
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BOOSTING IN-CONTEXT LEARNING IN LLMS WITH
RETRIEVAL-BASED CODEBOOK

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in large language models (LLMs) have demonstrated excep-
tional performance across various downstream tasks, particularly due to their in-
context learning (ICL) abilities. ICL enables models to learn from a few demon-
strations presented in the context, without requiring retraining or fine-tuning.
However, the effectiveness of ICL is highly dependent on factors such as prompt
design and input length. To address these limitations, we propose a novel approach
that leverages the key-value pairs within Transformers to enhance contextual un-
derstanding in LLMs. Specifically, our method converts raw demonstrations into
task vectors—comprising keys and values—which are derived through multiple
passes of the LLM, then integrated with test task vectors to improve model com-
prehension of the input. Furthermore, we introduce a retrieval-based codebook
mechanism that captures information from long-context demonstrations while fil-
tering irrelevant content. This codebook dynamically stores and updates task vec-
tors generated during inference, mitigating input length constraints and optimiz-
ing the relevance of contextual data. By retrieving the most pertinent historical
task vectors, the codebook ensures that only relevant information is utilized dur-
ing inference. Extensive experiments show that these enhancements significantly
outperform conventional ICL, achieving superior accuracy and efficiency. Over-
all, this work sets a new benchmark for optimizing ICL in LLMs, enabling their
effective deployment in complex, real-world applications.

(a) Conventional ICL.

(b) Boosting ICL with retrieval-based codebook.

Figure 1: Intuitively compare conventional ICL with ours.

1 INTRODUCTION

Recently, large language models (LLMs) have shown excellent performance across a wide range of
downstream tasks Zhao et al. (2023), such as commonsense question answering Bian et al. (2024),
fact verification Tang et al. (2024), and natural language inference Qiao et al. (2023). During their

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

application in various domains, many studies have found that LLMs exhibit strong in-context learn-
ing (ICL) capabilities Dong et al. (2022). This means they can learn from a few demonstrations
within the input context and effectively perform different tasks without requiring retraining or fine-
tuning of model parameters. However, the performance of ICL is influenced by complex factors
Dong et al. (2022). While downstream task accuracy is a key metric, conventional ICL often under-
performs due to suboptimal prompt settings Liu et al. (2024a). Additionally, the ability of LLMs to
handle long-context inputs plays an important role, as input length constraints can limit their ability
to effectively learn from demonstrations Li et al. (2024).

Since ICL performance is highly sensitive to prompt settings and other factors, enhancing its efficacy
is crucial. Prompts typically consist of a query and demonstration context written in natural language
and are fed into LLMs for prediction Wang et al. (2020). These characteristics make ICL well-suited
for human interaction. Previous work on enhancing ICL has primarily focused on improving prompt
design, including the selection and ordering of demonstrations as well as instruction formatting
Wang et al. (2023). Selecting suitable examples aims to improve ICL performance, while the order
in which demonstrations are presented also significantly impacts model comprehension.

As ICL is a relatively new paradigm, its underlying mechanisms remain uncertain, making prompt
engineering unstable Dai et al. (2023). To enhance ICL performance effectively without additional
training, we propose a novel ICL enhancement method. We posit that demonstrations input into
LLMs are transformed into high-dimensional vectors or representations. The key-value pairs of
Transformers across each layer serve as suitable process variables, as Transformers are the foun-
dational components of LLMs, encoding the task paradigms necessary for understanding the input
during inference. Simultaneously, considering classic residual methods, we hypothesize that raw
demonstrations still contain valuable contextual information. Therefore, these demonstrations are
reintroduced as input after initial comprehension. Specifically, when the key-value pairs are ex-
tracted, they are concatenated with those derived during the repeated processing of the raw demon-
strations. This iterative process allows the model to better comprehend the context than through a
single pass.

Another challenge in ICL is managing input length constraints and noise. In certain LLMs, es-
pecially those without position embedding strategies like RoPE Su et al. (2024) or other length-
expanding methods Xiong et al. (2024), long-context or large demonstrations cannot be effectively
processed, impairing comprehension. Additionally, when demonstrations are lengthy, irrelevant
content and noise within the context can degrade ICL performance. To address this, we propose
a retrieval-inspired mechanism Lewis et al. (2020) for key-value pairs. We introduce a codebook
Hartvigsen et al. (2023)—a modifiable memory structure that stores key-value pairs from demon-
strations processed multiple times by the LLM. This codebook retains all demonstration information
while allowing obsolete content to be updated, edited, and revised, ensuring only relevant memory
is utilized by the LLM. When a test query is input, the most useful, similar, and relevant key-value
pairs are retrieved from the codebook. These retrieved pairs capture the aspects most likely to en-
hance ICL performance and play a crucial role in overcoming long-context limitations. The retrieved
and refined representations serve as enhanced prompts for the test input.

In summary, this paper makes the following contributions: (1) We investigate and address limitations
in ICL by introducing techniques that optimize prompt design and improve the utilization of Trans-
former key-value pairs, enhancing contextual understanding in LLMs for a range of downstream
tasks. (2) We propose a retrieval-inspired mechanism that uses a dynamic codebook to manage
key-value pairs generated over multiple passes, effectively overcoming input length constraints and
filtering irrelevant information to improve inference relevance. (3) Through extensive experiments,
we demonstrate that our enhancements outperform state-of-the-art ICL methodologies in both accu-
racy and efficiency. This work sets a new benchmark for optimizing ICL in large language models,
paving the way for their effective deployment in complex, real-world applications.

2 RELATED WORK

2.1 KEYS AND VALUES IN LLMS

Keys, values, and queries are crucial components in the self-attention mechanisms that form the
backbone of Transformers and LLMs. During the inference phase, keys and values serve as rel-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

atively fixed variables, encapsulating high-dimensional features of demonstrations and remaining
unaffected by input length constraints. Previous studies have suggested that ICL can be viewed as
compressing a training set into a single task vector Hendel et al. (2023), essentially another form
of high-dimensional feature representation. This viewpoint highlights the importance of extracting
keys and values effectively. Moreover, in an effort to emulate human cognitive processes, method-
ologies like Deep-thinking Yang et al. (2024b) enhance keys and values by iteratively processing
demonstrations, refining their understanding through multiple passes. The KV cache is another
widely adopted technique that leverages the length-insensitive nature of compressed data to acceler-
ate inference Liu et al. (2024b). However, while these approaches focus on enhancing computational
efficiency, there remains a notable gap in integrating the interpretability and utility of keys and values
directly within the ICL framework Hooper et al. (2024).

2.2 DEMONSTRATION DESIGN

In ICL, demonstration inputs are combined with test inputs into a single context for the LLM. The
model then uses these demonstrations to make predictions for the test inputs, effectively transferring
classification and answering skills from the given examples. Despite the potential of ICL, research
into its variants and enhancement methods has been limited. Demonstration design plays a pivotal
role during the ICL inference stage, as it can significantly influence model performance Lu et al.
(2022a). Past work has concentrated on selecting and ordering raw demonstrations to optimize their
utility, determining both which examples best support ICL and in what demonstrations they should
be presented Dong et al. (2022). Common selection techniques often rely on established distance
metrics, information theory, and computational linguistics to identify ”closest neighbors” Qin et al.
(2023); Liu et al. (2022); Sorensen et al. (2022); Gonen et al. (2023). However, this approach can
sometimes overlook the nuanced understanding that LLMs inherently possess and may treat the se-
lection process as an isolated embedding module separate from the ICL framework. Considering
the robustness of LLMs as inference tools, this reliance on external selection mechanisms can be
questioned. Moreover, research shows that the organization of demonstrations impacts ICL perfor-
mance, leading to efforts to reorder demonstrations based on their relationship to the input Lu et al.
(2022b). However, this reordering is often complex and may not yield optimal results. As such,
we posit that the presentation order may be less critical when demonstrations are fully encapsulated
within the keys and values across LLM layers, allowing the model to utilize multi-layered contextual
understanding without depending heavily on sequence.

2.3 CODEBOOK

A codebook is an abstract storage concept, typically associated with vectors but encompassing a vari-
ety of storage, compression, and editing techniques. Codebooks have been employed for knowledge
editing Hartvigsen et al. (2023), functioning as repositories for both outdated and newly acquired
knowledge. Furthermore, in specific scenarios, codebooks provide standardized storage formats
for label assumptions that LLMs must respect during text generation. Recent designs, such as the
LLM-codebook Deng et al. (2024), map extended language models into compressed codebooks to
enhance model efficiency and reduce size. Additionally, in multimodal tasks, codebooks serve as
generalization standards, as seen in the context of Unicode Zheng et al. (2024). While the concept
of codebooks is highly abstract and versatile, within the scope of our research, their role is more
aligned with knowledge editing. Specifically, the codebook acts as a repository for effectively un-
derstanding and storing historical demonstrations, serving as a refined memory structure to improve
the relevance and utility of contextual information during ICL inference.

3 OUR PROPOSAL

3.1 BACKGROUND

In-context learning is the problem to solve in our work. The input of ICL consist of two part:
demonstrations input Xdemos and test input Xtest, where Xdemos = {xi, yi}Si=1 and Xtest =
{xtest}. S means S-shot in ICL, if there is a 10 classification task, S is a multiple of 10. ICL aims
to predict Xtest label ŷ from Y , which is the set of list {y1, y2, ..., yS}. From view of calculating

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

process of LLM M ,
ŷ = arg max

yj∈Y
PM (yj |Xdemos, xtest), (1)

where P is the output logits of M .

3.2 OVERVIEW

As shown in Figure 2, the overall framework of the proposed method mainly consists of two parts.
The first part involves multiple reflections on demonstrations and the calculation of the final results.
The second part is about the operations related to the codebook, mainly the three basic running
functions of the codebook.

Figure 2: Overview of boosting in-context learning through retrieval-based codebook.

3.3 METHODOLOGY

Learning Algorithm A and Rule Application f . To understand the mechanism behind ICL, pre-
vious research has proposed a universal theoretical framework based on learning theory from the
perspective of hypothesis classes Hendel et al. (2023). In this framework, the fundamental compo-
nents remain consistent: the decoder-only LLM M , which consists of a Transformer with N layers,
and the inputs and outputs of ICL, denoted as Xdemos and Xtest. This theoretical framework can be
divided into two main components: the learning algorithm A, which maps Xdemos into a task vec-
tor, and the rule application f , which maps the query Xtest into an output based on the task vector.
Within this framework, ICL can be summarized by the following formula:

M ([Xdemos, Xtest]) = f (x;A (Xdemos)) . (2)

The generality of this theoretical framework is evident in its various implementations, which depend
on the specific forms or structures of the chosen learning algorithm A and rule application f .

For general customization, building on previous work, we propose using the keys and values of the
Transformer as the output of the mapping of Xdemos through the learning algorithm A. The attention
weights of the n-th Transformer layer are computed as follows:

Kn = WKXn−1, Qn = WQXn−1, Vn = WV Xn−1. (3)

The LLM M , which consists of L layers of Transformers, produces L pairs of keys and values from
the attention mechanism of each layer. The keys and values represent the high-dimensional features
of Xdemos. The learning algorithm A can be viewed as the process that computes the keys and values
within the Transformer architecture based on Xdemos:

A : Asingle = {{Ki}Li=1, {Vi}Li=1} = {{K1,K2, . . . ,KL}, {V1, V2, . . . , VL}} = {KA, VA} (4)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In summary, Asingle generates a task vector for the testing process. The testing process of ICL is
calculated as follows:

Ktest = WKXtest, Qtest = WQXtest, Vtest = WV Xtest,

f : Output = Attention({Ktest∥KL}, {Vtest∥VL}, Qtest).
(5)

This design allows for a more flexible combination of the learning algorithm A and the rule appli-
cation f , providing opportunities for improvement in both areas. The above is shown in Figure 3.

Figure 3: Extracting keys and values as the perspective of hypothesis classes.

Multiple Boosting of the Task Vector. The task vector Asingle, obtained from a single learning
algorithm A, raises the question of whether it can be further enhanced to achieve better results
during the testing process, particularly when applying f . The task vector generated by the learning
algorithm A exists in the form of keys and values, indicating it can be reused during the computations
of the LLMs. Thus, it can indeed be recomputed (or reintegrated) by the LLMs. For each LLM, the
calculation process that concatenates the previous task vector follows:

Kdemos = WKXdemos, Qdemos = WQXdemos, Vdemos = WV Xdemos,

OutputM = Attention({Kdemos∥Kpast}, {Vdemos∥Vpast}, Qdemos).
(6)

Here, the variable containing demonstrations signifies that the LLM re-evaluates the raw demonstra-
tions (similar to a residual connection) while accepting the past task vector. OutputM represents the
output of the LLM based on the past keys and values Kpast and Vpast, which are the task vectors from
prior LLM evaluations.

The previous and newly task vectors, arising from the re-evaluation of the demonstrations, serve
as two computational components in the overall process. They aim to achieve two objectives: en-
hancing the re-evaluation of the demonstrations, which relates to the depth dimension of the LLM
layers—reflecting the single computation process—and leveraging past task vectors to improve the
new task vector’s quality. To this end, we stack several LLMs to iteratively enhance the task vector,
thereby creating a new task vector to pass to the subsequent LLM. By introducing a decay rate η,
we can maintain a balance between the past and present task vectors:

Kpresent = ηKdemos + (1− η)Kpast

Vpresent = ηVdemos + (1− η)Vpast

Apresent = {Kpresent, Vpresent}
(7)

Through this N L-layer LLM enhancement method, we finally derive the task vector for f .

Retrieve-Based Codebook. To address the limitations posed by the number of demonstrations,
especially when the number of demonstrations S in the input Xdemos becomes too large for the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

LLMs to handle due to the constraints of positional embedding methods (which are not RoPE or
other length-expanding methods), we replace Xdemos with:

Xcodebook = {Xdemos1 , Xdemos2 , . . . , XdemosC}, (8)

where c denotes the number of items in the codebook, achieved through either splitting or adding
new demonstrations. Each element in Xcodebook undergoes multiple boosting processes:

{Ai}Ci=1 = {KAi , VAi}Ci=1 (9)

where Ai is computed as in equations (3) and (4). Each Ai represents the boosted understanding of
the task vector and consists of keys and values from N layers of the LLM M .

Before inputting the first demonstration into the LLM, a discrete codebook CB exists outside the
LLM’s computation process. This codebook contains two components: Keys (K) and Values (V),
which are structured as follows. The task vectors (keys and values from N layers) of each demon-
stration are stored in CB:

CB = {A1, A2, . . . , AC}, (10)
where Ai is defined according to (9). From the perspective of knowledge editing, CB is both
editable and updatable. If historical demonstrations are outdated or incorrect, they must be removed
or corrected; if new demonstrations arise, they should be added to CB. We have implemented
dynamic additions to CB. However, since knowledge editing is not the focus of this article, the
functional components for editing outdated information have not been implemented, nor have their
effects been evaluated.

After the test input Xdemos is processed multiple times, yielding the task vector Ademos, we calculate
the similarity between Kdemos and every key Ai in CB. The method for similarity calculation is
flexible; options include cosine similarity, Euclidean distance, and more. We introduce a hyperpa-
rameter T to denote the number of results to return after retrieval. We select the T task vectors Ai

that exhibit the highest similarity as the retrieval results Cr:

Cr = {Ai}Ti=1. (11)

Next, we employ a fusion method fusion to merge the retrieval results, which can adopt various
approaches including summation, averaging, or using a trainable network, ultimately yielding a
unified output Afinal:

Afinal = fusion(Cr). (12)
Finally, the resulting task vector Afinal is concatenated to produce the final output:

Afinal = {Kfinal, Vfinal}
OutputM = Attention({Ktest∥Kfinal}, {Vtest∥Vfinal}, Qtest).

(13)

Drawing from numerous historical demonstrations, we seamlessly integrate the functions of addi-
tion, retrieval, and fusion to ultimately achieve the output of ICL, OutputM .

4 EVALUATION

4.1 SETUP

Datasets and Baselines. To assess the effectiveness of our proposed method, we evaluate its per-
formance alongside conventional ICL on several widely used datasets: SST2 Socher et al. (2013),
SST5 Socher et al. (2013), MR Pang & Lee (2005), and AGNews Zhang et al. (2015). The eval-
uations are performed using LLMs of various sizes, including opt-125m, opt-350m Zhang et al.
(2022), Qwen2-1.5B, Qwen2-7B Yang et al. (2024a), and Llama3.1-8B Dubey et al. (2024). Table 1
provides a summary of the key characteristics of these datasets, including the size of the validation
set, maximum text length, and domain. We also used a private dataset within Ant Group called AE
for testing. This is a 28 category merchant name industry classification dataset.

Implementation Details. All experiments were conducted using Python 3.8, PyTorch 2.1 Paszke
et al. (2019), and transformers 4.43 Wolf et al. (2020), along with compatible auxiliary libraries.
The computational resources used include a single NVIDIA Tesla A100 GPU with 80 GB memory.
In our setup, the number of task vectors in the codebook C is set to 10 (Equation 10), and the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Dataset statistics.

Dataset Categories Size of validation Max text length Domain
SST2 2 872 65 Sentiment
SST5 2 1101 65 Sentiment
MR 2 1066 68 Comment
AGNews 4 7600 217 News
AE 28 1000 116 Industry

number of task vectors selected for fusion T is set to 5 (Equation 11). To balance time consumption
and performance, we enhance the task vectors by LLMs, where the number of LLMs N = 5.
Model performance is evaluated based on the accuracy of ICL in completing classification tasks.
For clarity and reproducibility, we provide pseudocode outlining the computational reasoning, as
shown in Algorithm 1.

Algorithm 1 Overall pseudocode.

Require: Demonstrations Xdemos; test input Xtest; N transformer-based LLM M with L layers;
codebook CB; the number of items in the codebook C; topK selection T ;

1: for Xdemos c ∈ Xcodebook do
2: Initialize X0 = Xdemos c

3: for n ∈ N do
4: Initialize X0 = Xl−1 if l − 1 >= 0 else X0

5: for l ∈ L do
6: Ql,Kl, Vl = (Wlq,Wlk,Wlv)Xl

7: Xl+1 = Attention(Ql,Kl, Vl)
8: end for
9: Xn = XL

10: end for
11: An = {{Ki}Li=1, {Vi}Li=1}
12: CB.insert(An)
13: end for
14: for c ∈ C do
15: Cr = topk(CBc.{Ki}Li=1, Xtest.{Ki}Li=1)
16: end for
17: Initialize X0 = Xtest

18: for n ∈ N do
19: Xn = Xn−1

20: for l ∈ L do
21: Ql,Kl, Vl = (Wlq,Wlk,Wlv)Xl

22: Xl+1 = Attention(Ql,Kl, Vl)
23: end for
24: Xn = XL

25: end for
26: Atest = {{Ki}Li=1, {Vi}Li=1}
27: Cr = topk([CB,Atest])
28: Afinal = fusion(Cr) = {Kfinal, Vfinal}
29: OutputM = Attention({Ktest∥Kfinal}, {Vtest∥Vfinal}, Qtest)
30: return OutputM

4.2 MAIN RESULT

Table 2 presents the main results of our method across the four selected datasets. Compared to con-
ventional ICL, which processes the input only once, our approach achieves significantly improved
accuracy. Moreover, we observe that model performance generally improves as the parameter size
of the LLMs increases, indicating a positive correlation. The performance gain is particularly pro-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

nounced for LLMs with smaller parameter sizes, as larger models already demonstrate strong results
in ICL tasks, leaving less room for improvement. It is noteworthy, however, that in certain cases, the
relationship between parameter size and performance does not follow a strictly positive correlation.
This discrepancy is primarily due to variations in quantization strategies. Specifically, while we uti-
lized 8-bit quantization for the Opt and Llama3.1, the Qwen2 was left unquantized due to its adaptive
parameter quantization approach. Despite these differences, the results consistently demonstrate the
effectiveness of our method across various LLMs. Evaluating different LLMs not only highlights
the benefits of increasing parameter counts but also confirms the robustness of our method when
applied to LLMs trained on different foundations and pretraining techniques.

Table 2: Main results of conventional ICL and ours across different model on selected datasets.

Model Method SST2 SST5 MR AGNews

OPT-125M ICL 55.43 18.46 48.19 49.37
Ours 77.98 22.62 60.79 63.75

OPT-350M ICL 58.36 20.98 49.47 54.91
Ours 81.08 25.15 63.32 69.25

Qwen2-1.5B ICL 57.13 19.03 48.46 52.04
Ours 62.39 27.98 60.32 61.65

Qwen2-7B ICL 81.95 25.64 58.05 59.43
Ours 87.61 31.97 65.29 83.30

Llama3.1-8B ICL 82.10 27.39 60.53 60.19
Ours 91.32 29.41 68.39 88.96

For the AE dataset, which contains 28 categories, we directly employed larger LLMs, including
Qwen2-7B, Qwen2-7B-Instruct, Llama3.1-8B, and Llama3.1-8B-Instruct, for evaluation. Addition-
ally, we compared our method against other ICL enhancement baselines. The results indicate that
our model outperforms both the other ICL baselines and the conventional ICL Yang et al. (2024b)
on the AE dataset. The results are presented in Figure 4.

Figure 4: Performance comparison on AE dataset across different ICL enhancement baselines.

4.3 MODEL ANALYSIS

Hyperparameter analysis. We analyzed the impact of key hyperparameters on model performance,
with a particular focus on the total number of samples in the codebook. This refers to the total num-
ber of task vectors stored in the codebook during inference. In our approach, the retrieval quantity is
fixed at half of the codebook’s total storage capacity. Empirical results indicate that as the total num-
ber of samples increases, model performance improves steadily across multiple evaluation metrics.
This behavior can be attributed to a larger pool of task vectors providing more diverse interpreta-
tions, thereby enhancing the model’s ability to make accurate predictions. However, the relationship

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

between retrieval quantity and model performance is not strictly linear. Excessive retrieval may lead
to computational inefficiencies and potential overfitting to the codebook, highlighting the impor-
tance of finding an optimal retrieval size that balances performance gains with computational costs.
The results are presented in Figure 5, demonstrating the performance of our method, conventional
ICL, and deep threading on AE datasets.

Figure 5: Hyperparameter impact of codebook size S on Llama3.1-8B performance

Time Complexity. One potential concern regarding our method is the increased time consumption,
primarily due to multiple interpretations of presentations and storing a large number of presentations
in the codebook. This could potentially lead to prolonged computation times for LLMs. However,
our empirical tests show that the method does not suffer from high time complexity. This is likely be-
cause the cost of a single ICL inference is relatively low, and the additional computational overhead
introduced by our approach is minimal. Table 3 compares the time consumption of conventional
ICL and our method under different quantization settings, while Table 4 provides detailed time con-
sumption in seconds.

Table 3: Time consumption comparison of conventional ICL and ours under different settings.

Model & Method Quantization Time (min)
ICL (Qwen2-7B) N ˜40 min
ICL (Llama3.1-8B) Y ˜20 min
Ours (Llama3.1-8B) Y ˜50 min

Table 4: Detailed time consumption (in seconds) for conventional ICL and ours.

Model SST2 SST5 MR AGNews Average
OPT-125M 265.28 483.59 333.20 804.65 470

OPT-350M 627.36 1137.13 767.53 1850.79 1095

Qwen2-1.5B 167.27 303.43 215.70 1087.47 443

Qwen2-7B 452.80 824.03 762.42 4091.94 1533

Llama3.1-8B 929.90 1658.05 1161.85 2835.42 1646

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 CONCLUSION

In this paper, we introduced a novel method for enhancing ICL in LLMs by leveraging a retrieval-
based codebook mechanism. Our approach addresses two key challenges in ICL: optimizing the use
of key-value pairs within the transformer architecture for enhanced contextual understanding and
mitigating input length constraints and noise through efficient task vector storage and retrieval. By
dynamically storing and updating historical task vectors in the codebook, our method allows for the
retrieval of only the most pertinent information during inference, significantly improving model ac-
curacy and efficiency. Empirical evaluations on widely used datasets, as well as an internal dataset,
demonstrated that our approach consistently outperforms conventional ICL, particularly in LLMs
with smaller parameter sizes. Furthermore, our analysis of hyperparameters highlights the impor-
tance of balancing codebook size to maximize performance gains while minimizing computational
overhead. The proposed method also maintains manageable time complexity, further validating its
practical applicability. Our work sets a new benchmark for ICL in LLMs and opens avenues for
further exploration of retrieval-based mechanisms and dynamic memory structures to enhance ICL
performance. Future research could explore optimizing codebook management, including more ad-
vanced strategies for knowledge editing and retrieval, as well as extending the methodology to other
downstream tasks and model architectures.

REFERENCES

Ning Bian, Xianpei Han, Le Sun, Hongyu Lin, Yaojie Lu, Ben He, Shanshan Jiang, and Bin
Dong. ChatGPT is a knowledgeable but inexperienced solver: An investigation of common-
sense problem in large language models. In Nicoletta Calzolari, Min-Yen Kan, Veronique
Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of the 2024
Joint International Conference on Computational Linguistics, Language Resources and Evalu-
ation (LREC-COLING 2024), pp. 3098–3110, Torino, Italia, May 2024. ELRA and ICCL. URL
https://aclanthology.org/2024.lrec-main.276.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can
GPT learn in-context? language models secretly perform gradient descent as meta-optimizers.
In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pp. 4005–4019, Toronto, Canada, July 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.247. URL
https://aclanthology.org/2023.findings-acl.247.

Juncan Deng, Shuaiting Li, Chengxuan Wang, Hong Gu, Haibin Shen, and Kejie Huang.
LLM-codebook for extreme compression of large language models, 2024. URL https:
//openreview.net/forum?id=nMbWsXPUVL.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Hila Gonen, Srini Iyer, Terra Blevins, Noah Smith, and Luke Zettlemoyer. Demystifying prompts in
language models via perplexity estimation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 10136–10148,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
findings-emnlp.679. URL https://aclanthology.org/2023.findings-emnlp.
679.

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi.
Aging with grace: Lifelong model editing with discrete key-value adaptors. In Advances in Neural
Information Processing Systems, 2023.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pp. 9318–9333, Singapore, December 2023. Association

10

https://aclanthology.org/2024.lrec-main.276
https://aclanthology.org/2023.findings-acl.247
https://openreview.net/forum?id=nMbWsXPUVL
https://openreview.net/forum?id=nMbWsXPUVL
https://aclanthology.org/2023.findings-emnlp.679
https://aclanthology.org/2023.findings-emnlp.679


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.624. URL https:
//aclanthology.org/2023.findings-emnlp.624.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with
long in-context learning. arXiv preprint arXiv:2404.02060, 2024.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for GPT-3? In Eneko Agirre, Marianna Apidianaki, and Ivan
Vulić (eds.), Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on
Knowledge Extraction and Integration for Deep Learning Architectures, pp. 100–114, Dublin,
Ireland and Online, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.deelio-1.10. URL https://aclanthology.org/2022.deelio-1.10.

Yinpeng Liu, Jiawei Liu, Xiang Shi, Qikai Cheng, and Wei Lu. Let’s learn step by step: Enhancing
in-context learning ability with curriculum learning. arXiv preprint arXiv:2402.10738, 2024a.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. In Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 8086–8098,
Dublin, Ireland, May 2022a. Association for Computational Linguistics. doi: 10.18653/v1/2022.
acl-long.556. URL https://aclanthology.org/2022.acl-long.556.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. In Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 8086–8098,
Dublin, Ireland, May 2022b. Association for Computational Linguistics. doi: 10.18653/v1/2022.
acl-long.556. URL https://aclanthology.org/2022.acl-long.556.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. In Kevin Knight, Hwee Tou Ng, and Kemal Oflazer (eds.), Pro-
ceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05),
pp. 115–124, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics. doi:
10.3115/1219840.1219855. URL https://aclanthology.org/P05-1015.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei
Huang, and Huajun Chen. Reasoning with language model prompting: A survey. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 5368–5393, Toronto,

11

https://aclanthology.org/2023.findings-emnlp.624
https://aclanthology.org/2023.findings-emnlp.624
https://aclanthology.org/2022.deelio-1.10
https://aclanthology.org/2022.acl-long.556
https://aclanthology.org/2022.acl-long.556
https://aclanthology.org/P05-1015
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.
294. URL https://aclanthology.org/2023.acl-long.294.

Chengwei Qin, Aston Zhang, Anirudh Dagar, and Wenming Ye. In-context learning with iterative
demonstration selection. arXiv preprint arXiv:2310.09881, 2023.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment tree-
bank. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven Bethard
(eds.), Proceedings of the 2013 Conference on Empirical Methods in Natural Language Process-
ing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computational
Linguistics. URL https://aclanthology.org/D13-1170.

Taylor Sorensen, Joshua Robinson, Christopher Rytting, Alexander Shaw, Kyle Rogers, Alexia
Delorey, Mahmoud Khalil, Nancy Fulda, and David Wingate. An information-theoretic ap-
proach to prompt engineering without ground truth labels. In Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pp. 819–862, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.60. URL
https://aclanthology.org/2022.acl-long.60.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Liyan Tang, Philippe Laban, and Greg Durrett. Minicheck: Efficient fact-checking of llms on
grounding documents. In Proceedings of the 2024 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Computational Linguistics, 2024. URL https:
//arxiv.org/pdf/2404.10774.

Xinyi Wang, Wanrong Zhu, and William Yang Wang. Large language models are implicitly topic
models: Explaining and finding good demonstrations for in-context learning. arXiv preprint
arXiv:2301.11916, pp. 3, 2023.

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few examples:
A survey on few-shot learning. ACM computing surveys (csur), 53(3):1–34, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Qun Liu and David Schlangen (eds.), Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–
45, Online, October 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-demos.6. URL https://aclanthology.org/2020.emnlp-demos.6.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Mar-
tin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, Madian Khabsa, Han Fang,
Yashar Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov,
Mike Lewis, Sinong Wang, and Hao Ma. Effective long-context scaling of foundation mod-
els. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 4643–4663, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.260. URL
https://aclanthology.org/2024.naacl-long.260.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang

12

https://aclanthology.org/2023.acl-long.294
https://aclanthology.org/D13-1170
https://aclanthology.org/2022.acl-long.60
https://arxiv.org/pdf/2404.10774
https://arxiv.org/pdf/2404.10774
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2024.naacl-long.260


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024a.

Jiaxi Yang, Binyuan Hui, Min Yang, Bailin Wang, Bowen Li, Binhua Li, Fei Huang, and Yongbin
Li. Iterative forward tuning boosts in-context learning in language models. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 15460–15473, Bangkok, Thailand,
August 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.825.
URL https://aclanthology.org/2024.acl-long.825.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in neural information processing systems, 28, 2015.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-
Rong Wen. A survey of large language models. arXiv preprint arXiv:2303.18223, 2023. URL
http://arxiv.org/abs/2303.18223.

Sipeng Zheng, Bohan Zhou, Yicheng Feng, Ye Wang, and Zongqing Lu. Unicode: Learning a
unified codebook for multimodal large language models. arXiv preprint arXiv:2403.09072, 2024.

13

https://aclanthology.org/2024.acl-long.825
http://arxiv.org/abs/2303.18223

	Introduction
	Related Work
	Keys and Values in LLMs
	Demonstration Design
	Codebook

	Our proposal
	Background
	Overview
	Methodology

	Evaluation
	Setup
	Main result
	Model analysis

	Conclusion

