-modal attention scores Al,h

v→t and Al,h
t→v

as follows:
Al,h

v→t =
∑
v∈V

∑
t∈T

αl,h
v→t, Al,h

t→v =
∑
t∈T

∑
v∈V

αl,h
t→v, (7)
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where V and T denote the sets of visual tokens and text tokens, respectively, and αi→j represents
the attention score from the i-th token to the j-th token. Then, we introduce a cross-modal merg-
ing threshold θ to dynamically guide merging strategies. When the cross-modal attention interaction
ratio ρl at layer l exceeds θ, significant cross-modal interactions exist, warranting cross-modal merg-
ing. Conversely, if ρl falls below θ, the layer predominantly processes intra-modal information, and
we advocate more conservative intra-modal merging.

A crucial step in performing KV cache merging is identifying the sets that will be merged. Directly
clustering and merging the KV cache sets is computationally expensive and may fail to leverage
task-specific information, potentially leading to the disruption of context that is relevant to the task.
Therefore, in this work, we first evaluate token importance. Previous studies have shown that using
cumulative attention to evaluate token importance can be biased. To address this, we opt to use
proxy tokens to provide a more equitable assessment of token importance:

Il,h(i) =
∑
j∈P

αl,h
j→i, (8)

where P denotes the set of proxy tokens. We designate a small subset of tokens near the end of the
prompt as proxies, as these tokens typically capture task-specific contextual information. We select
the top-B KV pairs with highest token importance to form a pivot set Kp capturing the most critical
task information. The non-pivotal set Kn are then merged into the pivot set to minimize excessive
loss of contextual information.

3.3.2 SENSITIVITY-ADAPTIVE TOKEN MATCHING.

Building upon the flow-guided multimodal KV cache merging, we introduce a critical component
to address the risk of semantic corruption during state consolidation: Sensitivity-Adaptive Token
Matching. This method specifically targets the identification and preservation of highly sensitive
tokens crucial for maintaining model performance.

We define the sensitivity of a token within the current context as its contribution to preserving the
model’s output fidelity. A token is deemed highly sensitive if merging its KV state with others results
in a substantial negative impact on the accuracy or relevance of subsequent model generations.
Sensitivity is thus intrinsically linked to the token’s unique informational value and its role in the
multimodal reasoning chain. However, directly measuring the impact of merging each token through
repeated perturbation tests during inference, incurs prohibitive computational costs for real-time
scenarios. To address this, we propose attention scores as an efficient sensitivity metric. Attention
scores directly quantify a token’s influence on the current generation step, offering a near-zero-
overhead approximation of sensitivity.

We assess the similarity between Kp and Kn by employing cosine similarity:

ui,j =
kTi kj

∥ki∥ ∥kj∥
, (9)

where ui,j represents the cosine similarity between token i and token j, and ∥·∥ is the norm. We
then identify the nearest token in Kp for each token in Kn, as formulated below:

knearest
∗ = Argmax

j∈Kp

Ij≤τ

(ui,j), (10)

where τ denotes the sensitivity threshold. Tokens exceeding τ are categorized as highly sensitive
and thus prioritized for maximal information preservation, minimizing disruption during processing.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We sample seven tasks from the MileBench benchmark (Song et al., 2024), which is the first bench-
mark specifically designed to test the long-context multimodal capabilities of MLLMs. MileBench
covers a wide range of general scenarios, including temporal multi-image tasks, semantic multi-
image tasks, needle-in-a-haystack tasks, and image retrieval tasks. On average, each sample in
MileBench contains 15.2 images and 422.3 words.

6
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Table 1: Performance of KV cache compression methods under 20% cache budget. The best re-
sults are highlighted in bold. ∆ denotes the difference to the Full Cache baseline. Note that for
MobileVLM-V2-3B on the ImageNeedle task, we don’t report its performance because even with
full cache, its accuracy is nearly zero. This indicates that the model itself may not be well-suited for
this particular task, and thus, the evaluation of effectiveness in this context would not be meaningful.

Method ALFRED IEdit STD MMCoQA CLEVR-C TextNeedle ImageNeedle Average ∆

Qwen2.5-VL-7B

Full Cache 36.92 30.16 28.13 50.50 45.45 11.56 24.38 32.44 -

StreamingLLM 27.61 30.43 26.85 46.00 37.00 4.38 1.88 24.88 -7.57
H2O 34.31 30.91 26.63 45.50 42.49 4.69 5.00 27.08 -5.36
D2O 33.59 30.56 26.16 39.50 41.58 4.69 8.75 26.40 -6.04

KVMerge 27.94 31.16 27.83 44.50 37.95 9.69 15.00 27.72 -4.72
LOOK-M 34.76 30.58 25.37 39.50 40.41 2.50 3.13 25.18 -7.26
FlowMM 35.43 31.67 28.08 48.50 41.79 10.00 17.13 30.37 -2.07

InternVL2.5-8B

Full Cache 35.34 9.12 26.37 52.50 22.76 25.00 24.69 27.97 -

StreamingLLM 23.36 10.71 25.33 51.50 19.39 10.00 2.50 20.40 -7.57
H2O 33.05 11.31 26.21 51.50 21.01 10.93 21.25 25.04 -2.93
D2O 32.63 11.08 26.64 50.00 20.82 11.25 21.25 24.81 -3.16

KVMerge 33.61 11.42 26.33 51.50 20.47 17.63 21.45 26.06 -1.91
LOOK-M 31.81 11.18 26.82 51.00 21.21 8.25 17.15 23.92 -4.05
FlowMM 34.77 11.93 26.59 52.00 22.58 23.12 23.93 27.85 -0.12

MobileVLM-V2-3B

Full Cache 25.18 6.55 13.57 7.00 15.97 9.68 - 12.99 -

StreamingLLM 13.73 5.82 7.65 2.50 6.55 3.12 - 6.56 -6.43
H2O 24.86 6.22 10.27 3.00 14.06 2.50 - 10.15 -2.84
D2O 23.96 6.48 11.59 4.50 13.85 4.34 - 10.79 -2.20

KVMerge 24.47 6.39 11.51 4.00 14.67 5.38 - 11.07 -1.92
LOOK-M 24.40 6.12 10.86 4.00 13.04 2.87 - 10.22 -2.78
FlowMM 25.06 6.57 12.73 5.50 15.39 8.67 - 12.32 -0.67

To comprehensively evaluate FlowMM, we conduct experiments on several widely-adopted
MLLMs: Qwen2.5-VL-7B (Bai et al., 2025), InternVL2.5-8B (Chen et al., 2024b), and
MobileVLM-V2-3B (Chu et al., 2024). These models represent diverse architectures, enabling a ro-
bust assessment of FlowMM’s effectiveness across different model designs. We compare FlowMM
against five KV cache compression baselines. StreamingLLM (Xiao et al., 2023b) and H2O (Zhang
et al., 2023b) employ eviction-based strategies, while D2O (Wan et al., 2024a) and KVMerge (Wang
et al., 2024c) utilize merging-based approaches. All four are text-based KV cache compression
methods. Additionally, we compare against LOOK-M (Wan et al., 2024b), a multimodal-specific
KV cache merging method.

4.2 MAIN RESULT

In Table 1, we present a comparative evaluation of FlowMM against prominent KV cache com-
pression methods in multimodal long-context scenarios. The results highlight FlowMM’s efficacy
in managing KV cache under strict memory constraints while maintaining competitive task per-
formance. Notably, FlowMM achieves a substantial 80% reduction in memory usage with only a
minimal 0.12% average accuracy degradation on InternVL-2.5-8B compared to full cache retention.

Furthermore, FlowMM consistently surpasses eviction-based baselines across most datasets. This
advantage is particularly evident in the challenging TextNeedle task, where FlowMM delivers a
significant 5.31% accuracy improvement on Qwen2.5-VL-7B. This performance gap underscores a
key limitation of eviction methods: their discarding of KV entries inherently leads to context loss,
directly contributing to suboptimal model responses. FlowMM also outperforms merging-based
approaches. We attribute this superiority to FlowMM’s layer-adaptive merging strategy, which dy-
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Figure 4: Evaluation results of FlowMM and other KV cache compression methods with varied
cache budgets.

namically adjusts merging decisions by identifying cross-modal attention flows. This mechanism ef-
fectively prevents modality confusion during merging while fostering deeper semantic relationships
across modalities, thereby enhancing the model’s capability to comprehend complex multimodal
contexts.

4.3 INFLUENCE OF VARIOUS CACHE COMPRESSION RATIOS

To validate the effectiveness of FlowMM under varying cache budgets, we conduct experiments
on the Qwen2.5-VL-7B model with cache budgets ranging from 5% to 60%. We select four tasks
for evaluation: ALFRED, Text Needle In A Haystack, Image Needle In A Haystack, and CLEVR-
Change. The results are presented in Figure 4. FlowMM consistently outperform the baseline
across all budgets. Notably, in the Text Needle In A Haystack task, FlowMM achieve significantly
better performance with a 20% cache budget than the eviction-based method with a 60% cache
budget. When the cache budget is below 10%, FlowMM demonstrates a substantial advantage over
the baseline, indicating that cross-modal information flow alignment approach effectively retains
crucial multimodal contextual information. Moreover, FlowMM achieves performance comparable
to full caching with a 40% cache budget and even surpasses full caching in the Image Needle In A
Haystack task with a 60% cache budget. We attribute this to FlowMM’s dynamic identification of
token sensitivity during the merging process, which effectively prevents the dilution of task-specific
key contexts and minimizes the excessive merging of task-irrelevant information.

4.4 EFFICIENCY ANALYSIS

Table 2: Model Speed and KV Cache GPU Memory Usage.
The best results are highlighted in bold.

Method Budget Decoding Latency GPU Memory

Full Cache 100% 29.08 ms/token 2.06 GiB

FlowMM

50% 23.04 ms/token 1.05 GiB
35% 19.18 ms/token 0.74 GiB
20% 17.35 ms/token 0.44 GiB
5% 15.81 ms/token 0.13 GiB

As shown in Table 2, we evalu-
ate the efficiency of our proposed
method. Specifically, we measure
decoding speed and GPU memory
consumption during inference, com-
paring configurations with and with-
out our approach. To ensure reli-
able and robust findings, all tests are
conducted using 20 randomly sam-
pled data entries on a single NVIDIA
A100 Tensor Core GPU.

Table 3: Performance under different cross-modal
merging threshold θ.

0.1 0.2 0.3 0.4 0.5 0.6

TextNeedle 8.36 10.00 9.51 8.47 7.38 7.09
ALFRED 34.69 35.11 35.43 34.78 34.92 33.61

FlowMM demonstrates substantially re-
duced decoding latency compared to the
full-cache model. This advantage is par-
ticularly pronounced in long-context tasks,
where the efficiency of our method is
further enhanced. We further analyze
GPU memory utilization under varying
KV cache budgets, with results averaged across inference runs on 20 randomly selected data points.
Our findings indicate that the average GPU memory consumption is nearly proportional to the cache
budget. Specifically, with a 20% KV cache budget, the memory usage during the decoding phase is
reduced by approximately 80% compared to the full cache scenario. This highlights the effective-
ness of FlowMM for KV cache compression.
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4.5 ABLATION STUDY

4.5.1 CROSS-MODAL MERGING THRESHOLD θ.

The cross-modal merging threshold θ dynamically controls the merging strategy applied at specific
layers. To assess its impact, we conduct experiments on Qwen2.5-VL-7B. As presented in Table 3,
we observe peak model performance across diverse datasets when the threshold θ is set between 0.2
and 0.3. Overly low θ values trigger cross-modal merging too early in the network. This premature
fusion occurs before tokens from different modalities have sufficiently interacted, leading to confu-
sion of information and consequently, performance deterioration. Conversely, an excessively high θ
value restricts merging predominantly to within individual modalities throughout most layers. This
limitation prevents adequate cross-modal fusion, hindering the model’s ability to effectively inte-
grate heterogeneous information and resulting in suboptimal performance.

4.5.2 EFFECTIVENESS OF EACH COMPONENT.

Table 4: Ablation study of the effect of individual module.

Method TextNeedle STD ALFRED

Full Cache 11.56 28.13 36.92

FlowMM 10.00 28.08 35.43
w.o. Information Flow Guidance 5.67 26.32 33.58
w.o. Sensitivity-Adaptive Matching 6.32 27.14 33.75
w.o. both 3.61 25.24 31.01

We conduct ablations to validate the
necessity of core components in our
FlowMM. We evaluate Qwen2.5-VL-
7B on three benchmark datasets:
TextNeedle, STD, and ALFRED.
As shown in Table 4, both cross-
modal information flow guidance and
sensitivity-adaptive token preserva-
tion are critical for performance.

Cross-modal information flow quantifies the interaction intensity between heterogeneous modali-
ties. This metric enables adaptive KV cache merging strategies tailored to each layer’s specific
interaction pattern. As demonstrated in Table 4, removing this adaptive guidance incurs significant
performance degradation. The removal of this strategy results in a performance drop, which un-
derscores its efficacy in multimodal long contexts. This finding corroborates our earlier assertion
that there are significant differences in cross-modal interaction intensity across different layers of
MLLMs. Neglecting these layer-wise differences risks suboptimal multimodal information inte-
gration. By allowing the model to dynamically adjust the merging strategy based on the interaction
pattern of each layer, cross-modal information flow guidance enables the model to maximize context
integration while preserving its inherent cross-modal processing characteristics.

As shown in Table 4, disabling token sensitivity preservation consistently degrades performance
across all tasks. This effect is particularly pronounced in the TextNeedle task, where performance
drops by 3.68%, thus establishing the effectiveness of our approach. These results underscore the
necessity of preserving highly sensitive, task-relevant tokens within multimodal long-context sce-
narios. Our merging strategy incorporates both token similarity and sensitivity. This dual-pronged
approach not only facilitates effective context integration but also safeguards against performance
degradation caused by misalignment and dilution of critical information during the merging process.

5 CONCLUSION

In this work, we introduce FlowMM, an adaptive framework for cross-modal KV cache merging
guided by multimodal information flow. FlowMM dynamically determines cross-modal interaction
patterns through layer-wise information flow analysis, enabling layer-specific merging strategies to
integrate contextual information. Moreover, our sensitivity-aware token matching jointly assesses
token similarity and their task-specific sensitivity, preserving highly sensitive and informative to-
kens. Extensive experiments demonstrate that FlowMM achieves accuracy comparable to full KV
cache utilization while significantly outperforming existing KV cache compression methods across
multiple tasks. While this work focuses on image-text modalities, future efforts will explore extend-
ing FlowMM to video-audio models, where the longer temporal sequences and higher-dimensional
features impose higher memory pressures.
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the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy,
July 28- August 2, 2019, Volume 1: Long Papers, pp. 1873–1883. Association for Computational
Linguistics, 2019. doi: 10.18653/V1/P19-1182. URL https://doi.org/10.18653/v1/
p19-1182.

Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan Tao, Zhihong Zhu, Xin Wang, Siqi Luo,
Jing Xiong, and Mi Zhang. D2o: Dynamic discriminative operations for efficient generative
inference of large language models. arXiv preprint arXiv:2406.13035, 2024a.

Zhongwei Wan, Ziang Wu, Che Liu, Jinfa Huang, Zhihong Zhu, Peng Jin, Longyue Wang, and
Li Yuan. Look-m: Look-once optimization in kv cache for efficient multimodal long-context
inference. arXiv preprint arXiv:2406.18139, 2024b.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024a.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adap-
tive kv cache merging for llms on long-context tasks. arXiv preprint arXiv:2407.08454, 2024b.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adap-
tive kv cache merging for llms on long-context tasks. arXiv preprint arXiv:2407.08454, 2024c.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
conference on machine learning, pp. 38087–38099. PMLR, 2023a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023b.

June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang,
Se Jung Kwon, and Dongsoo Lee. No token left behind: Reliable kv cache compression via
importance-aware mixed precision quantization. arXiv preprint arXiv:2402.18096, 2024.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in neural information processing systems, 35:27168–27183, 2022.

Weihao Ye, Qiong Wu, Wenhao Lin, and Yiyi Zhou. Fit and prune: Fast and training-free visual
token pruning for multi-modal large language models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pp. 22128–22136, 2025.

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, and Rongrong Ji.
Cam: Cache merging for memory-efficient llms inference. In Forty-first international conference
on machine learning, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, LLM is utilized as a general-purpose assist tool for specific
tasks. The LLM is employed solely for the following purposes:

• Spelling and Grammar Checking: The LLM is used to identify and correct spelling errors
and grammatical inconsistencies, such as verb tense agreement, across the manuscript.

• Sentence Polishing: The LLM provides suggestions for rephrasing sentences to enhance
clarity and readability, without altering the original meaning or technical content of the
text. All suggestions are reviewed and approved by the authors to ensure alignment with
the intended scientific contributions.

The use of the LLM is limited to these auxiliary tasks and does not contribute to the research
ideation, methodology, analysis, or core writing of the paper. All scientific content, including ideas,
arguments, and conclusions, is developed and written by the authors.

A.2 DETAILS OF DATASETS

Table 5: Detailed Statistics and Taxonomy of dataset.

Dataset Abbr. Task Data Source Metric

ALFRED Conversational Embodied Dialogue ALFRED (Shridhar et al., 2020) ROUGE-L
IEdit Visual Relationship Expressing IEdit (Tan et al., 2019) ROUGE-L
STD Visual Change Captioning Spot-the-Diff (Jhamtani & Berg-Kirkpatrick, 2018) ROUGE-L

MMCoQA Multimodal Dialogue MMCoQA (Li et al., 2022) Accuracy
CLEVR-C Visual Change Captioning CLEVR-Change (Hosseinzadeh & Wang, 2021) ROUGE-L
TextNeedle Text Needle In A Haystack TextNeedleInAHaystack Accuracy

ImageNeedle Image Needle In A Haystack ImageNeedleInAHaystack Accuracy
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