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ABSTRACT

We present improved learning-augmented algorithms for finding an approximate
minimum spanning tree (MST) for points in an arbitrary metric space. Our work
follows a recent framework called metric forest completion (MFC), where the
learned input is a forest that must be given additional edges to form a full span-
ning tree. Veldt et al. (2025) showed that optimally completing the forest takes
Ω(n2) time, but designed a 2.62-approximation for MFC with subquadratic com-
plexity. The same method is a (2γ+1)-approximation for the original MST prob-
lem, where γ ≥ 1 is a quality parameter for the initial forest. We introduce a
generalized method that interpolates between this prior algorithm and an optimal
Ω(n2)-time MFC algorithm. Our approach considers only edges incident to a
growing number of strategically chosen “representative” points. One corollary of
our analysis is to improve the approximation factor of the previous algorithm from
2.62 for MFC and (2γ + 1) for metric MST to 2 and 2γ respectively. We prove
this is tight for worst-case instances, but we still obtain better instance-specific
approximations using our generalized method. We complement our theoretical
results with a thorough experimental evaluation.

1 INTRODUCTION

Finding a minimum spanning tree (MST) of a graph is a fundamental computational primitive with
applications to hierarchical clustering (Gower & Ross, 1969; Gagolewski et al., 2025; La Grassa
et al., 2022), network design (Loberman & Weinberger, 1957), feature selection (Labbé et al., 2023),
and even comparing brain networks (Stam et al., 2014). The metric MST problem is a special case
where the input is a set of n points, and edge weights are defined by distances between points. A
conceptually simple algorithm for this case is to compute all O(n2) distances explicitly and then
apply a classical greedy algorithm. For Euclidean metrics, there exist more sophisticated algorithms
that can find an optimal or at least approximate minimum spanning tree in o(n2) time (Agarwal et al.,
1990; Shamos & Hoey, 1975; Vaidya, 1988; Arya & Mount, 2016). For general metric spaces,
however, one must know Ω(n2) edges to compute even an approximate solution (Indyk, 1999).
This fact constitutes a fundamental challenge for designing algorithms that scale to massive modern
datasets, apply to general distance functions, and come with provable guarantees.

Motivated by the above challenge, Veldt et al. (2025) recently addressed the metric MST problem
from the perspective of learning-augmented algorithms (Mitzenmacher & Vassilvitskii, 2022). The
learning-augmented model assumes access to a prediction for some problem, often produced by a
machine learning heuristic, that comes with no theoretical guarantees but may still be useful in prac-
tice. The goal is to design an algorithm that is consistent, meaning that it produces near-optimal
outputs when the prediction is good, and robust, meaning that it recovers the same worst-case guar-
antees as a prediction-free algorithm when the prediction is bad. The performance of the algorithm
is typically captured by some parameter measuring the error of the prediction. The prediction, per-
formance measure, and error parameter vary depending on the context. Some prior work focuses on
better-than-worst-case runtimes or query complexities, including for binary search (Mitzenmacher
& Vassilvitskii, 2022; Dinitz et al., 2024), maximum flow (Polak & Zub, 2024; Davies et al., 2024;
2023), and incremental approximate shortest paths (McCauley et al., 2025). Other works focus on
improving competitive ratios for online algorithms, including for ski rental (Mitzenmacher & Vas-
silvitskii, 2022; Shin et al., 2023), scheduling (Benomar & Perchet, 2024), and online knapsack
problems (Lechowicz et al., 2024). In other settings, the goal is to improve approximation ratios for
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hard combinatorial problems, e.g., clustering problems (Braverman et al., 2025; Ergun et al., 2022;
Nguyen et al., 2023; Huang et al., 2025) or maximum independent set (Braverman et al., 2024).

For the metric MST problem, Veldt et al. (2025) considered a learning-augmented setting where the
input is a disjoint set of trees called the initial forest, such that each of the n points belongs to one
component in the forest. This input can be interpreted as a prediction for the forest that would be
obtained by running several iterations of a classical algorithm such as Kruskal’s or Borůvka’s. The
metric forest completion (MFC) problem is then the task of finding a minimum-weight spanning
tree that contains the initial forest as a subgraph. The quality of an initial forest can be captured
by a parameter γ ≥ 1, where γ = 1 if the initial forest is contained in some optimal MST. Veldt
et al. (2025) proved that optimally solving MFC takes Ω(n2) time, but gave a 2.62-approximation
for MFC which (under reasonable assumptions) has subquadratic complexity. The same method is
a learning-augmented algorithm for metric MST with an approximation factor of roughly (2γ + 1).
The idea behind the algorithm is to identify a single representative node for each component in the
initial forest, and only consider edges incident to one or two representatives. Implementations of
the algorithm produced nearly optimal spanning trees while being orders of magnitude faster than
the naive Ω(n2) algorithm for metric MST. This is true even after factoring in the time to compute
an initial forest. The in-practice approximation ratios also far exceeded the theoretical bounds of
(2γ + 1) (for the original MST problem) and 2.62 (for the MFC step) on all instances.

Our contributions: generalized algorithm and tighter bounds. While this prior work already
demonstrates the theoretical and practical benefits of the MFC framework, several open questions
remain. Is the large gap between theoretical bounds and in-practice approximation ratios due mainly
to the specific datasets considered? Are there pathological examples where the previous approxi-
mation guarantees are tight? In the other direction, can we tighten the analysis to improve the
worst-case approximation guarantees? Also, can we prove better instance-specific approximations?

We introduce and analyze a generalized approximation algorithm for MFC that provides a way to ad-
dress all of these questions. This algorithm starts with a budget for the number of points in the dataset
that can be labeled as representatives. It then finds the best way to complete the initial forest by only
adding edges incident to one or two representatives. Choosing one representative per component
corresponds to applying the prior approximation algorithm of Veldt et al. (2025). Letting all points
be representatives leads to an optimal (but Ω(n2)-time) algorithm. Our new approach interpolates
between these extremes, and for reasonable-sized budgets provides a way to significantly improve
on the prior algorithm with only minor increase in runtime. We derive new instance-specific bounds
on the approximation factor for this generalized approach, given in terms of an easy-to-compute
cost function associated with a set of representatives. As an important corollary of our theoretical
results, we prove that when there is only one arbitrary representative per component, the algorithm
is a 2-approximation for MFC and a 2γ-approximation for metric MST. This immediately improves
on the approximations factors of 2.62 and (2γ + 1). Furthermore, our analysis is both simpler and
more general. We also prove by construction that these guarantees are tight in the worst case.

As another technical contribution of independent interest, we show that choosing the best set of
representatives for our algorithm amounts to a new generalization of the k-center clustering problem.
For this generalization, we have multiple instances of points to cluster, but the budget k on the
number of cluster centers is shared across instances. We design a 2-approximation for this shared-
budget multi-instance k-center problem by combining a classical algorithm for k-center (Gonzalez,
1985) with a dynamic programming approach for deciding how to allocate the shared budget across
different instances. As a final contribution, we test an implementation of our new algorithm on a
range of real-world datasets with varying distance metrics. We find that increasing the number of
representatives even slightly leads to significant improvements in spanning tree quality with only a
small increase in runtime, and that our dynamic programming approach performs especially well.
Furthermore, our instance-specific approximation guarantees are easy to compute and serve as a
very good proxy for the true approximation factor, which is impractical to compute exactly.

2 PRELIMINARIES AND RELATED WORK

For m ∈ N, let [m] = {1, 2, . . . ,m}. For an undirected graph G = (V,E) and edge weight function
w : E → R, a minimum spanning tree (MST) for G with respect to w is a tree T = (V,ET ) where
ET ⊆ E and the total weight of edges w(ET ) =

∑
e∈ET

w(e) is minimized. Optimal greedy
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algorithms for this problem have been known for nearly a century (Borůvka, 1926; Kruskal, 1956;
Prim, 1957). For example, Kruskal’s algorithm starts with all nodes in singleton components, and at
each step adds a minimum weight edge that connects two disjoint components. Borůvka’s algorithm
is similar, but adds the minimum weight edge adjacent to each component every round.

The metric MST problem. Let (X , d) be a finite metric space defined by a set of points X =
{x1, x2, . . . , xn} and a distance function d : X ×X → R+. This input implicitly defines a complete
graph GX = (X , EX ) with an edge function wX that is equivalent to the distance function d. We
let (u, v) denote the edge in GX defined by points (xu, xv), with weight wX (u, v) = d(xu, xv). For
two sets X,Y ⊆ X , define d(X,Y ) = minx∈X,y∈Y d(x, y). We extend wX to a weight function on
an edge set F ⊆ EX by defining wX (F ) =

∑
(u,v)∈F wX (u, v). The metric MST problem is the

task of finding a minimum spanning tree of GX with respect to wX .

A conceptually simple approach for solving metric MST is to explicitly query all O(n2) distances
and apply a classical algorithm to the resulting complete graph. Another known approach that
still takes Ω(n2) time for general metric spaces but avoids querying all distances is an implicit
implementation of a classical method, which instead only queries distances as needed (Agarwal
et al., 1990; Callahan & Kosaraju, 1993). In more detail, an implicit implementation of Kruskal’s or
Borůvka’s algorithm starts with all n points in singleton components. At every step of the algorithm,
for each pair of components A and B, the algorithm finds a pair of points (a, b) ∈ A × B with
minimum distance. The latter problem is known as the bichromatic closest pair problem (BCP) for
A and B. An implicit implementation of Kruskal’s algorithm would then add the minimum weight
edge from among all the BCP solutions for pairs of components. An implicit implementation of
Borůvka’s algorithm would add one edge for each component.

The initial forest for learning-augmented metric MST. When applying Kruskal’s or Borůvka’s
algorithm implicitly to X , terminating the algorithm early would produce a forest of disconnected
components (see Figure 1a). Inspired by this observation, Veldt et al. (2025) introduced a learning-
augmented framework for metric MST where the input can be viewed as a heuristic prediction for
the forest that would be produced by terminating a classical algorithm early. Formally, an initial
forest Gt = (X , Et) for (X , d) is defined by a partitioning P = {P1, P2, . . . , Pt} of X and a
partition spanning tree Ti = (Pi, ETi) for each i ∈ [t] such that Et = ∪t

i=1ETi . See Figure 1c. We
let P (x) denote the partition x ∈ X belongs to in P . We say Ti is the ith component of Gt.

Terminating an exact algorithm early to find an initial forest is prohibitively expensive if one wants
to avoid quadratic complexity. One alternative is to run a fast clustering heuristic (e.g., the simple
2-approximation for k-center Gonzalez (1985)) to partition X , and then recursively find an approx-
imate or exact MST for each partition. Another approach is to compute an approximate k-nearest
neighbors graph for GX and then find a spanning forest of it. These and other similar strategies
have already been used in prior work to develop fast heuristics (without approximation guarantees)
for Euclidean MSTs Almansoori et al. (2024); Chen (2013); Zhong et al. (2015); Jothi et al. (2018).
One contribution of Veldt et al. (2025) was to formalize the notion of an initial forest and introduce
a way to measure its quality. To define this measure, let TX denote the set of MSTs of GX . For a
tree T ∈ TX , let T (P) = {(u, v) ∈ T : P (u) = P (v)} be the set of edges from T whose endpoints
are from the same partition of P . The γ-overlap of P is defined to be

γ(P) =
wX (Et)

maxT∈TX wX (T (P))
.

In other words, γ(P) captures the weight of edges that the initial forest has in P , divided by the
weight of edges that an optimal MST places inside components. Lower values of γ are better,
as they indicate that the intial forest overlaps well with some optimal solution. One can use the
minimizing property of MSTs to show that γ(P) ≥ 1, with equality exactly when Gt is contained
inside some optimal MST. When P is clear from context, we will simply write γ = γ(P).

Metric forest completion. Given an initial forest, Metric Forest Completion (MFC) is the task of
finding a minimum weight spanning tree that contains Et as a subgraph. Formally:

minimize wX (ET )
subject to T = (X , ET ) is a spanning tree for GX

Et ⊆ ET .
(1)

This is equivalent to finding a minimum weight set of edges M ⊆ EX such that M completes Et,
meaning that M ∪Et spans X . Solving MFC for an initial forest where γ(P) = 1 (e.g., obtained by
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(a) Kruskal stopped early (b) Completed MST (c) Initial forest (P; {Ti}) (d) MFC solution

Figure 1: (a) The forest obtained by terminating Kruskal’s algorithm early for a set of 100 points.
(b) Running Kruskal’s algorithm to the end leads to a full MST. (c) The initial forest can be viewed
as a heuristic prediction for the forest in (a). For this example, γ(P) ≈ 1.06. (d) Solving metric
forest completion problem produces a full spanning tree that approximates the true MST.

terminating an exact algorithm early) produces an optimal MST (Figure 1b). Applying it to a initial
forest with γ(P) > 1 produces an approximately optimal spanning tree (Figure 1d).

MFC can be viewed as an MST problem defined over a complete coarsened graph GP = (VP , EP)

where VP = {v1, v2, . . . , vt} is the node set and EP =
(
VP
2

)
is all pairs of nodes. Node vi corre-

sponds to partition Pi for each i ∈ [t], and the weight between vi and vj is defined as the solution to
the BCP problem between Pi and Pj . Formally, the weight function w∗ : EP → R+ is given by

w∗(vi, vj) = d(Pi, Pj). (2)
Finding an MST of GP with respect to w∗, and then mapping the edges in GP back to the points
in X that define the weight function w∗, solves the MFC problem. The challenge is that exactly
computing w∗ can take Ω(n2) distance queries, in particular when the component sizes are balanced.

Existing MFC approximation. Veldt et al. (2025) introduced MFC-Approx, which approximates
MFC by considering only a subset of edges. This algorithm selects one arbitrary representative
point ri ∈ Pi for each i ∈ [t], and completes the initial forest by adding only edges that are
incident to one or two representatives. Conceptually this amounts to forming a new weight function
ŵ : VP → R+ such that w∗ ≤ ŵ, and then finding an MST in GP with respect to ŵ. Veldt et al.
(2025) showed that this can be accomplished in O(ntQX ) time (when Gt is given), where QX
is the time to query one distance in X . They proved that this algorithm returns a spanning tree
that approximates the MFC problem to within a factor (3 +

√
5)/2 < 2.62. Furthermore, it is

a learning-augmented algorithm for the original metric MST problem with a parameter-dependent
approximation guarantee of (2γ + 1 +

√
4γ + 1)/2 < (2γ + 1).

3 MULTI-REPRESENTATIVE MFC ALGORITHM

We present a generalization of MFC-Approx that selects a set of representatives for each component,
rather than only one. For each i ∈ [t], let Ri ⊆ Pi be a nonempty subset of representatives for the ith
component in P . Let R = ∪t

i=1Ri, and define ER = {(r, x) : r ∈ R, x ∈ X}. The new algorithm
finds the minimum weight set of edges M̂ ⊆ ER to complete the initial forest. To do so, it finds an
MST of the coarsened graph GP with respect to a weight function ŵ : EP → R+ given by

ŵ(vi, vj) = min {d(Pi, Rj), d(Pj , Ri)} . (3)
For each pair (vi, vj), the algorithm keeps track of the points x, y ∈ X such that ŵ(vi, vj) = d(x, y),
in order to map an MST in GP back to the edge set M̂ ⊆ ER. We denote this algorithm by
MultiRepMFC(R) or MultiRepMFC when R is clear from context. By design, MultiRepMFC is a
simple way to interpolate between the existing MFC-Approx algorithm and an exact algorithm (when
R = X ). Our key technical contributions are to provide an approximation analysis for this algorithm
(Section 3.1), and present an approximately optimal strategy for selecting R (Section 3.2).

3.1 APPROXIMATION ANALYSIS FOR FIXED R.

To quantify the quality of spanning trees returned by MultiRepMFC(R), define the cost of Pi to be
the maximum distance between any point in Pi and its nearest representative:

cost(Pi, Ri) = max
x∈Pi

min
r∈Ri

d(x, r), (4)
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We extend this to a cost function on P by defining cost(P, R) =
∑t

i=1 cost(Pi, Ri). When R is
clear from context, we write cost(Pi) = cost(Pi, Ri) and cost(P) = cost(P, R). The following
theorem shows that this cost bounds the additive approximation error for MultiRepMFC, and can
also be used to define an instance-specific multiplicative approximation bound.
Theorem 1. MultiRepMFC(R) is an α-approximation for MFC and an (αγ)-approximation for
metric MST where γ is the overlap parameter for the initial forest and α = 1+cost(P, R)/wX (Et).

Proof. Let T ∗
P denote an MST for the coarsened graph GP with respect to w∗ as defined in Eq. (2).

This T ∗
P can be mapped to an edge set M∗ ⊆ X that optimally solves MFC. Let T ∗ be the spanning

tree for GX obtained by combining M∗ with the initial forest edges Et. Thus,

wX (T ∗) = wX (M∗) + wX (Et) = w∗(T ∗
P) + wX (Et). (5)

Let T̂P be the MST in GP with respect to ŵ that MultiRepMFC finds, and M̂ be the edge set in X it
corresponds to. Then the spanning tree T̂ returned by MultiRepMFC has weight

wX (T̂ ) = wX (M̂) + wX (Et) = ŵ(T̂P) + wX (Et). (6)

Since T ∗
P is a tree, we can assign each edge in T ∗

P to one of its endpoints in such a way that one node
in GP is assigned no edge, and every other node in GP is assigned to exactly one edge of T ∗

P . This
can be accomplished by selecting a node v of degree 1 from T ∗

P , assigning v’s only incident edge to
v, and then removing v and its incident edge before recursing. This continues until there is only one
node of GP with no adjacent edges. We write (vi, vj) ∈ T ∗

P to indicate an edge in this tree between
vi and vj that is assigned to node vi. Since each node is assigned at most one edge, we have that∑

(vi,vj)∈T∗
P

cost(Pi) ≤
t∑

i=1

cost(Pi) = cost(P). (7)

For an arbitrary edge (vi, vj) ∈ T ∗
P , let (xa, xb) ∈ Pi ×Pj be points in X defining the optimal edge

weight w∗(vi, vj) = d(xa, xb). Let z ∈ Ri be the closest representative in Pi to point xa, meaning

d(xa, z) = min
r∈Ri

d(xa, r) ≤ max
x∈Pi

min
r∈Ri

d(x, r) = cost(Pi).

By definition, ŵ(vi, vj) is at most the distance between z and any point in Pj , which implies that
ŵ(vi, vj) ≤ d(z, xb). Therefore

ŵ(vi, vj) ≤ d(z, xb) ≤ d(xa, xb) + d(xa, z) ≤ w∗(vi, vj) + cost(Pi). (8)

Combining the bounds in (7) and (8) gives

ŵ(T ∗
P) =

∑
(vi,vj)∈T∗

P

ŵ(vi, vj) ≤
∑

(vi,vj)∈T∗
P

[w∗(vi, vj) + cost(Pi)] ≤ w∗(T ∗
P) + cost(P). (9)

Putting these observations together proves the approximation for MFC:

wX (T̂ ) = ŵ(T̂P) + wX (Et) (Eq. 6)

≤ ŵ(T ∗
P) + wX (Et) (T̂P is optimal for ŵ)

≤ w∗(T ∗
P) + cost(P) + wX (Et) (Eq. 9)

= wX (T ∗) + cost(P) (Eq. 5)

≤
(
1 +

cost(P)

wX (Et)

)
wX (T ∗) = αwX (T ∗)

where in the last step we have used the fact that wX (Et) ≤ wX (T ∗). To turn this bound into an
(αγ)-approximation for the original MST problem, it suffices to prove wX (T ∗) ≤ γwX (TX ), where
TX is an MST of GX that leads to the smallest overlap parameter γ for the initial forest. Let IX
denote the set of edges of TX that are inside components P , meaning that

wX (Et) = γwX (IX ). (10)

Furthermore, let BX = TX \ IX be the set of edges in TX that cross between components of P .
Observe that BX must correspond to a spanning subgraph of the coarsened graph GP . If not, TX

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

would not provide a connected path between all pairs of components and hence would not span
GX . The fact that T ∗

P is a minimum weight spanner for GP guarantees that w∗(T ∗
P) ≤ wX (BX ).

Combined with (10), this gives the desired inequality:

wX (T ∗) = wX (Et) + w∗(T ∗
P) ≤ γwX (IX ) + wX (BX ) ≤ γwX (TX ).

As a corollary, we improve on the previous analysis that proved MFC-Approx is a 2.62-approximation
for MFC and a (2γ + 1)-approximation for metric MST.

Corollary 2. MFC-Approx is a 2-approximation for MFC, and a (2γ)-approximation for MST where
γ is the overlap parameter for the initial forest.

Proof. MFC-Approx is equivalent to MultiRepMFC when Ri is a single arbitrary point from Pi for
each i ∈ {1, 2, . . . , t}. We know cost(Pi) ≤ wX (Ti), since cost(Pi) equals the distance between
two specific points in Pi, and there is a path between these two points in Ti. Summing across all
components gives cost(P) ≤ wX (Et). This in turn implies that α ≤ 2, proving the bound.

In addition to providing better approximation factors, our analysis is shorter and simpler than the
prior analysis for MFC-Approx. See Appendix A for a more detailed comparison. In Appendix B we
prove the following result, showing that our approximation guarantees are tight.

Theorem 3. For every positive integer p and every ε ∈ (0, 1), there exists an initial forest with
γ(P) = 1 and choice of representative for which MFC-Approx returns a tree that is a factor

2p− 1

(1 + ε)p− ε

larger than the tree returned by optimally solving MFC (equivalent here to the metric MST problem).

The approximation factor in Theorem 3 converges to 2 = 2γ as p → ∞ and ε → 0. Theorem 1
nevertheless provides a better instance-specific approximation ratio in terms of cost(P), which can
be especially good when we allow multiple representatives per component.

3.2 THE BEST REPRESENTATIVES PROBLEM

We now focus on finding a set R that optimizes the approximation ratio in Theorem 1. Let b be a
nonnegative budget, denoting the number of representatives R is allowed to contain beyond having
one representative per component. The Best Representatives problem (BESTREPS) is defined as:

minimize cost(P, R) =
∑t

i=1 maxx∈Pi
minr∈Ri

d(x, r)
subject to |Ri| ≥ 1 ∀i ∈ [t]∑t

i=1(|Ri| − 1) ≤ b.
(11)

If t = 1, this is equivalent to k-center with k = b + 1. Thus, BESTREPS is a generalization of
k-center where there are multiple instances of points to cluster and the budget for cluster centers
is shared across instances. Since the problem is NP-hard even for t = 1, it is impractical to solve
optimally. However, we obtain a fast 2-approximation by combining an approximation algorithm
for standard k-center (the t = 1 case) with a dynamic programming strategy for allocating budgets.1

Greedy k-center for approximating allocation benefit. For i ∈ [t], we define

c∗i (j) = min
Ri : |Ri|=j

cost(Pi, Ri) for j ∈ [b+ 1].

This captures the benefit for allocating j representatives to cluster Pi. Computing c∗i (j) is equivalent
to solving an NP-hard k-center problem on the set Pi with k = j. We efficiently approximate this
function for all j ≤ b + 1 by running the greedy 2-approximation of Gonzalez (1985) for k-center
with k = b+1. This methods starts by choosing an arbitrary first cluster center. At iteration j ≤ k, it

1An LLM was used to search for related work for this multi-instance k-center generalization, and also
generated ideas for developing the 2-approximation algorithm for it. See Appendix C for details.
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chooses the jth cluster center to be the point that is farthest away from the first j− 1 cluster centers.
Let Ri,j be the the first j cluster centers found by this procedure, and define

ĉi(j) = cost(Pi, Ri,j) for j ∈ [b+ 1].

By the algorithm’s 2-approximation guarantee, we know ĉi(j) ≤ 2c∗i (j) for i ∈ [t] and j ∈ [b+ 1].

DP for allocating representatives. We allocate representatives to components by solving

minimize

t∑
i=1

ĉi(bi + 1) subject to
t∑

i=1

bi = b and bi ≥ 0 ∀i ∈ [t], (12)

where bi ≥ 0 represents the number of extra representatives assigned to Pi. This is a variant of
the knapsack problem where the objective function is nonlinear, all items have weight 1, and we
allow repeat items (bi ≥ 1). If the ĉi functions are already computed, this can be solved optimally in
O(tb2) time via dynamic programming (DP). The DP approach for problems in this form is standard.
We provide full details in Appendix C for completeness, as well as a proof for the following result.

Theorem 4. Let {b̂i : i ∈ [t]} be the optimal solution to Problem (12). For i ∈ [t], define Ri to be
the first b̂i + 1 cluster centers chosen by running the greedy 2-approximation for k-center on Pi.
Then {Ri : i ∈ [t]} is a 2-approximate solution for BESTREPS.

3.3 ALGORITHM VARIANTS AND RUNTIME ANALYSIS

We now summarize several different approximation algorithms for MFC (and their runtimes) that
are obtained by combining MultiRepMFC with different strategies for finding R. See Appendix D
for more details. We assume t = O(nδ) for some δ ∈ [0, 1). Let DP-MultiRepMFC denote the algo-
rithm that runs MultiRepMFC after finding a set of representatives using the dynamic programming
strategy from Theorem 4. It has a runtime of O(nQX (b+ t)+ tb2). Greedy-MultiRepMFC is a faster
approach that greedily allocates representatives to components iteratively in a way that leads to the
best improvement to the objective in Problem 12 at each step. It has a runtime of O(nQX (b + t)).
Fixed(ℓ)-MultiRepMFC is a simple baseline that chooses ℓ ≥ 1 representatives per component by
running the greedy 2-approximation for k-center on each component with k = ℓ. It has a runtime of
O(nQX (b+t)), but only applies to budgets b that are multiples of t. All three of these algorithms are
2-approximations for MFC (and learning-augmented 2γ-approximations for metric MST) by Theo-
rem 1. The asymptotic bottleneck for all three runtimes is computing ŵ. Fixed(ℓ)-MultiRepMFC and
Greedy-MultiRepMFC are faster than DP-MultiRepMFC, but DP-MultiRepMFC is the only method
that satisfies an approximation guarantee for the BESTREPS step. The runtimes above assume that
the initial forest is already given. If one factors in the time it takes to compute the initial forest,
choosing representatives constitutes an even smaller portion of the runtime.

4 EXPERIMENTS

Prior work has already shown that the MFC framework (which includes both computing an initial
forest and running MFC-Approx) is fast and finds nearly optimal spanning trees for a wide range of
dataset types and metrics. Since our work focuses on improved algorithms for the MFC step, our ex-
periments also focus on this step, rather than on again comparing the entire MFC framework against
an exact Ω(n2)-time algorithm for metric MST. We specifically address the following questions
relating to MultiRepMFC, our approximation bound α, and strategies for choosing representatives.

Question 1: How does MultiRepMFC compare (in terms of runtime and spanning tree cost) against
the MFC-Approx algorithm (b = 0) and the Ω(n2) algorithm for the MFC step (b = n)?

Question 2: What is the runtime vs. quality tradeoff between using different strategies for approxi-
mating the BESTREPS step in practice (Dynamic, Greedy, Fixed(ℓ))?

Question 3: How does our instance-specific approximation bound (α in Theorem 1) compare to the
worst-case 2-approximation and the actual approximation achieved in practice?

Implementation details and experimental setup. Our algorithm implementations are in C++ and
directly build on the open-source code made available for MFC-Approx in prior work by Veldt et al.
(2025). Building on this existing code ensures a direct and fair comparison to prior work. We also
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Figure 2: We display the performance of each variant of MultiRepMFC as runtime increases. Each
point corresponds to running one method with a fixed budget b. The top row shows the value
of ε such that each method obtains a (1 + ε)-approximation in practice. The second row shows
the value εα such that we can guarantee we obtain a (1 + εα)-approximation using Theorem 1.
Computing εα is fast. Computing ε exactly is impractical as it requires optimally solving MFC. The
last row shows the gap between α and the true approximation as runtime increases. We see that all
variants of MultiRepMFC provide a useful interpolation between the existing MFC-Approx algorithm
(b = 0 vertical dashed line) and an optimal MFC algorithm (right vertical dashed line). All plots
also show that dynamic programming produces better true approximations (top row), much better
approximation bounds (middle row), and is faster at shrinking the gap between the bound and true
approximation (last row). For Cooking, 16 random orderings of the entire dataset (n = 39, 774)
were used, for all others we take 16 uniform random samples of size n = 30, 000. Average results
are then displayed.

apply a similar experimental setup as Veldt et al. (2025) We compute initial forests by partitioning
X using a k-center algorithm and then finding optimal MSTs for partitions. We choose t =

√
n

partitions since this approximately minimizes the total time to compute a spanning tree (when in-
cluding the time to form the initial forest); see Appendix D for more details. We consider 4 datasets
also used by Veldt et al. (2025), chosen since each corresponds to a different dataset type and dis-
tance metric. These are: Cooking (set data; Jaccard distance), GreenGenes (fixed-length sequences;
Hamming distance), FashionMNIST (784-dimensional points, Euclidean distance), and Names-US
(strings; Levenshtein edit distance). See Appendix E for more details on datasets.

In order to address our three questions, we run DP-MultiRepMFC, Greedy-MultiRepMFC, and
Fixed(ℓ)-MultiRepMFC for a range of budgets b on the four datasets mentioned above. For our com-
parisons, we also run MFC-OPT: an optimal algorithm for MFC that finds an MST of the coarsened
graph with respect to the optimal weight function w∗. Each run of each algorithm produces a span-
ning tree that completes the initial forest. To measure spanning tree quality, we compute the Cost
Ratio for MFC: the weight of the spanning tree produced by the algorithm divided by the weight of
the tree produced by MFC-OPT. We also compute α from Theorem 1, which is an upper bound for
Cost Ratio. This bound α differs for each algorithm and choice of b, since it depends on how well
the BESTREPS step is solved.

The first row of Figure 2 displays Cost Ratio − 1 versus runtime for each algorithm. Note that if
ε = Cost Ratio − 1, this means the algorithm achieved a (1 + ε)-approximation. For the x-axis, the
runtime includes the time for approximating BESTREPS plus the time for MultiRepMFC. The second
row of plots displays εα = α − 1 in the y-axis. This shows us the value of εα for which we can
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guarantee an algorithm has achieved at least a (1 + εα)-approximation, by Theorem 1. The third
row of plots displays α − Cost Ratio, which is the gap between our bound on the approximation
factor and the true approximation factor. In Appendix E, we show results for all these metrics as the
budget b varies. However, this does not provide as direct of a comparison, since the runtime for each
method depend differently on b. Here in the main text, we primarily focus on understanding how
well each method performs within a fixed runtime budget (rather than fixed b).

Comparing against MFC-Approx and MFC-OPT (Question 1). When b = 0 (leftmost point in
each plot), all of our MultiRepMFC algorithms correspond to the previous MFC-Approx algorithm.
The output for each algorithm traces out a performance curve as b (and runtime) increases. These
curves tend to decrease steeply at the beginning, showing that MultiRepMFC produces noticeably
better spanning trees than MFC-Approx with only a small amount of extra work. In many cases,
the spanning tree quality gets very close to an optimal solution at a fraction of the time it takes
to run MFC-OPT. One outlier in these results is the Names-US dataset, where MFC-OPT is much
faster than usual. This is because initial forests for Names-US are highly imbalanced, with one large
component containing nearly all the points. For highly-imbalanced forests, it is much cheaper to
optimally solve the MFC step. Running MultiRepMFC is therefore not useful for large values of
b. Nevertheless, for small values of b, MultiRepMFC provides a meaningful interpolation between
MFC-Approx and MFC-OPT.

Comparing methods for BESTREPS (Question 2). From the top row of Figure 2, we see that
DP-MultiRepMFC tends to produce the best spanning trees within a fixed time budget. Perhaps sur-
prisingly, the simplest method Fixed(ℓ)-MultiRepMFC tends to outperform Greedy-MultiRepMFC,
whose progress tends to plateau after a certain point. This may be because Greedy-MultiRepMFC is
too myopic in assigning representatives. For example, it is possible that adding one extra represen-
tative to a certain component would change the objective very little, but adding two or more would
significantly decrease the objective. Fixed(ℓ)-MultiRepMFC would be able to achieve this benefit for
the right choice of ℓ, whereas Greedy-MultiRepMFC may never notice the benefit.

Comparing α values (Question 3). Our bound α (second row of plots in Figure 2) is always very
close to 1, and provides a much better bound to the true approximation ratio than the worst-case
2-approximation. This can be seen in the third row of plots in Figure 2. This is significant since
computing the true Cost Ratio is impractical, as it requires optimally solving MFC. However, α can
be computed easily in the process of running MultiRepMFC, and therefore serves as a very good
proxy for the true approximation ratio with virtually no extra effort. As a practical benefit, this
opens up the possibility of choosing b dynamically in practice. In particular, one can choose to add
representatives until achieving a satisfactory value of α, and only then run MultiRepMFC.

Figure 2 also shows that different approaches for BESTREPS perform differently in terms of how
well they minimize α. While DP-MultiRepMFC is slightly better than other methods in terms of
Cost Ratio, it is far better at minimizing α. Again, this is significant because α is an approximation
guarantee that we can efficiently obtain in practice, unlike the true Cost Ratio. Furthermore, as
runtime increases, the gap between α and Cost Ratio shrinks more quickly for DP-MultiRepMFC
than for other methods (Figure 2, third row). This provides further evidence for the benefits of the
dynamic programming approach for BESTREPS, which helps further address Question 2.

5 CONCLUSIONS AND DISCUSSION

Metric forest completion is a learning-augmented framework for finding an MST in an arbitrary
metric space, when the learned input is an initial forest that serves as a starting point for finding
a spanning tree. We have introduced a generalized approximation algorithm for this problem that
comes with better theoretical approximation guarantees, which we prove are tight for an existing
MFC-Approx approximation algorithm. Our results also include very good instance-specific approx-
imation guarantees that overcome worst-case bounds. In numerical experiments, we show that with
a small amount of extra work, we can obtain much better quality solutions for MFC than prior tech-
niques. One open direction is to pursue approximations for metric MST in terms of other quality
parameters (aside from our γ-overlap) for the initial forest. Another question is whether one can
achieve worst-case approximation factors below 2 for MFC, using alternative techniques with sub-
quadratic complexity. Finally, an interesting question is whether we can prove general lower bounds
on the approximation ratio that hold for all algorithms with subquadratic complexity.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

An anonymized version of our code has been made available in the supplementary material, and
will be made publicly available if the manuscript is accepted. This includes all source code for our
algorithms, the commands that were run to produce the main results, and scripts for plotting our
results in R. The output from our experiments is included in a results folder in the supplementary
material, so that all plots from the main text can be reproduced. Most of the datasets are too large to
include in the supplementary file, so we have included instructions in the supplement’s README
regarding where the original data can be obtained and how it was preprocessed. The appendix of
our paper also includes a description for each dataset and references to the original sources. For our
theoretical results, complete proof details are included either in the main text or the appendix.
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Algorithm 1 MultiRepMFC(R = {Ri : i ∈ [t]})
1: Input: X = {x1, x2, . . . , xn}, components P = {P1, P2, . . . , Pt}, spanning trees

{T1, T2, . . . , Tt}, nonempty Ri ⊆ Pi for each i ∈ [t].
2: Output: Spanning tree for GX = (X , EX ).
3: for (i, j) ∈

(
t
2

)
do

4: wi→j = minxi∈Pi,rj∈Rj
d(xi, rj)

5: wj→i = minxj∈Pj ,ri∈Ri
d(xj , ri)

6: ŵij = min{wi→j , wj→i}
7: end for
8: T̂P = OptMST({ŵij}i,j∈[t])

9: Return spanning tree T̂ obtained by combining Et with edges corresponding to T̂P .

A ADDITIONAL MULTIREPMFC ALGORITHM DETAILS

Pseudocode for MultiRepMFC is given in Algorithm 1. This relies on a black-box function OptMST
which computes an optimal solution for a minimum spanning tree for a graph. This is specifically
applied to find an MST of the coarsened graph with respect to the new weight function ŵ : VP → R,
which corresponds to a set of edges in X that completes the initial forest Gt = (X , Et). When
|Ri| = 1 for every i ∈ [t], this corresponds to the existing MFC-Approx algorithm of Veldt et al.
(2025).

Comparison between Theorem 1 and prior work. Our proof that MFC-Approx is a 2-
approximation for MFC (and a 2γ-approximation for metric MST) simplifies the analysis of Veldt
et al. (2025) in a few ways. The prior analysis relied on partitioning edges in the coarsened graph
based on whether or not they were β-bounded (meaning ŵij ≤ βw∗

ij) for some initially unspecified
β > 1. The analysis then considered two other spanning trees of the coarsened graph that are opti-
mal with respect to two other hypothetical weight functions that depended on β. This led to bounds
for different parts of the weight of T̂ (the tree returned by MFC-Approx), in terms of different ex-
pressions involving β. The best approximation guarantee of β = (3 +

√
5)/2 was then obtained by

solving a quadratic equation resulting from the bounds.

In contrast, our new analysis completely avoids the need to partition edges based on an unknown
β, work with hypothetical weight functions, or solve for the best β in this way. Our analysis shares
some other steps in common with the proof of Veldt et al. (2025), but is ultimately able to apply basic
facts about distances and triangle inequalities more directly, leading to an analysis that is simpler,
shorter, and tighter.

B TIGHT EXAMPLE FOR MFC-APPROX

Theorem 3. For every positive integer p and every ε ∈ (0, 1), there exists an initial forest with
γ(P) = 1 and choice of representative for which MFC-Approx returns a tree that is a factor

2p− 1

(1 + ε)p− ε

larger than the tree returned by optimally solving MFC (equivalent here to the metric MST problem).

Proof. For i ∈ {1, 2, . . . , 2p}, let ei be a vector of length 2p such that

ei(j) =
{
1 if i = j

0 otherwise.

For j ∈ {1, 2, . . . , p}, set

xj = ej

xj+p = ε · ej+p.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

We say that L = {x1, x2, . . . , xp} are large points and S = {xp+1, xp+2, . . . , x2p} are small
points. Define a metric space over these 2p vectors X = {x1, x2, . . . , x2p} in 2p-dimensional space
by applying the ℓ∞ norm. This means that

d(xi, xj) = ∥xi − xj∥∞ =

{
1 if either i or j is large
ε otherwise.

Define an initial forest with p components P = {{xj , xj+p} : j = 1, 2, . . . , p}. Since each compo-
nent only involves two nodes, the spanning tree for each component is obtained by taking the edge
of weight 1 between xj and xj+p. Therefore, the weight of the initial forest is w(Et) = p. Since
ε < 1, the optimal solution to MFC is to add a spanning tree on small points. This costs ε · (p− 1),
so if T ∗ represents an optimal tree,

wX (T ∗) = p+ ε(p− 1) = (1 + ε)p− ε. (13)

It is easy to check that this tree is also optimal for the original MST problem, so γ(P) = 1.

Consider, however, what happens if MFC-Approx chooses the large point in each component to be the
representative. In this case, the algorithm is restricted to completing the tree using edges of weight
1. Completing the tree requires p − 1 more edges, so if T̂ is the tree returned by the algorithm in
this case, we have

wX (T̂ ) = p+ p− 1 = 2p− 1.

Taking the ratio wX (T̂ )/wX (T ∗) yields the stated approximation factor.

C DYNAMIC PROGRAMMING FOR REPRESENTATIVE ALLOCATION

We now provide full details for a dynamic programming algorithm for solving a resource allocation
problem of the form

minimize

t∑
i=1

fi(b[i]) (14)

subject to
t∑

i=1

b[i] = b (15)

b ∈ Nt (16)

where we assume the functions {fi : i ∈ [t]} are given and we use the convention that natural num-
bers include zeros: N = {0, 1, 2, . . .}. This matches Problem (12) in the main text after applying a
change of function fi(j) = ĉi(j + 1) to better highlight that the goal is to assign extra representa-
tives, beyond the first representative for each component. The following theorem guarantees that if
we can solve this problem, we can use it to obtain a 2-approximation for BESTREPS.

Theorem 4. Let {b̂i : i ∈ [t]} be the optimal solution to Problem (12). For i ∈ [t], define Ri to
be the first b̂i + 1 cluster centers chosen by running the greedy 2-approximation for k-center on Pi.
Then {Ri : i ∈ [t]} is a 2-approximate solution for BESTREPS.

Proof. BESTREPS is equivalent to minimizing
∑t

i=1 c
∗
i (bi + 1) subject to

∑t
i=1 bi = b and bi ≥ 0

for every i ∈ [t]. Let {b∗i : i ∈ [t]} denote an optimal solution for this problem. The 2-approximation
guarantee for {b̂i : i ∈ [t]}—and the corresponding sets {Ri}—follows from the fact that {b̂i} are
optimal for the {ĉi} functions, and the fact that c∗i (j) ≤ ĉi(j) ≤ 2c∗i (j) for every i ∈ [t] and
j ∈ [b+ 1]:∑t

i=1 c
∗
i (b̂i + 1) ≤

∑t
i=1 ĉi(b̂i + 1) ≤

∑t
i=1 ĉi(b

∗
i + 1) ≤ 2

∑t
i=1 c

∗
i (b

∗
i + 1).

14
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Next we show how to solve the problem in (14) using dynamic programming. For integers B ∈ [0, b]

and T ∈ [t], define ΩB
T = {b ∈ NT :

∑T
i=1 b[i] = B} and define

F (T,B) = min
b∈ΩB

T

T∑
i=1

fi(b[i]).

Our goal then is to efficiently compute F (t, b).

In the context of the BESTREPS problem, F (T,B) is the optimal way to assign B extra representa-
tives to the first T components. If there are no extra representatives to assign, we can see that

F (T, 0) =

T∑
i=1

fi(0) for T ∈ [t].

If there is only one component to assign extra representatives to, then we have

F (1, B) = f1(B) for B = 0, 1, . . . , b.

Observe next that the optimal way to allocate B representatives across the first T components is
found by considering all ways to optimally allocate k representatives to the first T − 1 components,
while allocating B − k representatives to the T th component. This is captured by the formula:

F (T,B) = min
0≤k≤B

F (T − 1, k) + fT (B − k).

Using a bottom-up dynamic programming algorithm, computing F (T,B) when given F (T − 1, k)
and fT (B − k) for every k ∈ [0, B] takes O(B) = O(b) time for every T ≤ t. Since we need to
compute F (T,B) for t choices of T and b choices of B, the overall runtime is O(tb2).

In practice, we need to know not just the value of F (t, b) but the choice of b ∈ Nt that produces
the optimal solution, since this determines the number of representatives for each component. We
can accomplish this naively by storing a vector of length-t for each choice of F (T,B), leading to a
memory requirement of O(t2b). In practice, we reduce this to O(tb) by noting that F (T,B) only
depends on F (T − 1, k) for k ∈ [0, B]. Thus, as long as we save the length-t vectors associated
with F (T − 1, k) for k ∈ [0, B], we can discard all length-t vectors associated with F (J, k) for
J < T − 1 and k ∈ [0, B].

Details on the use of LLMs for the BESTREPS results. Given the similarity between BESTREPS
and the classical k-center problem, we prompted an LLM to help check whether this problem had
been previously studied. The LLM noted several other variants of k-center and similar resource al-
location problems, but was unable to find prior examples where this exact problem had been studied.
The LLM then suggested a greedy algorithm that it claimed was a 2-approximation algorithm for
this problem, but the approximation analysis it provided was incorrect. With additional prompting,
the LLM suggested a dynamic programming approach. Although the LLM’s dynamic programming
algorithm and its proof still contained minor errors, the general strategy matched the basic approach
we ultimately used to prove a 2-approximation. This is a natural strategy for an LLM to suggest,
given that the dynamic programming approach is standard for variants of the knapsack problem and
resource allocation problems in this form. See, for example, the work of Marsten & Morin (1978),
which effectively covers the same strategy. LLMs were not used in research ideation for any other
aspects of the paper, and in particular were not used for any of the design or analysis in Section 3.1.
LLMs were also not used to aid in the final write-up of results for BESTREPS, or for the write-up of
any other section of the paper.

D DETAILS FOR ALGORITHM VARIANTS AND RUNTIMES

There are several nuances to consider when reporting runtimes for our algorithm variants DP-
MultiRepMFC, Greedy-MultiRepMFC, and Fixed(ℓ)-MultiRepMFC. These all have different runtimes
when addressing the BESTREPS problem, but in many cases those runtimes are overshadowed by
the MultiRepMFC step that follows when approximating MFC. The relative difference between these
algorithms can be further obscured if one also considers the time it takes to compute the initial forest.
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Although computing an initial forest is not part of the MFC problem, it is an important consideration
if the ultimate goal is to approximate the original metric MST problem.

We provide a careful runtime comparison for each algorithm here, along with some considerations
regarding the time to compute the initial forest. Let QX denote the time for one distance query in X .
We assume the number of components in the initial forest is t = O(nδ) for some δ ∈ [0, 1), since
the MFC framework only leads to subquadratic time algorithms if t is dominated by the number of
points. We use Õ to hide logarithmic factors in n.

Runtimes for BESTREPS step. In order to find a set of representatives R of size b + t using the
dynamic programming algorithm or the greedy method, we first must compute ĉi(j) for i ∈ [t] and
j ∈ [b+1]. To do so, we run the standard greedy 2-approximation for k-center on Pi for each i ∈ [t]
with k = b+1. This means k|Pi| distance queries for i ∈ [t], so this step takes O((b+1)nQX ) time
after summing over all i ∈ [t].

Dynamic programming. The dynamic programming step takes an additional O(tb2) time to allocate
representatives to components. The total time for approximating BESTREPS via dynamic program-
ming is therefore O(n(b+ 1)QX + tb2).

Greedy representative allocation. The greedy algorithm for BESTREPS starts with (b1, b2, . . . , bt) =
(0, 0, . . . , 0). It then simply iterates through the number of additional representatives from 1 to b, and
at each step adds 1 to the bi value that leads to the largest decrease in the objective

∑t
i=1 ĉi(bi +1).

More concretely, the algorithm must maintain the value of

∆i = ĉi(bi + 1)− ĉi(bi + 2)

for each i ∈ [t], and choose the component with maximum ∆i at each step. Observe that ∆i ≥ 0
for each i ∈ [t], since ĉi is a decreasing cost function. A simple O(tb)-time implementation is to
store ∆i values in an array and iterate through all t values to find the maximum at each step. This
can be improved to O(t+ b log t) time using a heap. However, in either case this step is dominated
by the time to compute the ĉi functions. So the runtime for the greedy algorithm for BESTREPS is
O(n(b+ 1)QX ).

Fixed(ℓ)-MultiRepMFC baseline. In order to choose ℓ = b/t representatives per component (assum-
ing b is a multiple of t), we simply run the greedy k-center 2-approximation on each component
with k = ℓ. We then use the resulting centers as the representatives. This has a faster runtime for
BESTREPS of O(ℓnQX ).

Runtime for MultiRepMFC step. Fix a set {Ri : i ∈ [t]} of nonempty representative sets for the
components. Let R =

⋃t
i=1 Ri where |R| = b + t. Given this input, MultiRepMFC first computes

the distance between each r ∈ Ri and every x ∈ X \ Pi. This is a total of

t∑
i=1

|Ri| · (|X | − |Pi|) < (b+ t)n

distance queries, needed to define the weight function ŵ for the coarsened graph. It then takes
O(t2 log t) time to find the MST of the coarsened graph with respect to ŵ using Kruskal’s algo-
rithm. One could implement the latter step more quickly using alternate MST techniques, but our
implementations apply Kruskal’s since this is simple and is not the bottleneck of MultiRepMFC,
neither in theory nor practice. Overall, running MultiRepMFC with a fixed R takes O(n(b+ t)QX ).

Full runtime analysis for MFC approximation algorithms. Although Greedy-MultiRepMFC and
Fixed(ℓ)-MultiRepMFC differ in terms of their runtime for the BESTREPS step, both of these al-
gorithms are asymptotically dominated by MultiRepMFC. Therefore, as approximation algorithms
for MFC (i.e., ignoring initial forest computation time) their runtime is O(n(b + t)QX ). DP-
MultiRepMFC, on the other hand, has a runtime of O(n(b + t)QX + tb2) to account for the more
accurate (but slower) dynamic programming strategy for allocating representatives. In cases where
b is small enough (b = O(n/t)), this term is negligible asymptotically. Hence, when we have
a small budget for additional representatives, we would expect DP-MultiRepMFC to improve over
MFC-Approx and Greedy-MultiRepMFC (note that Fixed(ℓ)-MultiRepMFC is not defined in this case).
As b increases beyond this limit, we still expect DP-MultiRepMFC to produce better spanning trees
than its competitors when we consider a fixed b, but the runtimes are then not directly comparable.
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Considerations for computing the initial forest. The runtime for computing an initial forest can
vary significantly depending on the strategy used. Veldt et al. (2025) computed initial forests by
first running the greedy 2-approximation for k-center with k = t to partition X , and then applying
Kruskal’s algorithm to find optimal MSTs of the components. In cases where the k-center step
produces balanced clusters (which it often did in practice but is not guaranteed to), this runs in
Õ(ntQX +n2/t)-time. In practice, Veldt et al. (2025) found that this was typically much faster than
running an Ω(n2)-time exact algorithm for MST, but was also usually the bottleneck for the MFC
framework. In particular, for most values of t, computing an initial forest was slower than running
MFC-Approx. Whether or not computing the initial forest is the most expensive step for finding an
approximate spanning tree, this will have an impact on the comparison between DP-MultiRepMFC,
Greedy-MultiRepMFC, and Fixed(ℓ)-MultiRepMFC. Especially in cases where computing an initial
forest step is expensive, the runtime differences between these algorithms for the MFC will be less
important.

Motivation for t =
√
n. In our numerical experiments, we set t =

√
n since this roughly minimizes

the asymptotic runtime when factoring in the initial forest computation. In more detail, consider
simplified conditions where the initial k-center step produces balanced partitions, b = O(t), and
QX = O(log n). If these conditions hold, the runtime for finding an initial forest and running DP-
MultiRepMFC is Õ(nt + t3 + n2/t). This is minimized when t = Θ(

√
n). If we instead used

Greedy-MultiRepMFC or Fixed(ℓ)-MultiRepMFC, the runtime would be Õ(nt + n2/t) under these
conditions, which is still minimized by t = Θ(

√
n). Even if these conditions do not all perfectly

hold, we expect t = Θ(
√
n) to at least approximately minimize the runtime. We remark finally that

there are several existing heuristics for computing an approximate MST that also rely on partitioning
a dataset into t components and then connecting disjoint components. Using a similar arguments,
these methods select t =

√
n in order to minimize the overall runtime Jothi et al. (2018); Zhong

et al. (2015).

E ADDITIONAL EXPERIMENTAL DETAILS

Our experiments are run on a large research server with 1TB of RAM. We use a subset of the datasets
considered by Veldt et al. (2025). Specifically, we selected four datasets that correspond to different
distance metrics. We summarize the datasets below, along with a link to the original data source(s).
See the work of Veldt et al. (2025) for additional steps in preprocessing data from the original source:

• Cooking (Jaccard distance) (Kaggle, 2015; Amburg et al., 2020). Sets of food ingredients
that define recipes. There are n = 39, 774 recipes and 6714 ingredients.

• FashinMNIST (Euclidean distance) (Xiao et al., 2017). Vectors of size d = 784 represent-
ing flattened images of size 28 × 28 pixels, where each image is a picture of a clothing
item.

• Names-US (Levenshtein edit distance) (Remy, 2021). Each data point is a string represent-
ing a last name of someone in the United States. The average name length is 6.67.

• GreenGenes-aligned (Hamming distance) (DeSantis et al., 2006). An alternate form for
the GreenGenes dataset where sequences have been aligned so that each is represented by
a fixed length sequence of 7682 characters.

When performing experiments for the Cooking dataset, we repeatedly take uniform random order-
ings of data points. Because our algorithms are deterministic, this random ordering effects only the
arbitrary elements selected for the first center during the k-center step of the initial forest compu-
tation, and the first representative chosen for each component when approximating the BESTREPS
problem. For all other datasets, we take uniform random samples of n = 30, 000 data points. In
all cases, we choose t = ⌊

√
n⌋, which equals 199 for Cooking and 173 for other datasets. In all

our plots, we report the average performance over 16 different random samples. Although our ap-
proximation algorithms can scale to much larger sizes of n, we also run an exact algorithm for MFC
for our comparisons, which can take Ω(n2) in the worse case. We restrict to values of n for which
we can find the optimal solution (and run all of our approximation algorithms for many different
choices of b) within a reasonable amount of time.
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Figure 3: We display the performance of each variant of MultiRepMFC as budget increases. Each
point corresponds to running one method with a fixed budget b.

Budget choices and runtime differences. For each variant of MultiRepMFC, we used budgets b
ranging from 0 to 38t in increments of 2t. This means that for the largest budget, we considered
having an average of 39 representatives per component. For Fixed(ℓ)-MultiRepMFC, this corresponds
to ℓ values from 1 to 39 in increments of 2.

For a fixed budget b, DP-MultiRepMFC tends to take longer than Greedy-MultiRepMFC, but for
a somewhat surprising reason. Although the time to find representatives is slower for DP-
MultiRepMFC, this constitutes only a small fraction of the total runtime and is not the primary reason
why DP-MultiRepMFC is slower for a fixed b. By checking runtime for different steps, we found that
the increase in runtime for DP-MultiRepMFC is due primarily to the total time it takes to compute
the distances between representatives and points outside each representative’s component, when
running MultiRepMFC. For a fixed R, recall the number of distances computed by MultiRepMFC(R)
to find ŵ is

t∑
i=1

|Ri| · (|X | − |Pi|).

Although this is bounded above by (b+1)n, in practice this value will depend on which components
the representatives are assigned to. In particular, if a representative is contained in a component Pi

that is very large, then (|X | − |Pi|) may be significantly smaller than the bound |X |. We found that
the number of distances computed by DP-MultiRepMFC tends be much larger than the number of
distances computed by Greedy-MultiRepMFC. This suggests that Greedy-MultiRepMFC may have a
greater tendency to place representatives in large components, while DP-MultiRepMFC finds ways
to distribute representatives differently in a way that leads to better spanning trees but more distance
computations.

In Figure 3, we display results for Cost Ratio − 1, α− 1, and the gap between these two values as b
varies. These plots show the same basic trends as Figure 2, and the curves are more clearly aligned
since there is exactly on point per value of b. However, these results do not provide as direct of a
comparison between methods, since the runtimes differ slightly as b varies.

18


	Introduction
	Preliminaries and Related Work
	Multi-representative MFC Algorithm
	Approximation analysis for fixed R.
	The Best Representatives Problem
	Algorithm variants and runtime analysis

	Experiments
	Conclusions and Discussion
	Additional MultiRepMFC Algorithm Details
	Tight example for MFC-Approx
	Dynamic Programming for Representative Allocation
	Details for algorithm variants and runtimes
	Additional Experimental Details

