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Abstract
Electroencephalography (EEG) offers a non-
invasive lens into human brain activity, but build-
ing large-scale models is hampered by topologi-
cal heterogeneity: each public EEG data defines
its own electrode layout, limiting generalization.
We introduce LUNA (Latent Unified Network
Architecture), a self-supervised foundation model
that reconciles disparate electrode geometries
while scaling linearly—not quadratically—with
channel count. Pre-trained on TUEG and Siena
(> 21,000 hours of raw EEG across diverse mon-
tages) using a masked signal reconstruction task,
LUNA transfers effectively to four downstream
tasks: abnormality detection, artifact detection,
slowing classification, and emotion recognition.
It demonstrates competitive performance across
several benchmarks, achieving state-of-the-art re-
sults on TUAR and TUSL, e.g., 0.921 AUROC on
TUAR, while reducing FLOPs by 300× and GPU
memory use by up to 10×. Code and pre-trained
models will be released upon publication.

1. Introduction
Electroencephalography (EEG) provides vital non-invasive
brain activity insights for diagnostics and neuroscience.
Deep neural networks have advanced EEG analysis
via end-to-end learning, moving beyond handcrafted
pipelines (Craik et al., 2019). Transformers now rival tradi-
tional techniques by jointly modeling temporal and cross-
electrode correlations (Song et al., 2023; Wen et al., 2023).

Despite this progress, a crucial bottleneck remains: EEG cor-
pora exhibit significant topological heterogeneity. Varying
electrode counts and placements hinder model transferabil-
ity across montages, leading to performance degradation.
For instance, cross-dataset evaluations show accuracy drops
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Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
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of up to 14 pp for motor-imagery decoders (Xu et al., 2020),
13–15 pp for emotion-recognition models (Yang et al., 2023;
Yi et al., 2023). Current solutions to this problem are limited.
Approaches include training models per montage or using
only shared electrodes, discarding up to 80% of data (Lin
et al., 2023). Flattening the electrode and time axes into
long sequences leads to quadratic self-attention complexity
O
(
(S ·C)2

)
where S is the number of time segments and C

is the number of electrodes (channels), which is prohibitive
for dense caps (Yang et al., 2023). This shows the need for a
single, montage-agnostic architecture that scales efficiently.

LUNA (Latent Unified Network Architecture) directly ad-
dresses this gap. Our key innovation is a topology-invariant
encoder that maps arbitrary electrode layouts into a fixed
latent space via learned queries and cross-attention. We pre-
train LUNA using a masked-patch reconstruction objective
on TUEG (Obeid & Picone, 2016) and SIENA (Detti et al.,
2020) (over 21,000 hours of raw EEG data), and fine-tune
on four downstream benchmarks spanning abnormality and
artifact detection, slowing classification, and emotion recog-
nition. The key contributions of this work are the following:

• Topology-invariant encoder. An encoder that projects
arbitrary-sized channel sets into a fixed latent space.

• Linear-in-channels complexity. Patch-wise temporal
attention that decouples complexity from electrode count.

• State-of-the-art accuracy-efficiency trade-off. LUNA
achieves strong results across a range of EEG benchmarks,
showing significant capabilities while reducing FLOPs
and GPU memory usage on high-density EEG recordings.

2. Related Work
Self-Supervised Learning Strategies in EEG SSL is key
for EEG foundation models. BENDR (Kostas et al., 2021)
pioneered this by adapting masked prediction with a con-
trastive loss. Later work includes masked spectrogram pre-
diction (Wang et al., 2023), vector-quantized patch predic-
tion (Chen et al., 2024; Jiang et al., 2024), and raw signal
reconstruction (Wang et al., 2025).

Modeling Spatial Structure and Topology in EEG Sev-
eral strategies have been explored in the literature to capture
the spatial relationships between electrodes:
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Figure 1: Overview of LUNA. EEG signals (B × C × T ) are segmented into patches and embedded. Channel-Unification
Module maps channel-wise features into a fixed-size latent space using learned queries (Q). Patch-wise Temporal Attention
processes this latent sequence. The decoder generates task-specific outputs.

Channel Independence: Some models (BrainBERT (Wang
et al., 2023), EEGFormer (Chen et al., 2024)) process chan-
nels independently initially, handling variable counts but
deferring cross-channel interaction modeling.
Fixed-Topology Spatial Modeling: Others like Brant
(Zhang et al., 2023) use spatial encoders assuming con-
sistent configurations. GNNs (Tang et al., 2022) model
spatial relations via predefined graphs, requiring adaptation
for varying topologies. LUNA avoids such fixed structures.
Joint Spatio-Temporal Attention: LaBraM (Jiang et al.,
2024) flattens channel and patch dimensions into one se-
quence to learn spatio-temporal dependencies, incurring
quadratic O((S · C)2) complexity. CBraMod (Wang et al.,
2025) and CEReBrO (Dimofte et al., 2025) use alternating
spatial and temporal attention mechanisms, reducing com-
plexity to O(max(S2, C2)). LUNA projects channels to
the latent space before temporal attention.
Explicit Topology Mapping: MMM (Yi et al., 2023) maps
channels to predefined regions using hand-engineered fea-
tures. PopT (Chau et al., 2025) aggregates pre-computed
temporal features using 3D electrode coordinates. These are
not fully end-to-end or use external information.

3. Methodology
LUNA adopts an encoder-decoder architecture that trans-
forms EEG signals from heterogeneous montages into a
unified latent representation (Figure 1).

3.1. Encoder
The encoder has three modules that transform the EEG into
a topology-agnostic latent output: patch feature extraction,
channel unification, and patch-wise temporal modeling.

Patch Feature Extraction Given raw EEG x ∈ RB×C×T

(Batch B, Channels C, Time T ), we segment each chan-
nel into S = T/P non-overlapping temporal patches of
size P . These patches are embedded via two parallel path-
ways. Temporal Embedding: A 1D convolutional network
(with GroupNorm (Wu & He, 2019), GELU (Hendrycks
& Gimpel, 2016)) encodes local temporal features similar
to state-of-the-art methods such as LaBraM and CBraMod.
Frequency Embedding: The magnitude and phase from
each patch’s Fourier transform are passed through an MLP.
These representations are summed to obtain patch features.
Channel Positional Encoding To encode electrode loca-
tions, we apply NeRF-inspired sinusoidal encoding (Milden-
hall et al., 2021) to normalized 3D electrode coordinates,
followed by an MLP projection. This yields positional fea-
tures, which are added to patch features.
Channel-Unification Module Q learned queries Qlearn ∈
RQ×E , which are learnable parameters of the model, ini-
tialized orthogonally to encourage diverse representations
and optimized through backpropagation during training,
cross-attend to patch features. Let the input to this mod-
ule be the tensor Xtoken ∈ RB×(C·S)×E , representing the
spatially-aware features for B samples, S patches per chan-
nel, and feature dimension E. We first reshape this tensor to
X′ ∈ R(B·S)×C×E to treat each patch instance across the
batch independently. The cross-attention mechanism then
computes the output representation Aout ∈ R(B·S)×Q×E :

Aout = MultiHeadAttention(Q,X′,X′)

A feed-forward network (FFN) with residual connection
refines the outputs, followed by L Transformer encoder
layers operating on the query dimension Q.

Xunified = TransformerEncoder(Aout + FFN(Aout))

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

LUNA: Efficient and Topology-Agnostic Foundation Model for EEG Signal Analysis

The result Xunified ∈ R(B·S)×Q×E decouples further pro-
cessing from the original electrode layout.
Patch-wise Temporal Encoder The unified represen-
tations are reshaped into temporal sequences X′

unified ∈
RB×S×(Q·E). A stack of Transformer encoder processes
these blocks with Rotary Positional Embeddings (RoPE) (Su
et al., 2024) to capture temporal dependencies efficiently.

Eout = TemporalEncoder(X′
unified)

3.2. Decoder
There are two decoding strategies depending on the task:
reconstruction (pre-training) and classification (fine-tuning).

Reconstruction Head (Pre-training) For masked patch
reconstruction, C learned decoder queries Edec ∈ RC×E

attend to Eout via cross-attention. A linear projection recov-
ers the patch values x̂ ∈ RB×(C·S)×P .
Classification Head (Fine-tuning) For downstream tasks,
a single aggregation query Eagg ∈ R1×(Q·E) attends to
Eout to produce a pooled output.

3.3. Training Objectives
LUNA is pre-trained with the combination of two losses:
Reconstruction Loss A Smooth L1 loss is applied to both
masked and visible patches: Lrec = S̄M + α · S̄¬M where
S̄M and S̄¬M are the average SmoothL1 losses on masked
(M ) and non-masked sets and SmoothL1(x, x̂) = 0.5(x−x̂)2

if |x− x̂| < β, else β|x− x̂| − 0.5β2, with β = 1.
Query Specialization Loss To promote diverse latent
space, we penalize similarity in query-channel affinity matri-
ces by minimizing the mean value of off-diagonal elements:

Lspec =
λspec

B′ · Q · (Q − 1)

B′∑
b′=1

Q∑
i=1

Q∑
j=1,j ̸=i

(
(AaffinityA

T
affinity)b′,i,j

)2

4. Results
4.1. Experimental Setup
Datasets We pre-train LUNA on Temple University Hos-
pital EEG Corpus (TUEG) and the Siena Scalp EEG
Database, spanning recordings with 20, 22, and 29 channels,
amounting to over 21,900 hours of EEG data (see Table 4).
Downstream evaluations cover four diverse benchmarks:
TUAB (Obeid & Picone, 2016): Abnormal EEG detection
(binary classification), TUAR (Obeid & Picone, 2016): Ar-
tifact detection (multi-class classification) TUSL (Obeid &
Picone, 2016): Slowing event classification (4-class classifi-
cation). SEED-V (Liu et al., 2022): Emotion recognition
(5-class classification), with unseen 62-channel topology.
Baselines We compare LUNA against supervised and
self-supervised methods including ContraWR (Yang et al.,
2021), CNN-Transformer (Peh et al., 2022), FFCL (Li et al.,
2022), EEGNet (Lawhern et al., 2018), EEG-GNN (Tang
et al., 2022), Transformer (Song et al., 2021), LaBraM,

CBraMod, FEMBA (Tegon et al., 2025), CEReBrO, EEG-
Former, BIOT (Yang et al., 2023), BENDR, BrainBERT,
and EEG2Rep (Foumani et al., 2024). LUNA is evaluated
in three sizes: Base (7M), Large (43M), and Huge (311M).

4.2. Downstream Task Performance
Abnormal EEG Detection (TUAB) LUNA demonstrated
competitive performance on TUAB (Table 1). LUNA-Huge
achieves AUROC of 0.8957 and AUPR of 0.9029, surpass-
ing most self-supervised baselines and approaching large-
scale models like LaBraM and CBraMod.

Table 1: Performance comparison on TUAB.

Model Size Bal. Acc. (%) ↑ AUC-PR ↑ AUROC ↑

Supervised Models
ContraWR 1.6M 77.46 ± 0.41 0.8421 ± 0.0140 0.8456 ± 0.0074
CNN-Transformer 3.2M 77.77 ± 0.22 0.8433 ± 0.0039 0.8461 ± 0.0013
FFCL 2.4M 78.48 ± 0.38 0.8448 ± 0.0065 0.8569 ± 0.0051
ST-Transformer 3.2M 79.66 ± 0.23 0.8521 ± 0.0026 0.8707 ± 0.0019

Self-supervised Models
BENDR 0.39M 76.96 ± 3.98 - 0.8397 ± 0.0344
BrainBERT 43.2M - 0.8460 ± 0.0030 0.8530 ± 0.0020
EEGFormer-Base 2.3M - 0.8670 ± 0.0020 0.8670 ± 0.0030
BIOT 3.2M 79.59 ± 0.57 0.8692 ± 0.0023 0.8815 ± 0.0043
EEG2Rep - 80.52 ± 2.22 - 0.8843 ± 0.0309
FEMBA-Huge 386M 81.82 ± 0.16 0.9005 ± 0.0017 0.8921 ± 0.0042
CEReBrO 85.15M 81.67 ± 0.23 0.9049 ± 0.0026 0.8916 ± 0.0038
LaBraM-Base 5.9M 81.40 ± 0.19 0.8965 ± 0.0016 0.9022 ± 0.0009
LaBraM-Huge 369.8M 82.58 ± 0.11 0.9204 ± 0.0011 0.9162 ± 0.0016
CBraMod 69.3M 82.49 ± 0.25 0.9221 ± 0.0015 0.9156 ± 0.0017

LUNA-Base 7M 80.63 ± 0.08 0.8953 ± 0.0016 0.8868 ± 0.0015
LUNA-Large 43M 80.96 ± 0.10 0.8986 ± 0.0005 0.8924 ± 0.0010
LUNA-Huge 311.4M 81.57 ± 0.11 0.9029 ± 0.0014 0.8957 ± 0.0011

Artifact and Slowing Detection (TUAR and TUSL)
LUNA delivers state-of-the-art results on TUAR and TUSL
(Table 2). LUNA-Huge achieves AUROC 0.92 on TUAR
and AUROC 0.80 on TUSL, outperforming other models.

Table 2: Performance comparison on TUAR and TUSL.

Model Size TUAR TUSL

AUROC ↑ AUC-PR ↑ AUROC ↑ AUC-PR ↑

Supervised Models
EEGNet - 0.75 ± 0.01 0.43 ± 0.03 0.64 ± 0.01 0.35 ± 0.01
EEG-GNN - 0.84 ± 0.02 0.49 ± 0.01 0.72 ± 0.01 0.38 ± 0.00

Self-supervised Models
BrainBERT 43.2M 0.75 ± 0.01 0.35 ± 0.01 0.59 ± 0.01 0.35 ± 0.00
EEGFormer-Large 3.2M 0.85 ± 0.00 0.48 ± 0.01 0.68 ± 0.01 0.39 ± 0.00
FEMBA-Base 47.7M 0.90 ± 0.01 0.56 ± 0.00 0.73 ± 0.01 0.29 ± 0.01
FEMBA-Large 77.8M 0.91 ± 0.00 0.52 ± 0.00 0.71 ± 0.01 0.28 ± 0.01

LUNA-Base 7M 0.90 ± 0.01 0.50 ± 0.01 0.76 ± 0.02 0.30 ± 0.00
LUNA-Large 43M 0.92 ± 0.00 0.51 ± 0.01 0.77 ± 0.01 0.29 ± 0.02
LUNA-Huge 311.4M 0.92 ± 0.01 0.53 ± 0.01 0.80 ± 0.01 0.29 ± 0.01

Emotion Recognition on Unseen Montage (SEED-V)
The SEED-V benchmark tests generalization to a novel 62-
channel montage, distinct from pre-training data. Results in
Table 3 show that LUNA’s performance lags behind leading
methods like CBraMod by 2-3 pp. This suggests gener-
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alizing zero-shot to vastly different, high-density layouts
remains challenging.

Table 3: Performance comparison on SEED-V.

Model Size Bal. Acc. (%) ↑ Cohen’s Kappa ↑ Weighted F1 ↑

Supervised Models
ContraWR 1.6M 0.3546 ± 0.0105 0.1905 ± 0.0188 0.3544 ± 0.0121
CNN-Transformer 3.2M 0.3678 ± 0.0078 0.2072 ± 0.0183 0.3642 ± 0.0088
FFCL 2.4M 0.3641 ± 0.0092 0.2078 ± 0.0201 0.3645 ± 0.0132
ST-Transformer 3.5M 0.3052 ± 0.0072 0.1083 ± 0.0121 0.2833 ± 0.0105

Self-supervised Models
BIOT 3.2M 0.3837 ± 0.0187 0.2261 ± 0.0262 0.3856 ± 0.0203
LaBraM-Base 5.8M 0.3976 ± 0.0138 0.2386 ± 0.0209 0.3974 ± 0.0111
CBraMod 14M 0.4091 ± 0.0097 0.2569 ± 0.0151 0.4101 ± 0.0108

LUNA-Base 7M 0.3730 ± 0.0098 0.1831 ± 0.0103 0.3389 ± 0.0091
LUNA-Large 43M 0.3918 ± 0.0066 0.2073 ± 0.0045 0.3586 ± 0.0013
LUNA-Huge 311.4M 0.3900 ± 0.0096 0.2037 ± 0.0103 0.3506 ± 0.0047

4.3. Computational Efficiency
LUNA achieves better efficiency compared to full and al-
ternating attention models when the number of channels
or patches is increased (while keeping the other fixed). As
shown in Figure 2, LUNA’s patch-wise attention enables
thousands of temporal patches without the quadratic cost
faced by LaBraM. Also, Figure 3 shows that LUNA main-
tains near-constant compute cost when channel count in-
creases, outperforming CBraMod’s scaling for dense EEG.
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Figure 2: Scaling with number of patches.
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Figure 3: Scaling with number of channels.

4.4. Learned Query Specialization Visualization
Query Specialization Visual analysis of the learned
queries (Figure 4) highlights their role in topology-agnostic
representation. Queries exhibit distinct spatial profiles:
some are localized (e.g., frontal regions), while others aggre-
gate broader signals. This emergent specialization confirms
that LUNA learns flexible, data-driven spatial unification.
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Figure 4: Visualization of the attention patterns of queries.

5. Conclusion
We introduced LUNA, a self-supervised foundation model
that unifies diverse EEG electrode layouts into a fixed,
montage-agnostic latent space. LUNA achieves compet-
itive performance on different benchmarks, with significant
FLOPs/memory reductions across all tested configurations.
However, LUNA’s performance on unseen SEED-V topolo-
gies indicates sensitivity, likely due to pre-trained positional
encodings, showing a need for enhanced spatial generaliza-
tion or hybrid embeddings in future work.
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A. Appendix
This appendix provides supplementary details regarding
the model architecture, datasets, experimental settings, and
additional results supporting the findings presented in the
main paper.

A.1. Experimental Details

Datasets We use publicly available EEG datasets, pro-
vided in 4.

All subjects and recordings from the downstream evaluation
datasets (TUAB, TUAR, TUSL, SEED-V) were strictly
excluded from this pre-training set to ensure fair evaluation
of generalization. For LUNA, the input EEG is segmented
into patches, consisting of 40 timestamps. For most datasets,
EEG recordings are sliced into non-overlapping 5-second
segments to form individual training/evaluation samples.
SEED-V dataset uses its default 1-second sample duration.

Fine-tuning and Data Splits For the TUAB dataset,
we use the official train-test split. As the TUSL and
TUAR datasets lack official test splits, we implement an
80%/10%/10% randomized split for training, validation,
and testing. For SEED-V, fifteen trials are divided equally
into train, validation, and test sets for each session. For
the TUAR dataset, we adopt a multiclass classification ap-
proach, restricting to 5 distinct artifact types in a single-label
setting, similar to EEGFormer (Chen et al., 2024). We opti-
mize binary cross-entropy loss for TUAB and cross-entropy
loss for other datasets. We report the mean and standard
deviation of results obtained across three different random
seeds.

Preprocessing We apply a minimal, standardized prepro-
cessing pipeline to all EEG data. Signals are first bandpass
filtered between 0.1 Hz and 75 Hz. A notch filter (50Hz
or 60Hz) is applied to remove power-line interference. All
signals are then resampled to 256 Hz. For TUEG, TUAB,
TUAR, and TUSL datasets, signals are converted to a bipo-
lar montage; Siena and SEED-V are processed in unipolar
format. Finally, each channel within each sample is normal-
ized using z-score normalization.

Computational Environment All experiments were con-
ducted on a cluster of eight NVIDIA A100 GPUs, using
Python 3.11.6 and PyTorch 2.4.1 with CUDA 12.1. Train-
ing utilizes ‘bf16‘ mixed-precision. Experiments were con-
ducted using NVIDIA A100 GPUs. Pre-training took ap-
proximately 1 day on 8 GPUs for the base and large models
and 16 GPUs for the huge model.

A.2. Model Architecture Details

The following tables show the hyperparameter setup for the
pre-training and the downstream fine-tuning for LUNA.

Table 5: Hyperparameters for EEG pre-training.

Hyperparameters LUNA-Base LUNA-Large LUNA-Huge

Temporal Encoder

Input channels {1,8,8} {1,16,16} {1,32,32}
Output channels {16,16,16} {24,24,24} {32,32,32}

Kernel size {20,3,3}
Stride {10,1,1}

Padding {9,1,1}

Patch size 40
Transformer encoder layers 8 10 24

Number of queries 4 6 8
Query size 64 96 128
Hidden size 256 576 1024
MLP size 1024 2304 4096

Attention head number 8 12 16

Batch size per GPU 2040 2040 720
Total batch size 8160 8160 11520

Peak learning rate 1.25e-4
Minimal learning rate 2.5e-7

Learning rate scheduler Cosine
Optimizer AdamW
Adam β (0.9,0.98)

Weight decay 0.05
Total epochs 60

Warmup epochs 10
Loss type Smooth-L1

Non-masked region loss coefficient 0.05
Query specialization loss coefficient 0.8

Gradient clipping 1
Mask ratio 0.5
Precision bf16-mixed

Table 6: Hyperparameters for downstream fine-tuning.

Hyperparameters Values

Batch size per GPU 512
Peak learning rate 1e-4

Minimal learning rate 5e-6
Learning rate scheduler Cosine

Optimizer AdamW
Adam β (0.9,0.999)

Weight decay 0.05
Total epochs 50

Early stopping patience 10
Warmup epochs 5

Drop path 0.1 (B/L) 0.2 (H)
Layer-wise learning rate decay 0.5 (B) 0.8 (L/H)

Label smoothing (multi-class classification) 0.1

A.2.1. COMPLEXITY ANALYSIS

The computational complexity of key attention stages and a
comparison with alternatives are shown in 7 and 8.

A.3. Detailed Literature Review

To contextualize our contributions, this section discusses
relevant state-of-the-art methodologies that we will compare

7
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Table 4: Summary of Datasets Used.

Dataset # Subjects # Samples (Train/Val/Test or Total) Hours of Recordings # Channels Montage Used

TUEG (Pre-train) 14,987 15,686,874 (Total) 21,787.32 20 or 22 Bipolar
Siena (Pre-train) 14 101,520 (Total) 141.0 29 Unipolar
TUAB 2,329 591,357 / 154,938 / 74,010 1,139.31 22 Bipolar
TUAR 213 49,241 / 5,870 / 5,179 83.74 22 Bipolar
TUSL 38 16,088 / 1,203 / 2,540 27.54 22 Bipolar
SEED-V 15 43,328 / 43,360 / 31,056 32.70 62 Unipolar

Table 7: Complexity Breakdown of LUNA Encoder Stages.

Stage Input Shape Complexity

Channel-Unification Module (B · S) × C × E O(B · S · Q · C · E)
Query Self-Attention (B · S) × Q × E O(B · S · Q2 · E)
Patch-wise Attention Encoder B × S × (Q · E) O(B · S2 · Q · E)

Table 8: Attention Complexity Comparison.

Method Bottleneck Complexity

LUNA O(B · S2 · Q · E) or O(B · S · Q · C · E)
Full-Attention (e.g., LaBraM) O(B · S2 · C2 · E)
Alternating Attention (Patches) O(B · S2 · C · E)
Alternating Attention (Channels) O(B · S · C2 · E)

against. We focus on advancements in self-supervised learn-
ing for time series, the emergence of foundation models for
physiological signals, and existing approaches to managing
variable input structures, especially concerning topologi-
cal heterogeneity in the EEG domain and computational
efficiency.

A.3.1. SELF-SUPERVISED LEARNING STRATEGIES IN
EEG

Foundation models for EEG primarily rely on self-
supervised learning (SSL) to leverage large unlabeled
datasets. Masked signal modeling is a dominant paradigm.
BENDR (Kostas et al., 2021) pioneered this for EEG by
adapting masked prediction concepts from speech, ap-
plying a contrastive objective to predict masked convolu-
tional features. Subsequent models refined this: Brain-
BERT (Wang et al., 2023) performs masked prediction
on channel-independent spectrograms for intracranial elec-
troencephalography (iEEG); EEGFormer (Chen et al., 2024)
and LaBraM (Jiang et al., 2024) predict vector-quantized
(VQ) representations of masked patches, learning discrete
codebooks; CBraMod (Wang et al., 2025) directly recon-
structs masked raw signal patches. LUNA employs a similar
masked reconstruction objective but applies it after project-
ing channel information into a unified latent space, requiring
the decoder to reconstruct channel-specific details from this
compressed representation.

A.3.2. MODELING SPATIAL STRUCTURE AND
TOPOLOGY VARIATION IN EEG

Capturing the spatial relationships between EEG channels
is vital but complicated by varying electrode counts and lay-
outs across datasets. Several strategies have been explored
in the literature:
Channel Independence: Early approaches and models like
BrainBERT (Wang et al., 2023) and EEGFormer (Chen et al.,
2024) process each channel’s data independently before po-
tentially combining them later. While inherently handling
varying channel numbers, this neglects early modeling of
cross-channel interactions.
Fixed-Topology Spatial Modeling: Models like Brant
(Zhang et al., 2023) use dedicated spatial encoders alongside
temporal ones but assume a consistent channel configura-
tion, limiting cross-dataset generalization. Graph Neural
Networks (GNNs) (Tang et al., 2022) explicitly model spa-
tial relationships using a predefined adjacency graph, but
require mechanisms to handle dynamically changing graph
structures when topologies vary. LUNA avoids pre-defined
graphs or fixed structures.
Joint Spatio-Temporal Attention: LaBraM (Jiang et al.,
2024) flattens channel and patch dimensions into one long
sequence, allowing a standard Transformer to learn spatio-
temporal dependencies simultaneously. However, this in-
curs O((SC)2) complexity, scaling quadratically with both
sequence length/patches (S) and channels (C). CBraMod
(Wang et al., 2025) and CEReBrO (Dimofte et al., 2025) use
alternating or parallel spatial and temporal attention mech-
anisms, reducing complexity to O(max(S2, C2)) but still
scaling quadratically with the dominant dimension. BIOT
(Yang et al., 2023) uses linear attention after flattening,
improving efficiency but potentially limiting modeling ca-
pacity. LUNA differs significantly by performing channel
unification first before applying temporal attention with
quadratic complexity only on the patch dimension and the
much smaller latent dimension Q.
Explicit Topology Mapping: Some methods explic-

itly map varying topologies to a canonical representation.
MMM (Yi et al., 2023) maps channels to predefined anatom-
ical regions but relies on hand-engineered features (Differ-
ential Entropy) rather than raw signals. PopT (Chau et al.,
2025) aggregates pre-computed channel-independent tempo-
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Table 9: Ablation study results (LUNA-Base) on TUAB and TUAR datasets.

Model Configuration TUAB AUROC TUAB AUC-PR TUAR AUROC TUAR AUC-PR

LUNA-Base (Full Model) 0.887 ± 0.002 0.895 ± 0.002 0.902 ± 0.011 0.495 ± 0.010

Unification Module:
- Region-based Attention 0.883 ± 0.001 (↓ 0.004) 0.892 ± 0.002 (↓ 0.003) 0.896 ± 0.001 (↓ 0.006) 0.509 ± 0.006 (↑ 0.014)

Other Components:
- w/o Query Specialization Loss 0.884 ± 0.003 (↓ 0.003) 0.892 ± 0.002 (↓ 0.003) 0.895 ± 0.005 (↓ 0.007) 0.498 ± 0.010 (↑ 0.003)
- w/o Frequency Features 0.876 ± 0.012 (↓ 0.011) 0.883 ± 0.005 (↓ 0.012) 0.893 ± 0.011 (↓ 0.009) 0.490 ± 0.011 (↓ 0.005)

ral features using 3D electrode coordinates. While achieving
topology invariance, these methods are not fully end-to-end
or rely on external information (regions). LUNA learns an
end-to-end mapping from raw signals using learned queries
without requiring pre-defined structures.

A.4. Learned Queries and Efficient Attention for Set
Abstraction

LUNA’s core mechanism for topology unification draws
inspiration from architectures designed for permutation-
invariant processing of set-structured data. Set Transformer
(Lee et al., 2019) introduced the concept of using a small set
of learnable inducing points (queries) and an Induced Set At-
tention Block to summarize information from a larger input
set via cross-attention, reducing the complexity from O(N2)
to O(M ·N). PerceiverIO (Jaegle et al., 2022) further devel-
oped this mechanism, demonstrating its power in creating
a fixed-size latent bottleneck capable of handling diverse,
variable-sized inputs across different modalities (images,
text) and enabling flexible decoding via task-specific output
queries.

LUNA adapts this principle specifically for EEG topology
invariance. We treat the set of EEG channel features at a
given time interval (patch) as the input set. By applying
cross-attention between the channel features (as keys/values)
and a small number (Q) of learned queries, LUNA projects
the variable-channel input onto a fixed-size latent space
(RQ×E). This projection is permutation-invariant with re-
spect to the input channels, thus achieving topology agnosti-
cism. Furthermore, it improves computational efficiency, as
the complexity of this step scales linearly with the number
of channels.

A.5. Additional Quantitative Results

A.5.1. ABLATION STUDIES

We validate the impact of LUNA’s key design choices on
TUAB and TUAR (Table 9).

Learned Queries vs. Fixed Regions Replacing learned
queries with predefined spatial regions (similar to what
MMM (Yi et al., 2023) does) slightly reduces AUROC
(-0.004 to -0.006), confirming that learned queries offer

flexibility and adaptiveness beyond anatomical priors.

Query Specilization Loss Removing the specialization
loss results in modest AUROC declines (-0.003 to -0.006),
showing that query diversity improves robustness, especially
for complex artifacts.

Frequency Features Ablating frequency embeddings
leads to the largest drop (up to -0.012 AUROC), showing
their complementary role to temporal features in enhancing
representation quality.

A.5.2. TRAINING CURVES

The pre-training loss curves for LUNA-Base are shown in 5.
The reconstruction loss drops show an initial plateau, then
drops slowly over the epochs, while the query specialization
shows a jump and then a slow decrease, indicating more
orthogonal query usage over time. The initial drop of the
query specialization might be due to a trivial case where
a query attends to only one channel. The queries learn
to attend to their own specialized areas afterwards while
covering all the channels in the input.
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Figure 5: Loss curves during pre-training for LUNA-Base
(Reconstruction and Query Specialization Loss).
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A.6. Additional Visualizations

Pre-trained Representations t-SNE visualizations (Fig-
ure 6 and Figure 7) reveal that even before fine-tuning,
LUNA’s encoder captures task-relevant structure. Normal
and abnormal EEGs form separate clusters in TUAB, while
artifact classes are partially separated in TUAR, demonstrat-
ing effective pre-training.
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Figure 6: TUAB dataset (Normal vs. Abnormal Signal).
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Figure 7: TUAR dataset (Artifact Types).

Reconstruction Examples Figures 8, 9, and 10 show ex-
amples of the model reconstructing masked patches (gray
regions) for inputs with 20, 22, and 29 channels, respec-
tively. The reconstructions capture the underlying signal
trend and demonstrate robustness across different topologies
seen during pre-training.

Figure 8: Example reconstruction on input with 20 channels
(masked regions in gray).

Figure 9: Example reconstruction on input with 22 channels
(masked regions in gray).

Figure 10: Example reconstruction on input with 29 chan-
nels (masked regions in gray).
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