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Abstract

Differential privacy (DP) is a widely-accepted and widely-applied notion of privacy based on worst-1

case analysis. Often, DP classifies most mechanisms without additive noise as non-private (Dwork2

et al., 2014). Thus, additive noises are added to improve privacy (to achieve DP). However, in3

many real-world applications, adding additive noise is undesirable (Bagdasaryan et al., 2019) and4

sometimes prohibited (Liu et al., 2020).5

In this paper, we propose a natural extension of DP following the worst average-case idea behind6

the celebrated smoothed analysis (Spielman & Teng, May 2004). Our notion, smoothed DP, can7

effectively measure the privacy leakage of mechanisms without additive noises under realistic8

settings. We prove that any discrete mechanism with sampling procedures is more private than what9

DP predicts, while many continuous mechanisms with sampling procedures are still non-private10

under smoothed DP. In addition, we prove several desirable properties of smoothed DP, including11

composition, robustness to post-processing, and distribution reduction. Based on those properties, we12

propose an efficient algorithm to calculate the privacy parameters for smoothed DP. Experimentally,13

we verify that, according to smoothed DP, the discrete sampling mechanisms are private in real-world14

elections, and some discrete neural networks can be private without adding any additive noise. We15

believe that these results contribute to the theoretical foundation of realistic privacy measures beyond16

worst-case analysis.17

1 Introduction18

Differential privacy (DP), a de facto measure of privacy in academia and industry, is often achieved by adding19

additive noises (e.g., Gaussian noise, Laplacian noise, and the discrete noise in exponential mechansim) to published20

information (Dwork et al., 2014). However, additive noises are procedurally or practically unacceptable in many21

real-world applications. For example, presidential elections often require a deterministic rule to be used (Liu et al.,22

2020). In such cases, though, sampling noise often exists, as shown in the following example.23

Example 1 (Election with sampling noise). Due to COVID-19, many voters in the 2020 US presidential election24

chose to submit their votes by mail. Unfortunately, it was estimated that the US postal service might have lost up to25

300,000 mail-in ballots (0.2% of all votes) (Bogage & Ingraham, 2020). For the purpose of illustration, suppose these26

votes are distributed uniformly at random, and the histogram of votes is announced after the election day.27

A critical public concern about elections is: should publishing the histogram of votes be viewed as a significant threat to28

privacy? Notice that with sampling noise such as in Example 1, the (sampling) histogram mechanism can be viewed as29

a randomized mechanism, formally called sampling-histogram in this paper. The same question can be asked about30

publishing the winner under a deterministic voting rule with sampling noise.31

If we apply DP to answer this question, we would then conclude that publishing the histogram can poses a significant32

threat to privacy, as the privacy parameter ” ¥ 1 (See Section 2 for the formal definition) in the following worst-case33

scenario: all except one vote are for the Republican candidate, and there is one vote for the Democratic candidate.34

Notice that ” ¥ 1 is much worse than the threshold for private mechanisms, ” = o(1/n), where n is the number of35

agents (voters). Moreover, using the adversary’s utility as the measure of privacy loss (see Section 2 for the formal36

definition), in this (worst) case, the privacy loss is large (¥ 1, see Section 2 for the formal definition of utility), which37

means the adversary can make accurate predictions about every agent’s preferences.38
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However, DP does not tell us whether publishing the histogram poses a significant threat to privacy in general. In39

particular, the worst-case scenario described in the previous paragraph never happened even approximately in the40

modern history of US presidential elections. In fact, no candidates get more than 70% of the votes since 1920 (Leip,41

2023), when the progressive party dissolved.42

It turns out the privacy loss (measured by the adversary’s utility)
may not be as high as measured by DP. To see this, suppose 0.2%
of the votes were randomly lost in the presidential elections of each
year since 1920 (in light of Example 1), we present the adversary’s
utility of predicting the unknown votes in Figure 1. It can be seen
that the adversary has very limited utility (at the order of 10≠32 to
10≠8, which is always smaller than the threshold of private mecha-
nisms, 1/n), meaning that the adversary cannot learn much from
the published histogram of votes. We also observe an interesting
decreasing trend in ”, which implies that the elections become more
private in more recent years. This is primarily due to the growth of
voting population, which is exponentially related to the adversary’s
utility (Theorem 3). In Appendix A.2, we show that the elections
are still private when only 0.01% of votes got lost.

As another example, for neural networks (NNs), even adding slight
noise can lead to dramatic decreases in the prediction accuracy,
especially when predicting underrepresented classes (Bagdasaryan
et al., 2019). sampling noises also widely exist in machine learning,
for example, in the standard practice of cross-validation as well as
in training (e.g., batch-sampling when training NNs).
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Figure 1: The privacy loss in US presidential elec-
tions. The lower ” is, the more private the election
is. The rigid definition of adversaries’ utility can be
found in Equation (4) of Appendix B.

43

Note that in all the above examples, the sampling noise is an “intrinsic” part of the mechanism. In comparison, the44

only purpose of adding additive noises is to improve privacy (with the cost of reducing accuracy) in most scenarios. As45

shown in these examples, the worst-case privacy according to DP might be too loose to serve as a practical measure for46

evaluating and comparing mechanisms with sampling noise (while without additive noise) in real-world applications.47

This motivates us to ask the following question.48

How can we measure privacy for mechanisms with sampling noise under realistic models?

The choice of model is critical and highly challenging. A model based on worst-case analysis (such as in DP) provides49

upper bounds on privacy loss, but as we have seen in Figure 1, in some situations, such upper bounds are too loose50

to be informative in practice. This is similar to the runtime analysis of an algorithm—an algorithm with exponential51

worst-case runtime, such as the simplex algorithm, can be faster than some algorithms with polynomial runtime in52

practice.53

Average-case analysis is a natural choice of the model, but since “all models are wrong” (Box, 1979), any privacy54

measure designed for a certain distribution over data may not work well for other distributions. Moreover, ideally,55

the new measure should satisfy the desirable properties that played a central role behind the success of DP, including56

composition and robustness to post-processing. These properties make it easier for the mechanism designers to figure57

out the privacy level of mechanisms. Unfortunately, we are not aware of a measure based on average-case analysis that58

has these properties.59

We believe that the smoothed analysis (Spielman, 2005) provides a promising framework for addressing this question.60

Smoothed analysis is an extension and combination of worst-case and average-case analyses that inherits the advantages61

of both. It measures the expected performance of algorithms under slight random perturbations of worst-case inputs.62

Compared with the average-case analysis, the assumptions of the smoothed analysis are much more natural. Compared63

with the worst-case analysis, the smoothed analysis can better describe the real-world performance of algorithms. For64

example, it successfully explained why the simplex algorithm is faster than some polynomial algorithms in practice.65

Our Contributions. The main merit of this paper is a new notion of privacy for mechanisms with sampling noise66

(and without additive noises), called smoothed differential privacy (smoothed DP for short), which applies smoothed67
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analysis to the privacy parameter ”(x) (Definition 2) as a function of the database x. In our model, the “ground truth”68

distribution of agents is from a set of distributions � over data points, on top of which the nature adds random noises.69

Formally, the “smoothed” ”(x) is defined as70

”SDP , maxfį

!
Ex≥fį [”(x)]

"
,

where x ≥ fį = (fi1, · · · , fin) œ �n means that for every 1 Æ i Æ n, the i-th entry in the database independently71

follows the distribution fii. We note that � is a parameter for smoothed analysis, not for the mechanisms M. Table 172

compares the ‘ and ” parameters of smoothed DP and DP. The sampling histogram algorithm refers to Algorithm 273

(in Section 5.1), which samples T = Á÷ · nË data without replacement and outputs the histogram of the sampled data.74

Appendix A.3 shows the detailed settings of Table 1. We present a high-level comparison between smoothed DP and75

other DP(-like) notions in Table 2.76

Notions measures without additive noise with additive noise (of level 1/‘)
Smoothed DP

!
‘, ”SDP

" 1
‘, exp

!
≠ �(n)

"2
–

(this paper) main message private (under smoothed analysis) private
DP (‘, ”)

!
0, ÷

" !
÷ · ‘, 0

"

(Dwork et al., 2006a) main message non-private (under worst-case analysis) private (if ‘ is small)
Table 1: Compare DP and smoothed DP for our motivation example (US presidential election) with a constant sampling
rate ÷ (e.g., ÷ = 1 ≠ 0.2% in the example). The ‘ part in ”SDP is omitted for simplicity (see Theorem 3 for detailed
discussions). The (‘, ”SDP) for smoothed DP with additive noise is not shown in this table because it is already private
without additive noise.

Notions database x output S adjacent database xÕ

Smoothed DP
(this paper)

smoothed
analysis

worst-case analysis

worst-case analysis

DP (Dwork et al., 2006a)

worst-case
analysis

Gaussian DP or f -DP
(Dong et al., 2019)

Rényi DP Mironov (2017) average-case analysis
(weighted by Rényi divergence

or sub-Gaussian divergence)
Concentrated DP

(Bun & Steinke, 2016; Dwork & Rothblum, 2016)
Bayesian DP (Triastcyn & Faltings, 2020)

worst-case analysis
less informative

adversaryRandom DP (Hall et al., 2011) less informative
adversaryDistributional DP (Bassily et al., 2013) worst-case analysis

Table 2: The comparison between smoothed DP and other privacy notions.

Theoretically, we prove that smoothed DP satisfies many desirable properties, including two properties also satisfied by77

the standard DP: robustness to post-processing (Proposition 1) and composition (Proposition 2). In addition, we prove78

two unique properties for smoothed DP, called pre-processing (Proposition 3) and distribution reduction (Proposition 4).79

Based on pre-prpcessing and distribution reduction, we propose an efficient algorithm (Algorithm 1) to calculate the80

privacy parameters for smoothed DP. We further show that, under smoothed DP, many discrete mechanisms with small81

sampling noise (and without any other noise) are significantly more private than those guaranteed by DP. For example,82

the sampling-histogram mechanism in Example 1 has an exponentially small ”SDP (Theorem 3), which implies that the83

mechanism protects voters’ privacy in elections—and this is in accordance with the observation on US election data in84

Figure 1. We also note that the sampling-histogram mechanism is widely used in machine learning (e.g., the SGD in85

quantized NNs). In comparison, smoothed DP implies a similar privacy level as the standard DP in many continuous86

mechanisms. We proved that smoothed DP and the standard DP have the same privacy level for the widely-used87

sampling-average mechanism when the inputs are continuous (Theorem 4).88

Experimentally, we numerically evaluate the privacy level of the sampling-histogram mechanism using US presidential89

election data. Simulation results show an exponentially small ”SDP, which is in accordance with our Theorem 3. Our90

second experiment shows that a one-step stochastic gradient descent (SGD) in quantized NNs (Banner et al., 2018;91

Hubara et al., 2017) also has an exponentially small ”SDP. This result implies that SGD with gradient quantization can92
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already be private in practice without adding any extra (additive) noise. In comparison, the standard DP notion always93

requires extra (additive) noise to make the network private at the cost of a significant reduction in accuracy.94

Related Work and Discussions. There is a large body of literature on the theory and practice of DP and its extensions.95

We believe that the smoothed DP introduced in this paper is novel. To the best of our knowledge, none of the literature96

has proposed any DP-like notions for the mechanism without additive noises. A notable exception is distributional97

DP (Bassily et al., 2013), which considers a less informative adversary to provide a privacy measure for deterministic98

mechanisms. However, since distribution DP does not require any randomness in the mechanism, its privacy guarantee is99

much weaker than other DP-like notions. Rényi DP (Mironov, 2017), Gaussian DP (Dong et al., 2019) and Concentrated100

DP (Bun & Steinke, 2016; Dwork & Rothblum, 2016) target to provide tighter privacy bounds for the adaptive101

mechanisms. Those three notions generalized the (‘, ”) measure of distance between distributions to other divergence102

measures. Bayesian DP (Triastcyn & Faltings, 2020) tries to provide an “affordable” measure of privacy that requires103

less additive noise than DP. With similar objectives, Bun and Steinke (Bun & Steinke, 2019) add noises according to the104

average sensitivity instead of the worst-case sensitivity required by DP. However, additive noises are required in (Bun105

& Steinke, 2019) and (Triastcyn & Faltings, 2020). Random DP (Hall et al., 2011) combines the high-level idea of106

distributional DP and Bayesian DP, which considers randomness in both the database x and its neighboring database xÕ.107

The smoothed analysis (Spielman & Teng, May 2004) is a widely-accepted analysis tool in mathematical programming,108

machine learning (Kalai et al., 2009; Manthey & Röglin, 2009; Haghtalab et al., 2020), computational social choice (Xia,109

2020; Baumeister et al., 2020; Xia, 2021; Liu & Xia, 2022), and other topics (Brunsch et al., 2013; Bhaskara et al., 2014;110

Blum & Dunagan, 2002). Lastly, we note that smoothed DP is very different from the smooth sensitivity framework111

(Nissim et al., 2007). The latter is an algorithmic tool that smooths the changes of the noise level across neighboring112

databases (and achieves the standard DP), while we use smoothing as a theoretical tool to analyze the intrinsic privacy113

properties of non-randomized algorithms in practice.114

Appendix A.4 discusses the related works in the field of quantized neural networks.115

2 Differential Privacy and Its Interpretations116

In this paper, we use n to denote the number of records (entries) in a database x œ X
n, where X denotes all possible117

values for a single entry. n also represents the number of agents when one agent (one individual) can only contribute118

one record. We say that two databases x, xÕ are neighboring (denoted as x ƒ xÕ) if one database can be gotten by119

replacing no more than one record from the other database.120

Definition 1 (Differential privacy). Let M denote a randomized algorithm and S be a subset of the image space121

of M. M is said to be (‘, ”)-differentially private for some ‘ > 0, ” > 0, if for any S and any pair of neighboring122

database x, xÕ,123

Pr[M(x) œ S] Æ e‘ Pr[M(xÕ) œ S] + ”, (1)

Notice that the randomness comes from the mechanism M.124

DP guarantees immunity to many kinds of attacks (e.g., linkage attacks (Nguyen et al., Sep. 2013) and reconstruction125

attacks (Dwork et al., 2014)). Take reconstruction attacks for example, the adversary has access to a subset of the126

database (such information may come from public databases, social media, etc.). In an extreme situation, an adversary127

knows all but one agent’s records. To protect the data of every single agent, DP uses ” = o(1/n) as a common128

requirement of private mechanisms (Dwork et al., 2014, p. 18). To meet this requirement, a private mechanism (under129

DP notion) usually1 need to include additive noises (e.g., Gaussian noise, Laplacian noise, and the noise, which usually130

is discrete, in exponential mechanisms). Next, we recall two common interpretations/justifications on how DP helps131

protect privacy even in the extreme situation of reconstruction attacks.132

Justification 1: DP prevents membership inference (Wasserman & Zhou, Mar. 2010; Kairouz et al., 2015).133

Assume that the adversary knows all entries except the i-th. Let x≠i denote the database x with its i-th entry removed.134

With the information provided by the output M(x), the adversary can infer the missing entry by testing the following135

two hypotheses:136

1Some differentially private mechanisms such as “stability-based query release” appear to not require additive noise with high probability if the
local sensitivity is 0 for the input database and for all other databases that differ by at most ln(1/”)/‘ data points (Thakurta & Smith, 2013). Note
that in our case (such as the motivating example), the local sensitivity is not 0. Also, the “stability-based” methods still need randomization (though
not adding noise).
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H0: The missing entry is X (or equivalently, the database is x = x≠i fi {X}).137

H1: The missing entry is X Õ (or equivalently, the database is xÕ = x≠i fi {X Õ
}).138

Suppose that after observing the output of M, the adversary uses a rejection region rule for hypothesis testing2, where139

H0 is rejected if and only if the output is in the rejection region S. For any fixed S, the decision rule can be wrong in140

two possible ways, false positive (Type I error) and false negative (Type II error). Mathematically, the Type I error rate141

EI(x) = Pr[M(x) œ S] while the Type II error rate EII(xÕ) = Pr[M(xÕ) /œ S] = 1 ≠ Pr[M(xÕ) œ S]. According to142

the definition of DP, for any pair of neighboring databases x, xÕ, the adversary always has143

e‘
· EI(x) + EII(xÕ) Ø 1 ≠ ” and e‘

· EII(xÕ) + EI(x) Ø 1 ≠ ”,

which implies that EI(x) and EII(xÕ) cannot be small at the same time. When ‘ and ” are both small, both EI and EII144

becomes close to 0.5 (the error rates of random guess), which means that the adversary cannot get much information145

from the output of M.146

Justification 2: With high probability, M is insensitive to the change of one record (Guingona et al., 2023).147

In more detail, (‘, ”)-DP guarantees the distribution of M’s output will not change significantly when replacing one148

record. According to Property (A) of Theorem 3.2 in Guingona et al. (2023), (‘, ”)-DP implies3
149

Pra≥M(x)

5 1
2e‘

Æ
Pr[M(x) = a]
Pr[M(xÕ) = a] Æ 2e‘

6
Ø 1 ≠ 2” for any pair of neighboring databases x and xÕ. (2)

The above inequality shows that the change of one record cannot make an output significantly more likely or significantly150

less likely (with at least 1 ≠ 2” probability). Since x and xÕ only differ in one record, the above formula also guarantees151

that the adversary cannot learn too much information about any single record of the database through observing the152

output of M (Dwork et al., 2014, p. 25).153

3 Smoothed Differential Privacy154

Recall that DP is based on the worst-case analysis over all possible databases. However, as shown in Exampe 1 and155

Figure 1, the worst-case nature of DP sometimes leads to an overly pessimistic measure of privacy loss, which may156

bring unnecessary additive noise in the hope of improved privacy but at the cost of accuracy. In this section, we157

introduce smoothed DP, which applies the smoothed analysis to the database-dependent privacy profile ”(x), and prove158

its desirable properties. Due to the space constraint, all proofs of this section can be found in Appendix C.159

3.1 The database-dependent privacy profile160

We first introduce the database-dependent privacy profile ”‘, M(x), which measures the privacy leakage of mechanism161

M when its input is x. Here, we fix ‘ and let ” be database-dependent, which opposites to data-dependent privacy162

loss (Papernot et al., 2018; Wang, 2019) where ” is fixed and ‘ is data-dependent. Here, we call ” privacy profile since163

it is a function of ‘ (Balle et al., 2020).164

Definition 2 (Database-dependent privacy profile ”‘, M(x) (Dwork et al., 2006b)). Let M : X
n

æ A denote a165

randomized mechanism. Given any database x œ X
n and any ‘ > 0, define the database-dependent privacy profile as:166

”‘, M(x) , max
1

0, max
xÕ:xÕƒx

!
d‘,M(x, xÕ)

"
, max

xÕ:xÕƒx

!
d‘,M(xÕ, x)

"2
,

where d‘,M(x, xÕ) = maxS
!

Pr [M(x) œ S] ≠ e‘
· Pr [M(xÕ) œ S]

"
and “ƒ” means neighboring.167

In words, ”‘, M(x) is the minimum ” values, such that the (‘, ”)-DP requirement on M (Inequality (1)) holds for any168

neighboring pairs (x, xÕ) and (xÕ, x).169

DP as the worst-case analysis of ”‘, M(x). In the next theorem, we show that the privacy measure based on the170

worst-case analysis of ”‘,M is equivalent to the standard DP.171

2The adversary can use any decision rule, and the rejection region rule is adopted just for example.
3Theorem 3.2 in Guingona et al. (2023) shows (‘, ”)-DP implies

!
(ln 2)‘, 2”

"
-probabilistic DP, which is equivalent to (2). The formal definition

of probabilistic DP can be found in Definition 6 in Machanavajjhala et al. (2008).
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Theorem 1 (DP in ”‘, M(x)). Mechanism M : X
n

æ A is (‘, ”)-differentially private if and only if,172

max
xœX n

1
”‘, M(x)

2
Æ ”.

3.2 Formal definition of smoothed DP173

Armed with the database-dependent privacy profile ”‘,M(x), we now formally define smoothed DP, where the worst-174

case “ground truth” distribution of every agent is allowed to be any distribution from a set of distributions �, on top175

of which Nature adds random noises to generate the database. We would like to note again that � is a parameter for176

smoothed analysis, not for the mechanisms M.177

Definition 3 (Smoothed DP). Let � be a set of distributions over X . We say M : X
n

æ A is (‘, ”, �)-smoothed178

differentially private if,179

maxfįœ�n

!
Ex≥fį [”‘, M(x)]

"
Æ ”,

where x ≥ fį = (fi1, · · · , fin) means that the i-th entry in the database follows fii for every i œ {1, · · · , n}.180

Like DP, smoothed DP bounds privacy leakage (in an arguably more realistic setting), via the following two justifications181

that are similar to the two common justifications of DP in Section 2.182

Justification 1: Smoothed DP prevents membership inference. Mathematically, a (‘, ”, �)-smoothed DP mechanism183

M guarantees184

e‘
· max

fįœ�n

!
E

x≥fį

[EI(x)]
"

+ max
fįœ�n

!
E

x≥fį

[EII(xÕ) | xÕ
ƒ x]

"
Ø 1 ≠ ”

e‘
· max

fįœ�n

!
E

x≥fį

[EII(xÕ) | xÕ
ƒ x]

"
+ max

fįœ�n

!
E

x≥fį

[EI(x)]
"

Ø 1 ≠ ”

The proof follows after bounding Type I and Type II errors when the input is x by ”‘,M. That is, for a fixed database x,185

it is not hard to verify that186

e‘
· EI(x) + EII(xÕ) Ø 1 ≠ max

xÕ:xÕƒx

!
d‘,M(x, xÕ)

"
and

e‘
· EII(xÕ) + EI(x) Ø 1 ≠ max

xÕ:xÕƒx

!
d‘,M(xÕ, x)

"

Then, by the definition ”‘,M(x), we have,187

e‘
· EI(x) + EII(xÕ) Ø 1 ≠ ”‘,M(x) and e‘

· EII(xÕ) + EI(x) Ø 1 ≠ ”‘,M(x),

which means that EI and EII cannot be small at the same time when the database is x. Then, justification 1 can be gotten188

by applying smoothed analysis to both sides. It follows that the smoothed DP, which is a smoothed analysis of ”‘,M,189

can bound the smoothed Type I and Type II errors.190

Justification 2: Smoothed DP mechanisms are insensitive to the change of one record with high probability.191

Mathematically, a (‘, ”, �)-smoothed DP mechanism M guarantees192

max
fįœ�n

3
E

x≥fį

5
Pr

a≥M(x)

5 1
2e‘

Æ
Pr[M(x) = a]
Pr[M(xÕ) = a] Æ 2e‘

664
Ø 1 ≠ 2”

The proof is, again, done through analyzing ”‘,M(x). More precisely, given any mechanism M, any ‘ œ R+ and any193

pair of neighboring databases x, xÕ, we have194

Pra≥M(x)

5 1
2e‘

Æ
Pr[M(x) = a]
Pr[M(xÕ) = a] Æ 2e‘

6
Ø 1 ≠ 2”‘,M(x).

Then, justification 2 follows by applying smoothed analysis to both sides of the above inequality.195

As smoothed DP replaces the worst-case analysis with smoothed analysis, we also view ” = o(1/n) as a requirement196

for private mechanisms for smoothed DP. In addition to the two justifications above, Appendix B justifies the notion of197

smoothed DP under the view of “adversarial utilities”. At a high level, the ” parameter of smoothed DP tightly bounds198

the adversary’s utility in Bayesian predictions under realistic settings.199
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4 Properties of Smoothed DP200

First, we present four properties of smoothed DP and discuss how they can help mechanism designers figure out the201

smoothed DP parameters of mechanisms. We first present the robustness to post-processing property, which says no202

function can make a mechanism less private without adding extra knowledge about the database. The post-processing203

property of smoothed DP can be used to upper bound the privacy level of many mechanisms. With it, we know private204

data preprocessing can guarantee the privacy of the whole mechanism. Then, the rest part of the mechanism does not205

need to consider privacy issues. The proof of all four properties of the smoothed DP can be found in Appendix D.206

Proposition 1 (Post-processing). Let M : X
n

æ A be a (‘, ”, �)-smoothed DP mechanism. For any f : A æ A
Õ

207

(which can also be randomized), f ¶ M : X
n

æ A
Õ is also (‘, ”, �)-smoothed DP.208

Then, we introduce the composition theorem for the smoothed DP, which bounds the smoothed DP property of databases209

when two or more mechanisms publish their outputs about the same database.210

Proposition 2 (Composition). Let Mi : X
n

æ Ai be an (‘i, ”i, �)-smoothed DP mechanism for any i œ [k]. Define211

M[k] : X
n

æ
r

k

i=1 Ai as M[k](x) =
!
M1(x), · · · , Mk(x)

"
. Then, M[k] is

1q
k

i=1 ‘i,
q

k

i=1 ”i, �
2

-smoothed DP.212

In practice, � might be hard to accurately characterize. The next proposition introduces the pre-processing property of213

smoothed DP, which says the distribution of data can be replaced by the distribution of features (extracted using any214

deterministic function). For example, in deep learning, the distribution of data can be replaced by the distribution of215

gradients, which is usually much easier to estimate in real-world training processes.216

More technically, the pre-processing property guarantees that any deterministic way of data preprocessing is not harmful217

to privacy. To simplify notation, we let f(fi) be the distribution of f(X) where X ≥ fi. For any set of distributions218

� = {fi1, · · · , fim}, we let f(�) = {f(fi1), · · · , f(fim)}.219

Proposition 3 (Pre-processing for deterministic functions). Let f : X
n

æ X̃
n be a deterministic function and220

M : X̃
n

æ A be a randomized mechanism. Then, M ¶ f : X
n

æ A is (‘, ”, �)-smoothed DP if M is
!
‘, ”, f(�)

"
-221

smoothed DP.222

The following proposition shows that any two sets of distributions with the same convex hull have the same privacy223

level under smoothed DP. With this, the mechanism designers can ignore all inner points and only consider the convex224

hull’s vertices when calculating the mechanisms’ privacy level. Let CH(�) denote the convex hull of �.225

Proposition 4 (Distribution reduction). Given any ‘, ” œ R+ and any �1 and �2 such that CH(�1) = CH(�2), a226

mechanism M is (‘, ”, �1)-smoothed DP if and only if M is (‘, ”, �2)-smoothed DP.227

We provide an example of how Proposition 4 helps calculate the privacy level. Assume the database has two possible228

types of data (i.e., m , |X | = 2). We use fi = (1, 1 ≠ p) to represent the distribution over |X | such that the first type229

occurs with probability p and the second type occurs with probability 1≠p. Assuming the mechanism designer considers230

an infinite set of distribution � =
)

(p, 1 ≠ p) : p œ (0.2, 0.8)
*

, its easy to check that �’s convex hull CH(�) =231 )
(p, 1≠p) : p œ [0.2, 0.8]

*
and CH(�)’s set of vertices �ú =

)
(p, 1≠p) : p œ {0.2, 0.8}

*
=

)
(0.2, 0.8), (0.8, 0.2)

*
.232

Since �ú and � have the same convex hull, according to Proposition 4, the mechanism designer only needs to consider233

�ú (two distributions), instead of the infinite set �.234

Proposition 4 also provides an efficient way to calculate the (exact) ” parameter of smoothed DP for anonymous235

mechanisms. Here, “anonymous” means the mechanism treat each data in the database “equally”. Formally, we say236

one mechanism is anonymous if its output distribution will not change under arbitrarily permuted order of data in the237

database. In other words, an anonymous mechanism’s output distribution only depends on the histogram of data. One238

can see that most commonly-used algorithms in machine learning (e.g., SGD and AdaGrad) and voting (e.g., plurality,239

Borda, and Copeland) are anonymous. Also note that the commonly used noisy mechanisms (e.g., Laplacian, Gaussian,240

and Exponential) will keep the anonymity property of mechanisms.241
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Algorithm 1 efficiently calculate the pri-
vacy profile ” of smoothed DP for anony-
mous mechanisms. Again, we let �ú

denote the set of CH(�)’s vertices and
let ¸ú , |�ú

| denote the cardinality of
�ú. Q denote the set of all histograms on
�ú of n records. Here, we slightly abuse
notation and use “for fį œ Q” to repre-
sent that each histogram is visited exactly
once in the corresponding for loop.

Algorithm 1: Calculate the (exact) privacy profile ” for smoothed DP
1 Inputs: An anonymous mechanism M, parameter ‘ œ R+, size of

database n, and a set of distribution �
2 Initialization: Calculate �ú according to � and Q according to �ú

3 (Same as DP) Calculate ”‘, M for all histograms
4 for fį œ Q do
5 Calculate ”j , Ex≥fį [”‘, M(x)]
6 end
7 Output: ”SDP(‘) = maxj ”j

242

We say Step 3 in Algorithm 1 is the “same as” DP because calculating the privacy profile ” of DP for general mechanisms243

requires calculating ”‘,M. We note calculating the exact privacy profile ” of DP may not require calculating ”‘,M for244

some mechanisms (e.g., additive noise mechanism). We will present a similar result for smoothed DP in Theorem 3 of245

Section 5.1. Theorem 2 presents the runtime of Algorithm 1 (calculate the privacy profile ” of smoothed DP for any246

anonymous mechanisms), which only requires a polynomial extra time than DP in most cases.247

Theorem 2 (Runtime of Algorithm 1). Using the notations above, the complexity of calculating the privacy profile ”248

of smoothed DP for any anonymous mechanisms is O
!
n2m+¸

ú≠3 + ¸ log ¸ú"
+ CplDP, where ¸ denotes the number of249

vertices in � and CplDP represents the runtime of Step 3 in Algorithm 1.250

As to be shown in Section 5, The application scenarios of Smoothed DP are those when m is not large. ¸ could be251

treated as a constant if �’s geometric shape is not extremely complicated. Thus, we believe the runtime of calculating252

the exact privacy profile ” only requires a polynomial extra time than DP in most cases.253

5 Smoothed DP as a Measure of Privacy254

In this section, we use smoothed DP to measure the privacy of some commonly-used mechanisms, where the sampling255

noise is intrinsic and unavoidable (as opposed to additive noises such as Gaussian or Laplacian noises). Our analysis256

focuses on two widely-used algorithms where the intrinsic randomness comes from sampling without replacement. In257

addition, we compare the privacy levels of smoothed DP with DP. All missing proofs of this section can be found in258

Appendix E.259

5.1 Discrete mechanisms are more private than what DP predicts260

In this subsection, we study the smoothed DP property of (discrete) sampling-histogram mechanism (SHM), which261

is widely used as a pre-possessing step in many real-world applications like the training of NNs. As smoothed DP262

satisfies post-processing (Proposition 1) and pre-processing (Proposition 2), the smoothed DP property of SHM can263

upper bound the privacy level of many mechanisms (that uses SHM) in practice. Let X denote a finite set and m , |X |264

denotes the cardinality of X . The histogram of a database x œ X
n (denoted as hist(x)) is an m-dimensional vector.265

The j-th component of hist(x) is the number of j-th type of data in x. It’s easy to check that hist(x) œ {0, · · · , n}
m

266

and ||hist(x)||1 = n.267

SHM first sample T = Á÷ · nË data from the
database and then output the histogram of the
T samples. Formally, we define the sampling-
histogram mechanism in Algorithm 2. Note
that we require all data in the database to be
chosen from a finite set X .

Algorithm 2: Sampling-histogram mechanism MH

1 Inputs: A finite set X , sampling rate ÷ œ (0, 1), and a database
x = {X1, · · · , Xn} where Xi œ X for all i œ {1, · · · , n}

2 Randomly sample T = Á÷ · nË data from x without
replacement. The sampled data are denoted by Xj1 , · · · , XjT

.
3 Output: The histogram hist(Xj1 , · · · , XjT

)

268

Smoothed DP of mechanisms based on SHM. The smoothed DP of SHM can be used to upper bound the smoothed269

DP of the following three groups of mechanisms/algorithms.270

The first group consists of deterministic voting rules, as presented in the motivating example in Introduction. The271

sampling procedure in SHM mimics the votes that got lost.272
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The second group consists of machine learning algorithms based on randomly-sampled training data, such as cross-273

validation. The (random) selection of the training data corresponds to SHM. Notice that many training algorithms are274

essentially based on the histogram of the training data (instead of the ordering of data points). Therefore, overall the275

training procedure can be viewed as SHM plus a post-processing function (the learning algorithm). Consequently, the276

smoothed DP of SHM can be used to upper bound the smoothed DP of such procedures.277

The third group consists of SGD of NNs with gradient quantization (Zhu et al., 2020; Banner et al., 2018), where the278

gradients are rounded to 8-bit in order to accelerate the training and/or the inference of NNs. The smoothed DP of SHM279

can be used to bound the privacy leakage in each SGD step of the NN, where a batch (a subset of the training set) is280

firstly sampled and the gradient is the average of the gradients of the sampled data.281

DP vs. Smoothed DP for SHM. We are ready to present the main theorem of this paper, which indicates that SHM282

is private under some mild assumptions. We say distribution fi is f -strictly positive if there exists a positive function283

f(n, m) such that fi(X) Ø f(n, m) for any X in the support of fi. A set of distributions � is f -strictly positive if284

there exists a positive function f(n, m) such that every fi œ � is f -strictly positive. The f -strictly positive assumption285

is often considered mild in elections (Xia, 2020) and discrete machine learning (Laird & Saul, Apr. 1994) when286

f(m, n) = O(1).287

Theorem 3 (DP vs. Smoothed DP for Sampling Histogram Mechanism MH ). For any MH , given an f -strictly288

positive set of distributions �, a finite set X , and n, T œ Z+, we have:289

(i) (Smoothed DP) Given any ‘ Ø ln
1

1
1≠÷

2
+ c where c is a constant, MH is

1
‘, m · exp

#
≠�

!
f(n, m) · n

"$
, �

2
-290

smoothed DP.291

(ii) (Tightness of smoothed DP bound) For any ‘ > 0, there does not exist ” = exp
1

≠ Ê
!
[ln f(m, n)] · n

"2
such292

that MH is (‘, ”, �)-smoothed DP.293

(iii) (DP) For any ‘ > 0, there does not exist ” < ÷ such that MH is (‘, ”)-DP.294

This theorem says the privacy leakage is exponentially small under real-world application scenarios. In comparison,295

DP cares too much about the extremely rare cases and predicts a constant privacy leakage. If f is a constant function296

and m = �(1), Property (ii) indicates that the bound in (i) is tight. Also, note that our theorem allows T to be in297

the same order as n. For example, when setting T = 95% ◊ n and � be f -strictly positive for a constant f , SHM298

is (3, exp(≠�(n)), �)-smoothed DP, which is an acceptable privacy threshold in many real-world applications (Liu299

et al., 2019). For example, iOS 10.12.3 requires ‘ Æ 6 and iOS 10.1.1 requires ‘ Æ 14 Tang et al. (2017). Appendix F300

proves similar bounds for the SHM with replacement. The following remarks shows a non-asymptotic version of301

Theorem 3(i), which relates ‘ and ” and provides a non-asymptotic privacy bound for SHM. To simplify notations, we302

let g(÷, ‘) ,
!
÷≠1(1 ≠ e≠‘) ≠ 1

"2.303

Remark 5 (Privacy bound for MH ). Given an f -strictly positive set of distributions �, a finite set X , and n, T œ Z+,304

MH is
1

‘, exp
!
≠

1
6 · g(÷, ‘) · f(m, n) · n

"
+ m · exp

!
≠

1
8 · f(m, n) · n

"
, �

2
-smoothed DP for any ‘ > ln

1
1

1≠÷

2
.305

5.2 Continuous mechanisms are similar to what DP predicts306

In this section, we show that the sampling
mechanisms with continuous support are still
not privacy-preserving under smoothed DP.
The “gap” between discrete and continuous
SHM comes from the fact that SHM becomes
less private when |X | increases.

Algorithm 3: Continuous sampling-average mechanism MA

1 Inputs: The number of samples T and a database
x = {X1, · · · , Xn} where Xi œ [0, 1] for all i œ {1, · · · , n}

2 Randomly sample T = Á÷ · nË data from x without
replacement. The sampled data are denoted as Xj1 , · · · , XjT

.
3 Output: The average x̄ = 1

T

q
jœ[T ] Xij

307

Our result indicates that the neural networks without quantized parameters are not private without additive noise (e.g.,308

Gaussian or Laplacian noise). We use the sampling-average (Algorithm 3) algorithm as the standard algorithm for309

continuous mechanisms. Because sampling-average can be treated as SHM plus an average step, sampling-average is310

non-private also means SHM with continuous support is also non-private according to the post-processing property of311

smoothed DP.312
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Theorem 4 (Smoothed DP for continuous sampling-average). For any continuous sampling-average mechanism313

MA, given any set of strictly positive4 distribution � over [0, 1], any T, n œ Z+ and any ‘ Ø 0, there does not exist314

” < ÷ such that MA is (‘, ”, �)-smoothed DP.315

Theorem 4 does not contradict Property (i) of Theorem 3 because the continuous functions has m æ Œ, which makes316

the upper bound of ” parameter for smoothed DP m · exp
#
≠�

!
f(n, m) · n

"$
æ Œ.317

6 Experiments318

Smoothed DP in elections. We use a similar setting as the motivating example, where 0.2% of the votes are randomly319

lost. We numerically calculate the (exact) privacy profile ” of smoothed DP according to Algorithm 1. Here, the set320

of distributions � includes the distribution of all 57 congressional districts of the 2020 presidential election. Using321

the distribution reduction property of smoothed DP (Proposition 4), we can remove all distributions in � except DC322

and NE-25, which are the vertices for the convex hull of �. Figure 2 (left) shows that the smoothed ” parameter is323

exponentially small in n when ‘ = 7, which matches our Theorem 3. We find that ” is also exponentially small when324

‘ = 0.5, 1 or 2, which indicates that the sampling-histogram mechanism is also more private than DP’s predictions325

for small ‘’s. Appendix G.2 shows the experiments with different settings on �. All experiments of this paper are326

implemented in MATLAB 2021a and tested on a Windows 10 Desktop with an Intel Core i7-8700 CPU and 32GB327

RAM.328

1 2 3 4 5
n 105

10-20

10-10

100 Elections (0.2% of votes got lost)

1/n
DP
 = 0.5
 = 1
 = 2
 = 7

100 150 200 250
n

10-4

10-3

10-2

10-1 SGD with Quantized Gradients

1/n
DP
 = 0.5
 = 1
 = 2

Figure 2: Left: DP and smoothed DP of 2020 US presidential election when 0.2% of votes got lost. Right: DP and
smoothed DP of 1-step SGD with 8-bit gradient quantization when the set of distributions is �. In both plots, the
vertical axes are in log-scale and the pink dashed line presents the ” parameter of DP with whatever (finite) ‘. The dot
lines are the exponential fittings of smoothed ” parameters. The left plot is an accurate calculation of ”. The shaded
area shows the 99% confidence interval of the right plot.

SGD with 8-bit gradient quantization. According to the pre-processing property of smoothed DP, the smoothed329

DP of (discrete) sampling-average mechanism upper bounds the smoothed DP of SGD (for one step). In 8-bit neural330

networks for computer vision tasks, the gradient usually follows Gaussian distributions (Banner et al., 2018). We thus331

let the set of distributions � = {N8-bit(0, 0.122), N8-bit(0.2, 0.122)}, where N8-bit(µ, ‡2) denotes the 8-bit quantized332

Gaussian distribution (See Appendix G for its formal definition). The standard variation, 0.12, is the same as the333

standard variation of gradients in a ResNet-18 network trained on CIFAR-10 database (Banner et al., 2018). We use the334

standard setting of batch size T = Ô
n. Figure 2 (right) shows that the smoothed ” parameter is exponentially small in335

n for the SGD with 8-bit gradient quantization. The probabilities are estimated through 106 independent trails. This336

result implies that the neural networks trained through quantized gradients can be private without adding additive noises.337

Also, see Appendix G.2 for the experiments under another three different settings on �.338

4Distribution fi is strictly positive by c if pfi(x) Ø c for any x in the support of fi, where pfi is the PDF of fi.
5DC refers to Washington, D.C., and NE-2 refers to Nebraska’s 2nd congressional district.
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7 Conclusions and Future Work339

We propose a novel notion to measure the privacy leakage of mechanisms without additive noises under realistic settings.340

One promising next step is to apply our smoothed DP notion to the entire training process of quantized NNs. Is the341

quantized NN private without additive noise? If not, what level of additive noises needs to be added, and how should we342

add noises in an optimal way? More generally, we believe that our work has the potential of making many algorithms343

private without requiring too much additive noise.344
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