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Abstract

Modelling the propagation of electromagnetic signals is critical for designing mod-1

ern communication systems. While there are precise simulators based on ray trac-2

ing, they do not lend themselves to solving inverse problems or the integration in3

an automated design loop. We propose to address these challenges through differ-4

entiable neural surrogates that exploit the geometric aspects of the problem. We5

first introduce the Wireless Geometric Algebra Transformer (Wi-GATr), a generic6

backbone architecture for simulating wireless propagation in a 3D environment. It7

uses versatile representations based on geometric algebra and is equivariant with8

respect to E(3), the symmetry group of the underlying physics. Second, we study9

two algorithmic approaches to signal prediction and inverse problems based on10

differentiable predictive modelling and diffusion models. We show how these let11

us predict received power, localize transmitters, and reconstruct the 3D environ-12

ment from the received signal. Finally, we introduce two large, geometry-focused13

datasets of wireless signal propagation in indoor scenes. In experiments, we show14

that our geometry-forward approach achieves higher-fidelity predictions with less15

data than various baselines.16

1 Introduction17

Modern communication is wireless: more and more, we communicate via electromagnetic waves18

through the antennas of various devices, leading to progress in and adoption of mobile phones, auto-19

motive, AR/VR, and IoT technologies [12, 16]. All these innovations build upon electromagnetic20

wave propagation. Therefore, modelling and understanding wave propagation in space is a core re-21

search area in wireless communication, and remains crucial as we are moving toward new generations22

of more efficient and spatially-aware wireless technologies.23

Wireless signal propagation follows Maxwell’s equations of electromagnetism and is often accurately24

modelled by state-of-the-art ray-tracing simulation software. However, these simulators take substan-25

tial time to evaluate for each scene, cannot be fine-tuned on measurements, and are (usually [29]) not26

differentiable. This limits their usefulness for solving inverse problems.27

In contrast, neural models of signal propagation can be evaluated cheaply, can be trained on real28

measurements in addition to simulation, and are differentiable and thus well-suited for solving29

inverse problems. Several such approaches have been proposed recently, often using image-based30

representations of the inputs and outputs and off-the-shelf vision architectures [6, 23, 34, 35, 44, 46,31

51, 52]. However, wireless surrogate modelling faces various challenges. Realistic training data32

is often scarce, requiring surrogate models to be data efficient. Wireless environments can consist33

of complex meshes. Finally, input and output data consist of a variety of data types, including the34

shape of extended 3D objects, point coordinates and spatial orientation of antennas, and information35

associated with the transmitted signal.36
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Figure 1: Geometric surrogates for modelling wireless signal propagation. (a): Predictive modelling of
channels from 3D geometry, transmitter, and receiver properties. Wi-GATr is a fast and differentiable surrogate
for ray tracers. (b): A probabilistic approach with diffusion models lets us reconstruct 3D environments (c) and
antenna positions (d) from the wireless signal.

In this work, we present a new approach to modelling wireless signal propagation. It is grounded in37

the observation that wireless propagation is inherently a geometric problem: a directional signal is38

transmitted by an oriented transmitting antenna, the signal interacts with surfaces in the environment,39

and the signal eventually impinges an oriented receiving antenna. We argue that it is critical for40

neural surrogates to model and flexibly represent geometric aspects (e. g. orientations, shapes) in41

the propagation environment. We therefore develop surrogate models based on flexible geometric42

representation and strong geometric inductive biases.43

We first propose the Wireless Geometric Algebra Transformer (Wi-GATr), a backbone architecture for44

wireless signal propagation problems. A key component is a new tokenizer for the diverse, geometric45

data of wireless scenes. The tokens are processed with a Geometric Algebra Transformer (GATr)46

network [9]. This architecture is equivariant with respect to the symmetries of wireless channel47

modelling, but maintains the scalability of a transformer architecture.48

Second, we study Wi-GATr models as differentiable, predictive surrogates for the simulator (see49

Fig. 1a). Here the network predicts observables such as the received power as a function of transmitter50

position, receiver position, and 3D environment. We show how this enables forward modelling, and51

in addition, inverse problem solving due to Wi-GATr’s differentiability.52

Next, we propose an alternative, more versatile probabilistic approach to prediction and inference53

tasks: training Wi-GATr diffusion models (Fig. 1b) on the joint distribution of transmitter, receiver,54

channel information, and 3D environment. At test time, the model can be flexibly conditioned on any55

available information to predict the received power, localize a transmitter or receiver (Fig. 1c), or56

even reconstruct the (full or partial) 3D geometry from the wireless signal (Fig. 1d).57

To enable machine learning development for wireless problems, we finally introduce two new datasets,58

Wi3R and WiPTR. Each dataset consists of thousands of indoor scenes of varying complexity and59

include all the geometric information that characterizes a wireless scene.60

Finally, we demonstrate the predictive and the probabilistic models on these datasets. Our experi-61

ments show that the Wi-GATr approach gives us a higher-fidelity predictions than various baselines,62

generalizes robustly to unseen settings, and requires up to 20 times less data for the same perfor-63

mance than a transformer baseline.64

2 Background and related work65

Wireless signal propagation. How do wireless signals propagate from a transmitting antenna66

(Tx) to a receiver antenna (Rx) in a (static) 3D environment? While the system is fundamentally67

described by Maxwell’s equations, for many realistic problems the ray approximation of geometric68

optics suffices [31]. It approximates the solution to Maxwell’s equations as a sum of planar waves69

propagating in all directions from Tx. Each planar wave is represented as a ray, characterized by70

various attributes (e. g., power, phase, delay) since transmission. As a ray reaches an object—that is,71
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it intersects with its mesh—the interaction is modelled as reflection, refraction, or diffraction. During72

such interactions, the power, phase, polarization, and propagation direction of the wave can change in73

complex, material-dependent ways. In addition, new rays can emanate from the point of interaction.74

After multiple interactions, the rays eventually reach the receiving antenna. The Tx and Rx are then75

linked by a connected path p of multiple rays. The effects on the received signal are described by the76

channel impulse response (CIR) h(τ) =
∑

p apδ(τ − τp), where ap ∈ C is the complex gain and τp77

the delay of the incoming rays [53].78

Maxwell’s equations and in extension ray propagation are highly symmetric. The received signal does79

not change under rotations, translations, and reflections of the whole scene, as well as the exchange80

of transmitter and receiver. The latter property is known as reciprocity [37].81

Wireless simulators. Wireless propagation models play a key role in design and evaluation of82

communication systems, for instance by characterizing the gain of competitive designs in realistic83

settings or by optimizing systems performance as in base station placement for maximal coverage.84

Statistical approaches [2] represent propagation as a generative model where the parameters of a85

probabilistic model are fitted to measurements. On the other hand, wireless ray-tracing approaches86

[1, 5, 29] are increasingly popular due to their high accuracy and because they do not require87

expensive field measurement collection campaigns.88

Neural wireless simulations. Both statistical and ray-tracing simulation techniques are accompanied89

by their own shortcomings, subsequently mitigated by their neural counterparts. Neural surrogates for90

statistical models [19, 40, 42, 56] reduce the amount and cost of measurements required. Neural ray91

tracers [29, 41, 58] address the non-differentiability of simulators using a NeRF-like strategy [38] by92

parameterizing the scene using a spatial MLP and rendering wireless signals using classic ray-tracing93

or volumetric techniques. While these techniques are faster than professional ray tracers, they are94

similarly bottlenecked by expensive bookkeeping and rendering steps (involving thousands of forward95

passes). In contrast, we propose a framework to simulate wireless signals with a single forward pass96

through a geometric transformer that is both sample-efficient and generalizes to novel scenes.97

Geometric deep learning. The growing field of geometric deep learning [11] aims to incorporate98

structural properties of a problem into neural network architectures and algorithms. A central concept99

is equivariance to symmetry groups [15]: a network f(x) is equivariant with respect to a group100

G if its outputs transform consistently with any symmetry transformation g ∈ G of the inputs,101

f(g · x) = g · f(x), where · denotes the group action. Of particular interest to us is the Euclidean102

group E(3) of isometries of 3D space, that is, transformations that leave Euclidean distances invariant.103

This group includes spatial translations, rotations, reflections, and their combinations. As we argued104

above, the physics of wireless signal propagation are invariant under this group.105

GATr. The Geometric Algebra Transformer (GATr) [9] is an E(3)-equivariant architecture for geo-106

metric problems. Among equivariant architectures, it stands out in two ways. First, it uses geometric107

(or Clifford) algebras [14, 22] as representations. For a rigorous introduction to these algebras, we108

refer the reader to Dorst [20]. From a practical machine learning perspective, these algebras define109

embeddings for various geometric primitices like 3D points, planes, or E(3) transformations. We110

will show that this representation is particularly well-suited for wireless channel modelling. Second,111

GATr is a transformer architecture [54]. It computes the interactions between multiple tokens through112

scaled dot-product attention. With efficient backends like FlashAttention [17], the architecture is scal-113

able to large systems, without any restrictions on the sparsity of interactions like in message-passing114

networks.115

Diffusion models. Diffusion models [25, 48, 50] are a class of generative models that iteratively116

invert a noising process. They have become the de-facto standard in image and video generation117

[26, 45]. Recently, they have also shown to yield promising results in the generation of spatial118

and sequential data, such as in planning [30] and puzzle solving [28]. Aside from their generative119

modelling capabilities, diffusion models provide a flexible way for solving inverse problems [13, 36]120

through multiplication with an appropriate likelihood term [48]. Furthermore, by combining an121

invariant prior distribution with an equivariant denoising network, one obtains equivariant diffusion122

models [33]. These yield a sampling distribution that assigns equal probability to all symmetry123

transformations of an object, which can improve performance and data efficiency in symmetry124

problems like molecule generation [27] and planning [10]. We will demonstrate similar benefits in125

modelling wireless signal propagation.126
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3 The Wireless Geometric Algebra Transformer (Wi-GATr)127

3.1 Problem formulation128

Our goal is to model the interplay between 3D environments, transmitting and receiving antennas, and129

the resulting transmitted wireless signals. More precisely, we consider wireless scenes consisting of:130

• The 3D geometry F of the environment. We specify it through a triangular mesh with a discrete131

material class associated with each mesh face.132

• A set of transmitting antennas ti for i = 1, . . . , nt. Each ti is characterized by a 3D position,133

an orientation, and any antenna characteristics. We will often focus on the case of a single Tx134

and then omit the index i.135

• Analogously, a set of receiving antennas ri for i = 1, . . . , nr.136

• The channel or signal hij between each transmitter i and each receiver j, which can be any137

observable function of the CIR.138

In this setting, we consider various downstream tasks:139

• Signal prediction is about predicting the signal received at a single antenna from a single140

receiver, p(h|F, t, r) with nt = nr = 1. This is exactly the task that ray-tracing simulators141

solve. Often, the signal is modelled deterministically as a function h(F, t, r).142

• Receiver localization: inferring the position and properties of a receiving antenna from one or143

multiple transmitters, r ∼ p(r|F, {ti}, {hi}), with nr = 1.144

• Geometry reconstruction or sensing: reconstructing a 3D environment partially, inferring145

p(Fu|Fk, t, r, h), where Fu and Fk are the unknown and known subsets of F , respectively.146

The latter two problems are examples of inverse problems, as they invert the graphical model that147

simulators are designed for. They are not straightforward to solve with the simulators directly, but we148

will show how neural surrogates trained on simulator data can solve them.149

3.2 Backbone150

Core to our approach to this family of inference problems is the Wireless Geometric Algebra151

Transformer (Wi-GATr) backbone. It consists of a novel tokenizer and a network architecture.152

Wireless GA tokenizer. The tokenizer takes as input some subset of the information characterizing153

a wireless scene and outputs a sequence of tokens that can be processed by the network. A key154

challenge in the neural modelling of wireless problems is the diversity of types of data involved. As155

we argued above, a wireless scene consists of the 3D environment mesh F , which features three-156

dimensional objects such as buildings and trees, antennas t and r characterized through a point-157

like position, an antenna orientation, and additional information about the antenna type, and the158

characteristics of the channel h.159

Data type Input parameterization Tokenization Channels (G3,0,1 embedding)

3D environment F • Triangular mesh 1 token per mesh face • Mesh face center (point)
• Vertices (points)
• Mesh face plane (oriented plane)

• Material classes • One-hot material emb. (scalars)

Antenna ti / ri • Position 1 token per antenna • Position (point)
• Orientation • Orientation (direction)
• Receiving / transmitting • One-hot type embedding (scalars)
• Additional characteristics • Characteristics (scalars)

Channel hij • Antennas 1 token per link • Tx position (point)
• Rx position (point)
• Tx-Rx vector (direction)

• Received power • Normalized power (scalar)
• Phase, delay, . . . • Additional data (scalars)

Table 1: Wireless GA tokenizer. We describe how the mesh parameterizing the 3D environment and the
information about antennas and their links are represented as a sequence of geometric algebra tokens. The
mathematical representation of G3,0,1 primitives like points or orientated planes is described in Appendix A.
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To support all of these data types, we propose a new tokenizer that outputs a sequence of geometric160

algebra (GA) tokens. Each token consists of a number of elements (channels) of the projective161

geometric algebra G3,0,1 in addition to the usual unstructured scalar channels. We define the GA162

precisely in Appendix A. Its main characteristics are that each element is a 16-dimensional vector163

and can represent various geometric primitives: 3D points including an absolute position, lines,164

planes, and so on. This richly structured space is ideally suited to represent the different elements165

encountered in a wireless problem. Our tokenization scheme is specified in Tbl. 1.166

Network. After tokenizing, we process the input data with a Geometric Algebra Transformer167

(GATr) [9]. This architecture naturally operates on our G3,0,1 parameterization of the scene. It is168

equivariant with respect to permutations of the input tokens as well as E(3), the symmetry group169

of translations, rotations, and reflections. These are exactly the symmetries of wireless signal170

propagation, with one exception: wireless signals have an additional reciprocity symmetry that171

specifies that the signal is invariant under an role exchange between transmitter and receiver. We will172

later show how we can incentivize this additional symmetry property through data augmentation.1173

Finally, because GATr is a transformer, it can process sequences of variable lengths and scales well174

to systems with many tokens. Both properties are crucial for complex wireless scenes, which can in175

particular involve a larger number of mesh faces.176

3.3 Predictive modelling177

The Wi-GATr backbone can be used either in a predictive or probabilistic ansatz. We begin with the178

predictive modelling of the measured channel information as a function of the complete 3D envi-179

ronment and the information characterizing the transmitter and receiver, hθ(F, t, r). This regression180

model is trained in a supervised way on simulated or measured wireless scenes.181

Forward prediction. The network thus learns a differentiable, deterministic surrogate for the182

simulator model hsim(F, t, r). At test time, we can use the network instead of a simulator to predict183

the signals in unseen, novel scenes. Compared to a simulator based on ray tracing, it has three184

advantages: it can be evaluated in microseconds rather than seconds or minutes, it can be finetuned185

on real measurements, and it is differentiable.186

Inverse problems. This differentiability makes such a surrogate model well-suited to solve187

inverse problems. For instance, we can use it for receiver localization. Given a 3D environment F ,188

transmitters {ti}, and corresponding signals {hi}, we can find the most likely receiver position and189

orientation as r̂ = argminr
∑

i∥hθ(F, ti, r)−h∥2. The minimization can be performed numerically190

through gradient descent, thanks to the differentiability of the Wi-GATr surrogate.191

3.4 Probabilistic modelling192

While a predictive model of the signal can serve as a powerful neural simulator, it has two shortcom-193

ings. Solving an inverse problem through gradient descent requires a sizable computational cost for194

every problem instance. Moreover, predictive models are deterministic and do not allow us to model195

stochastic forward processes or express the inherent uncertainty in inverse problems.196

Equivariant diffusion model. To overcome this, we draw inspiration from the inverse problem197

solving capabilities of diffusion models using guidance [13]. In this case, we formulate the learning198

problem as a generative modelling task of the joint distribution pθ(F, t, r, h) between 3D environment199

mesh F , transmitter t, receiver r, and channel h, for a single transmitter-receiver pair. Concretely,200

we follow the DDPM framework and use a Wi-GATr model as score estimator (denoising network).201

By using an invariant base density and an equivariant denoising network, we define an invariant202

generative model. See Appendix B for a detailed description of our diffusion model and the discussion203

of some subtleties in equivariant generative modelling.204

Unifying forward prediction and inverse problems as conditional sampling. A diffusion model205

trained to learn the joint density pθ(F, t, r, h) does not only allow us to generate unconditional206

samples of wireless scenes, but also lets us sample from various conditionals: given a partial wireless207

scene, we can fill in the remaining details, in analogy to how diffusion models for images allow for208

1We also experimented with a reciprocity-equivariant variation of the architecture, but that led to a marginally
worse performance without a significant gain in sample efficiency.
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Figure 2: Qualitative signal prediction results. We show a single floor plan from the WiPTR test set. The black
lines indicate the walls and doors, the colors show the received power as a function of the transmitter location
(brighter colours mean a stronger signal). The transmitting antenna is shown as a black cross. The z coordinates
of transmitter and receiver are all fixed to the same height. We compare the ground-truth predictions (top left) to
the predictions from different predictive models, each trained on only 100 WiPTR floor plans. Wi-GATr is able to
generalize to this unseen floor plan even with such a small training set.

inpainting. To achieve this, we use the conditional sampling algorithm proposed by Sohl-Dickstein209

et al. [48]: at each step of the sampling loop, we fix the conditioning variables to their known values210

before feeding them into the denoising network.211

This algorithm lets us solve signal prediction (sampling from pθ(h|F, t, r)), receiver localization212

(from pθ(r|F, t, h)), geometry reconstruction (from pθ(Fu|Fk, t, r, h)), or any other inference task213

in wireless scenes. We thus unify “forward” and “inverse” modelling in a single algorithm. Each214

approach is probabilistic, enabling us to model uncertainties. This is important for inverse problems,215

where measurements often underspecify the solutions.216

In principle, the unconditional diffusion objective should suffice to enable test-time conditional217

sampling. In practice, we find that we can improve the conditional sampling performance with two218

modifications. First, we combine training on the unconditional diffusion objective with conditional219

diffusion objectives. For the latter, we randomly select tokens to condition on and evaluate the220

diffusion loss only on the remaining tokens. Second, we provide the conditioning mask as an221

additional input to the denoising model. See Appendix B for details.222

4 New datasets223

While several datasets of wireless simulations and measurements exist [3, 4, 41, 57], they either do224

not include geometric information, are not diverse, are at a small scale, or the signal predictions are225

not realistic. To facilitate the development of machine learning methods with a focus on geometry,226

we generate two new datasets of simulated wireless scenes.2 Both feature indoor scenes and channel227

information generated with a state-of-the-art ray-tracing simulator [1] at a frequency of 3.5 GHz.228

They provide detailed characteristics for each path between Tx and Rx, such as gain, delay, angle229

of departure and arrival at Tx/Rx, and the electric field at the receiver itself, which allows users to230

compute various quantities of interest themselves. See Appendix C for more details.231

Wi3R dataset. Our first dataset focuses on simplicity: each of 5000 floor plans has the same size and232

number of rooms, and all walls have the same material across layouts. They differ only in their layouts,233

which we take from Wi3Rooms [41], Tx positions, and Rx positions. In Appendix C we define training,234

validation, and test splits as well as an out-of-distribution set to test the robustness of different models.235

2We are preparing the publication of the datasets.
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Wi3R dataset WiPTR dataset

Wi-GATr Transf. SEGNN PLViT Wi-GATr Transf. PLViT(ours) (ours)

In distribution
Rx interpolation 0.63 1.14 0.92 5.61 0.53 0.84 1.67
Unseen floor plans 0.74 1.32 1.02 5.84 0.54 0.87 1.66

Symmetry transformations
Rotation 0.74 78.68 1.02 5.84 0.54 28.17 1.66
Translation 0.74 64.05 1.02 5.84 0.54 4.04 1.66
Permutation 0.74 1.32 1.02 5.84 0.54 0.87 1.66
Reciprocity 0.74 1.32 1.01 8.64 0.54 0.87 1.65

Out of distribution
OOD layout 9.24 14.06 2.34 7.00 0.54 1.01 1.58

Table 2: Signal prediction results. We show the mean absolute error on the received power in dBm (lower is
better, best in bold). Top: In-distribution performance. Middle: Generalization under symmetry transformations.
Bottom: Generalization to out-of-distribution settings. In almost all settings, Wi-GATr is the highest-fidelity
surrogate model.

WiPTR dataset. Next, we generate a more varied, realistic dataset based on the floor layouts in236

the ProcTHOR-10k dataset for embodied AI research [18]. We extract the 3D mesh information237

including walls, windows, doors, and door frames and assign 6 different dielectric materials for238

different groups of objects. Our dataset consists of 12k different floor layouts, split into training,239

test, validation, and OOD sets as described in Appendix C. Not only does WiPTR stand out among240

wireless datasets in terms of its level of detail and scale, but because it is based on ProcTHOR-10k, it241

is also suited for the integration with embodied AI research.242

5 Experiments243

5.1 Predictive modelling244

We focus on the prediction of the time-averaged non-coherent received power h =
∑

p |ap|2,245

disregarding delay or directional information that may be available in real measurements. We train246

predictive surrogates hθ(F, t, r) that predict the power as a function of the Tx position and orientation247

t, Rx position and orientation r, and 3D environment mesh F , on both the Wi3R and WiPTR datasets.248

All models are trained with reciprocity augmentation, i. e., randomly flipping Tx and Rx labels during249

training. This improves data efficiency slightly, especially for the transformer baseline.250

In addition to our Wi-GATr model, described in Sec. 3, we train several baselines. The first is a251

vanilla transformer [54], based on the same inputs and tokenization of the wireless scene, but without252

the geometric inductive biases. Next, we compare to the E(3)-equivariant SEGNN [8], though we253

were only able to fit this model into memory for the Wi3R dataset. In addition, we train a PLViT254

model, a state-of-the-art neural surrogate for wireless scenes [24] that represent wireless scenes255

as an image centered around the Tx position. Finally, we attempt to compare Wi-GATr also to256

WiNeRT [41], a neural ray tracer. However, this architecture, which was developed to be trained257

on several measurements on the same floor plan, was not able to achieve useful predictions on our258

diverse datasets with their focus on generalization across floor plans. Our experiment setup and the259

baselines are described in detail in Appendix D.260

Signal prediction. In Fig. 2 we illustrate the prediction task on a WiPTR floor plan. We show signal261

predictions for the simulator as well as for surrogate models trained on only 100 floor plans. Despite262

this floor plan not being part of the training set, Wi-GATr is able to capture the propagation pattern263

well, while the transformer and ViT show memorization artifacts.264

In Tbl. 2 we compare surrogate models trained on the full Wi3R and WiPTR datasets. Both when265

interpolating Rx positions on the training floor plans as well as when evaluating on new scenes266

unseen during training, Wi-GATr offers the highest-fidelity approximation of the simulator. Wi-GATr267

as well as the equivariant baselines are by construction robust to symmetry transformations, while268
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Figure 3: Signal prediction. We show the mean absolute error on
the received power as a function of the training data on Wi3R (left)
and WiPTR (right). Wi-GATr outperforms the transformer and PLViT
baselines at any amount of training data, and scales better to large data
or many tokens than SEGNN.

1 2 3 5 10
Number of transmitters

0.5

1

2

5

M
ea

n 
Rx

 lo
ca

liz
at

io
n 

er
ro

r [
m

] WiPTR

Transformer
Wi-GATr (ours)

Figure 4: Rx localization error,
as a function of the number of Tx.
Lines and error band show mean and
its standard error over 240 measure-
ments.

the performance of a vanilla transformer degrades substantially. All methods but SEGNN struggle269

to generalize to an OOD setting on the Wi3R dataset. This is not surprising given that the training270

samples are so similar to each other. On the more diverse WiPTR dataset, Wi-GATr is almost perfectly271

robust under domain shift.272

Data efficiency. Next, we study the data efficiency of the different surrogates in Fig. 3. Wi-GATr is273

more data-efficient than any other method with the exception of the E(3)-equivariant SEGNN, which274

performs similarly well for a small number of training samples. This confirms that equivariance is a275

useful inductive bias when data is scarce. But Wi-GATr scales better than SEGNN to larger number276

of samples, showing that our architecture combines the small-data advantages of strong inductive277

biases with the large-data advantages of a transformer architecture.278

Inference speed. One of the advantages of neural surrogates is their test-time speed. Both Wi-GATr279

and a transformer are over a factor of 20 faster than the ground-truth ray tracer (see Appendix D).280

Receiver localization. Next, we show how differentiable surrogates let us solve inverse problems,281

focusing on the problem of receiver localization. We infer the Rx position with the predictive282

surrogate models by optimizing through the neural surrogate of the simulator as discussed in Sec. 3.3.283

The performance of our surrogate models is shown in Fig. 4 and Appendix D.3 The two neural284

surrogates achieve a similar performance when only one or two transmitters are available, a setting in285

which the receiver position is highly ambiguous. With more measurements, Wi-GATr lets us localize286

the transmitter more precisely.287

5.2 Probabilistic modelling288

Next, we experiment with our probabilistic approach. We train diffusion models on the Wi3R dataset.289

In addition to a Wi-GATr model, we study a transformer baseline, as well as a transformer trained on290

the same data augmented with random rotations. Both models are trained with the DDPM pipeline291

with 1000 denoising steps and samples from with the DDIM solver [49]. Our setup is described in292

detail in Appendix D.293

Signal prediction, receiver localization, and geometry reconstruction as conditional sampling.294

In our probabilistic approach, signal prediction, receiver localization, and geometry reconstruction295

are all instances of sampling from conditional densities: h ∼ pθ(h|F, t, r), r ∼ pθ(r|F, t, h), and296

Fu ∼ pθ(Fu|Fk, t, r, h), respectively. We qualitatively show results for this approach in Figs. 1297

and 5. All of these predictions are probabilistic, which allows our model to express uncertainty in298

ambiguous inference tasks. When inferring Rx positions from a single measurement, the model learns299

multimodal densities, as shown in the middle of Fig. 5. When reconstructing geometry, the model300

will sample diverse floor plans as long as they are consistent with the transmitted signal, see the right301

panel of Fig. 5. Additional results on signal and geometry prediction are given in Appendix D.2.302

3Neither the SEGNN nor PLViT baselines are fully differentiable with respect to object positions when using
the official implementations from Refs. [7, 24]. We were therefore not able to accurately infer the transmitter
positions with these architectures.
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(a) Unconditional generation (b) Receiver localization (c) Geometry reconstruction

Transmitter Receiver Sampled 
receiver 
locations

GT receiver
Predicted geometry

Signal strength = -45.8 dBm

-26.7 dBm

-37.0 dBm

-66.0 dBm

-45.8 dBm

-62.7 dBm

Figure 5: Probabilistic modelling. We formulate various tasks as sampling from the unconditional or conditional
densities of a single diffusion model. (a): Unconditional sampling of wireless scenes p(F, t, r, h). (b): Receiver
localization as conditional sampling from p(r|F, t, h) for two different values of h and r. (c): Geometry
reconstruction as conditional sampling from p(Fu|Fk, t, r, h) for two different values of h, keeping t, r, Fk fixed.

Wi-GATr (ours) Transformer

default data augm.

Canonicalized scenes
Signal pred. 1.62 3.00 15.66
Receiver loc. 3.64 8.28 14.42
Geometry reco. -3.95 -3.61 -2.10

Scenes in arbitrary rotations
Signal pred. 1.62 9.57 17.65
Receiver loc. 3.64 105.68 14.45
Geometry reco. -3.95 389.34 -2.34

Table 3: Probabilistic modelling results. We show variational
upper bounds on the negative log likelihood for different condi-
tional inference tasks (lower is better, best in bold).

We quantitatively evaluate these mod-303

els through the variational lower bound304

on the log likelihood of test data under305

the model. To further analyze the ef-306

fects of equivariance, we test the model307

both on canonicalized scenes, in which308

all walls are aligned with the x and y309

axis, and scenes that are arbitrarily ro-310

tated. The results in Tbl. 3 show that311

Wi-GATr outperforms the transformer312

baseline across all three tasks, even in313

the canonicalized setting or when the314

transformer is trained with data augmen-315

tation. The gains of Wi-GATr are partic-316

ularly clear on the signal prediction and317

receiver localization problems.318

6 Discussion319

Wireless signal transmission through electromagnetic wave propagation is an inherently geometric and320

symmetric problem. We developed a class of neural surrogates grounded in geometric representations321

and strong inductive biases. They are based on our new Wi-GATr backbone architecture, consisting322

of a new tokenization scheme for wireless scenes together with an E(3)-equivariant transformer323

architecture. The proposed backbone is applied in two ways to wireless tasks: first, as a differentiable324

“forward” prediction model that maps the features to the signals; second, as a probabilistic diffusion325

model that captures the joint and conditional distributions of features and channels. We employed326

these designs in experiments on received power prediction, receiver localization, and geometry327

reconstruction, where our Wi-GATr models enabled precise predictions, outperforming various328

baselines.329

Our analysis is in many ways a first step. The range of materials in our datasets is limited and we only330

experimented with measurements of the non-coherent total received power, which is a stable signal,331

but offers less spatial information than measurements of the time delay or angular information. More332

importantly, we only considered idealized inference tasks. For instance, our receiver localization333

problem assumed perfect knowledge of the room geometry and materials.334

Nevertheless, we hope that we were able to highlight the benefits of a geometric treatment of wave335

propagation modelling. Augmenting or replacing the image-based or general-purpose representations336

and architectures prevalent in wireless modelling with geometric approaches has the potential of337

improving data efficiency, performance, and robustness.338
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Question: Do the main claims made in the abstract and introduction accurately reflect the482

paper’s contributions and scope?483

Answer: [Yes]484

Justification: Our methods are explained in Sec. 3, the datasets in Sec. 4, and the experiments485

in Sec. 5.486
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• The answer NA means that the abstract and introduction do not include the claims488

made in the paper.489

• The abstract and/or introduction should clearly state the claims made, including the490

contributions made in the paper and important assumptions and limitations. A No or491

NA answer to this question will not be perceived well by the reviewers.492

• The claims made should match theoretical and experimental results, and reflect how493

much the results can be expected to generalize to other settings.494

• It is fine to include aspirational goals as motivation as long as it is clear that these495

goals are not attained by the paper.496

2. Limitations497

Question: Does the paper discuss the limitations of the work performed by the authors?498

Answer: [Yes]499

Justification: We discuss the main limitations of our work in Sec. 6 and throughout the paper.500

Guidelines:501

• The answer NA means that the paper has no limitation while the answer No means502

that the paper has limitations, but those are not discussed in the paper.503

• The authors are encouraged to create a separate "Limitations" section in their paper.504

• The paper should point out any strong assumptions and how robust the results are to505

violations of these assumptions (e.g., independence assumptions, noiseless settings,506

model well-specification, asymptotic approximations only holding locally). The507

authors should reflect on how these assumptions might be violated in practice and508

what the implications would be.509

• The authors should reflect on the scope of the claims made, e.g., if the approach was510

only tested on a few datasets or with a few runs. In general, empirical results often511

depend on implicit assumptions, which should be articulated.512

• The authors should reflect on the factors that influence the performance of the approach.513

For example, a facial recognition algorithm may perform poorly when image resolution514

is low or images are taken in low lighting. Or a speech-to-text system might not be515
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technical jargon.517

• The authors should discuss the computational efficiency of the proposed algorithms518

and how they scale with dataset size.519

• If applicable, the authors should discuss possible limitations of their approach to520
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover523
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judgment and recognize that individual actions in favor of transparency play an impor-525

tant role in developing norms that preserve the integrity of the community. Reviewers526

will be specifically instructed to not penalize honesty concerning limitations.527

3. Theory Assumptions and Proofs528

Question: For each theoretical result, does the paper provide the full set of assumptions and529

a complete (and correct) proof?530

Answer: [NA]531

Justification: Our paper does not include theoretical results.532
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• The answer NA means that the paper does not include theoretical results.534

• All the theorems, formulas, and proofs in the paper should be numbered and cross-535

referenced.536

• All assumptions should be clearly stated or referenced in the statement of any theorems.537
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• The proofs can either appear in the main paper or the supplemental material, but if538

they appear in the supplemental material, the authors are encouraged to provide a short539

proof sketch to provide intuition.540

• Inversely, any informal proof provided in the core of the paper should be complemented541

by formal proofs provided in appendix or supplemental material.542

• Theorems and Lemmas that the proof relies upon should be properly referenced.543

4. Experimental Result Reproducibility544

Question: Does the paper fully disclose all the information needed to reproduce the main545

experimental results of the paper to the extent that it affects the main claims and/or conclu-546

sions of the paper (regardless of whether the code and data are provided or not)?547

Answer: [Yes]548

Justification: See Appendix D.549

Guidelines:550

• The answer NA means that the paper does not include experiments.551

• If the paper includes experiments, a No answer to this question will not be perceived552

well by the reviewers: Making the paper reproducible is important, regardless of553

whether the code and data are provided or not.554

• If the contribution is a dataset and/or model, the authors should describe the steps555

taken to make their results reproducible or verifiable.556

• Depending on the contribution, reproducibility can be accomplished in various ways.557

For example, if the contribution is a novel architecture, describing the architecture558

fully might suffice, or if the contribution is a specific model and empirical evaluation,559

it may be necessary to either make it possible for others to replicate the model with560

the same dataset, or provide access to the model. In general. releasing code and data561

is often one good way to accomplish this, but reproducibility can also be provided via562

detailed instructions for how to replicate the results, access to a hosted model (e.g., in563

the case of a large language model), releasing of a model checkpoint, or other means564

that are appropriate to the research performed.565

• While NeurIPS does not require releasing code, the conference does require all sub-566

missions to provide some reasonable avenue for reproducibility, which may depend on567

the nature of the contribution. For example568

(a) If the contribution is primarily a new algorithm, the paper should make it clear569

how to reproduce that algorithm.570

(b) If the contribution is primarily a new model architecture, the paper should describe571

the architecture clearly and fully.572

(c) If the contribution is a new model (e.g., a large language model), then there573

should either be a way to access this model for reproducing the results or a way to574

reproduce the model (e.g., with an open-source dataset or instructions for how to575

construct the dataset).576

(d) We recognize that reproducibility may be tricky in some cases, in which case577

authors are welcome to describe the particular way they provide for reproducibility.578

In the case of closed-source models, it may be that access to the model is limited in579

some way (e.g., to registered users), but it should be possible for other researchers580

to have some path to reproducing or verifying the results.581

5. Open access to data and code582

Question: Does the paper provide open access to the data and code, with sufficient instruc-583

tions to faithfully reproduce the main experimental results, as described in supplemental584

material?585

Answer: [No]586

Justification: We are preparing the release of datasets and code.587

Guidelines:588

• The answer NA means that paper does not include experiments requiring code.589

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/590

public/guides/CodeSubmissionPolicy) for more details.591

• While we encourage the release of code and data, we understand that this might not be592

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not593

including code, unless this is central to the contribution (e.g., for a new open-source594

benchmark).595

• The instructions should contain the exact command and environment needed to run596
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to reproduce the results. See the NeurIPS code and data submission guidelines597

(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.598

• The authors should provide instructions on data access and preparation, including how599

to access the raw data, preprocessed data, intermediate data, and generated data, etc.600

• The authors should provide scripts to reproduce all experimental results for the new601

proposed method and baselines. If only a subset of experiments are reproducible, they602

should state which ones are omitted from the script and why.603

• At submission time, to preserve anonymity, the authors should release anonymized604

versions (if applicable).605

• Providing as much information as possible in supplemental material (appended to the606

paper) is recommended, but including URLs to data and code is permitted.607

6. Experimental Setting/Details608

Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-609

rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?610

Answer: [No]611

Justification: In the main paper, we provide all experimental details we have found to be612

relevant to comprehend our results and support our claims. All other details are either found613

in the appendices or are included in the data and code release that is being prepared.614

Guidelines:615

• The answer NA means that the paper does not include experiments.616

• The experimental setting should be presented in the core of the paper to a level of617

detail that is necessary to appreciate the results and make sense of them.618

• The full details can be provided either with the code, in appendix, or as supplemental619

material.620

7. Experiment Statistical Significance621

Question: Does the paper report error bars suitably and correctly defined or other appropriate622

information about the statistical significance of the experiments?623

Answer: [No]624

Justification: We provide an estimate of epistemic uncertainties for some of our experiments.625

Due to compute restrictions, we were not able to provide meaningful estimates of epistemic626

uncertainties for the other experiments yet.627

Guidelines:628

• The answer NA means that the paper does not include experiments.629

• The authors should answer "Yes" if the results are accompanied by error bars, confi-630

dence intervals, or statistical significance tests, at least for the experiments that support631

the main claims of the paper.632

• The factors of variability that the error bars are capturing should be clearly stated (for633

example, train/test split, initialization, random drawing of some parameter, or overall634

run with given experimental conditions).635

• The method for calculating the error bars should be explained (closed form formula,636

call to a library function, bootstrap, etc.)637

• The assumptions made should be given (e.g., Normally distributed errors).638

• It should be clear whether the error bar is the standard deviation or the standard error639

of the mean.640

• It is OK to report 1-sigma error bars, but one should state it. The authors should641

preferably report a 2-sigma error bar than state that they have a 96% CI, if the642

hypothesis of Normality of errors is not verified.643

• For asymmetric distributions, the authors should be careful not to show in tables or644

figures symmetric error bars that would yield results that are out of range (e.g. negative645

error rates).646

• If error bars are reported in tables or plots, The authors should explain in the text how647

they were calculated and reference the corresponding figures or tables in the text.648

8. Experiments Compute Resources649

Question: For each experiment, does the paper provide sufficient information on the com-650

puter resources (type of compute workers, memory, time of execution) needed to reproduce651

the experiments?652

Answer: [No]653

Justification: Our models and experiments are all at at a sufficiently small scale that they654

can be run on a single GPU and a few days.655
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Guidelines:656

• The answer NA means that the paper does not include experiments.657

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,658

or cloud provider, including relevant memory and storage.659

• The paper should provide the amount of compute required for each of the individual660

experimental runs as well as estimate the total compute.661

• The paper should disclose whether the full research project required more compute662

than the experiments reported in the paper (e.g., preliminary or failed experiments that663

didn’t make it into the paper).664

9. Code Of Ethics665
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?667

Answer: [Yes]668

Justification: We conform in every aspect with the Code of Ethics.669

Guidelines:670

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.671

• If the authors answer No, they should explain the special circumstances that require a672

deviation from the Code of Ethics.673

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-674

eration due to laws or regulations in their jurisdiction).675

10. Broader Impacts676

Question: Does the paper discuss both potential positive societal impacts and negative677

societal impacts of the work performed?678

Answer: [Yes]679

Justification: We discuss societal impacts in Appendix E.680

Guidelines:681

• The answer NA means that there is no societal impact of the work performed.682

• If the authors answer NA or No, they should explain why their work has no societal683

impact or why the paper does not address societal impact.684

• Examples of negative societal impacts include potential malicious or unintended uses685

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations686

(e.g., deployment of technologies that could make decisions that unfairly impact687

specific groups), privacy considerations, and security considerations.688

• The conference expects that many papers will be foundational research and not tied to689

particular applications, let alone deployments. However, if there is a direct path to any690

negative applications, the authors should point it out. For example, it is legitimate to691

point out that an improvement in the quality of generative models could be used to692

generate deepfakes for disinformation. On the other hand, it is not needed to point out693

that a generic algorithm for optimizing neural networks could enable people to train694

models that generate Deepfakes faster.695

• The authors should consider possible harms that could arise when the technology is696

being used as intended and functioning correctly, harms that could arise when the697

technology is being used as intended but gives incorrect results, and harms following698

from (intentional or unintentional) misuse of the technology.699

• If there are negative societal impacts, the authors could also discuss possible mitigation700

strategies (e.g., gated release of models, providing defenses in addition to attacks,701

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from702

feedback over time, improving the efficiency and accessibility of ML).703

11. Safeguards704

Question: Does the paper describe safeguards that have been put in place for responsible705

release of data or models that have a high risk for misuse (e.g., pretrained language models,706

image generators, or scraped datasets)?707

Answer: [NA]708

Justification: We do not anticipate such a risk.709

Guidelines:710

• The answer NA means that the paper poses no such risks.711

• Released models that have a high risk for misuse or dual-use should be released712

with necessary safeguards to allow for controlled use of the model, for example by713

requiring that users adhere to usage guidelines or restrictions to access the model or714
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implementing safety filters.715

• Datasets that have been scraped from the Internet could pose safety risks. The authors716

should describe how they avoided releasing unsafe images.717

• We recognize that providing effective safeguards is challenging, and many papers do718

not require this, but we encourage authors to take this into account and make a best719

faith effort.720

12. Licenses for existing assets721

Question: Are the creators or original owners of assets (e.g., code, data, models), used in722

the paper, properly credited and are the license and terms of use explicitly mentioned and723

properly respected?724

Answer: [Yes]725

Justification: All external assets are cited properly.726

Guidelines:727

• The answer NA means that the paper does not use existing assets.728

• The authors should cite the original paper that produced the code package or dataset.729

• The authors should state which version of the asset is used and, if possible, include a730

URL.731

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.732

• For scraped data from a particular source (e.g., website), the copyright and terms of733

service of that source should be provided.734

• If assets are released, the license, copyright information, and terms of use in the735

package should be provided. For popular datasets, paperswithcode.com/datasets736

has curated licenses for some datasets. Their licensing guide can help determine the737

license of a dataset.738

• For existing datasets that are re-packaged, both the original license and the license of739

the derived asset (if it has changed) should be provided.740

• If this information is not available online, the authors are encouraged to reach out to741

the asset’s creators.742

13. New Assets743

Question: Are new assets introduced in the paper well documented and is the documentation744

provided alongside the assets?745

Answer: [No]746

Justification: We are preparing the release of our datasets and their documentation.747

Guidelines:748

• The answer NA means that the paper does not release new assets.749

• Researchers should communicate the details of the dataset/code/model as part of their750

submissions via structured templates. This includes details about training, license,751

limitations, etc.752

• The paper should discuss whether and how consent was obtained from people whose753

asset is used.754

• At submission time, remember to anonymize your assets (if applicable). You can either755

create an anonymized URL or include an anonymized zip file.756

14. Crowdsourcing and Research with Human Subjects757

Question: For crowdsourcing experiments and research with human subjects, does the paper758

include the full text of instructions given to participants and screenshots, if applicable, as759

well as details about compensation (if any)?760

Answer: [NA]761

Justification: The paper does not involve crowdsourcing nor research with human subjects.762

Guidelines:763

• The answer NA means that the paper does not involve crowdsourcing nor research764

with human subjects.765

• Including this information in the supplemental material is fine, but if the main contri-766

bution of the paper involves human subjects, then as much detail as possible should be767

included in the main paper.768

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,769

or other labor should be paid at least the minimum wage in the country of the data770

collector.771

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human772

Subjects773
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Question: Does the paper describe potential risks incurred by study participants, whether774

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)775

approvals (or an equivalent approval/review based on the requirements of your country or776

institution) were obtained?777

Answer: [NA]778

Justification: The paper does not involve crowdsourcing nor research with human subjects.779

Guidelines:780

• The answer NA means that the paper does not involve crowdsourcing nor research781

with human subjects.782

• Depending on the country in which research is conducted, IRB approval (or equivalent)783

may be required for any human subjects research. If you obtained IRB approval, you784

should clearly state this in the paper.785

• We recognize that the procedures for this may vary significantly between institutions786

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the787

guidelines for their institution.788

• For initial submissions, do not include any information that would break anonymity789

(if applicable), such as the institution conducting the review.790
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A Geometric algebra791

As representation, Wi-GATr uses the projective geometric algebra G3,0,1. Here we summarize key792

aspects of this algebra and define the canonical embedding of geometric primitives in it. For a precise793

definition and pedagogical introduction, we refer the reader to Dorst [20].794

Geometric algebra. A geometric algebra Gp,q,r consists of a vector space together with a bilinear795

operation, the geometric product, that maps two elements of the vector space to another element of796

the vector space.797

The elements of the vector space are known as multivectors. Their space is constructed by extending798

a base vector space Rd to lower orders (scalars) and higher-orders (bi-vectors, tri-vectors, . . . ). The799

algebra combines all of these orders (or grades) in one 2d-dimensional vector space. From a basis800

for the base space, for instance (e1, e2, e3), one can construct a basis for the multivector space. A801

multivector expressed in that basis then reads, for instance for d = 3, x = x∅+x1e1+x2e2+x3e3+802

x12e1e2 + x13e1e3 + x23e2e3 + x123e1e2e3.803

The geometric product is fully defined by bilinearity, associativity, and the condition that the geometric804

product of a vector with itself is equal to its norm. The geometric product generally maps between805

different grades. For instance, the geometric product of two vectors will consist of a scalar, the inner806

product between the vectors, and a bivector, which is related to the cross-product of R3. In particular,807

the conventional basis elements of grade k > 1 are constructed as the geometric product of the vector808

basis elements ei. For instance, e12 = e1e2 is a basis bivector. From the defining properties of809

the geometric products it follows that the geometric product between orthogonal basis elements is810

antisymmetric, eiej = −ejei. Thus, for a d-dimensional basis space, there are
(
d
k

)
independent basis811

elements at grade k.812

Projective geometric algebra. To represent three-dimensional objects including absolute positions,813

we use a geometric algebra based on a base space with d = 4, adding a homogeneous coordinate814

to the 3D space.4 We use a basis (e0, e1, e2, e3) with a metric such that e20 = 0 and e2i = 1 for815

i = 1, 2, 3. The multivector space is thus 24 = 16-dimensional. This algebra is known as the816

projective geometric algebra G3,0,1.817

Canonical embedding of geometric primitives. In G3,0,1, we can represent geometric primitives818

as follows:819

• Scalars (data that do not transform under translation, rotations, and reflections) are represented820

as the scalars of the multivectors (grade k = 0).821

• Oriented planes are represented as vectors (k = 1), encoding the plane normal as well as the822

distance from the origin.823

• Lines or directions are represented as bivectors (k = 2), encoding the direction as well as the824

shift from the origin.825

• Points or positions are represented as trivectors (k = 3).826

For more details, we refer the reader to Tbl. 1 in Brehmer et al. [9], or to Dorst [20].827

B Probabilistic model828

Formally, we employ the standard DDPM framework [50] to train a latent variable model829

pθ(x0) =
∫
pθ(x0:T )dx1:T

, where x0 = [rsrp, tx, rx,mesh] denotes the joint vector of vari-830

ables following the dataset distribution pdata(x0). In DDPM, the latent variables x1:T are831

noisy versions of the original data, defined by a discrete forward noise process q(xt|xt−1) =832

N
(
xt;

√
1− βtxt−1, βtI

)
and βi > 0. We approximate the reverse distribution q(xt−1xt) with833

pθ(xt−1|xt) =
∑

x̂0
q(xt−1|xt, x̂0)pθ(x̂0|xt, t), where q(xt−1|xt,x0) is a normal distribution with834

closed-form parameters [25]. The forward and backward distributions q and p form a variational auto-835

encoder [32] which can be trained with a variational lower bound loss. Using the above parametriza-836

tion of pθ(xt−1|xt), however, allows for a simple approximation of this lower bound by training on837

an MSE objective L = Ext,x0

[
||fθ(xt, t)− x0||2

]
which resembles denoising score matching [55].838

4A three-dimensional base space is not sufficient to represent absolute positions and translations acting on
them in a convenient form. See Brehmer et al. [9], Dorst [20], Ruhe et al. [47] for an in-depth discussion.
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To parametrize pθ(x̂0|xt, t), we pass the raw representation of xt through the wireless GA tokenizer839

of Wi-GATr and, additionally, we embed the scalar t through a learned timestep embedding [43]. The840

embedded timesteps can then be concatenated along the scalar channels in the GA representation in841

a straightforward manner. Similar to GATr [9], the neural network outputs a prediction in the GA842

representation, which is subsequently converted to the original latent space. Note that this possibly843

simplifies the learning problem, as the GA representation is inherently higher dimensional than our844

diffusion space with the same dimensionality as x0.845

Equivariant generative modelling. A diffusion model with an invariant base density and an846

equivariant denoising network defines an invariant density, but equivariant generative modelling has847

some subtleties [33]. Because the group of translations is not compact, we cannot define a translation-848

invariant base density. Previous works have circumvented this issue by performing diffusion in the849

zero center of gravity subspace of euclidean space [27]. However, we found that directly providing850

the origin as an additional input to the denoising network also resulted in good performance, at the851

cost of full E(3) equivariance. We also choose to generate samples in the convention where the z-852

axis represents the direction of gravity and positive z is “up”; we therefore provide this direction of853

gravity as an additional input to our network.854

Masking strategies. To improve the performance of conditional sampling, we randomly sample855

conditioning masks during training which act as an input to the model, as well as a mask on856

the loss terms. Namely, we sample masks from a discrete distribution with probabilities p =857

(0.2, 0.3, 0.2, 0.3) corresponding to masks for unconditional, signal, receiver and mesh prediction858

respectively. If we denote this distribution over masks as p(m), the modified loss function then859

reads as L = Em∼p(m),xt,x0

[
||m⊙ fθ(x

m
t , t,m)−m⊙ x0||2

]
, where xm

t is equal to x0 along860

the masked tokens according to m.861

C Datasets862

Table 4 summarizes major characteristics of the two datasets. In the following we explain more863

details on data splits and generation.864

Wi3R dataset. Based on the layouts of the Wi3Rooms dataset by Orekondy et al. [41], we run865

simulations for 5000 floor layouts that are split into training (4500), validation (250), and test (250).866

These validation and test splits thus represent generalization across unseen layouts, transmitter, and867

receiver locations. From the training set, we keep 10 Rx locations as additional test set to evaluate868

generalization only across unseen Rx locations. To evaluate the generalization performance, we also869

introduce an out-of-distribution (OOD) set that features four rooms in each of the 250 floor layouts.870

In all layouts, the interior walls are made of brick while exterior walls are made of concrete. The The871

Tx and Rx locations are sampled uniformly within the bounds of the floor layouts (10m × 5m × 3m).872

WiPTR dataset. Based on the floor layouts in the ProcTHOR-10k dataset for embodied AI re-873

search [18], we extract the 3D mesh information including walls, windows, doors, and door frames.874

The layouts comprise between 1 to 10 rooms and can cover up to 600 m2. We assign 6 different875

dielectric materials for different groups of objects (see Tbl. 5). The 3D Tx and Rx locations are ran-876

domly sampled within the bounds of the layout. The training data comprises 10k floor layouts, while877

test and validation sets each contain 1k unseen layouts, Tx, and Rx locations. Again, we introduce an878

OOD validation set with 5 layouts where we manually remove parts of the walls such that two rooms879

become connected. While the multi-modality in combination with the ProcTHOR dataset enables880

further research for joint sensing and communication in wireless, our dataset set is also, to the best of881

our knowledge, the first large-scale 3D wireless indoor datasets suitable for embodied AI research.882

D Experiments883

D.1 Predictive modelling884

Models. We use an Wi-GATr model that is 32 blocks deep and 16 multivector channels in addition885

to 32 additional scalar channels wide. We use 8 attention heads and multi-query attention. Overall,886

the model has 1.6 · 107 parameters. These settings were selected by comparing five differently sized887

networks on an earlier version of the Wi3R dataset, though somewhat smaller and bigger networks888
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Figure 6: Rx localization error, as a function of the number of Tx. Lines and error band show mean and its
standard error over 240 measurements.

achieved a similar performance.889

Our Transformer model has the same width (translating to 288 channels) and depth as the Wi-GATr890

model, totalling 16.7 · 106 parameters. These hyperparameters were independently selected by891

comparing five differently sized networks on an earlier version of the Wi3R dataset.892

For SEGNN, we use representations of up to ℓmax = 3, 8 layers, and 128 hidden features. The model893

has 2.6 · 105 parameters. We selected these parameters in a scan over all three parameters, within the894

ranges used in Brandstetter et al. [8].895

The PLViT model is based on the approach introduced by Hehn et al. [24]. We employ the same896

centering and rotation strategy as in the original approach around the Tx. Further, we extend the897

original approach to 3 dimensions by providing the difference in z-direction concatenated with the898

2D x-y-distance as one token. Since training from scratch resulted in poor performance, we finetuned899

a ViT-B-16 model pretrained on ImageNet and keeping only the red channel. This resulted in a model900

with 85.4 · 107 parameters and also required us to use a fixed image size for each dataset that ensures901

the entire floor layout is visible in the image data.902

Optimization. All models are trained on the mean squared error between the model output and903

the total received power in dBm. We use a batch size of 64 (unless for SEGNN, where we use a904

smaller batch size due to memory limitations), the Adam optimizer, an initial learning rate of 10−3,905

and a cosine annealing scheduler. Models are trained for 5 · 105 steps on the Wi3R dataset and for906

2 · 105steps on the WiPTR dataset.907

Inference speed. To quantify the trade-off between inference speed and accuracy of signal prediction,908

we compare the ray tracing simulation with our machine learning approaches. For this purpose, we909

evaluate the methods on a single room of the validation set with 2 different Tx locations and two910

Wi3R WiPTR

Total Channels 5M >5.5M
Materials 2 6
Transmitters per layout 5 1-15
Receivers per layout 200 Up to 200
Floor layouts 5k 12k
Simulated frequency 3.5 GHz 3.5 GHz
Reflections 3 6
Transmissions 1 3
Diffractions 1 1
Strongest paths retained 25 25
Antennas Isotropic Isotropic
Waveform Sinusoid Sinusoid

Table 4: Dataset details and simulation settings for dataset generation.
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Figure 7: Inference wall time vs signal prediction error per Tx/Rx prediction on the first room of the WiPTR
validation set.

equidistant grids at z ∈ {2.3, 0.3} with each 1637 Rx locations. Figure 7 summarizes the average911

inference times per link with the corresponding standard deviation. While Wireless InSite (6/3/1,912

i.e., 6 reflections/3 transmissions/1 diffraction) represents our method that was used to generate the913

ground truth data, it is also by far the slowest approach. Note that we only measure the inference914

speed of Wireless InSite for each Tx individually without the preprocessing of the geometry. By915

reducing the complexity, e.g., reducing the number of allowed reflections or transmissions, of the ray916

tracing simulation the inference time can be reduced significantly. For example, the configuration917

3/2/1 shows a significant increase in inference speed, but at the same time we can already see that the918

simulation results do not match the ground truth anymore. This effect is even more pronounced for the919

case of Wireless InSite 3/1/1. Our machine learning solutions outperform all tested configurations of920

Wireless InSite in terms of inference speed, while at the same time keeping competitive performance921

in terms of prediction accuracy (MAE) compared to the data generation simulation itself in a simpler922

configuration setting.923

In addition, the differentiability of ML approches enables them to solve inverse problems and such924

as finetuning to real-world measurement data. Finetuning, often referred to as calibration, remains925

challenging for simulation software and will likely lead to increased MAE as the ground truth is not926

given by Wireless InSite itself anymore.927

D.2 Probabilistic modelling928

Experiment setup. For all conditional samples involving p(Fu|Fk, t, r, h), we always choose929

to set Fk to be the floor and ceiling mesh faces only and Fu to be the remaining geometry. This930

amounts to completely predicting the exterior walls, as well as the separating walls/doors of the three931

rooms, whereas the conditioning on Fk acts only as a mean to break equivariance. Since F is always932

canonicalized in the non-augmented training dataset, this allows for direct comparison of variational933

lower bounds in Tbl. 3 with the non-equivariant transformer baseline.934

Models. For both Wi-GATr and the transformer baseline, we follow similar architecture choices as935

for the predictive models, using an equal amount of attention layers. To make the models timestep-936

dependent, we additionally employ a standard learnable timestep embedding commonly used in937

Object Material name

Ceiling ITU Ceiling Board
Floor ITU Floor Board
Exterior walls Concrete
Interior walls ITU Layered Drywall
Doors and door frames ITU Wood
Windows ITU Glass

Table 5: Dielectric material properties of objects in WiPTR.
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Figure 8: Mean absolute errors of received power as a function of number of training rooms for conditional
diffusion model samples.

diffusion transformers [43] and concatenate it to the scalar channel dimension.938

Optimization. We use the Adam optimizer with a learning rate of 10−3 for the Wi-GATr models.939

The transformer models required a smaller learning rate for training stability, and thus we chose940

3 · 10−4. In both cases, we linearly anneal the learning rate and train for 7 · 105 steps with a batchsize941

of 64 and gradient norm clipping set to 100.942

Evaluation. We use the DDIM sampler using 100 timesteps for visualizations in Fig. 5 and943

for the error analysis in Fig. 8. To evaluate the variational lower bound in Tbl. 3, we fol-944

low [39] and evaluate Lvlb := L0 + L1 + . . . LT , where L0 := − log pθ(x0|x1), Lt−1 :=945

DKL(q(xt−1|xt,x0)||pθ(xt−1|xt)) and LT := DKL(q(xT |x0), p(xt)). To be precise, for each946

sample x0 on the test set, we get a single sample xt from q and evaluate Lvlb accordingly. Table 3947

reports the mean of all Lvlb evaluations over the test set.948

Additional results. Fig. 8, shows the quality of samples from pθ(h|F, t, r) as a function of the949

amount of available training data, where we average over 3 samples for each conditioning input. It950

is worth noting that diffusion samples have a slightly higher error than the predictive models. This951

shows that the joint probabilistic modelling of the whole scene is a more challenging learning task952

than a deterministic forward model.953

To further evaluate the quality of generated rooms, we analyze how often the model generates walls954

between the receiver and transmitter, compared to the ground truth. Precisely, we plot the distribution955

of received power versus the distance of transmitter and receiver in Fig. 9 and color each point956

according to a line of sight test. We can see that, overall, Wi-GATr has an intersection error of 0.26,957

meaning that in 26% of the generated geometries, line of sight was occluded, while the true geometry958

did not block line of sight between receiver and transmitter. This confirms that the diffusion model959

correctly correlates the received power and receiver/transmitter positions with physically plausible960

geometries. While an error of 26% is non-negligible, we note that this task involves generating the961

whole geometry given only a single measurement of received power, making the problem heavily962

underspecified. Techniques such as compositional sampling [21] could overcome this limitation by963

allowing to condition on multiple receiver and received power measurements.964

E Discussion965

Progress in wireless channel modelling is likely to lead to societal impact. Not all of it is positive.966

The ability to reconstruct details about the propagation environment may have privacy implications.967

Wireless networks are ubiquitous and could quite literally allow to see through walls. At the same time,968

we believe that progress in the development of wireless channel models may help to reduce radiation969

exposure and power consumption of wireless communication systems, and generally contribute to970

better and more accessible means of communication.971
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Figure 9: A scatter plot of normalized received power versus normalized distance between receiver and
transmitter. Each point is colored depending on having line of sight between the receiver and transmitter given
the room geometry. Left: The geometry used for calculating line of sight is given by conditional diffusion
samples using Wi-GATr. Middle: The geometry used for calculating line of sight is given by transformer
samples. Right: The geometry used for calculating line of sight is taken from the test data distribution.
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