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ABSTRACT

Recent advancements in large language models (LLMs) have demonstrated excep-
tional performance across various downstream tasks, particularly due to their in-
context learning (ICL) abilities. ICL enables models to learn from a few demon-
strations presented in the context, without requiring retraining or fine-tuning.
However, the effectiveness of ICL is highly dependent on factors such as prompt
design and input length. To address these limitations, we propose a novel approach
that leverages the key-value pairs within Transformers to enhance contextual un-
derstanding in LLMs. Specifically, our method converts raw demonstrations into
task vectors—comprising keys and values—which are derived through multiple
passes of the LLM, then integrated with test task vectors to improve model com-
prehension of the input. Furthermore, we introduce a retrieval-based codebook
mechanism that captures information from long-context demonstrations while fil-
tering irrelevant content. This codebook dynamically stores and updates task vec-
tors generated during inference, mitigating input length constraints and optimiz-
ing the relevance of contextual data. By retrieving the most pertinent historical
task vectors, the codebook ensures that only relevant information is utilized dur-
ing inference. Extensive experiments show that these enhancements significantly
outperform conventional ICL, achieving superior accuracy and efficiency. Over-
all, this work sets a new benchmark for optimizing ICL in LLMs, enabling their
effective deployment in complex, real-world applications.

(a) Conventional ICL.

(b) Boosting ICL with retrieval-based codebook.

Figure 1: Intuitively compare conventional ICL with ours.

1 INTRODUCTION

Recently, large language models (LLMs) have shown excellent performance across a wide range of
downstream tasks Zhao et al. (2023), such as commonsense question answering Bian et al. (2024),
fact verification Tang et al. (2024), and natural language inference Qiao et al. (2023). During their
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application in various domains, many studies have found that LLMs exhibit strong in-context learn-
ing (ICL) capabilities Dong et al. (2022). This means they can learn from a few demonstrations
within the input context and effectively perform different tasks without requiring retraining or fine-
tuning of model parameters. However, the performance of ICL is influenced by complex factors
Dong et al. (2022). While downstream task accuracy is a key metric, conventional ICL often under-
performs due to suboptimal prompt settings Liu et al. (2024a). Additionally, the ability of LLMs to
handle long-context inputs plays an important role, as input length constraints can limit their ability
to effectively learn from demonstrations Li et al. (2024).

Since ICL performance is highly sensitive to prompt settings and other factors, enhancing its efficacy
is crucial. Prompts typically consist of a query and demonstration context written in natural language
and are fed into LLMs for prediction Wang et al. (2020). These characteristics make ICL well-suited
for human interaction. Previous work on enhancing ICL has primarily focused on improving prompt
design, including the selection and ordering of demonstrations as well as instruction formatting
Wang et al. (2023). Selecting suitable examples aims to improve ICL performance, while the order
in which demonstrations are presented also significantly impacts model comprehension.

As ICL is a relatively new paradigm, its underlying mechanisms remain uncertain, making prompt
engineering unstable Dai et al. (2023). To enhance ICL performance effectively without additional
training, we propose a novel ICL enhancement method. We posit that demonstrations input into
LLMs are transformed into high-dimensional vectors or representations. The key-value pairs of
Transformers across each layer serve as suitable process variables, as Transformers are the foun-
dational components of LLMs, encoding the task paradigms necessary for understanding the input
during inference. Simultaneously, considering classic residual methods, we hypothesize that raw
demonstrations still contain valuable contextual information. Therefore, these demonstrations are
reintroduced as input after initial comprehension. Specifically, when the key-value pairs are ex-
tracted, they are concatenated with those derived during the repeated processing of the raw demon-
strations. This iterative process allows the model to better comprehend the context than through a
single pass.

Another challenge in ICL is managing input length constraints and noise. In certain LLMs, es-
pecially those without position embedding strategies like RoPE Su et al. (2024) or other length-
expanding methods Xiong et al. (2024), long-context or large demonstrations cannot be effectively
processed, impairing comprehension. Additionally, when demonstrations are lengthy, irrelevant
content and noise within the context can degrade ICL performance. To address this, we propose
a retrieval-inspired mechanism Lewis et al. (2020) for key-value pairs. We introduce a codebook
Hartvigsen et al. (2023)—a modifiable memory structure that stores key-value pairs from demon-
strations processed multiple times by the LLM. This codebook retains all demonstration information
while allowing obsolete content to be updated, edited, and revised, ensuring only relevant memory
is utilized by the LLM. When a test query is input, the most useful, similar, and relevant key-value
pairs are retrieved from the codebook. These retrieved pairs capture the aspects most likely to en-
hance ICL performance and play a crucial role in overcoming long-context limitations. The retrieved
and refined representations serve as enhanced prompts for the test input.

In summary, this paper makes the following contributions: (1) We investigate and address limitations
in ICL by introducing techniques that optimize prompt design and improve the utilization of Trans-
former key-value pairs, enhancing contextual understanding in LLMs for a range of downstream
tasks. (2) We propose a retrieval-inspired mechanism that uses a dynamic codebook to manage
key-value pairs generated over multiple passes, effectively overcoming input length constraints and
filtering irrelevant information to improve inference relevance. (3) Through extensive experiments,
we demonstrate that our enhancements outperform state-of-the-art ICL methodologies in both accu-
racy and efficiency. This work sets a new benchmark for optimizing ICL in large language models,
paving the way for their effective deployment in complex, real-world applications.

2 RELATED WORK

2.1 KEYS AND VALUES IN LLMS

Keys, values, and queries are crucial components in the self-attention mechanisms that form the
backbone of Transformers and LLMs. During the inference phase, keys and values serve as rel-
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atively fixed variables, encapsulating high-dimensional features of demonstrations and remaining
unaffected by input length constraints. Previous studies have suggested that ICL can be viewed as
compressing a training set into a single task vector Hendel et al. (2023), essentially another form
of high-dimensional feature representation. This viewpoint highlights the importance of extracting
keys and values effectively. Moreover, in an effort to emulate human cognitive processes, method-
ologies like Deep-thinking Yang et al. (2024b) enhance keys and values by iteratively processing
demonstrations, refining their understanding through multiple passes. The KV cache is another
widely adopted technique that leverages the length-insensitive nature of compressed data to acceler-
ate inference Liu et al. (2024b). However, while these approaches focus on enhancing computational
efficiency, there remains a notable gap in integrating the interpretability and utility of keys and values
directly within the ICL framework Hooper et al. (2024).

2.2 DEMONSTRATION DESIGN

In ICL, demonstration inputs are combined with test inputs into a single context for the LLM. The
model then uses these demonstrations to make predictions for the test inputs, effectively transferring
classification and answering skills from the given examples. Despite the potential of ICL, research
into its variants and enhancement methods has been limited. Demonstration design plays a pivotal
role during the ICL inference stage, as it can significantly influence model performance Lu et al.
(2022a). Past work has concentrated on selecting and ordering raw demonstrations to optimize their
utility, determining both which examples best support ICL and in what demonstrations they should
be presented Dong et al. (2022). Common selection techniques often rely on established distance
metrics, information theory, and computational linguistics to identify ”closest neighbors” Qin et al.
(2023); Liu et al. (2022); Sorensen et al. (2022); Gonen et al. (2023). However, this approach can
sometimes overlook the nuanced understanding that LLMs inherently possess and may treat the se-
lection process as an isolated embedding module separate from the ICL framework. Considering
the robustness of LLMs as inference tools, this reliance on external selection mechanisms can be
questioned. Moreover, research shows that the organization of demonstrations impacts ICL perfor-
mance, leading to efforts to reorder demonstrations based on their relationship to the input Lu et al.
(2022b). However, this reordering is often complex and may not yield optimal results. As such,
we posit that the presentation order may be less critical when demonstrations are fully encapsulated
within the keys and values across LLM layers, allowing the model to utilize multi-layered contextual
understanding without depending heavily on sequence.

2.3 CODEBOOK

A codebook is an abstract storage concept, typically associated with vectors but encompassing a vari-
ety of storage, compression, and editing techniques. Codebooks have been employed for knowledge
editing Hartvigsen et al. (2023), functioning as repositories for both outdated and newly acquired
knowledge. Furthermore, in specific scenarios, codebooks provide standardized storage formats
for label assumptions that LLMs must respect during text generation. Recent designs, such as the
LLM-codebook Deng et al. (2024), map extended language models into compressed codebooks to
enhance model efficiency and reduce size. Additionally, in multimodal tasks, codebooks serve as
generalization standards, as seen in the context of Unicode Zheng et al. (2024). While the concept
of codebooks is highly abstract and versatile, within the scope of our research, their role is more
aligned with knowledge editing. Specifically, the codebook acts as a repository for effectively un-
derstanding and storing historical demonstrations, serving as a refined memory structure to improve
the relevance and utility of contextual information during ICL inference.

3 OUR PROPOSAL

3.1 BACKGROUND

In-context learning is the problem to solve in our work. The input of ICL consist of two part:
demonstrations input Xdemos and test input Xtest, where Xdemos = {xi, yi}Si=1 and Xtest =
{xtest}. S means S-shot in ICL, if there is a 10 classification task, S is a multiple of 10. ICL aims
to predict Xtest label ŷ from Y , which is the set of list {y1, y2, ..., yS}. From view of calculating
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process of LLM M ,
ŷ = arg max

yj∈Y
PM (yj |Xdemos, xtest), (1)

where P is the output logits of M .

3.2 OVERVIEW

As shown in Figure 2, the overall framework of the proposed method mainly consists of two parts.
The first part involves multiple reflections on demonstrations and the calculation of the final results.
The second part is about the operations related to the codebook, mainly the three basic running
functions of the codebook.

Figure 2: Overview of boosting in-context learning through retrieval-based codebook.

3.3 METHODOLOGY

Learning Algorithm A and Rule Application f . To understand the mechanism behind ICL, pre-
vious research has proposed a universal theoretical framework based on learning theory from the
perspective of hypothesis classes Hendel et al. (2023). In this framework, the fundamental compo-
nents remain consistent: the decoder-only LLM M , which consists of a Transformer with N layers,
and the inputs and outputs of ICL, denoted as Xdemos and Xtest. This theoretical framework can be
divided into two main components: the learning algorithm A, which maps Xdemos into a task vec-
tor, and the rule application f , which maps the query Xtest into an output based on the task vector.
Within this framework, ICL can be summarized by the following formula:

M ([Xdemos, Xtest]) = f (x;A (Xdemos)) . (2)

The generality of this theoretical framework is evident in its various implementations, which depend
on the specific forms or structures of the chosen learning algorithm A and rule application f .

For general customization, building on previous work, we propose using the keys and values of the
Transformer as the output of the mapping of Xdemos through the learning algorithm A. The attention
weights of the n-th Transformer layer are computed as follows:

Kn = WKXn−1, Qn = WQXn−1, Vn = WV Xn−1. (3)

The LLM M , which consists of L layers of Transformers, produces L pairs of keys and values from
the attention mechanism of each layer. The keys and values represent the high-dimensional features
of Xdemos. The learning algorithm A can be viewed as the process that computes the keys and values
within the Transformer architecture based on Xdemos:

A : Asingle = {{Ki}Li=1, {Vi}Li=1} = {{K1,K2, . . . ,KL}, {V1, V2, . . . , VL}} = {KA, VA} (4)
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In summary, Asingle generates a task vector for the testing process. The testing process of ICL is
calculated as follows:

Ktest = WKXtest, Qtest = WQXtest, Vtest = WV Xtest,

f : Output = Attention({Ktest∥KL}, {Vtest∥VL}, Qtest).
(5)

This design allows for a more flexible combination of the learning algorithm A and the rule appli-
cation f , providing opportunities for improvement in both areas. The above is shown in Figure 3.

Figure 3: Extracting keys and values as the perspective of hypothesis classes.

Multiple Boosting of the Task Vector. The task vector Asingle, obtained from a single learning
algorithm A, raises the question of whether it can be further enhanced to achieve better results
during the testing process, particularly when applying f . The task vector generated by the learning
algorithm A exists in the form of keys and values, indicating it can be reused during the computations
of the LLMs. Thus, it can indeed be recomputed (or reintegrated) by the LLMs. For each LLM, the
calculation process that concatenates the previous task vector follows:

Kdemos = WKXdemos, Qdemos = WQXdemos, Vdemos = WV Xdemos,

OutputM = Attention({Kdemos∥Kpast}, {Vdemos∥Vpast}, Qdemos).
(6)

Here, the variable containing demonstrations signifies that the LLM re-evaluates the raw demonstra-
tions (similar to a residual connection) while accepting the past task vector. OutputM represents the
output of the LLM based on the past keys and values Kpast and Vpast, which are the task vectors from
prior LLM evaluations.

The previous and newly task vectors, arising from the re-evaluation of the demonstrations, serve
as two computational components in the overall process. They aim to achieve two objectives: en-
hancing the re-evaluation of the demonstrations, which relates to the depth dimension of the LLM
layers—reflecting the single computation process—and leveraging past task vectors to improve the
new task vector’s quality. To this end, we stack several LLMs to iteratively enhance the task vector,
thereby creating a new task vector to pass to the subsequent LLM. By introducing a decay rate η,
we can maintain a balance between the past and present task vectors:

Kpresent = ηKdemos + (1− η)Kpast

Vpresent = ηVdemos + (1− η)Vpast

Apresent = {Kpresent, Vpresent}
(7)

Through this N L-layer LLM enhancement method, we finally derive the task vector for f .

Retrieve-Based Codebook. To address the limitations posed by the number of demonstrations,
especially when the number of demonstrations S in the input Xdemos becomes too large for the
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LLMs to handle due to the constraints of positional embedding methods (which are not RoPE or
other length-expanding methods), we replace Xdemos with:

Xcodebook = {Xdemos1 , Xdemos2 , . . . , XdemosC}, (8)

where c denotes the number of items in the codebook, achieved through either splitting or adding
new demonstrations. Each element in Xcodebook undergoes multiple boosting processes:

{Ai}Ci=1 = {KAi , VAi}Ci=1 (9)

where Ai is computed as in equations (3) and (4). Each Ai represents the boosted understanding of
the task vector and consists of keys and values from N layers of the LLM M .

Before inputting the first demonstration into the LLM, a discrete codebook CB exists outside the
LLM’s computation process. This codebook contains two components: Keys (K) and Values (V),
which are structured as follows. The task vectors (keys and values from N layers) of each demon-
stration are stored in CB:

CB = {A1, A2, . . . , AC}, (10)
where Ai is defined according to (9). From the perspective of knowledge editing, CB is both
editable and updatable. If historical demonstrations are outdated or incorrect, they must be removed
or corrected; if new demonstrations arise, they should be added to CB. We have implemented
dynamic additions to CB. However, since knowledge editing is not the focus of this article, the
functional components for editing outdated information have not been implemented, nor have their
effects been evaluated.

After the test input Xdemos is processed multiple times, yielding the task vector Ademos, we calculate
the similarity between Kdemos and every key Ai in CB. The method for similarity calculation is
flexible; options include cosine similarity, Euclidean distance, and more. We introduce a hyperpa-
rameter T to denote the number of results to return after retrieval. We select the T task vectors Ai

that exhibit the highest similarity as the retrieval results Cr:

Cr = {Ai}Ti=1. (11)

Next, we employ a fusion method fusion to merge the retrieval results, which can adopt various
approaches including summation, averaging, or using a trainable network, ultimately yielding a
unified output Afinal:

Afinal = fusion(Cr). (12)
Finally, the resulting task vector Afinal is concatenated to produce the final output:

Afinal = {Kfinal, Vfinal}
OutputM = Attention({Ktest∥Kfinal}, {Vtest∥Vfinal}, Qtest).

(13)

Drawing from numerous historical demonstrations, we seamlessly integrate the functions of addi-
tion, retrieval, and fusion to ultimately achieve the output of ICL, OutputM .

4 EVALUATION

4.1 SETUP

Datasets and Baselines. To assess the effectiveness of our proposed method, we evaluate its per-
formance alongside conventional ICL on several widely used datasets: SST2 Socher et al. (2013),
SST5 Socher et al. (2013), MR Pang & Lee (2005), and AGNews Zhang et al. (2015). The eval-
uations are performed using LLMs of various sizes, including opt-125m, opt-350m Zhang et al.
(2022), Qwen2-1.5B, Qwen2-7B Yang et al. (2024a), and Llama3.1-8B Dubey et al. (2024). Table 1
provides a summary of the key characteristics of these datasets, including the size of the validation
set, maximum text length, and domain. We also used a private dataset within Ant Group called AE
for testing. This is a 28 category merchant name industry classification dataset.

Implementation Details. All experiments were conducted using Python 3.8, PyTorch 2.1 Paszke
et al. (2019), and transformers 4.43 Wolf et al. (2020), along with compatible auxiliary libraries.
The computational resources used include a single NVIDIA Tesla A100 GPU with 80 GB memory.
In our setup, the number of task vectors in the codebook C is set to 10 (Equation 10), and the
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Table 1: Dataset statistics.

Dataset Categories Size of validation Max text length Domain
SST2 2 872 65 Sentiment
SST5 2 1101 65 Sentiment
MR 2 1066 68 Comment
AGNews 4 7600 217 News
AE 28 1000 116 Industry

number of task vectors selected for fusion T is set to 5 (Equation 11). To balance time consumption
and performance, we enhance the task vectors by LLMs, where the number of LLMs N = 5.
Model performance is evaluated based on the accuracy of ICL in completing classification tasks.
For clarity and reproducibility, we provide pseudocode outlining the computational reasoning, as
shown in Algorithm 1.

Algorithm 1 Overall pseudocode.

Require: Demonstrations Xdemos; test input Xtest; N transformer-based LLM M with L layers;
codebook CB; the number of items in the codebook C; topK selection T ;

1: for Xdemos c ∈ Xcodebook do
2: Initialize X0 = Xdemos c

3: for n ∈ N do
4: Initialize X0 = Xl−1 if l − 1 >= 0 else X0

5: for l ∈ L do
6: Ql,Kl, Vl = (Wlq,Wlk,Wlv)Xl

7: Xl+1 = Attention(Ql,Kl, Vl)
8: end for
9: Xn = XL

10: end for
11: An = {{Ki}Li=1, {Vi}Li=1}
12: CB.insert(An)
13: end for
14: for c ∈ C do
15: Cr = topk(CBc.{Ki}Li=1, Xtest.{Ki}Li=1)
16: end for
17: Initialize X0 = Xtest

18: for n ∈ N do
19: Xn = Xn−1

20: for l ∈ L do
21: Ql,Kl, Vl = (Wlq,Wlk,Wlv)Xl

22: Xl+1 = Attention(Ql,Kl, Vl)
23: end for
24: Xn = XL

25: end for
26: Atest = {{Ki}Li=1, {Vi}Li=1}
27: Cr = topk([CB,Atest])
28: Afinal = fusion(Cr) = {Kfinal, Vfinal}
29: OutputM = Attention({Ktest∥Kfinal}, {Vtest∥Vfinal}, Qtest)
30: return OutputM

4.2 MAIN RESULT

Table 2 presents the main results of our method across the four selected datasets. Compared to con-
ventional ICL, which processes the input only once, our approach achieves significantly improved
accuracy. Moreover, we observe that model performance generally improves as the parameter size
of the LLMs increases, indicating a positive correlation. The performance gain is particularly pro-
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nounced for LLMs with smaller parameter sizes, as larger models already demonstrate strong results
in ICL tasks, leaving less room for improvement. It is noteworthy, however, that in certain cases, the
relationship between parameter size and performance does not follow a strictly positive correlation.
This discrepancy is primarily due to variations in quantization strategies. Specifically, while we uti-
lized 8-bit quantization for the Opt and Llama3.1, the Qwen2 was left unquantized due to its adaptive
parameter quantization approach. Despite these differences, the results consistently demonstrate the
effectiveness of our method across various LLMs. Evaluating different LLMs not only highlights
the benefits of increasing parameter counts but also confirms the robustness of our method when
applied to LLMs trained on different foundations and pretraining techniques.

Table 2: Main results of conventional ICL and ours across different model on selected datasets.

Model Method SST2 SST5 MR AGNews

OPT-125M ICL 55.43 18.46 48.19 49.37
Ours 77.98 22.62 60.79 63.75

OPT-350M ICL 58.36 20.98 49.47 54.91
Ours 81.08 25.15 63.32 69.25

Qwen2-1.5B ICL 57.13 19.03 48.46 52.04
Ours 62.39 27.98 60.32 61.65

Qwen2-7B ICL 81.95 25.64 58.05 59.43
Ours 87.61 31.97 65.29 83.30

Llama3.1-8B ICL 82.10 27.39 60.53 60.19
Ours 91.32 29.41 68.39 88.96

For the AE dataset, which contains 28 categories, we directly employed larger LLMs, including
Qwen2-7B, Qwen2-7B-Instruct, Llama3.1-8B, and Llama3.1-8B-Instruct, for evaluation. Addition-
ally, we compared our method against other ICL enhancement baselines. The results indicate that
our model outperforms both the other ICL baselines and the conventional ICL Yang et al. (2024b)
on the AE dataset. The results are presented in Figure 4.

Figure 4: Performance comparison on AE dataset across different ICL enhancement baselines.

4.3 MODEL ANALYSIS

Hyperparameter analysis. We analyzed the impact of key hyperparameters on model performance,
with a particular focus on the total number of samples in the codebook. This refers to the total num-
ber of task vectors stored in the codebook during inference. In our approach, the retrieval quantity is
fixed at half of the codebook’s total storage capacity. Empirical results indicate that as the total num-
ber of samples increases, model performance improves steadily across multiple evaluation metrics.
This behavior can be attributed to a larger pool of task vectors providing more diverse interpreta-
tions, thereby enhancing the model’s ability to make accurate predictions. However, the relationship
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between retrieval quantity and model performance is not strictly linear. Excessive retrieval may lead
to computational inefficiencies and potential overfitting to the codebook, highlighting the impor-
tance of finding an optimal retrieval size that balances performance gains with computational costs.
The results are presented in Figure 5, demonstrating the performance of our method, conventional
ICL, and deep threading on AE datasets.

Figure 5: Hyperparameter impact of codebook size S on Llama3.1-8B performance

Time Complexity. One potential concern regarding our method is the increased time consumption,
primarily due to multiple interpretations of presentations and storing a large number of presentations
in the codebook. This could potentially lead to prolonged computation times for LLMs. However,
our empirical tests show that the method does not suffer from high time complexity. This is likely be-
cause the cost of a single ICL inference is relatively low, and the additional computational overhead
introduced by our approach is minimal. Table 3 compares the time consumption of conventional
ICL and our method under different quantization settings, while Table 4 provides detailed time con-
sumption in seconds.

Table 3: Time consumption comparison of conventional ICL and ours under different settings.

Model & Method Quantization Time (min)
ICL (Qwen2-7B) N ˜40 min
ICL (Llama3.1-8B) Y ˜20 min
Ours (Llama3.1-8B) Y ˜50 min

Table 4: Detailed time consumption (in seconds) for conventional ICL and ours.

Model SST2 SST5 MR AGNews Average
OPT-125M 265.28 483.59 333.20 804.65 470

OPT-350M 627.36 1137.13 767.53 1850.79 1095

Qwen2-1.5B 167.27 303.43 215.70 1087.47 443

Qwen2-7B 452.80 824.03 762.42 4091.94 1533

Llama3.1-8B 929.90 1658.05 1161.85 2835.42 1646
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5 CONCLUSION

In this paper, we introduced a novel method for enhancing ICL in LLMs by leveraging a retrieval-
based codebook mechanism. Our approach addresses two key challenges in ICL: optimizing the use
of key-value pairs within the transformer architecture for enhanced contextual understanding and
mitigating input length constraints and noise through efficient task vector storage and retrieval. By
dynamically storing and updating historical task vectors in the codebook, our method allows for the
retrieval of only the most pertinent information during inference, significantly improving model ac-
curacy and efficiency. Empirical evaluations on widely used datasets, as well as an internal dataset,
demonstrated that our approach consistently outperforms conventional ICL, particularly in LLMs
with smaller parameter sizes. Furthermore, our analysis of hyperparameters highlights the impor-
tance of balancing codebook size to maximize performance gains while minimizing computational
overhead. The proposed method also maintains manageable time complexity, further validating its
practical applicability. Our work sets a new benchmark for ICL in LLMs and opens avenues for
further exploration of retrieval-based mechanisms and dynamic memory structures to enhance ICL
performance. Future research could explore optimizing codebook management, including more ad-
vanced strategies for knowledge editing and retrieval, as well as extending the methodology to other
downstream tasks and model architectures.
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