

000 BETTER LEARNING-AUGMENTED SPANNING TREE 001 002 ALGORITHMS VIA METRIC FOREST COMPLETION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 We present improved learning-augmented algorithms for finding an approximate
011 minimum spanning tree (MST) for points in an arbitrary metric space. Our work
012 follows a recent framework called metric forest completion (MFC), where the
013 learned input is a forest that must be given additional edges to form a full span-
014 ning tree. Veldt et al. (2025) showed that optimally completing the forest takes
015 $\Omega(n^2)$ time, but designed a 2.62-approximation for MFC with subquadratic com-
016 plexity. The same method is a $(2\gamma + 1)$ -approximation for the original MST prob-
017 lem, where $\gamma \geq 1$ is a quality parameter for the initial forest. We introduce a
018 generalized method that interpolates between this prior algorithm and an optimal
019 $\Omega(n^2)$ -time MFC algorithm. Our approach considers only edges incident to a
020 growing number of strategically chosen “representative” points. One corollary of
021 our analysis is to improve the approximation factor of the previous algorithm from
022 2.62 for MFC and $(2\gamma + 1)$ for metric MST to 2 and 2γ respectively. We prove
023 this is tight for worst-case instances, but we still obtain better instance-specific
024 approximations using our generalized method. We complement our theoretical
025 results with a thorough experimental evaluation.

026 027 1 INTRODUCTION 028

029 Finding a minimum spanning tree (MST) of a graph is a fundamental computational primitive with
030 applications to hierarchical clustering (Gower & Ross, 1969; Gagolewski et al., 2025; La Grassa
031 et al., 2022), network design (Loberman & Weinberger, 1957), feature selection (Labbé et al., 2023),
032 and even comparing brain networks (Stam et al., 2014). The *metric* MST problem is a special case
033 where the input is a set of n points, and edge weights are defined by distances between points. A
034 conceptually simple algorithm for this case is to compute all $O(n^2)$ distances explicitly and then
035 apply a classical greedy algorithm. For Euclidean metrics, there exist more sophisticated algorithms
036 that can find an optimal or at least approximate minimum spanning tree in $o(n^2)$ time (Agarwal et al.,
037 1990; Shamos & Hoey, 1975; Vaidya, 1988; Arya & Mount, 2016). For general metric spaces,
038 however, one must know $\Omega(n^2)$ edges to compute even an approximate solution (Indyk, 1999).
039 This fact constitutes a fundamental challenge for designing algorithms that scale to massive modern
040 datasets, apply to general distance functions, and come with provable guarantees.

041 Motivated by the above challenge, Veldt et al. (2025) recently addressed the metric MST problem
042 from the perspective of *learning-augmented* algorithms (Mitzenmacher & Vassilvitskii, 2022). The
043 learning-augmented model assumes access to a prediction for some problem, often produced by a
044 machine learning heuristic, that comes with no theoretical guarantees but may still be useful in prac-
045 tice. The goal is to design an algorithm that is *consistent*, meaning that it produces near-optimal
046 outputs when the prediction is good, and *robust*, meaning that it recovers the same worst-case guar-
047 antees as a prediction-free algorithm when the prediction is bad. The performance of the algorithm
048 is typically captured by some parameter measuring the error of the prediction. The prediction, per-
049 formance measure, and error parameter vary depending on the context. Some prior work focuses on
050 better-than-worst-case runtimes or query complexities, including for binary search (Mitzenmacher
051 & Vassilvitskii, 2022; Dinitz et al., 2024), maximum flow (Polak & Zub, 2024; Davies et al., 2024;
052 2023), and incremental approximate shortest paths (McCauley et al., 2025). Other works focus on
053 improving competitive ratios for online algorithms, including for ski rental (Mitzenmacher & Vas-
silvitskii, 2022; Shin et al., 2023), scheduling (Benomar & Perchet, 2024), and online knapsack
problems (Lechowicz et al., 2024). In other settings, the goal is to improve approximation ratios for

054 hard combinatorial problems, e.g., clustering problems (Braverman et al., 2025; Ergun et al., 2022;
 055 Nguyen et al., 2023; Huang et al., 2025) or maximum independent set (Braverman et al., 2024).
 056

057 For the metric MST problem, Veldt et al. (2025) considered a learning-augmented setting where the
 058 n points are partitioned into components and each component is associated with a tree on its points.
 059 This input is called the initial forest, and can be viewed as a prediction for the forest that would
 060 be obtained by running several iterations of a classical algorithm such as Kruskal's. *Metric forest*
 061 *completion* (MFC) is then the task of finding a minimum-weight spanning tree that contains the
 062 initial forest as a subgraph. The quality of an initial forest is captured by a parameter $\gamma \geq 1$, where
 063 $\gamma = 1$ if the initial forest is contained in some optimal MST. Veldt et al. (2025) proved that optimally
 064 solving MFC takes $\Omega(n^2)$ time, but gave a 2.62-approximation algorithm whose runtime depends
 065 on the number of components t , and has subquadratic complexity if $t = o(n)$. The same method is
 066 a learning-augmented algorithm for metric MST with an approximation factor of roughly $(2\gamma + 1)$.
 067 The idea behind the algorithm is to identify a single *representative* node for each component in the
 068 initial forest, and only consider edges incident to one or two representatives. Implementations of
 069 the algorithm produced nearly optimal spanning trees while being orders of magnitude faster than
 070 the naive $\Omega(n^2)$ algorithm for metric MST. This is true even after factoring in the time to compute
 071 an initial forest. The in-practice approximation ratios also far exceeded the theoretical bounds of
 $(2\gamma + 1)$ (for the original MST problem) and 2.62 (for the MFC step) on all instances.

072 **Our contributions: generalized algorithm and tighter bounds.** While this prior work already
 073 demonstrates the theoretical and practical benefits of the MFC framework, several open questions
 074 remain. Is the large gap between theoretical bounds and in-practice approximation ratios due mainly
 075 to the specific datasets considered? Are there pathological examples where the previous approxi-
 076 mation guarantees are tight? In the other direction, can we tighten the analysis to improve the
 077 worst-case approximation guarantees? Also, can we prove better instance-specific approximations?

078 We introduce and analyze a generalized approximation algorithm for MFC that provides a way to ad-
 079 dress all of these questions. This algorithm starts with a budget for the number of points in the dataset
 080 that can be labeled as representatives. It then finds the best way to complete the initial forest by only
 081 adding edges incident to one or two representatives. Choosing one representative per component
 082 corresponds to applying the prior approximation algorithm of Veldt et al. (2025). Letting all points
 083 be representatives leads to an optimal (but $\Omega(n^2)$ -time) algorithm. Our new approach interpolates
 084 between these extremes, and for reasonable-sized budgets provides a way to significantly improve
 085 on the prior algorithm with only minor increase in runtime. We derive new instance-specific bounds
 086 on the approximation factor for this generalized approach, given in terms of an easy-to-compute
 087 cost function associated with a set of representatives. As an important corollary of our theoretical
 088 results, we prove that when there is only one arbitrary representative per component, the algorithm
 089 is a 2-approximation for MFC and a 2γ -approximation for metric MST. This immediately improves
 090 on the approximation factors of 2.62 and $(2\gamma + 1)$. Furthermore, our analysis is both simpler and
 091 more general. We also prove by construction that these guarantees are tight in the worst case.

092 As a technical contribution of independent interest, we show that choosing the best set of represen-
 093 tatives for our algorithm amounts to a new generalization of the k -center clustering problem. For
 094 this generalization, we have multiple instances of points to cluster, but the budget k on the number
 095 of cluster centers is shared across instances. We design a 2-approximation for this shared-budget
 096 multi-instance k -center problem by combining a classical algorithm for k -center (Gonzalez, 1985)
 097 with a dynamic programming approach for allocating the shared budget across different instances.

098 As a final contribution, we test an implementation of our new algorithm on a range of real-world
 099 datasets with varying distance metrics. We find that increasing the number of representatives even
 100 slightly leads to significant improvements in spanning tree quality with only a small increase in
 101 runtime, and that our dynamic programming approach performs especially well. Furthermore, our
 102 instance-specific approximation guarantees are easy to compute and serve as a very good proxy for
 103 the true approximation factor, which is impractical to compute exactly.

104 2 PRELIMINARIES AND RELATED WORK

105 For $m \in \mathbb{N}$, let $[m] = \{1, 2, \dots, m\}$. For an undirected graph $G = (V, E)$ and edge weight function
 106 $w: E \rightarrow \mathbb{R}$, a minimum spanning tree (MST) for G with respect to w is a tree $T = (V, E_T)$ where

$E_T \subseteq E$ and the total weight of edges $w(E_T) = \sum_{e \in E_T} w(e)$ is minimized. Optimal greedy algorithms for this problem have been known for nearly a century (Boruvka, 1926; Kruskal, 1956; Prim, 1957). For example, Kruskal’s algorithm starts with all nodes in singleton components, and at each step adds a minimum weight edge that connects two disjoint components. Boruvka’s algorithm is similar, but adds the minimum weight edge adjacent to *each* component every round.

The metric MST problem. Let (\mathcal{X}, d) be a finite metric space defined by a set of points $\mathcal{X} = \{x_1, x_2, \dots, x_n\}$ and a distance function $d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^+$. This input implicitly defines a complete graph $G_{\mathcal{X}} = (\mathcal{X}, E_{\mathcal{X}})$ with an edge function $w_{\mathcal{X}}$ that is equivalent to the distance function d . We let (u, v) denote the edge in $G_{\mathcal{X}}$ defined by points (x_u, x_v) , with weight $w_{\mathcal{X}}(u, v) = d(x_u, x_v)$. For two sets $X, Y \subseteq \mathcal{X}$, define $d(X, Y) = \min_{x \in X, y \in Y} d(x, y)$. We extend $w_{\mathcal{X}}$ to a weight function on an edge set $F \subseteq E_{\mathcal{X}}$ by defining $w_{\mathcal{X}}(F) = \sum_{(u,v) \in F} w_{\mathcal{X}}(u, v)$. The metric MST problem is the task of finding a minimum spanning tree of $G_{\mathcal{X}}$ with respect to $w_{\mathcal{X}}$.

A conceptually simple approach for solving metric MST is to explicitly query all $O(n^2)$ distances and apply a classical algorithm to the resulting complete graph. Another known approach that still takes $\Omega(n^2)$ time for general metric spaces but avoids querying all distances is an *implicit* implementation of a classical method, which instead only queries distances as needed (Agarwal et al., 1990; Callahan & Kosaraju, 1993). In more detail, an implicit implementation of Kruskal’s or Boruvka’s algorithm starts with all n points in singleton components. At every step of the algorithm, for each pair of components A and B , the algorithm finds a pair of points $(a, b) \in A \times B$ with minimum distance. The latter problem is known as the bichromatic closest pair problem (BCP) for A and B . An implicit implementation of Kruskal’s algorithm would then add the minimum weight edge from among all the BCP solutions for pairs of components. An implicit implementation of Boruvka’s algorithm would add one edge for each component.

The initial forest for learning-augmented metric MST. When applying Kruskal’s or Boruvka’s algorithm implicitly to \mathcal{X} , terminating the algorithm early would produce a forest of disconnected components (see Figure 1a). Inspired by this observation, Veldt et al. (2025) introduced a learning-augmented framework for metric MST where the input can be viewed as a heuristic prediction for the forest that would be produced by terminating a classical algorithm early. Formally, an *initial forest* $G_t = (\mathcal{X}, E_t)$ for (\mathcal{X}, d) is defined by a partitioning $\mathcal{P} = \{P_1, P_2, \dots, P_t\}$ of \mathcal{X} and a partition spanning tree $T_i = (P_i, E_{T_i})$ for each $i \in [t]$ such that $E_t = \bigcup_{i=1}^t E_{T_i}$. See Figure 1c. We let $P(x)$ denote the partition $x \in \mathcal{X}$ belongs to in \mathcal{P} . We say T_i is the *i*th component of G_t .

Terminating an exact algorithm early to find an initial forest is prohibitively expensive if one wants to avoid quadratic complexity. One alternative is to run a fast clustering heuristic (e.g., the simple 2-approximation for k -center Gonzalez (1985)) to partition \mathcal{X} , and then recursively find an approximate or exact MST for each partition. Another approach is to compute an approximate k -nearest neighbors graph for $G_{\mathcal{X}}$ and then find a spanning forest of it. These and other similar strategies have already been used in prior work to develop fast heuristics (without approximation guarantees) for *Euclidean* MSTs Almansoori et al. (2024); Chen (2013); Zhong et al. (2015); Jothi et al. (2018). One contribution of Veldt et al. (2025) was to formalize the notion of an initial forest and introduce a way to measure its quality. To define this measure, let $\mathcal{T}_{\mathcal{X}}$ denote the set of MSTs of $G_{\mathcal{X}}$. For a tree $T \in \mathcal{T}_{\mathcal{X}}$, let $T(\mathcal{P}) = \{(u, v) \in T : P(u) = P(v)\}$ be the set of edges from T whose endpoints are from the same partition of \mathcal{P} . The γ -overlap of \mathcal{P} is defined to be

$$\gamma(\mathcal{P}) = \frac{w_{\mathcal{X}}(E_t)}{\max_{T \in \mathcal{T}_{\mathcal{X}}} w_{\mathcal{X}}(T(\mathcal{P}))}.$$

In other words, $\gamma(\mathcal{P})$ captures the weight of edges that the initial forest has in \mathcal{P} , divided by the weight of edges that an optimal MST places inside components. Lower values of γ are better, as they indicate that the initial forest overlaps well with some optimal solution. One can use the minimizing property of MSTs to show that $\gamma(\mathcal{P}) \geq 1$, with equality exactly when G_t is contained inside some optimal MST. When \mathcal{P} is clear from context, we will simply write $\gamma = \gamma(\mathcal{P})$.

Metric forest completion. Given an initial forest, *Metric Forest Completion* (MFC) is the task of finding a minimum weight spanning tree that contains E_t as a subgraph. Formally:

$$\begin{aligned} & \text{minimize} && w_{\mathcal{X}}(E_T) \\ & \text{subject to} && T = (\mathcal{X}, E_T) \text{ is a spanning tree for } G_{\mathcal{X}} \\ & && E_t \subseteq E_T. \end{aligned} \tag{1}$$

Figure 1: (a) The forest obtained by terminating Kruskal’s algorithm early for a set of 100 points. (b) Running Kruskal’s algorithm to the end leads to a full MST. (c) The initial forest can be viewed as a heuristic prediction for the forest in (a). For this example, $\gamma(\mathcal{P}) \approx 1.06$. (d) Solving metric forest completion problem produces a full spanning tree that approximates the true MST.

This is equivalent to finding a minimum weight set of edges $M \subseteq E_{\mathcal{X}}$ such that M *completes* E_t , meaning that $M \cup E_t$ spans \mathcal{X} . Solving MFC for an initial forest where $\gamma(\mathcal{P}) = 1$ (e.g., obtained by terminating an exact algorithm early) produces an optimal MST (Figure 1b). Applying it to a initial forest with $\gamma(\mathcal{P}) > 1$ produces an approximately optimal spanning tree (Figure 1d).

MFC can be viewed as an MST problem defined over a complete *coarsened graph* $G_{\mathcal{P}} = (V_{\mathcal{P}}, E_{\mathcal{P}})$ where $V_{\mathcal{P}} = \{v_1, v_2, \dots, v_t\}$ is the node set and $E_{\mathcal{P}} = \binom{V_{\mathcal{P}}}{2}$ is all pairs of nodes. Node v_i corresponds to partition P_i for each $i \in [t]$, and the weight between v_i and v_j is defined as the solution to the BCP problem between P_i and P_j . Formally, the weight function $w^*: E_{\mathcal{P}} \rightarrow \mathbb{R}^+$ is given by

$$w^*(v_i, v_j) = d(P_i, P_j). \quad (2)$$

Finding an MST of $G_{\mathcal{P}}$ with respect to w^* , and then mapping the edges in $G_{\mathcal{P}}$ back to the points in \mathcal{X} that define the weight function w^* , solves the MFC problem. The challenge is that exactly computing w^* can take $\Omega(n^2)$ distance queries, in particular when the component sizes are balanced.

Existing MFC approximation. Veldt et al. (2025) introduced MFC-Approx, which approximates MFC by considering only a subset of edges. This algorithm selects one arbitrary representative point $r_i \in P_i$ for each $i \in [t]$, and completes the initial forest by adding only edges that are incident to one or two representatives. Conceptually this amounts to forming a new weight function $\hat{w}: V_{\mathcal{P}} \rightarrow \mathbb{R}^+$ such that $w^* \leq \hat{w}$, and then finding an MST in $G_{\mathcal{P}}$ with respect to \hat{w} . Veldt et al. (2025) showed that this can be accomplished in $O(ntQ_{\mathcal{X}})$ time (when G_t is given), where $Q_{\mathcal{X}}$ is the time to query one distance in \mathcal{X} . They proved that this algorithm returns a spanning tree that approximates the MFC problem to within a factor $(3 + \sqrt{5})/2 < 2.62$. Furthermore, it is a learning-augmented algorithm for the original metric MST problem with a parameter-dependent approximation guarantee of $(2\gamma + 1 + \sqrt{4\gamma + 1})/2 < (2\gamma + 1)$.

3 MULTI-REPRESENTATIVE MFC ALGORITHM

We present a generalization of MFC-Approx that selects a *set* of representatives for each component, rather than only one. For each $i \in [t]$, let $R_i \subseteq P_i$ be a nonempty subset of representatives for the i th component in \mathcal{P} . Let $R = \bigcup_{i=1}^t R_i$, and define $E_R = \{(r, x) : r \in R, x \in \mathcal{X}\}$. The new algorithm finds the minimum weight set of edges $\hat{M} \subseteq E_R$ to complete the initial forest. To do so, it finds an MST of the coarsened graph $G_{\mathcal{P}}$ with respect to a weight function $\hat{w}: E_{\mathcal{P}} \rightarrow \mathbb{R}^+$ given by

$$\hat{w}(v_i, v_j) = \min \{d(P_i, R_j), d(P_j, R_i)\}. \quad (3)$$

For each pair (v_i, v_j) , the algorithm keeps track of the points $x, y \in \mathcal{X}$ such that $\hat{w}(v_i, v_j) = d(x, y)$, in order to map an MST in $G_{\mathcal{P}}$ back to the edge set $\hat{M} \subseteq E_R$. We denote this algorithm by MultiRepMFC(R) or MultiRepMFC when R is clear from context. By design, MultiRepMFC is a simple way to interpolate between the existing MFC-Approx algorithm and an exact algorithm (when $R = \mathcal{X}$). Our key technical contributions are to provide an approximation analysis for this algorithm (Section 3.1), and present an approximately optimal strategy for selecting R (Section 3.2).

216 3.1 APPROXIMATION ANALYSIS FOR FIXED R .
217218 To quantify the quality of spanning trees returned by MultiRepMFC(R), define the *cost* of P_i to be
219 the maximum distance between any point in P_i and its nearest representative:

220
$$\text{cost}(P_i, R_i) = \max_{x \in P_i} \min_{r \in R_i} d(x, r), \quad (4)$$

221

222 We extend this to a cost function on \mathcal{P} by defining $\text{cost}(\mathcal{P}, R) = \sum_{i=1}^t \text{cost}(P_i, R_i)$. When R is
223 clear from context, we write $\text{cost}(P_i) = \text{cost}(P_i, R_i)$ and $\text{cost}(\mathcal{P}) = \text{cost}(\mathcal{P}, R)$. The following
224 theorem shows that this cost bounds the additive approximation error for MultiRepMFC, and can
225 also be used to define an instance-specific multiplicative approximation bound.226 **Theorem 1.** *MultiRepMFC(R) is an α -approximation for MFC and an $(\alpha\gamma)$ -approximation for*
227 *metric MST where γ is the overlap parameter for the initial forest and $\alpha = 1 + \text{cost}(\mathcal{P}, R)/w_{\mathcal{X}}(E_t)$.*
228229 *Proof.* Let $T_{\mathcal{P}}^*$ denote an MST for the coarsened graph $G_{\mathcal{P}}$ with respect to w^* as defined in Eq. (2).
230 This $T_{\mathcal{P}}^*$ can be mapped to an edge set $M^* \subseteq \mathcal{X}$ that optimally solves MFC. Let T^* be the spanning
231 tree for $G_{\mathcal{X}}$ obtained by combining M^* with the initial forest edges E_t . Thus,

232
$$w_{\mathcal{X}}(T^*) = w_{\mathcal{X}}(M^*) + w_{\mathcal{X}}(E_t) = w^*(T_{\mathcal{P}}^*) + w_{\mathcal{X}}(E_t). \quad (5)$$

233

234 Let $\hat{T}_{\mathcal{P}}$ be the MST in $G_{\mathcal{P}}$ with respect to \hat{w} that MultiRepMFC finds, and \hat{M} be the edge set in \mathcal{X} it
235 corresponds to. Then the spanning tree \hat{T} returned by MultiRepMFC has weight

236
$$w_{\mathcal{X}}(\hat{T}) = w_{\mathcal{X}}(\hat{M}) + w_{\mathcal{X}}(E_t) = \hat{w}(\hat{T}_{\mathcal{P}}) + w_{\mathcal{X}}(E_t). \quad (6)$$

237

238 Since $T_{\mathcal{P}}^*$ is a tree, we can assign each edge in $T_{\mathcal{P}}^*$ to one of its endpoints in such a way that one node
239 in $G_{\mathcal{P}}$ is assigned no edge, and every other node in $G_{\mathcal{P}}$ is assigned to exactly one edge of $T_{\mathcal{P}}^*$. This
240 can be accomplished by selecting a node v of degree 1 from $T_{\mathcal{P}}^*$, assigning v 's only incident edge to
241 v , and then removing v and its incident edge before recursing. This continues until there is only one
242 node of $G_{\mathcal{P}}$ with no adjacent edges. We write $(v_i, v_j) \in T_{\mathcal{P}}^*$ to indicate an edge in this tree between
243 v_i and v_j that is assigned to node v_i . Since each node is assigned at most one edge, we have that

244
$$\sum_{(v_i, v_j) \in T_{\mathcal{P}}^*} \text{cost}(P_i) \leq \sum_{i=1}^t \text{cost}(P_i) = \text{cost}(\mathcal{P}). \quad (7)$$

245
246

247 For an arbitrary edge $(v_i, v_j) \in T_{\mathcal{P}}^*$, let $(x_a, x_b) \in P_i \times P_j$ be points in \mathcal{X} defining the optimal edge
248 weight $w^*(v_i, v_j) = d(x_a, x_b)$. Let $z \in R_i$ be the closest representative in P_i to point x_a , meaning

249
$$d(x_a, z) = \min_{r \in R_i} d(x_a, r) \leq \max_{x \in P_i} \min_{r \in R_i} d(x, r) = \text{cost}(P_i).$$

250

251 By definition, $\hat{w}(v_i, v_j)$ is at most the distance between z and any point in P_j , which implies that
252 $\hat{w}(v_i, v_j) \leq d(z, x_b)$. Therefore

253
$$\hat{w}(v_i, v_j) \leq d(z, x_b) \leq d(x_a, x_b) + d(x_a, z) \leq w^*(v_i, v_j) + \text{cost}(P_i). \quad (8)$$

254

255 Combining the bounds in (7) and (8) gives

256
$$\hat{w}(T_{\mathcal{P}}^*) = \sum_{(v_i, v_j) \in T_{\mathcal{P}}^*} \hat{w}(v_i, v_j) \leq \sum_{(v_i, v_j) \in T_{\mathcal{P}}^*} [w^*(v_i, v_j) + \text{cost}(P_i)] \leq w^*(T_{\mathcal{P}}^*) + \text{cost}(\mathcal{P}). \quad (9)$$

257
258

259 Putting these observations together proves the approximation for MFC:

260
$$\begin{aligned} w_{\mathcal{X}}(\hat{T}) &= \hat{w}(T_{\mathcal{P}}^*) + w_{\mathcal{X}}(E_t) && \text{(Eq. 6)} \\ &\leq \hat{w}(T_{\mathcal{P}}^*) + w_{\mathcal{X}}(E_t) && (\hat{T}_{\mathcal{P}} \text{ is optimal for } \hat{w}) \\ &\leq w^*(T_{\mathcal{P}}^*) + \text{cost}(\mathcal{P}) + w_{\mathcal{X}}(E_t) && \text{(Eq. 9)} \\ &= w_{\mathcal{X}}(T^*) + \text{cost}(\mathcal{P}) && \text{(Eq. 5)} \\ &\leq \left(1 + \frac{\text{cost}(\mathcal{P})}{w_{\mathcal{X}}(E_t)}\right) w_{\mathcal{X}}(T^*) = \alpha w_{\mathcal{X}}(T^*) \end{aligned}$$

261
262
263
264
265
266
267
268

269 where in the last step we have used the fact that $w_{\mathcal{X}}(E_t) \leq w_{\mathcal{X}}(T^*)$. To turn this bound into an
($\alpha\gamma$)-approximation for the original MST problem, it suffices to prove $w_{\mathcal{X}}(T^*) \leq \gamma w_{\mathcal{X}}(T_{\mathcal{X}})$, where

270 $T_{\mathcal{X}}$ is an MST of $G_{\mathcal{X}}$ that leads to the smallest overlap parameter γ for the initial forest. Let $I_{\mathcal{X}}$
 271 denote the set of edges of $T_{\mathcal{X}}$ that are inside components \mathcal{P} , meaning that
 272

$$273 \quad w_{\mathcal{X}}(E_t) = \gamma w_{\mathcal{X}}(I_{\mathcal{X}}). \quad (10)$$

274 Furthermore, let $B_{\mathcal{X}} = T_{\mathcal{X}} \setminus I_{\mathcal{X}}$ be the set of edges in $T_{\mathcal{X}}$ that cross between components of \mathcal{P} .
 275 Observe that $B_{\mathcal{X}}$ must correspond to a spanning subgraph of the coarsened graph $G_{\mathcal{P}}$. If not, $T_{\mathcal{X}}$
 276 would not provide a connected path between all pairs of components and hence would not span
 277 $G_{\mathcal{X}}$. The fact that $T_{\mathcal{P}}^*$ is a minimum weight spanner for $G_{\mathcal{P}}$ guarantees that $w^*(T_{\mathcal{P}}^*) \leq w_{\mathcal{X}}(B_{\mathcal{X}})$.
 278 Combined with (10), this gives the desired inequality:

$$279 \quad w_{\mathcal{X}}(T^*) = w_{\mathcal{X}}(E_t) + w^*(T_{\mathcal{P}}^*) \leq \gamma w_{\mathcal{X}}(I_{\mathcal{X}}) + w_{\mathcal{X}}(B_{\mathcal{X}}) \leq \gamma w_{\mathcal{X}}(T_{\mathcal{X}}). \quad \square$$

281 As a corollary, we improve on the previous analysis that proved MFC-Approx is a 2.62-approximation
 282 for MFC and a $(2\gamma + 1)$ -approximation for metric MST.

283 **Corollary 2.** *MFC-Approx is a 2-approximation for MFC, and a (2γ) -approximation for MST where
 284 γ is the overlap parameter for the initial forest.*

286 *Proof.* MFC-Approx is equivalent to MultiRepMFC when R_i is a single arbitrary point from P_i for
 287 each $i \in \{1, 2, \dots, t\}$. We know $\text{cost}(P_i) \leq w_{\mathcal{X}}(T_i)$, since $\text{cost}(P_i)$ equals the distance between
 288 two specific points in P_i , and there is a path between these two points in T_i . Summing across all
 289 components gives $\text{cost}(\mathcal{P}) \leq w_{\mathcal{X}}(E_t)$. This in turn implies that $\alpha \leq 2$, proving the bound. \square

290 In addition to providing better approximation factors, our analysis is shorter and simpler than the
 291 prior analysis for MFC-Approx. See Appendix A for a more detailed comparison. In Appendix B we
 292 prove the following result, showing that our approximation guarantees are tight.

294 **Theorem 3.** *Let p and ℓ be arbitrary positive integers, and $\varepsilon \in (0, 1)$ be arbitrary. There exists an
 295 initial forest with $\gamma(\mathcal{P}) = 1$ and choice of ℓ representatives per component for which MultiRepMFC
 296 returns a tree that is a factor*

$$297 \quad \frac{(2 + \ell\varepsilon - \varepsilon)p - 1}{(1 + \varepsilon\ell)p - \varepsilon}$$

300 *larger than the tree returned by optimally solving MFC (equivalent here to the metric MST problem).*

301 For a fixed number of ℓ representatives per component, the approximation factor in Theorem 3
 302 converges to $2 = 2\gamma$ as $p \rightarrow \infty$ and $\varepsilon \rightarrow 0$. However, this holds for a pathological construction
 303 and arbitrarily chosen representatives. By choosing representatives strategically, we shall see that
 304 the approximation guarantee in Theorem 1 can be far better in practice.

3.2 THE BEST REPRESENTATIVES PROBLEM

308 We now focus on finding a set R that optimizes the approximation ratio in Theorem 1. Let b be a
 309 nonnegative *budget*, denoting the number of representatives R is allowed to contain beyond having
 310 one representative per component. The Best Representatives problem (BESTREPS) is defined as:

$$311 \quad \begin{aligned} & \text{minimize} && \text{cost}(\mathcal{P}, R) = \sum_{i=1}^t \max_{x \in P_i} \min_{r \in R_i} d(x, r) \\ 312 & \text{subject to} && |R_i| \geq 1 \quad \forall i \in [t] \\ 313 & && \sum_{i=1}^t (|R_i| - 1) \leq b. \end{aligned} \quad (11)$$

314 If $t = 1$, this is equivalent to k -center with $k = b + 1$. Thus, BESTREPS is a generalization of
 315 k -center where there are multiple instances of points to cluster and the budget for cluster centers
 316 is shared across instances. Since the problem is NP-hard even for $t = 1$, it is impractical to solve
 317 optimally. However, we obtain a fast 2-approximation by combining an approximation algorithm
 318 for standard k -center (the $t = 1$ case) with a dynamic programming strategy for allocating budgets.¹

319 **Greedy k -center for approximating allocation benefit.** For $i \in [t]$, we define

$$321 \quad c_i^*(j) = \min_{R_i : |R_i|=j} \text{cost}(P_i, R_i) \quad \text{for } j \in [b+1].$$

323 ¹An LLM was used to search for related work for this multi-instance k -center generalization, and also
 324 generated ideas for developing the 2-approximation algorithm for it. See Appendix C for details.

This captures the benefit for allocating j representatives to cluster P_i . Computing $c_i^*(j)$ is equivalent to solving an NP-hard k -center problem on the set P_i with $k = j$. We efficiently approximate this function for all $j \leq b + 1$ by running the greedy 2-approximation of Gonzalez (1985) for k -center with $k = b + 1$. This method starts by choosing an arbitrary first cluster center. At iteration $j \leq k$, it chooses the j th cluster center to be the point that is farthest away from the first $j - 1$ cluster centers. Let $R_{i,j}$ be the the first j cluster centers found by this procedure, and define

$$\hat{c}_i(j) = \text{cost}(P_i, R_{i,j}) \quad \text{for } j \in [b + 1].$$

By the algorithm's 2-approximation guarantee, we know $\hat{c}_i(j) \leq 2c_i^*(j)$ for $i \in [t]$ and $j \in [b + 1]$.

DP for allocating representatives. We allocate representatives to components by solving

$$\text{minimize} \quad \sum_{i=1}^t \hat{c}_i(b_i + 1) \quad \text{subject to} \quad \sum_{i=1}^t b_i = b \text{ and } b_i \geq 0 \quad \forall i \in [t], \quad (12)$$

where $b_i \geq 0$ represents the number of *extra* representatives assigned to P_i . This is a variant of the knapsack problem where the objective function is nonlinear, all items have weight 1, and we allow repeat items ($b_i \geq 1$). If the \hat{c}_i functions are already computed, this can be solved optimally in $O(tb^2)$ time via dynamic programming (DP). The DP approach for problems in this form is standard. We provide full details in Appendix C for completeness, as well as a proof for the following result.

Theorem 4. *Let $\{\hat{b}_i : i \in [t]\}$ be the optimal solution to Problem (12). For $i \in [t]$, define R_i to be the first $\hat{b}_i + 1$ cluster centers chosen by running the greedy 2-approximation for k -center on P_i . Then $\{R_i : i \in [t]\}$ is a 2-approximate solution for BESTREPS.*

3.3 ALGORITHM VARIANTS AND RUNTIME ANALYSIS

We now summarize several different approximation algorithms for MFC (and their runtimes) that are obtained by combining MultiRepMFC with different strategies for finding R . See Appendix D for more details. We assume $t = O(n^\delta)$ for some $\delta \in [0, 1)$. Let DP-MultiRepMFC denote the algorithm that runs MultiRepMFC after finding a set of representatives using the dynamic programming strategy from Theorem 4. It has a runtime of $O(nQ_{\mathcal{X}}(b + t) + tb^2)$. Greedy-MultiRepMFC is a faster approach that greedily allocates representatives to components iteratively in a way that leads to the best improvement to the objective in Problem 12 at each step. It has a runtime of $O(nQ_{\mathcal{X}}(b + t))$. Fixed(ℓ)-MultiRepMFC is a simple baseline that chooses $\ell \geq 1$ representatives per component by running the greedy 2-approximation for k -center on each component with $k = \ell$. It has a runtime of $O(nQ_{\mathcal{X}}(b + t))$, but only applies to budgets b that are multiples of t . All three of these algorithms are 2-approximations for MFC (and learning-augmented 2γ -approximations for metric MST) by Theorem 1. The asymptotic bottleneck for all three runtimes is computing \hat{w} . Fixed(ℓ)-MultiRepMFC and Greedy-MultiRepMFC are faster than DP-MultiRepMFC, but DP-MultiRepMFC is the only method that satisfies an approximation guarantee for the BESTREPS step. The runtimes above assume that the initial forest is already given. If one factors in the time it takes to compute the initial forest, choosing representatives constitutes an even smaller portion of the runtime.

4 EXPERIMENTS

Prior work has already shown that the MFC framework (which includes both computing an initial forest and running MFC-Approx) is fast and finds nearly optimal spanning trees for a wide range of dataset types and metrics. Since our work focuses on improved algorithms for the MFC step, our experiments also focus on this step, rather than on again comparing the entire MFC framework against an exact $\Omega(n^2)$ -time algorithm for metric MST. We specifically address the following questions relating to MultiRepMFC, our approximation bound α , and strategies for choosing representatives.

Question 1: How does MultiRepMFC compare (in terms of runtime and spanning tree cost) against the MFC-Approx algorithm ($b = 0$) and the $\Omega(n^2)$ algorithm for the MFC step ($b = n$)?

Question 2: What is the runtime vs. quality tradeoff between using different strategies for approximating the BESTREPS step in practice (Dynamic, Greedy, Fixed(ℓ))?

Question 3: How does our instance-specific approximation bound (α in Theorem 1) compare to the worst-case 2-approximation and the actual approximation achieved in practice?

Figure 2: We display the performance of each variant of MultiRepMFC as runtime increases. Each point corresponds to running one method with a fixed budget b . The top row shows the value of ε such that a method obtains a $(1 + \varepsilon)$ -approximation in practice. The second row shows the value ε_α such that we can guarantee a $(1 + \varepsilon_\alpha)$ -approximation using Theorem 1. Computing ε_α is fast. Computing ε is impractical as it requires optimally solving MFC. The last row shows the gap between α and the true approximation as runtime increases. We see that all variants of MultiRepMFC provide a useful interpolation between the existing MFC-Approx algorithm ($b = 0$ vertical dashed line) and an optimal MFC algorithm (right vertical dashed line). All plots also show that dynamic programming produces better true approximations (top row), much better approximation bounds (middle row), and is faster at shrinking the gap between the bound and true approximation (last row). For *Cooking*, 16 random orderings of the entire dataset ($n = 39,774$) were used, for all others we take 16 uniform random samples of size $n = 30,000$. Average results are then displayed.

Implementation details and experimental setup. Our algorithm implementations are in C++ and directly build on the open-source code made available for MFC-Approx in prior work by Veldt et al. (2025). Building on this existing code ensures a direct and fair comparison to prior work. We also apply a similar experimental setup as Veldt et al. (2025). We compute initial forests by partitioning \mathcal{X} using a k -center algorithm and then finding optimal MSTs for partitions. We choose $t = \sqrt{n}$ partitions since this approximately minimizes the total time to compute a spanning tree (when including the time to form the initial forest); see Appendix D for more details. We consider 4 datasets also used by Veldt et al. (2025), chosen since each corresponds to a different dataset type and distance metric. These are: *Cooking* (set data; Jaccard distance), *GreenGenes* (fixed-length sequences; Hamming distance), *FashionMNIST* (784-dimensional points, Euclidean distance), and *Names-US* (strings; Levenshtein edit distance). See Appendix E for more details on datasets.

To address our three questions, we run DP-MultiRepMFC, Greedy-MultiRepMFC, and Fixed(ℓ)-MultiRepMFC for a range of budgets b . For our comparisons, we also run MFC-OPT: an optimal algorithm for MFC that finds an MST of the coarsened graph with respect to the optimal weight function w^* . Each run of each algorithm produces a spanning tree that completes the initial forest. To measure spanning tree quality, we compute the *Cost Ratio* for MFC: the weight of the spanning tree produced by the algorithm divided by the weight of the tree produced by MFC-OPT. We also compute α from Theorem 1, which is an upper bound for *Cost Ratio*. This bound α differs for each algorithm and choice of b , since it depends on how well the BESTREPS step is solved.

The first row of Figure 2 displays *Cost Ratio* - 1 versus runtime for each algorithm. Note that if $\varepsilon = \text{Cost Ratio} - 1$, this means the algorithm achieved a $(1 + \varepsilon)$ -approximation. For the x -axis, the runtime includes the time for approximating BESTREPS plus the time for MultiRepMFC. The second

432 row of plots displays $\varepsilon_\alpha = \alpha - 1$ in the y -axis. This shows us the value of ε_α for which we can
 433 guarantee an algorithm has achieved at least a $(1 + \varepsilon_\alpha)$ -approximation, by Theorem 1. The third
 434 row of plots displays $\alpha - \text{Cost Ratio}$, which is the gap between our bound on the approximation
 435 factor and the true approximation factor. In Appendix E, we show results for all these metrics as the
 436 budget b varies. However, this does not provide as direct of a comparison, since the runtime for each
 437 method depend differently on b . Here in the main text, we primarily focus on understanding how
 438 well each method performs within a fixed runtime budget (rather than fixed b).

439 **Comparing against MFC-Approx and MFC-OPT (Question 1).** When $b = 0$ (leftmost point in each
 440 plot), all MultiRepMFC algorithms correspond to the previous MFC-Approx algorithm. The output
 441 for each algorithm traces out a performance curve as b (and runtime) increases. These curves tend to
 442 decrease steeply at the beginning, showing that MultiRepMFC produces noticeably better spanning
 443 trees than MFC-Approx with only a small amount of extra work. In many cases, the spanning tree
 444 quality gets very close to an optimal solution at a fraction of the time it takes to run MFC-OPT. One
 445 outlier in these results is the Names-US dataset, where MFC-OPT is much faster than usual. This is
 446 because initial forests for Names-US are highly imbalanced, with one large component containing
 447 nearly all the points. For highly-imbalanced forests, it is much cheaper to optimally solve the MFC
 448 step. Running MultiRepMFC is therefore not useful for large values of b . Nevertheless, for small
 449 values of b , MultiRepMFC provides a meaningful interpolation between MFC-Approx and MFC-OPT.

450 **Comparing methods for BESTREPS (Question 2).** From the top row of Figure 2, we see that
 451 DP-MultiRepMFC tends to produce the best spanning trees within a fixed time budget. Perhaps sur-
 452 prisingly, the simplest method $\text{Fixed}(\ell)$ -MultiRepMFC tends to outperform Greedy-MultiRepMFC,
 453 whose progress tends to plateau after a certain point. This may be because Greedy-MultiRepMFC is
 454 too myopic in assigning representatives. For example, it is possible that adding one extra represen-
 455 tative to a certain component would change the objective very little, but adding two or more would
 456 significantly decrease the objective. $\text{Fixed}(\ell)$ -MultiRepMFC would be able to achieve this benefit for
 457 the right choice of ℓ , whereas Greedy-MultiRepMFC may never notice the benefit.

458 **Comparing α values (Question 3).** Our bound α (second row of plots in Figure 2) is always very
 459 close to 1, and provides a much better bound to the true approximation ratio than the worst-case
 460 2-approximation. This can be seen in the third row of plots in Figure 2. This is significant since
 461 computing the true Cost Ratio is impractical, as it requires optimally solving MFC. However, α can
 462 be computed easily in the process of running MultiRepMFC, and therefore serves as a very good
 463 proxy for the true approximation ratio with virtually no extra effort. As a practical benefit, this
 464 opens up the possibility of choosing b dynamically in practice. In particular, one can choose to add
 465 representatives until achieving a satisfactory value of α , and only then run MultiRepMFC.

466 Figure 2 also shows that different approaches for BESTREPS perform differently in terms of how
 467 well they minimize α . While DP-MultiRepMFC is slightly better than other methods in terms of
 468 Cost Ratio , it is far better at minimizing α . Again, this is significant because α is an approximation
 469 guarantee that we can efficiently obtain in practice, unlike the true Cost Ratio . Furthermore, as
 470 runtime increases, the gap between α and Cost Ratio shrinks more quickly for DP-MultiRepMFC
 471 than for other methods (Figure 2, third row). This provides further evidence for the benefits of the
 472 dynamic programming approach for BESTREPS, which helps further address Question 2.

473 5 CONCLUSIONS AND DISCUSSION

474 Metric forest completion is a learning-augmented framework for finding an MST in an arbitrary
 475 metric space, when the learned input is an initial forest that serves as a starting point for finding
 476 a spanning tree. We have introduced a generalized approximation algorithm for this problem that
 477 comes with better theoretical approximation guarantees, which we prove are tight for an existing
 478 MFC-Approx approximation algorithm. Our results also include very good instance-specific approx-
 479 imation guarantees that overcome worst-case bounds. In numerical experiments, we show that with
 480 a small amount of extra work, we can obtain much better quality solutions for MFC than prior tech-
 481 niques. One open direction is to pursue approximations for metric MST in terms of other quality
 482 parameters (aside from our γ -overlap) for the initial forest. Another question is whether one can
 483 achieve worst-case approximation factors below 2 for MFC, using alternative techniques with sub-
 484 quadratic complexity. Finally, an interesting question is whether we can prove general lower bounds
 485 on the approximation ratio that hold for all algorithms with subquadratic complexity.

486 REPRODUCIBILITY STATEMENT
487

488 An anonymized version of our code has been made available in the supplementary material, and
489 will be made publicly available if the manuscript is accepted. This includes all source code for our
490 algorithms, the commands that were run to produce the main results, and scripts for plotting our
491 results in R. The output from our experiments is included in a results folder in the supplementary
492 material, so that all plots from the main text can be reproduced. Most of the datasets are too large to
493 include in the supplementary file, so we have included instructions in the supplement's README
494 regarding where the original data can be obtained and how it was preprocessed. The appendix of
495 our paper also includes a description for each dataset and references to the original sources. For our
496 theoretical results, complete proof details are included either in the main text or the appendix.

497 REFERENCES
498

500 Pankaj K Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl. Euclidean mini-
501 mum spanning trees and bichromatic closest pairs. In *Proceedings of the Symposium on Compu-*
502 *tational Geometry*, pp. 203–210, 1990.

503 Mahmood KM Almansoori, Andras Meszaros, and Miklos Telek. Fast and memory-efficient ap-
504 proximate minimum spanning tree generation for large datasets. *Arabian Journal for Science and*
505 *Engineering*, pp. 1–14, 2024.

506 Ilya Amburg, Nate Veldt, and Austin Benson. Clustering in graphs and hypergraphs with categorical
507 edge labels. In *Proceedings of The Web Conference*, pp. 706–717. Association for Computing
508 Machinery, 2020.

509 Sunil Arya and David M Mount. A fast and simple algorithm for computing approximate Euclidean
510 minimum spanning trees. In *Proceedings of the Symposium on Discrete Algorithms*, pp. 1220–
511 1233. SIAM, 2016.

512 Ziyad Benomar and Vianney Perchet. Non-clairvoyant scheduling with partial predictions. In *Inter-*
513 *national Conference on Machine Learning*, 2024.

514 Otakar Borůvka. O jistém problému minimálním. 1926.

515 Vladimir Braverman, Prathamesh Dharangutte, Vihan Shah, and Chen Wang. Learning-Augmented
516 Maximum Independent Set. In *Approximation, Randomization, and Combinatorial Optimization.*
517 *Algorithms and Techniques (APPROX/RANDOM 2024)*, 2024.

518 Vladimir Braverman, Jon C Ergun, Chen Wang, and Samson Zhou. Learning-augmented hierarchi-
519 cal clustering. In *International Conference on Machine Learning*, 2025.

520 Paul B Callahan and S Rao Kosaraju. Faster algorithms for some geometric graph problems in
521 higher dimensions. In *Proceedings of the Symposium on Discrete Algorithms*, volume 93, pp.
522 291–300, 1993.

523 Xi Chen, Rajesh Jayaram, Amit Levi, and Erik Waingarten. New streaming algorithms for high
524 dimensional EMD and MST. In *Proceedings of the 54th Annual ACM SIGACT Symposium on*
525 *Theory of Computing*, pp. 222–233, 2022.

526 Xi Chen, Vincent Cohen-Addad, Rajesh Jayaram, Amit Levi, and Erik Waingarten. Streaming
527 Euclidean MST to a constant factor. In *Proceedings of the Symposium on Theory of Computing*,
528 pp. 156–169. Association for Computing Machinery, 2023.

529 Xinquan Chen. Clustering based on a near neighbor graph and a grid cell graph. *Journal of Intelli-*
530 *gent Information Systems*, 40:529–554, 2013.

531 Sami Davies, Benjamin Moseley, Sergei Vassilvitskii, and Yuyan Wang. Predictive flows for faster
532 Ford-Fulkerson. In *International Conference on Machine Learning*, pp. 7231–7248. PMLR, 2023.

533 Sami Davies, Sergei Vassilvitskii, and Yuyan Wang. Warm-starting push-relabel. *Advances in*
534 *Neural Information Processing Systems*, 2024.

540 T Z DeSantis, P Hugenholtz, N Larsen, M Rojas, E L Brodie, K Keller, T Huber, D Dalevi, P Hu,
 541 and G L Andersen. Greengenes, a chimera-checked 16S rRNA gene database and workbench
 542 compatible with ARB. *Appl Environ Microbiol*, 72(7):5069–5072, Jul 2006. ISSN 0099-2240
 543 (Print); 1098-5336 (Electronic); 0099-2240 (Linking). doi: 10.1128/AEM.03006-05.

544 Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, Aidin Niaparast, and Sergei
 545 Vassilvitskii. Binary search with distributional predictions. In *Advances in Neural Information
 546 Processing Systems*, 2024.

547 Jon Ergun, Zhili Feng, Sandeep Silwal, David P Woodruff, and Samson Zhou. Learning-augmented
 548 k -means clustering. *Machine learning*, 2022.

549 Marek Gagolewski, Anna Cena, Maciej Bartoszuk, and Łukasz Brzozowski. Clustering with mini-
 550 mum spanning trees: How good can it be? *Journal of Classification*, 42(1):90–112, 2025.

551 Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. *Theoretical com-
 552 puter science*, 38:293–306, 1985.

553 John C Gower and Gavin JS Ross. Minimum spanning trees and single linkage cluster analysis.
 554 *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 18(1):54–64, 1969.

555 Junyu Huang, Qilong Feng, Ziyun Huang, Zhen Zhang, Jinhui Xu, and Jianxin Wang. New algo-
 556 rithms for the learning-augmented k -means problem. In *The Thirteenth International Conference
 557 on Learning Representations*, 2025.

558 Piotr Indyk. Sublinear time algorithms for metric space problems. In *Proceedings of the Symposium
 559 on Theory of Computing*, pp. 428–434, 1999.

560 Rajesh Jayaram, Vahab Mirrokni, Shyam Narayanan, and Peilin Zhong. Massively parallel algo-
 561 rithms for high-dimensional Euclidean minimum spanning tree. In *Proceedings of the Symposium
 562 on Discrete Algorithms*, pp. 3960–3996. SIAM, 2024.

563 R Jothi, Sraban Kumar Mohanty, and Aparajita Ojha. Fast approximate minimum spanning tree
 564 based clustering algorithm. *Neurocomputing*, 272:542–557, 2018.

565 Kaggle. What's cooking? <https://www.kaggle.com/c/whats-cooking>, 2015.

566 Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
 567 *Proceedings of the American Mathematical Society*, 7(1):48–50, 1956.

568 Riccardo La Grassa, Ignazio Gallo, and Nicola Landro. Ocmst: One-class novelty detection using
 569 convolutional neural network and minimum spanning trees. *Pattern Recognition Letters*, 155:
 114–120, 2022.

570 Martine Labb  , Mercedes Landete, and Marina Leal. Dendograms, minimum spanning trees and
 571 feature selection. *European Journal of Operational Research*, 308(2):555–567, 2023.

572 Adam Lechowicz, Rik Sengupta, Bo Sun, Shahin Kamali, and Mohammad Hajiesmaili. Time fair-
 573 ness in online knapsack problems. In *The Twelfth International Conference on Learning Repre-
 574 sentations*, 2024.

575 Harry Loberman and Arnold Weinberger. Formal procedures for connecting terminals with a mini-
 576 mum total wire length. *Journal of the ACM (JACM)*, 4(4):428–437, 1957.

577 William B March, Parikshit Ram, and Alexander G Gray. Fast Euclidean minimum spanning tree:
 578 algorithm, analysis, and applications. In *Proceedings of the SIGKDD international conference on
 579 Knowledge Discovery and Data mining*, pp. 603–612, 2010.

580 Roy E Marsten and Thomas L Morin. A hybrid approach to discrete mathematical programming.
 581 *Mathematical programming*, 14(1):21–40, 1978.

582 Samuel McCauley, Benjamin Moseley, Aidin Niaparast, Helia Niaparast, and Shikha Singh. Incre-
 583 mental approximate single-source shortest paths with predictions. In *International Colloquium
 584 on Automata, Languages, and Programming (ICALP 2025)*, 2025.

594 Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. *Communications of*
 595 *the ACM*, 65(7):33–35, 2022.
 596

597 Thy Nguyen, Anamay Chaturvedi, and Huy L Nguyen. Improved learning-augmented algorithms
 598 for k-means and k-medians clustering. In *International Conference on Learning Representations*,
 599 2023.

600 Adam Polak and Maksym Zub. Learning-augmented maximum flow. *Information Processing Let-*
 601 *ters*, 186:106487, 2024.
 602

603 Robert Clay Prim. Shortest connection networks and some generalizations. *The Bell System Tech-*
 604 *nical Journal*, 36(6):1389–1401, 1957.
 605

606 Philippe Remy. Name dataset. <https://github.com/philipperemy/name-dataset>,
 607 2021.
 608

609 Michael Ian Shamos and Dan Hoey. Closest-point problems. In *Proceedings of the Symposium on*
 610 *Foundations of Computer Science*, pp. 151–162. IEEE, 1975.
 611

612 Yongho Shin, Changyeol Lee, Gukryeol Lee, and Hyung-Chan An. Improved learning-augmented
 613 algorithms for the multi-option ski rental problem via best-possible competitive analysis. In *In-*
 614 *ternational Conference on Machine Learning*, pp. 31539–31561. PMLR, 2023.
 615

616 CJ Stam, P Tewarie, E Van Dellen, ECW Van Straaten, A Hillebrand, and P Van Mieghem. The
 617 trees and the forest: characterization of complex brain networks with minimum spanning trees.
 618 *International Journal of Psychophysiology*, 92(3):129–138, 2014.
 619

620 Pravin M Vaidya. Minimum spanning trees in k-dimensional space. *SIAM Journal on Computing*,
 621 17(3):572–582, 1988.
 622

623 Nate Veldt, Thomas Stanley, Benjamin W Priest, Trevor Steil, Keita Iwabuchi, TS Jayram, and
 624 Geoffrey Sanders. Approximate forest completion and learning-augmented algorithms for metric
 625 minimum spanning trees. In *International Conference on Machine Learning*, 2025.
 626

627 Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. Fast parallel algorithms for Euclidean minimum
 628 spanning tree and hierarchical spatial clustering. In *Proceedings of the International Conference*
 629 *on Management of Data*, pp. 1982–1995, 2021.
 630

631 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
 632 ing machine learning algorithms, 2017.
 633

634 Caiming Zhong, Mikko Malinen, Duoqian Miao, and Pasi Fränti. A fast minimum spanning tree
 635 algorithm based on k-means. *Information Sciences*, 295:1–17, 2015.
 636

637

638

639

640

641

642

643

644

645

646

647

648
649 **Algorithm 1** MultiRepMFC($R = \{R_i : i \in [t]\}$)
650 1: **Input:** $\mathcal{X} = \{x_1, x_2, \dots, x_n\}$, components $\mathcal{P} = \{P_1, P_2, \dots, P_t\}$, spanning trees
651 $\{T_1, T_2, \dots, T_t\}$, nonempty $R_i \subseteq P_i$ for each $i \in [t]$.
652 2: **Output:** Spanning tree for $G_{\mathcal{X}} = (\mathcal{X}, E_{\mathcal{X}})$.
653 3: **for** $(i, j) \in \binom{[t]}{2}$ **do**
654 4: $w_{i \rightarrow j} = \min_{x_i \in P_i, r_j \in R_j} d(x_i, r_j)$
655 5: $w_{j \rightarrow i} = \min_{x_j \in P_j, r_i \in R_i} d(x_j, r_i)$
656 6: $\hat{w}_{ij} = \min\{w_{i \rightarrow j}, w_{j \rightarrow i}\}$
657 7: **end for**
658 8: $\hat{T}_{\mathcal{P}} = \text{OptMST}(\{\hat{w}_{ij}\}_{i,j \in [t]})$
659 9: Return spanning tree \hat{T} obtained by combining E_t with edges corresponding to $\hat{T}_{\mathcal{P}}$.

660

661 A ADDITIONAL MULTIREP MFC ALGORITHM DETAILS

662

663 Pseudocode for MultiRepMFC is given in Algorithm 1. This relies on a black-box function OptMST
664 which computes an optimal solution for a minimum spanning tree for a graph. This is specifically
665 applied to find an MST of the coarsened graph with respect to the new weight function $\hat{w}: V_{\mathcal{P}} \rightarrow \mathbb{R}$,
666 which corresponds to a set of edges in \mathcal{X} that completes the initial forest $G_t = (\mathcal{X}, E_t)$. When
667 $|R_i| = 1$ for every $i \in [t]$, this corresponds to the existing MFC-Approx algorithm of Veldt et al.
668 (2025).

669

670 **Comparison between Theorem 1 and prior work.** Our proof that MFC-Approx is a 2-
671 approximation for MFC (and a 2γ -approximation for metric MST) simplifies the analysis of Veldt
672 et al. (2025) in a few ways. The prior analysis relied on partitioning edges in the coarsened graph
673 based on whether or not they were β -bounded (meaning $\hat{w}_{ij} \leq \beta w_{ij}^*$) for some initially unspecified
674 $\beta > 1$. The analysis then considered two other spanning trees of the coarsened graph that are optimal
675 with respect to two other hypothetical weight functions that depended on β . This led to bounds
676 for different parts of the weight of \hat{T} (the tree returned by MFC-Approx), in terms of different ex-
677 pressions involving β . The best approximation guarantee of $\beta = (3 + \sqrt{5})/2$ was then obtained by
678 solving a quadratic equation resulting from the bounds.

679

680 In contrast, our new analysis completely avoids the need to partition edges based on an unknown
681 β , work with hypothetical weight functions, or solve for the best β in this way. Our analysis shares
682 some other steps in common with the proof of Veldt et al. (2025), but is ultimately able to apply basic
683 facts about distances and triangle inequalities more directly, leading to an analysis that is simpler,
684 shorter, and tighter.

685

686 B TIGHT EXAMPLE FOR MFC-APPROX

687 Figure 3 is a visualization of the instance that shows the 2-approximation for MultiRepMFC is tight
688 in the worst-case.

689

690 **Theorem 3.** Let p and ℓ be arbitrary positive integers, and $\varepsilon \in (0, 1)$ be arbitrary. There exists an
691 initial forest with $\gamma(\mathcal{P}) = 1$ and choice of ℓ representatives per component for which MultiRepMFC
692 returns a tree that is a factor

$$\frac{(2 + \ell\varepsilon - \varepsilon)p - 1}{(1 + \varepsilon\ell)p - \varepsilon}$$

693

694 larger than the tree returned by optimally solving MFC (equivalent here to the metric MST problem).

695

696

697 **Proof.** We will create an initial forest with p components, each of which has $\ell + 1$ points, of which
698 ℓ are representatives. Let $p' = \max\{\ell, p\}$. All points in the metric space will be represented by
699 $(p + p')$ -dimensional vectors, and we will define distances between two points by taking the ℓ_{∞} -
700 norm. A point in the metric space will be denoted by $x_i^{(j)}$ where $i \in [p]$ is the component in the
701 initial forest that the point belongs to, and $j \in \{0, 1, \dots, \ell\}$ indicates which point in the component.
702 For $i \in [p]$, $x_i^{(0)}$ will be the only point in component i that is *not* a representative.

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

$$\begin{matrix}
x_4^{(0)} & x_4^{(1)} & x_4^{(2)} & x_4^{(3)} \\
\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & \varepsilon & 0 & 0 \\ 0 & 0 & \varepsilon & 0 \\ 0 & 0 & 0 & \varepsilon \\ \varepsilon & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
\end{matrix}$$

$$\begin{matrix}
x_1^{(0)} & x_1^{(1)} & x_1^{(2)} & x_1^{(3)} \\
\begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \varepsilon & \varepsilon & 0 & 0 \\ 0 & 0 & \varepsilon & 0 \\ 0 & 0 & 0 & \varepsilon \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
\end{matrix}$$

Figure 3: The MFC instance from Theorem 3 when $\ell = 3$ and $p = 5$. Initial forest edges are black solid lines; these define p components with $\ell + 1$ points each. Points with black centers are representatives. Two points have distance ε from each other if they are in the same gray enclosing regions, otherwise they have distance 1. These distances can be realized by associating each point with a vector of length $p + \max\{\ell, p\}$ and using the ℓ_∞ distance. The optimal spanning tree is achieved by adding the red dashed edges, which all have weight ε . MultiRepMFC only adds edges incident to representatives, and therefore completes the forest with $\ell - 1$ edges of weight 1 (e.g., dotted blue edges).

725

726

To define these points more precisely, for $i \in \{1, 2, \dots, p+p'\}$, we let \mathbf{e}_i be a vector of length $p+p'$ such that

$$\mathbf{e}_i(j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$

732

Then, for $i \in \{1, 2, \dots, p\}$ define

$$\begin{aligned}
x_i^{(j)} &= \mathbf{e}_i + \varepsilon \cdot \mathbf{e}_{p+j} \quad \text{for } j \in [\ell] \\
x_i^{(0)} &= \varepsilon \cdot \mathbf{e}_{p+i}.
\end{aligned}$$

736

Let $R = \{x_i^{(j)} : i \in [t], j \in [\ell]\}$ denote the set of representatives across all components, and $S = \{x_i^{(0)} : i \in [t]\}$ be the remaining points, which we refer to as *small* points since they have norm ε . We consider the vector space $\mathcal{X} = R \cup S$ of $(p+p')$ -dimensional vectors where distance is defined by the ℓ_∞ norm. This means that

$$d(x_i^{(j)}, x_a^{(b)}) = \|x_i^{(j)} - x_a^{(b)}\|_\infty = \begin{cases} \varepsilon & \text{if } i = a \text{ and } b > 0 \text{ and } j > 0 \\ \varepsilon & \text{if } b = j = 0 \\ 1 & \text{otherwise.} \end{cases}$$

741

742

743

744

745

746

747

In other words, the distance between two representatives in the same component is ε , the distance between two points in S is ε , and the distance between every other pair of points is 1. See gray regions in Figure 3.

748

749

750

751

To define the edges E_t in the initial forest, for each $i \in [t]$ we add an edge from $x_i^{(j)}$ to $x_i^{(j+1)}$ for $j = 0, 1, \dots, \ell - 1$. The first edge has weight 1, and the next $\ell - 1$ edges have weight ε . Thus, the weight of the initial forest is:

$$w(E_t) = p + p \cdot \varepsilon \cdot (\ell - 1).$$

752

753

754

Since $\varepsilon < 1$, the optimal solution to MFC is to add a spanning tree on small points. This costs $\varepsilon \cdot (p - 1)$, so if T^* represents an optimal tree for the MFC problem,

755

$$w_{\mathcal{X}}(T^*) = p + p \cdot \varepsilon \cdot (\ell - 1) + \varepsilon(p - 1) = (1 + \varepsilon\ell)p - \varepsilon. \quad (13)$$

756 It is straightforward to check that this tree is also optimal for the MST problem, so $\gamma(\mathcal{P}) = 1$.
 757

758 Because MultiRepMFC is only allowed to add edges that are incident to one or more representatives,
 759 this algorithm will only be able to add $p - 1$ edges of weight 1. Thus, if \hat{T} is the tree returned by the
 760 algorithm, we have

$$761 \quad w_{\mathcal{X}}(\hat{T}) = p + p \cdot \varepsilon \cdot (\ell - 1) + (p - 1) = (2 + \varepsilon\ell - \varepsilon)p - 1. \\ 762$$

763 Taking the ratio $w_{\mathcal{X}}(\hat{T})/w_{\mathcal{X}}(T^*)$ yields the stated approximation factor. \square
 764

765 C DYNAMIC PROGRAMMING FOR REPRESENTATIVE ALLOCATION

766 We now provide full details for a dynamic programming algorithm for solving a resource allocation
 767 problem of the form

$$768 \quad \text{minimize} \quad \sum_{i=1}^t f_i(\mathbf{b}[i]) \quad (14)$$

$$769 \quad \text{subject to} \quad \sum_{i=1}^t \mathbf{b}[i] = b \quad (15)$$

$$770 \quad \mathbf{b} \in \mathbb{N}^t \quad (16)$$

771 where we assume the functions $\{f_i : i \in [t]\}$ are given and we use the convention that natural
 772 numbers include zeros: $\mathbb{N} = \{0, 1, 2, \dots\}$. This matches Problem (12) in the main text after applying a
 773 change of function $f_i(j) = \hat{c}_i(j + 1)$ to better highlight that the goal is to assign *extra* representa-
 774 tives, beyond the first representative for each component. The following theorem guarantees that if
 775 we can solve this problem, we can use it to obtain a 2-approximation for BESTREPS.
 776

777 **Theorem 4.** Let $\{\hat{b}_i : i \in [t]\}$ be the optimal solution to Problem (12). For $i \in [t]$, define R_i to
 778 be the first $\hat{b}_i + 1$ cluster centers chosen by running the greedy 2-approximation for k -center on P_i .
 779 Then $\{R_i : i \in [t]\}$ is a 2-approximate solution for BESTREPS.
 780

781 *Proof.* BESTREPS is equivalent to minimizing $\sum_{i=1}^t c_i^*(b_i + 1)$ subject to $\sum_{i=1}^t b_i = b$ and $b_i \geq 0$
 782 for every $i \in [t]$. Let $\{b_i^* : i \in [t]\}$ denote an optimal solution for this problem. The 2-approximation
 783 guarantee for $\{\hat{b}_i : i \in [t]\}$ —and the corresponding sets $\{R_i\}$ —follows from the fact that $\{\hat{b}_i\}$ are
 784 optimal for the $\{\hat{c}_i\}$ functions, and the fact that $c_i^*(j) \leq \hat{c}_i(j) \leq 2c_i^*(j)$ for every $i \in [t]$ and
 785 $j \in [b + 1]$:

$$786 \quad \sum_{i=1}^t c_i^*(\hat{b}_i + 1) \leq \sum_{i=1}^t \hat{c}_i(\hat{b}_i + 1) \leq \sum_{i=1}^t \hat{c}_i(b_i^* + 1) \leq 2 \sum_{i=1}^t c_i^*(b_i^* + 1).$$

787 \square

788 Next we show how to solve the problem in (14) using dynamic programming. For integers $B \in [0, b]$
 789 and $T \in [t]$, define $\Omega_T^B = \{\mathbf{b} \in \mathbb{N}^T : \sum_{i=1}^T \mathbf{b}[i] = B\}$ and define
 790

$$791 \quad F(T, B) = \min_{\mathbf{b} \in \Omega_T^B} \quad \sum_{i=1}^T f_i(\mathbf{b}[i]).$$

801 Our goal then is to efficiently compute $F(t, b)$.
 802

803 In the context of the BESTREPS problem, $F(T, B)$ is the optimal way to assign B extra representa-
 804 tives to the first T components. If there are no extra representatives to assign, we can see that
 805

$$806 \quad F(T, 0) = \sum_{i=1}^T f_i(0) \quad \text{for } T \in [t]. \\ 807$$

808 If there is only one component to assign extra representatives to, then we have
 809

$$F(1, B) = f_1(B) \quad \text{for } B = 0, 1, \dots, b.$$

810 Observe next that the optimal way to allocate B representatives across the first T components is
 811 found by considering all ways to optimally allocate k representatives to the first $T - 1$ components,
 812 while allocating $B - k$ representatives to the T th component. This is captured by the formula:
 813

$$F(T, B) = \min_{0 \leq k \leq B} F(T - 1, k) + f_T(B - k).$$

815 Using a bottom-up dynamic programming algorithm, computing $F(T, B)$ when given $F(T - 1, k)$
 816 and $f_T(B - k)$ for every $k \in [0, B]$ takes $O(B) = O(b)$ time for every $T \leq t$. Since we need to
 817 compute $F(T, B)$ for t choices of T and b choices of B , the overall runtime is $O(tb^2)$.

818 In practice, we need to know not just the value of $F(t, b)$ but the choice of $\mathbf{b} \in \mathbb{N}^t$ that produces
 819 the optimal solution, since this determines the number of representatives for each component. We
 820 can accomplish this naively by storing a vector of length- t for each choice of $F(T, B)$, leading to a
 821 memory requirement of $O(t^2 b)$. In practice, we reduce this to $O(tb)$ by noting that $F(T, B)$ only
 822 depends on $F(T - 1, k)$ for $k \in [0, B]$. Thus, as long as we save the length- t vectors associated
 823 with $F(T - 1, k)$ for $k \in [0, B]$, we can discard all length- t vectors associated with $F(J, k)$ for
 824 $J < T - 1$ and $k \in [0, B]$.

825 **Details on the use of LLMs for the BESTREPS results.** Given the similarity between BESTREPS
 826 and the classical k -center problem, we prompted an LLM to help check whether this problem had
 827 been previously studied. The LLM noted several other variants of k -center and similar resource al-
 828 location problems, but was unable to find prior examples where this exact problem had been studied.
 829 The LLM then suggested a greedy algorithm that it claimed was a 2-approximation algorithm for
 830 this problem, but the approximation analysis it provided was incorrect. With additional prompting,
 831 the LLM suggested a dynamic programming approach. Although the LLM’s dynamic programming
 832 algorithm and its proof still contained minor errors, the general strategy matched the basic approach
 833 we ultimately used to prove a 2-approximation. This is a natural strategy for an LLM to suggest,
 834 given that the dynamic programming approach is standard for variants of the knapsack problem and
 835 resource allocation problems in this form. See, for example, the work of Marsten & Morin (1978),
 836 which effectively covers the same strategy. LLMs were not used in research ideation for any other
 837 aspects of the paper, and in particular were not used for any of the design or analysis in Section 3.1.
 838 LLMs were also not used to aid in the final write-up of results for BESTREPS, or for the write-up of
 839 any other section of the paper.

840 D DETAILS FOR ALGORITHM VARIANTS AND RUNTIMES

842 There are several nuances to consider when reporting runtimes for our algorithm variants DP-
 843 MultiRepMFC, Greedy-MultiRepMFC, and Fixed(ℓ)-MultiRepMFC. These all have different runtimes
 844 when addressing the BESTREPS problem, but in many cases those runtimes are overshadowed by
 845 the MultiRepMFC step that follows when approximating MFC. The relative difference between these
 846 algorithms can be further obscured if one also considers the time it takes to compute the initial forest.
 847 Although computing an initial forest is not part of the MFC problem, it is an important consideration
 848 if the ultimate goal is to approximate the original metric MST problem.

849 We provide a careful runtime comparison for each algorithm here, along with some considerations
 850 regarding the time to compute the initial forest. Let $\mathcal{Q}_{\mathcal{X}}$ denote the time for one distance query in \mathcal{X} .
 851 We assume the number of components in the initial forest is $t = O(n^\delta)$ for some $\delta \in [0, 1)$, since
 852 the MFC framework only leads to subquadratic time algorithms if t is dominated by the number of
 853 points. We use \tilde{O} to hide logarithmic factors in n .

854 **Runtimes for BESTREPS step.** In order to find a set of representatives R of size $b + t$ using the
 855 dynamic programming algorithm or the greedy method, we first must compute $\hat{c}_i(j)$ for $i \in [t]$ and
 856 $j \in [b + 1]$. To do so, we run the standard greedy 2-approximation for k -center on P_i for each $i \in [t]$
 857 with $k = b + 1$. This means $k|P_i|$ distance queries for $i \in [t]$, so this step takes $O((b + 1)n\mathcal{Q}_{\mathcal{X}})$ time
 858 after summing over all $i \in [t]$.

859 *Dynamic programming.* The dynamic programming step takes an additional $O(tb^2)$ time to allocate
 860 representatives to components. The total time for approximating BESTREPS via dynamic program-
 861 ming is therefore $O(n(b + 1)\mathcal{Q}_{\mathcal{X}} + tb^2)$.

863 *Greedy representative allocation.* The greedy algorithm for BESTREPS starts with $(b_1, b_2, \dots, b_t) =$
 $(0, 0, \dots, 0)$. It then simply iterates through the number of additional representatives from 1 to b , and

864 at each step adds 1 to the b_i value that leads to the largest decrease in the objective $\sum_{i=1}^t \hat{c}_i(b_i + 1)$.
 865 More concretely, the algorithm must maintain the value of
 866

$$867 \Delta_i = \hat{c}_i(b_i + 1) - \hat{c}_i(b_i + 2)$$

868 for each $i \in [t]$, and choose the component with maximum Δ_i at each step. Observe that $\Delta_i \geq 0$
 869 for each $i \in [t]$, since \hat{c}_i is a decreasing cost function. A simple $O(tb)$ -time implementation is to
 870 store Δ_i values in an array and iterate through all t values to find the maximum at each step. This
 871 can be improved to $O(t + b \log t)$ time using a heap. However, in either case this step is dominated
 872 by the time to compute the \hat{c}_i functions. So the runtime for the greedy algorithm for BESTREPS is
 873 $O(n(b + 1)\mathcal{Q}_{\mathcal{X}})$.

874 **Fixed(ℓ)-MultiRepMFC baseline.** In order to choose $\ell = b/t$ representatives per component (assuming
 875 b is a multiple of t), we simply run the greedy k -center 2-approximation on each component
 876 with $k = \ell$. We then use the resulting centers as the representatives. This has a faster runtime for
 877 BESTREPS of $O(\ell n \mathcal{Q}_{\mathcal{X}})$.

878 **Runtime for MultiRepMFC step.** Fix a set $\{R_i : i \in [t]\}$ of nonempty representative sets for the
 879 components. Let $R = \bigcup_{i=1}^t R_i$ where $|R| = b + t$. Given this input, MultiRepMFC first computes
 880 the distance between each $r \in R_i$ and every $x \in \mathcal{X} \setminus P_i$. This is a total of
 881

$$882 \sum_{i=1}^t |R_i| \cdot (|\mathcal{X}| - |P_i|) < (b + t)n$$

883 distance queries, needed to define the weight function \hat{w} for the coarsened graph. It then takes
 884 $O(t^2 \log t)$ time to find the MST of the coarsened graph with respect to \hat{w} using Kruskal's algo-
 885 rithm. One could implement the latter step more quickly using alternate MST techniques, but our
 886 implementations apply Kruskal's since this is simple and is not the bottleneck of MultiRepMFC,
 887 neither in theory nor in practice. Overall, running MultiRepMFC with a fixed R takes $O(n(b + t)\mathcal{Q}_{\mathcal{X}})$.
 888

889 **Full runtime analysis for MFC approximation algorithms.** Although Greedy-MultiRepMFC and
 890 Fixed(ℓ)-MultiRepMFC differ in terms of their runtime for the BESTREPS step, both of these al-
 891 gorithms are asymptotically dominated by MultiRepMFC. Therefore, as approximation algorithms
 892 for MFC (i.e., ignoring initial forest computation time) their runtime is $O(n(b + t)\mathcal{Q}_{\mathcal{X}})$. DP-
 893 MultiRepMFC, on the other hand, has a runtime of $O(n(b + t)\mathcal{Q}_{\mathcal{X}} + tb^2)$ to account for the more
 894 accurate (but slower) dynamic programming strategy for allocating representatives. In cases where
 895 b is small enough ($b = O(n/t)$), this term is negligible asymptotically. Hence, when we have
 896 a small budget for additional representatives, we would expect DP-MultiRepMFC to improve over
 897 MFC-Approx and Greedy-MultiRepMFC (note that Fixed(ℓ)-MultiRepMFC is not defined in this case).
 898 As b increases beyond this limit, we still expect DP-MultiRepMFC to produce better spanning trees
 899 than its competitors when we consider a fixed b , but the runtimes are then not directly comparable.
 900

901 **Considerations for computing the initial forest.** The runtime for computing an initial forest can
 902 vary significantly depending on the strategy used. Veldt et al. (2025) computed initial forests by
 903 first running the greedy 2-approximation for k -center with $k = t$ to partition \mathcal{X} , and then applying
 904 Kruskal's algorithm to find optimal MSTs of the components. In cases where the k -center step
 905 produces balanced clusters (which it often did in practice but is not guaranteed to), this runs in
 906 $\tilde{O}(nt\mathcal{Q}_{\mathcal{X}} + n^2/t)$ -time. In practice, Veldt et al. (2025) found that this was typically much faster than
 907 running an $\Omega(n^2)$ -time exact algorithm for MST, but was also usually the bottleneck for the MFC
 908 framework. In particular, for most values of t , computing an initial forest was slower than running
 909 MFC-Approx. Whether or not computing the initial forest is the most expensive step for finding an
 910 approximate spanning tree, this will have an impact on the comparison between DP-MultiRepMFC,
 911 Greedy-MultiRepMFC, and Fixed(ℓ)-MultiRepMFC. Especially in cases where computing an initial
 912 forest step is expensive, the runtime differences between these algorithms for the MFC will be less
 913 important.

914 **Motivation for $t = \sqrt{n}$.** In our numerical experiments, we set $t = \sqrt{n}$ since this roughly minimizes
 915 the asymptotic runtime when factoring in the initial forest computation. In more detail, consider
 916 simplified conditions where the initial k -center step produces balanced partitions, $b = O(t)$, and
 917 $\mathcal{Q}_{\mathcal{X}} = O(\log n)$. If these conditions hold, the runtime for finding an initial forest and running DP-
 918 MultiRepMFC is $\tilde{O}(nt + t^3 + n^2/t)$. This is minimized when $t = \Theta(\sqrt{n})$. If we instead used
 919 Greedy-MultiRepMFC or Fixed(ℓ)-MultiRepMFC, the runtime would be $\tilde{O}(nt + n^2/t)$ under these
 920 conditions.

918 conditions, which is still minimized by $t = \Theta(\sqrt{n})$. Even if these conditions do not all perfectly
 919 hold, we expect $t = \Theta(\sqrt{n})$ to at least approximately minimize the runtime. We remark finally that
 920 there are several existing heuristics for computing an approximate MST that also rely on partitioning
 921 a dataset into t components and then connecting disjoint components. Using a similar arguments,
 922 these methods select $t = \sqrt{n}$ in order to minimize the overall runtime (Jothi et al., 2018; Zhong
 923 et al., 2015).

924 **Comparison with existing EMST algorithms.** Although our main focus is to design spanning
 925 tree algorithms that work for arbitrary metric spaces, it is also useful to consider the guarantees
 926 of MultiRepMFC against existing techniques that work for the more restrictive Euclidean minimum
 927 spanning tree problem (EMST). For this comparison, we consider d -dimensional vectors where d is a
 928 constant but potentially very large. Using the simplified analysis above, the runtime of MultiRepMFC
 929 scales roughly as $n^{1.5}$ by choosing $t = \Theta(\sqrt{n})$.

930 As noted above, there are several existing heuristics for EMST that partition the data into \sqrt{n} components
 931 and then add additional edges to connect components before refining into an overall spanning
 932 tree (Jothi et al., 2018; Zhong et al., 2015). MultiRepMFC has a comparable asymptotic runtime to
 933 these methods, while also having the advantage of satisfying concrete theoretical guarantees.

934 Agarwal et al. (1990) showed that an optimal EMST can be computed in $O(n^{2-\frac{2}{\lceil d/2 \rceil + 1} + \varepsilon})$ time.
 935 A simple calculation shows that this is slower than $O(n^{1.5})$ whenever $d \geq 6$. Thus, although it
 936 provides optimal solutions, it is not expected to be nearly as scalable as MultiRepMFC for even for
 937 modest values of d . Arya & Mount (2016) presented a method for computing a $(1 + \varepsilon)$ -approximate
 938 EMST in time $O(n \log n + \varepsilon^{-2} \log^2 \frac{1}{\varepsilon})$ if d is a constant. However, this runtime hides exponential
 939 factors in d of the form $O(1)^d$, which likely be a challenge for practical applications in situations
 940 where d is large, e.g., the FashionMNIST dataset where $d = 784$. In contrast, MultiRepMFC has
 941 no exponential dependence on d , and has no problems being run on FashionMNIST and other high-
 942 dimensional Euclidean datasets.

943 There are many other theoretical and practical algorithms for EMSTs that have been designed under
 944 diverse computational models and assumptions (Chen et al., 2023; 2022; March et al., 2010; Wang
 945 et al., 2021; Jayaram et al., 2024). The size of the literature complicates a comprehensive com-
 946 parison. We expect that the best practical algorithms for EMSTs will outperform MultiRepMFC on
 947 Euclidean data, since they are specialized to this setting and heavily leverage the assumption that the
 948 data is Euclidean. Nevertheless, MultiRepMFC also provides a scalable approach that is also very
 949 simple to implement. Its most important feature is that it applies to arbitrary metrics.

951 E ADDITIONAL EXPERIMENTAL DETAILS

952 Our experiments are run on a large research server with 1TB of RAM with two 32-Core AMD
 953 processors. We use a subset of the datasets considered by Veldt et al. (2025). Specifically, we
 954 selected four datasets that correspond to different distance metrics. We summarize the datasets
 955 below, along with a link to the original data source(s). See the work of Veldt et al. (2025) for
 956 additional steps in preprocessing data from the original source:

- 957 • *Cooking (Jaccard distance)* (Kaggle, 2015; Amburg et al., 2020). Sets of food ingredients
 958 that define recipes. There are $n = 39,774$ recipes and 6714 ingredients.
- 959 • *FashionMNIST (Euclidean distance)* (Xiao et al., 2017). Vectors of size $d = 784$ represent-
 960 ing flattened images of size 28×28 pixels, where each image is a picture of a clothing
 961 item.
- 962 • *Names-US (Levenshtein edit distance)* (Remy, 2021). Each data point is a string represent-
 963 ing a last name of someone in the United States. The average name length is 6.67.
- 964 • *GreenGenes-aligned (Hamming distance)* (DeSantis et al., 2006). An alternate form for
 965 the GreenGenes dataset where sequences have been aligned so that each is represented by
 966 a fixed length sequence of 7682 characters.

967 When performing experiments for the *Cooking* dataset, we repeatedly take uniform random order-
 968 ings of data points. Because our algorithms are deterministic, this random ordering effects only the

arbitrary elements selected for the first center during the k -center step of the initial forest computation, and the first representative chosen for each component when approximating the BESTREPS problem. For all other datasets, we take uniform random samples of $n = 30,000$ data points. In all cases, we choose $t = \lfloor \sqrt{n} \rfloor$, which equals 199 for *Cooking* and 173 for other datasets. In all our plots, we report the average performance over 16 different random samples. Although our approximation algorithms can scale to much larger sizes of n , we also run an exact algorithm for MFC for our comparisons, which can take $\Omega(n^2)$ in the worse case. We restrict to values of n for which we can find the optimal solution (and run all of our approximation algorithms for many different choices of b) within a reasonable amount of time.

Budget choices and runtime differences. For each variant of MultiRepMFC, we used budgets b ranging from 0 to $38t$ in increments of $2t$. This means that for the largest budget, we considered having an average of 39 representatives per component. For Fixed(ℓ)-MultiRepMFC, this corresponds to ℓ values from 1 to 39 in increments of 2.

For a fixed budget b , DP-MultiRepMFC tends to take longer than Greedy-MultiRepMFC, but for a somewhat surprising reason. Although the time to find representatives is slower for DP-MultiRepMFC, this constitutes only a small fraction of the total runtime and is not the primary reason why DP-MultiRepMFC is slower for a fixed b . By checking runtime for different steps, we found that the increase in runtime for DP-MultiRepMFC is due primarily to the total time it takes to compute the distances between representatives and points outside each representative’s component, when running MultiRepMFC. For a fixed R , recall the number of distances computed by MultiRepMFC(R) to find \hat{w} is

$$\sum_{i=1}^t |R_i| \cdot (|\mathcal{X}| - |P_i|).$$

Although this is bounded above by $(b+1)n$, in practice this value will depend on which components the representatives are assigned to. In particular, if a representative is contained in a component P_i that is very large, then $(|\mathcal{X}| - |P_i|)$ may be significantly smaller than the bound $|\mathcal{X}|$. We found that the number of distances computed by DP-MultiRepMFC tends be much larger than the number of distances computed by Greedy-MultiRepMFC. This suggests that Greedy-MultiRepMFC may have a greater tendency to place representatives in large components, while DP-MultiRepMFC finds ways to distribute representatives differently in a way that leads to better spanning trees but more distance computations.

Additional experimental results. In Figure 4, we display results for *Cost Ratio* – 1, α – 1, and the gap between these two values as b varies. These plots show the same basic trends as Figure 2, and the curves are more clearly aligned since there is exactly one point per value of b . We also display runtimes, as these differ for each method for each fixed choice of b .

Recall that the MFC *Cost Ratio* is defined by

$$\frac{w_{\mathcal{X}}(\hat{M}) + w_{\mathcal{X}}(E_t)}{w_{\mathcal{X}}(M^*) + w_{\mathcal{X}}(E_t)},$$

where \hat{M} is the set of new edges added by MultiRepMFC, M^* is the set of new edges added by an optimal solution to MFC, and E_t is the initial forest. As another interesting point of comparison, Figure 5 displays results for the *Completion Ratio*, which only considers the weight of new edges, and does not incorporate the initial forest weight:

$$\frac{w_{\mathcal{X}}(\hat{M})}{w_{\mathcal{X}}(M^*)}.$$

Veldt et al. (2025) showed that it is not possible to design an algorithm with subquadratic complexity that comes with an a priori upper bound on this ratio in general metric spaces. However, it is a useful quality measure to consider empirically, since it focuses more directly on the new edges found by the algorithm (recall that the weight of the initial forest is constant for every feasible solution for MFC). Figure 5 shows that adding even a small number of extra representatives improves the Completion Ratio even more significantly than the improvement to the MFC Cost Ratio. This indicates that MultiRepMFC is generally able to find much smaller edges to connect components in the initial forest. This is a promising sign for downstream applications where it is especially important to find

Figure 4: We display the performance of each variant of MultiRepMFC as budget increases. Each point corresponds to running one method with a fixed budget b .

Figure 5: For each dataset, we display the *completion ratio*: the weight of *new* edges added by MultiRepMFC, divided by the weight of the new edges added by an optimal solution for MFC. Adding a small number of extra representatives leads to an even more dramatic improvement to the completion ratio than to the MFC Cost ratio.

small weight edges to connect components. For example, a key motivating application is to cluster a dataset \mathcal{X} by mining a dendrogram associated with a spanning tree for $G_{\mathcal{X}}$. In this context, the initial forest provides a crude initial clustering of the data that can be refined and improved if one is able to truly find small weight edges between these initial clusters. The comparison between $w_{\mathcal{X}}(\hat{M})$ and $w_{\mathcal{X}}(M^*)$ is then especially important, even if the weight of the initial forest $w_{\mathcal{X}}(E_t)$ is large.

Finally, in Table 1 we provide a closer look at the various performance metrics (ε , ε_α , number of distance calls, completion ratio, and runtime) for three choices of b , on all datasets.

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

Table 1: We give exact performance values for each variant of MultiRepMFC for three different values of b . Comp is the completion ratio, DC is millions of distance calls made by the entire pipeline, and RT is the runtime of the entire pipeline in seconds.

Dataset	Alg	$b = 0$						$b = t$								
		ε	ε_α	Comp	DC	RT	ε	ε_α	Comp	DC	RT	ε	ε_α	Comp	DC	RT
Cooking	DP	0.0022	0.0075	1.85	58.0	99.8	0.0017	0.0060	1.67	104.3	174.0	0.0014	0.0054	1.56	150.6	248.6
	Greedy	0.0022	0.0075	1.85	58.0	99.6	0.0018	0.0068	1.71	102.9	179.3	0.0017	0.0068	1.68	133.9	236.6
	Fixed	0.0022	0.0075	1.85	58.0	100.0	0.0018	0.0071	1.69	88.4	150.5	0.0016	0.0068	1.62	118.7	206.0
Fashion	DP	0.0017	0.0134	1.29	45.5	56.3	0.0011	0.0086	1.19	75.1	82.4	0.0009	0.0071	1.15	104.8	108.7
	Greedy	0.0017	0.0134	1.29	45.5	56.3	0.0012	0.0097	1.21	75.1	82.4	0.0010	0.0084	1.18	104.8	108.6
	Fixed	0.0017	0.0134	1.29	45.5	56.4	0.0013	0.0108	1.23	64.8	69.0	0.0012	0.0094	1.20	84.1	82.1
Names	DP	0.0061	0.0408	1.20	415.9	88.4	0.0015	0.0116	1.05	437.2	92.7	0.0004	0.0038	1.01	458.6	96.6
	Greedy	0.0061	0.0408	1.20	415.9	88.4	0.0025	0.0209	1.08	432.9	91.7	0.0019	0.0209	1.06	443.8	93.5
	Fixed	0.0061	0.0408	1.20	415.9	88.4	0.0027	0.0241	1.09	426.9	91.2	0.0016	0.0163	1.05	437.8	94.0
GG	DP	0.0084	0.0455	1.44	61.9	270.1	0.0034	0.0257	1.18	91.0	388.2	0.0020	0.0196	1.10	120.2	506.0
	Greedy	0.0084	0.0455	1.44	61.9	270.2	0.0034	0.0280	1.18	91.0	388.3	0.0019	0.0221	1.10	120.1	506.1
	Fixed	0.0084	0.0455	1.44	61.9	270.5	0.0034	0.0318	1.18	80.7	346.1	0.0020	0.0257	1.10	99.5	421.3