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Abstract

Learning to defer (L2D) allows prediction tasks to be allocated to a human or
machine decision maker, thus getting the best of both’s abilities. Yet this allocation
decision depends on a ‘rejector’ function, which could be poorly fit or otherwise
misspecified. In this work, we perform uncertainty quantification for the rejector
sub-component of the L2D framework. We use conformal prediction to allow the
reject to output sets, instead of just the binary outcome of ‘defer’ or not. On tasks
ranging from object to hate speech detection, we demonstrate that the uncertainty
in the rejector translates to safer decisions via two forms of selective prediction.

1 INTRODUCTION

Learning-to-Defer (L2D) by [11, 14] is a framework for human-AI collaboration that divides respon-
sibility between machine and human decision makers. For every test instance, a ‘rejector’ function
decides if the case should be passed to either a human or model (but not both). The rejector thus
can be seen as a meta-classifier that determines how to assign responsibility based on which deci-
sion maker (human or machine) is more likely to make the correct prediction. While L2D systems
offer the promise of improved safety and robustness—by having a human available for support—
this promise critically depends on the rejector’s performance. Being a predictive model itself, the
rejector is susceptible to the usual failure modes, such as distribution shift between training and test
data.

In this paper, we perform principled uncertainty quantification for the rejector sub-component of
L2D systems. Specifically, we use the framework of conformal prediction to allow the rejector
to output sets, instead of just a single binary outcome (defer or not). This allows the rejector to
express its uncertainty about whether the human or machine should be assigned to make the decision.
In turn, this allows for safer decision making—for example, by abstaining from the prediction all
together or querying both the human and model for their predictions. We report experimental results
on tasks ranging from object to hate speech detection, showing that having an uncertain rejector
can improve performance in uncertain cases via abstaining to make a prediction or checking for
consensus between the human and model predictions.

2 BACKGROUND

2.1 Learning to Defer

Setting, Data, and Model We focus on multiclass L2D (with one expert) [11, 14], though the
ideas are presented can straightforwardly generalize to L2D-based regression [22]. Let X denote
the feature space and Y the label space, a categorical encoding of K ∈ N≥2 classes. Let xn ∈ X
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denote a feature vector, and yn ∈ Y denotes the associated class index. L2D assumes that we have
access to human predictions, denoted mn ∈ Y for the associated feature vector xn. The training
data then includes the features, the true label, and the human’s prediction: D = {xn, yn,mn}Nn=1.
The human is assumed to have some skill at the prediction task but is not an oracle. For example,
the feature vector could be a medical image, mn is the expert’s diagnosis from looking at the image,
and yn is a true label that can only be obtained from a biopsy. L2D also assumes that the human has
access to background knowledge that the classifier does not, such as years of medical training in the
aforementioned example. The L2D framework requires two sub-models: a classifier and a rejector
[7, 6]. We denote the classifier as h : X → Y and the rejector as r : X → {0, 1}. When r(x) = 0,
the classifier makes the decision, and when r(x) = 1, the classifier abstains and defers the decision
to the human. Thus the rejector can be thought of as a ‘meta-classifier,’ predicting which predictor
would most likely be correct in its prediction.

Learning Learning in L2D requires we fit both the rejector and classifier. We assume that whoever
makes the prediction—model or human—incurs a loss of zero (correct) or one (incorrect). Using
the rejector to toggle between the human and model, we have the overall classifier-rejector loss:

L0−1(h, r) = Ex,y,m [(1− r(x)) I[h(x) ̸= y] + r(x) I[m ̸= y]] (1)
where I[h(x) ̸= y] denotes an indicator function that checks if the prediction and label are equal.
Minimizing this loss results in the Bayes optimal classifier and rejector:

h∗(x) = argmax
y∈Y

P(y = y|x), r∗(x) = I
[
P(m = y|x) ≥ max

y∈Y
P(y = y|x)

]
(2)

where P(y|x) is the probability of the label under the data generating process, and P(m = y|x) is
the probability that the expert is correct. The assumption that the expert has additional knowledge is
what allows it to possibly outperform the Bayes optimal classifier.

Surrogate Losses Several consistent surrogate losses have been proposed for Equation 1 [14, 20,
13, 12, 2, 4]. For our implementation, we focus on the two surrogates that have demonstrated
the ability to learn calibrated predictors in practice—since the more calibrated the predictor, the
better the conformal prediction results will be. Specifically, we use Verma and Nalisnick [20]’s one-
vs-all (OvA) parameterization and Cao et al. [3]’s assymetric softmax (A-SM) parameterization.
These parameterizations assume the classifier and rejector are unified via an augmented label space:
Y⊥ = Y ∪ {⊥}, where ⊥ denotes the rejection option. Then let gk : X 7→ R for k ∈ [1,K] where
k denotes the class index, and let gK+1 : X 7→ R denote the rejection (⊥) option. The g functions
are analogous to the logits of a neural-network-based classifier. The OvA surrogate loss is given as
[20]:

ψOvA(g1, . . . , gK+1;x, y,m) = ϕ[gy(x)] +
∑

y′∈Y,y′ ̸=y

ϕ[−gy′(x)] + ϕ[−gK+1(x)]

+ I[m = y] (ϕ[gK+1(x)]− ϕ[−gK+1(x)])

(3)

where ϕ : {±1} × R 7→ R+ is a binary surrogate loss. For instance, when ϕ is the logistic loss, we
have ϕ[f(x)] = log(1 + exp{−f(x)}). The A-SM surrogate loss is defined as follows [3]:
ψA-SM(g1, . . . , gK+1;x, y,m) = − logϕA-SM(g(x), y)− I[m ̸= y] · log (1− ϕA-SM(g(x),K + 1))

− I[m = y] · logϕA-SM(g(x),K + 1)
(4)

where

ϕA-SM(g(x), y) =


exp(gy(x))∑K

y′=1 exp(gy′(x))
if y < K + 1,

exp(gK+1(x))∑K+1
y′=1 exp(gy′(x))−maxy′∈Y exp(gy′(x))

otherwise.

Here the ‘asymmetry’ is due to the softmax having different terms in the denominator for the class
and rejector terms. The symmetric softmax parameterization [14] has the same denominator for
both terms, which leads to issues for estimating the expert’s correctness probability in practice [20,
3]. For both parameterizations, at test time, the classifier is obtained by taking the maximum over
g functions: ŷ = h(x) = argmaxk∈[1,K] gk(x). The rejection function is given as: r(x) =

I[gK+1(x) ≥ maxk gk(x)].
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2.2 Conformal Prediction

Conformal prediction (CP) is a distribution-free approach to uncertainty quantification with finite-
sample guarantees [18]. Given a test-time feature vector xN+1, CP seeks to construct a pre-
diction set C(xN+1; τ) ⊆ Y such that the true label yN+1 is included with probability 1 − α:
P
(
yN+1 ∈ C (xN+1; τ)

)
≥ 1− α, for α ∈ [0, 1]. τ is a parameter that controls the set size, as will

be described below. This statement is a marginal guarantee, meaning that it will hold, on average,
over test samples but will not necessarily hold for any particular sample. CP’s aforementioned guar-
antee is built off the crucial assumption that the test data is drawn exchangeably with a calibration set.
To compute the parameter τ that controls the prediction sets, the split-CP (a.k.a. inductive CP) algo-
rithm [16] is a popular choice due to its computational and sample efficiency [9] and resemblance to
the traditional workflow of hyperparameter tuning. Split-CP requires τ be fit to a held-out validation
set, which must be drawn exchangeably with the test set for the CP coverage guarantee to hold.
Given an already trained classifier whose softmax outputs are denoted f(x) = [f1(x), . . . , fK(x)].
CP then requires a score function be chosen that quantifies how well the model’s prediction con-
forms to the true label. Using the softmax confidence associated with the true label is a reasonable
choice: s (x, y;f) = 1 − fy(x), where fy(x) is the softmax score for the true label. Others exist
that incorporate all dimensions that have higher confidence than the true label [17]. Split-CP then
proceeds by evaluating s (x, y;f) on all points in the held-out set and setting τ̂ to be the (1 − α)
quantile (with a finite-sample correction) of the empirical distribution of scores. For a test time point
xN+1, the prediction set is constructed as: C(xN+1) = {j|fj(xN+1) > 1− τ̂}, which represents
the softmax dimensions that outscore the threshold 1 − τ̂ . CP is commonly evaluated by checking
that the desired coverage is achieved in practice while also having efficient set sizes. The latter is
crucial since the CP guarantee is trivially met by choosing C(xN+1; τ) = Y for (1− α)% of cases.

3 UNCERTAIN DEFERRAL VIA CONFORMAL PREDICTION

We will now apply the CP framework to quantify the uncertainty in the rejector sub-component
of an L2D system. Concretely, instead of just outputting 0 (model) or 1 (human), we want the
CP-based rejector to output a set Cr (x; τ), which is an element of the superset {{0}, {1}, {0, 1}}.
Cr (x; τ) = {0, 1} means that the rejector is unsure if the decision should be allocated to the human
or model. Thus, instead of prediction sets, we call the uncertainty set of the rejector a deferral set.
In Section 3.2, we will discuss how to incorporate these sets into downstream decision making.

Ideal Construction Recalling the Bayes optimal decision rule for the rejector (Equation 2), it
would be ideal if Cr (x; τ) could satisfy the guarantee: P (r∗ (xN+1) ∈ Cr (xN+1; τ)) ≥ 1− α,
which means that, marginally, the probability that the output of the Bayes optimal rejector is in the
set is at least 1−α. Constructing an adaptive set via validation statistics, unfortunately, requires we
have access to P(m = y|x) to compute a non-conformity score. Moreover, if we did have access to
P(m = y|x) (or a close approximation), then we could exactly quantify the uncertainty in deferral
by direct use of P(m = y|x) and have no need for CP.

Practical Construction We instead consider constructing the set to capture an alternative quantity:
I
[
mN+1 = yN+1

]
, an indicator function representing if the human will make the correct prediction.

Similarly, we wish to construct prediction sets such that this binary variable will have a coverage
guarantee:

P
(
I
[
mN+1 = yN+1

]
∈ Cr (xN+1; τ)

)
≥ 1− α. (5)

This statement is not equivalent to the one above since the expert could be correct
(i.e. I

[
mN+1 = yN+1

]
= 1) but P(y|x) still be a better predictive model (i.e. r∗(x) = 0). In

other words, this formulation is considering the expert’s performance in isolation of the classifier’s.
However, the semantics are retained since Cr (xN+1; τ) = {0} means that the expert will likely
be wrong and so using the classifier is either a good decision or not an inferior one (if the model
would also be wrong). Conversely, Cr (xN+1; τ) = {1} means that the expert will likely make the
correction prediction. If Cr (xN+1; τ) = {0, 1}, then the prediction set is unsure if the expert will
be correct and still suggests uncertainty in the deferral decision. This relaxation, importantly, allows
us to define a conformity statistic from which to compute a practical set, as we will discuss below.
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3.1 Constructing Deferral Sets

We can construct deferral sets that follow the guarantee in Equation 5 by treating the deferral de-
cision as a binary classification problem of whether the expert will make the correct prediction.
Fortunately, both aforementioned L2D parameterizations directly model the probability that the ex-
pert will be correct. For the OvA parameterization, this probability is directly parameterized by
the (K + 1)th binary classifier: p̂(m = y|x) = ϕ [gK+1(x)] = (1 + exp{−gK+1(x)})−1, with
the logistic loss again being assumed. The A-SM similarly uses the deferral score, but here the
parameterization requires evaluating all K + 1 functions:

p̂(m = y|x) = ϕA-SM(g(x),K + 1) =
exp(gK+1(x))∑K+1

y′=1 exp(gy′(x))−maxy′∈Y exp(gy′(x))
(6)

Both estimators have been shown to be competitively calibrated [3]. Given these estimators, we
construct the usual non-conformity score for binary classification:

s (x, y,m; p̂) =

{
1− p̂(m = y|x) if m = y
p̂(m = y|x) if m ̸= y.

(7)

To obtain the threshold τ̂ , one would follow the standard procedure of computing these non-
conformity scores on a validation set [1], obtaining the (1−α) empirical quantile, and then applying
the threshold at test time as follows:

Cr (x; τ̂) =


{0} if 1− p̂(m = y|x) ≥ 1− τ̂

{1} if p̂(m = y|x) ≥ 1− τ̂

{0, 1} otherwise
(8)

3.2 Using Deferral Sets in Decision Making

Now that we have detailed how to construct CP deferral sets, we next address how to use them to
improve decision making within the L2D framework. While there are surely alternative uses, below
we detail three that we believe will be practical and useful in a variety of applications.

Abstention The use that likely first comes to mind is prediction with the option to abstain [5]. In
the traditional case, the classifier only makes a prediction if it is confident; otherwise, it abstains.
Our CP deferral sets allow for a similar workflow, but instead of abstaining because the prediction
is uncertain, the L2D system will abstain because it is uncertain about to whom to allocate respon-
sibility, the machine or human. Specifically, if Cr (xN+1; τ̂) = {0, 1}, then the L2D system will
abstain. Otherwise, the system will defer if r∗(x) = 1.

Consensus Prediction We next consider how to make a prediction even if Cr (xN+1; τ̂) = {0, 1}.
If the rejector is uncertain to defer or not, we propose querying both the model and human for
their predictions. If they agree, then that consensus prediction is output as the L2D system’s final
prediction. If they do not agree, then the system abstains from making any prediction. This workflow
has the same appeal to safety as the abstention-only option, but it will likely have higher coverage
since it will make predictions when the abstention-only workflow would not.

4 EXPERIMENTS

We now experimentally demonstrate that incorporating uncertainty into the deferral decision via CP
can have tangible benefits to the safety and robustness of L2D systems. Our experiments follow
closely the setup in previous works on L2D [15, 21, 3] for base models, experts simulation, data
processing, training and hyperparameters, while introducing uncertainty quantification for the re-
jector. We trained L2D models using the OvA and A-SM surrogate losses. Taking this base L2D
model, we then apply the CP procedure described in Section 3. We utilize three datasets tailored to
different tasks: CIFAR-10 [10] for object detection, HAM10000 [19] for skin lesion diagnosis, and
Hate Speech [8] for hate speech detection.
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Table 1: Performance Comparison. The left table reports coverage and efficiency of conformal
prediction given confidence level 1 − α = 90%, while the right table focuses on abstention and
consensus prediction metrics.

(a) Coverage and Efficiency

Dataset Param. Coverage (%) Avg. Size

CIFAR-10 OvA 86.94 ± 0.86 1.07 ± 0.03
A-SM 90.53 ± 0.56 1.37 ± 0.01

HAM10k OvA 90.65 ± 0.63 1.25 ± 0.01
A-SM 91.13 ± 0.58 1.28 ± 0.03

HateSpeech OvA 90.35 ± 0.53 1.03 ± 0.03
A-SM 90.67 ± 0.52 1.01 ± 0.01

(b) Abstention and Consensus Prediction

Param. Method Sys. Acc. Ratio Deferred Sys. Cov.

C
IF

A
R

-1
0 OvA

Base Model 84.71 ± 0.46 55.26 ± 1.76 100
Abstention 86.72 ± 1.02 56.41 ± 2.30 92.14 ± 0.48
Consensus 86.79 ± 1.07 56.38 ± 2.31 93.32 ± 0.52

A-SM
Base Model 84.01 ± 0.45 56.63 ± 3.73 100
Abstention 87.05 ± 0.76 84.13 ± 4.56 62.53 ± 0.75
Consensus 87.58 ± 0.61 79.62 ± 4.31 67.57 ± 0.75

H
A

M
10

k OvA
Base Model 82.1 ± 0.49 33.71 ± 2.39 100
Abstention 87.48 ± 0.51 35.91 ± 2.84 75.23 ± 1.40
Consensus 85.72 ± 0.63 34.27 ± 2.52 88.39 ± 1.85

A-SM
Base Model 78.92 ± 0.29 26.68 ± 3.07 100
Abstention 87.05 ± 0.87 28.11 ± 3.45 72.82 ± 1.19
Consensus 84.76 ± 0.44 27.49 ± 3.16 84.48 ± 0.95

H
at

e
Sp

ee
ch OvA

Base Model 92.09 ± 0.07 42.41 ± 0.99 100
Abstention 92.28 ± 0.14 42.48 ± 0.96 99.38 ± 0.43
Consensus 92.25 ± 0.13 42.42 ± 0.96 99.78 ± 0.22

A-SM
Base Model 91.82 ± 0.32 67.91 ± 1.76 100
Abstention 91.88 ± 0.15 67.79 ± 1.74 99.16 ± 0.75
Consensus 91.88 ± 0.12 67.81 ± 1.73 99.65 ± 0.28

Coverage and Efficiency We experimentally verify that the target coverage is met, validating
CP’s guarantee (Equation 5). In Table 1, we report the empirical coverage and average set size for
the three aforementioned datasets. Both parameterizations meet the target coverage level (90%) for
all datasets except for OvA on CIFAR-10 (∼ 87%). In all cases, the sets are quite efficient, with
the average set size always being less than 1.3. The exceptionally small set size of 1.07 for OvA
on CIFAR-10 leads to its mis-coverage. We suspect the mis-coverage is due to (natural) train-test
distribution shift.

L2D with Abstention and Consensus We next investigate the efficacy of the abstention and con-
sensus decision making workflows presented in Section 3.2. In Table 1, we report the system accu-
racy, ratio of test points deferred, and the coverage of the system (i.e. the fraction of points for which
the system does not abstain) again for CIFAR-10, HateSpeech, and HAM10000. We see that both
OvA and A-SM improve upon the accuracy of the base L2D model for CIFAR-10 and HAM10000,
with improvements ranging from 2% to 5%. However, the coverage reduction is variable, ranging
from modest (−8%) to substantial (−38%), meaning that the accuracy improvement would be prac-
tical in some cases (e.g. OvA for CIFAR-10) and not in other (e.g. A-SM for CIFAR-10). On Hate
Speech, very few of the points were abstained, leading to uninformative accuracy results. We do
not see a clear superiority between the parameterizations.

5 Conclusions

In this paper, we have introduced an uncertainty-based method designed to enhance existing L2D
systems and help their rejectors incorporate uncertainty. However, the conformal scoring function
shall be carefully parameterized to best present the probability of the expert making the correct pre-
diction. Future work could explore the extent to which this method helps maintain system safety and
robustness across various failure modes, such as distribution shifts and shifts in human’s predictions.
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