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Abstract

Predicting the accurate and realistic future is an attractive landmark in spatiotemporal se-
quence prediction. Despite recent progress in spatiotemporal predictive models, explorations
in this field are challenging due to difficulties in intricate global coherence and comprehen-
sive history understanding. In this study, we introduce latent diffusion models (LDMs) into
spatiotemporal sequence prediction (PredLDM) with a two-stage training paradigm. (i) To
compress intricate global coherent spatiotemporal content into latent space, we propose the
masked-attention transformer-based variational autoencoder (MT-VAE) by exploiting trans-
formers with masked self-attention layers. (ii) Different from LDMSs in generation-related
fields where the condition in our problem settings is historical observations instead of texts,
the condition-aware LDM (CA-LDM) is provided for comprehensive understanding of his-
torical sequences. Our denoising diffusion process learns the distribution of both conditional
generation and condition-aware reconstruction. Results on KittiCaltech, KTH and SEVIR
datasets show that our PredLDM provides promising performance and realistic predictions
in multiple scenarios including car driving, humans and weather evolutions. Code will be
released here during camera ready.

1 Introduction

Spatiotemporal sequence prediction is a fundamental task in computer vision that given a sequence of images,
neural networks predict the subsequent image sequence to describe what will happen in the future (Oprea
et al., 2020; Shi et al., 2015). Different from video generation (Ho et al., 2022b) predicting from text prompts
or unconditionally, this task is conditioned on historical observations of dynamic scenes (Oprea et al., 2020).
By learning underlying spatiotemporal patterns from successive data with unsupervised manners, an ideal
model is to predict accurate dynamics with realistic visual appearance (Lee et al., 2018). It can serve various
disciplines, such as autonomous driving (Kwon & Park, 2019), robotics planning (Finn et al., 2016), traffic
management (Liu et al., 2024b) and weather forecasting (Zhang et al., 2023b).

For producing future frames, classical predictive models are mostly optimized by minimizing mean error
between predictions and ground truth across spatial and temporal dimensions (Oprea et al., 2020). Shi
et al. (2015) introduce ConvLSTM networks, which is a milestone at grasping spatiotemporal aspects with
convolutional recurrent architectures. Inspired by this, advanced recurrent models (Wang et al., 2017; 2018;
Wu et al., 2021b; Sun et al., 2023; Villegas et al., 2017; Oliu et al., 2018) and recurrent-free ones (Gao
et al., 2022; Tan et al., 2023) emerge out. However, the mean error-related objective leads to generating
blur for uncertain future outcomes (Oprea et al., 2020; Lee et al., 2018). To improve visual quality, although
generative models like variational autoencoders (VAEs) (Villegas et al., 2019; Wu et al., 2021a; Babaeizadeh
et al., 2021), generative adversarial networks (GANs) (Clark et al., 2019; Tulyakov et al., 2018) and flow-based
models (Dorkenwald et al., 2021) are alternatives, they are easy for mode collapase and the performance is not
satisfactory. As LDMs reveal promising performance with high-fidelity appearance especially in T2I (Nichol
et al., 2021; Rombach et al., 2022) and T2V (Ho et al., 2022b; He et al., 2022) through learning joint
distributions with conditions in latent space by iterative denoising diffusion processes (Rombach et al.,
2022), we introduce LDMs into spatiotemporal sequence prediction, under consideration of intricate global
coherence and comprehensive history understanding.
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In the light of intricate global coherence, existing predictive models are restricted by finite-scale temporal
variations within training samples, whereas temporal transformations are complex and nearly infinite in
nature. For simulating intricate temporal patterns, a solution is to model as many diverse variations as
possible in the pretraining stage (Devlin, 2018; He et al., 2022) by masked modeling (Xie et al., 2022; Cheng
et al., 2022). This can serve perceptual compression in LDMs (Singer et al., 2022). Meanwhile, existing
LDMs exploit 3D convolutions (Ho et al., 2022b; He et al., 2022) and convolutional temporal layers (Singer
et al., 2022) to extend T2I models to T2V applications. This leads to global dependencies being neglected,
limited by compression of the local receptive field of convolutions (Li et al., 2023). For modeling global
reliance, transformers are natural alternatives. To solve intricate global coherence, we expect to propose a
transformer-based VAE with masked modeling. In another light of comprehensive history understanding,
different from generation-purpose models conditioned by text prompts, the condition in this problem setting
is historical image sequences. Compared to text prompts describing scenes with highly dimensional symbols,
conditions of spatiotemporal sequences are more difficult for machines to understand as raw pixels are low-
level and diverse. It is expected to leave conditions comprehensively understood in latent space during
denoising diffusion processes.

With respect to these problems, we propose a spatiotemporal predictive model called PredLDM. (i) To com-
press intricate global coherent spatiotemporal content into latent space, we propose exploiting transformer-
based VAE with masked attention to capture complex and global coherence in MT-VAE. (ii) To comprehen-
sively understand the historical observations, condition-aware latent diffusion is performed. The denoising
diffusion process of CA-LDM learns the distribution for both conditional generation and condition-aware
reconstruction.

Extensive experiments are conducted on KittiCaltech (Geiger et al., 2013), KTH (Schuldt et al., 2004) and
SEVIR (Veillette et al., 2020) datasets. Results show accurate performance and realistic visual appearance
of trained PredLDM, indicating the promising future of this study. Contributions can be summarized as:

e To predict the accurate and realistic future image sequences, we propose a spatiotemporal predictive
model called PredLDM, by introducing LMDs into this field under consideration of intricate global
coherent modeling and comprehensive history understanding.

e For intricate global coherence, MT-VAE is proposed by transformers with masked attention varia-
tionally compressing complex temporal patterns and global reliance.

e Considering comprehensive history understanding, CA-LDM is performed by learning distributions
of both conditional generation and condition-aware reconstruction.

e Experiments on several datasets including KittiCaltech, KTH and SEVIR show superior performance
of PredLDM with realistic appearance, revealing potential for continuous research and applications.

2 Related Works

2.1 Spatiotemporal Sequence Prediction

Spatiotemporal sequence prediction produces the future sequence of images given by historical observations
to describe what is going to happen (Oprea et al., 2020). This research direction originates from predictive
coding (Huang & Rao, 2011; Rao & Ballard, 1999) which reveals the human behavior predicting visual
signals through both space and time dimensions. Initial attempts from Ranzato et al. (2014) and Srivastava
et al. (2015) introduce recurrent language baselines to model natural spatiotemporal signals. For explicitly
modeling spatial information, Shi et al. (2015) propose using convolutions to replace fully connected layers in
recurrent units. This attempt greatly inspires the progress on the recurrent predictive architectures (Wang
et al., 2017; 2018; Wu et al., 2021b; Sun et al., 2023; Villegas et al., 2017; Oliu et al., 2018) on this task. Besides
recurrently modeling, the sequence-to-sequence fashion (Gao et al., 2022; Tan et al., 2023) is employed with
efficient U-Net structures to predict with a simplified configuration of convolutions. When minimizing mean
error of predictions and uncertain future outcomes, these models usually generate blur appearance (Oprea
et al., 2020). A straightforward solution is to exploit probabilistic models, like VAEs (Villegas et al., 2019;
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Wu et al., 2021a; Babaeizadeh et al., 2021), GANs (Clark et al., 2019; Tulyakov et al., 2018) and flow-based
ones (Dorkenwald et al., 2021). However, they are highly likely to lead mode collapse and hard to fit (Oprea
et al., 2020). As LDMs are dominant in generation-related works (Rombach et al., 2022; Ho et al., 2022b),
we introduce LDMs in spatiotemporal sequence prediction for potential explorations in this field.

2.2 Latent Diffusion Models

Diffusion models (DMs) are one of likelihood-based generative models, revealing first remarkable results in
image generation communities (Ho et al., 2020; Nichol et al., 2021) by progressively reversing a Markov
chain which iteratively adds noise to target distributions (Ronneberger et al., 2015). Benefiting from lower
computational requirement and better expressivity than DMs (Song et al., 2020; Karras et al., 2022), recently
LDMs (He et al., 2022; Rombach et al., 2022) have made tremendous breakthroughs on various tasks,
including T2I generation (Nichol et al., 2021; Rombach et al., 2022; Balaji et al., 2022; Saharia et al., 2022;
OpenAl, 2023; Midjourney, 2023; Peebles & Xie, 2023; Podell et al., 2023), T2V generation (Shi et al., 2015;
He et al., 2022; Yan et al., 2021; Singer et al., 2022; Voleti et al., 2022; Ho et al., 2022a; Blattmann et al.,
2023b; Zhou et al., 2022; Wang et al., 2023; Midjourney, 2023), text-to-audio generation (Liu et al., 2023a),
3D shape generation (Vahdat et al., 2022), video editing (Liew et al., 2023), tabular data generation (Zhang
et al., 2023a), video frame interpolation (Danier et al., 2024), etc. Most related directions are T2I and T2V
models. In T2I generation (Nichol et al., 2021; Rombach et al., 2022; Balaji et al., 2022), novel images
are generated with textual descriptions given as conditions, where representatives contain Dalle-2 (OpenAl,
2023), Midjourney (Midjourney, 2023), DiT (Peebles & Xie, 2023) and Stable Diffusion (Podell et al., 2023).
T2V models are mostly inspired from T2I (Singer et al., 2022). VDM (Shi et al., 2015) reports first results
by modifying 2D U-Net to a factorized 3D network to achieve video synthesis. Recent works include Imagen
Video (Ho et al., 2022a), SORA (OpenAl, 2024), Make-A-Video (Singer et al., 2022), VideoGPT (Yan
et al., 2021), MagicVideo (Zhou et al., 2022), Latte (Ma et al., 2024), StoryDiffusion (Zhou et al., 2024)
and CogVideoX (Yang et al., 2024), extending existing image-based models to the video domain. They are
usually built with two stages (Rombach et al., 2022). In the first stage, VQ-VAEs (Van Den Oord et al.,
2017; Razavi et al., 2019) or VQ-GANs (Esser et al., 2021) are used as autoencoders to learn an expressive
prior over discretized latent space. This autoencoder-diffusion paradigm has also been effectively adapted
for sequential data synthesis, as demonstrated in TimeAutoDiff (Suh et al., 2024). In the second stage, a
denoising network commonly implemented by U-Net (Ho et al., 2020; Ronneberger et al., 2015; Dhariwal &
Nichol, 2021) is trained to predict the less noisy video samples progressively, reversing the diffusion process
where Gaussian noise is iteratively added onto the raw data with predefined timesteps. Concurrently, efficient
temporal modeling techniques like those in Latent-Shift (An et al., 2023) have advanced video generation
by introducing specialized operations in the latent space. Beyond generation tasks, PriSTI (Liu et al.,
2023b) addresses missing data challenges through conditional diffusion frameworks. Similarly, Stochastic
Diffusion (Liu et al., 2024a) extends this capability to uncertainty-aware time series forecasting, highlighting
the versatility of diffusion models in handling complex temporal dependencies. Different form T2I and T2V
models, the condition of our PredLDM is historical observations. This difference makes the condition is not
as easy as text prompts used to be, as the spatiotemporal content is low dimensional and highly complex.

2.3 Compression of Spatiotemporal Sequences

In order to compress spatiotemporal data, 3D convolutions are straightforward solutions (Ho et al., 2022b;
Tran et al., 2015). Given multiple frames, VDM (Ho et al., 2022b) and LVDM (He et al., 2022) exploit 3D U-
Net convolutions by replacing each 2D convolutions in image models with space-only 3D convolutions. Instead
of 3D convolutions expensive at fitting or hard to train, 1D convolutional temporal layers are attractive
combined with 2D convolutions (Tran et al., 2018). Make-A-Video (Singer et al., 2022) initializes the
spatial convolutional layers with pretrained T2I weights and adds temporal convolutions to correlate spatial
features across time dimensions, similar as Imagen Video (Ho et al., 2022a), ModelScope (Wang et al., 2023),
MagicVideo (Zhou et al., 2022) and Stable Video Diffusion (Blattmann et al., 2023a). There are also works
combining convolutional temporal layers with 3D U-Net (Blattmann et al., 2023b). Although convolutions
are effective in image modeling, diverse and global relations in time dimensions are too complex limited for
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Figure 1: The pipeline of PredLDM. The training is comprised of two stages. In the first stage, MT-VAE
is exploited to compress the spatiotemporal sequences into latent space. In the second stage, CA-LDM
contains the learning of both conditional generation and condition-aware reconstruction. For inferencing,
the Gaussian noise is sampled and less noisy latent vectors are predicted conditioned on the latent historical
observations. The sampled latent vectors are then fed into the decoder for output.

their local receptive field (Li et al., 2023). To additionally capture intricate global dependencies, we make
attempts by proposing MT-VAE.

3 Methods

The training of PredLDM includes two stages. In the first stage, PredLDM learns to compress spatiotemporal
sequences into latent vectors by MT-VAE to model intricate global coherence. In the second stage, CA-LDM
is designed for comprehensive understanding of historical spatiotemporal content in conditions. To inference,
latent noise is randomly sampled and denoised with trained LDMs conditioned on historical embeddings.
Predicted latent vectors are finally fed to the decoder for future content.

3.1 Background on Latent Diffusion Models

Diffusion formulation. Denoising diffusion probabilistic models (Ho et al., 2020) simulate a data distri-
bution & ~ pgata(z) by corrupting data with progressively added Gaussian noise and learning to reverse this
process. The diffusion process leads corrupted data resembling pure noise by gradually adding Gaussian



Under review as submission to TMLR

noise in a serious of timesteps, along with the sampled noisy z; at timestep t,

q(xe]zi—1) = N(xt; V1= Bz, 5tl)a (1)

where {3;}_, are a set of linearly increasing hyperparameters with the predefined variance schedule (He
et al., 2022), T denotes the number of diffusion steps and N refers to the normal distribution. The denoising
process reverses the above diffusion process to predict less noisy x;_1 iteratively,

po(i—1|we) = N (2115 po(we, 1), So (a4, 1)), (2)

where pp and ¥y are accomplished by a parameterized denoising model ¢y with learnable parameters 6.
Specifically, €g(x¢,t) is trained to predict the noise at each step of the diffusion process by minimizing the
difference between the actual noise and predicted ones,

Lpm = ]EJ;O,GNN(O,I),tNZ/I(l,T) [||€ - Ee(It, t)||2]7 (3)
where U(1, T) refers uniformly sampling from {1,--- ,T}.

Latent diffusion models. LDMs (Rombach et al., 2022) are efficient variants of DMs by operating in
latent space. This process begins with a pretrained variational encoder E: x — z, compressing the input
image & ~ Pdata () into latent representations z ~ E(x). Similar as Equation 1 and Equation 2 with z,

Loy = Ep(ay)eano.1),t~u,mlle — oz, 1)]17]. (4)

3.2 Perceptual Compression with MT-VAE

In the first training stage, we compress spatiotemporal sequences with MT-VAE. The model structure of
MT-VAE is provided as Figure 1. Given a sequence zo~pdata(Zo), To € REXIXWXC "where L, H, W and C
are the temporal length, height, width and channel number respectively, the spatial convolutional encoder
E encodes x( into latent vectors zg = E(xg). zp is taken by masked temporal self-attention modules F,
extracting intricate coherent temporal reliance,

25t = mAtt (Norm(zs)) + 25, 2zs = (E(zo) + U), (5)

25t := FeedForward (Norm(zs)) + zst, (6)

where U is the positional embedding obtained by convolutions of input. Insipred by scaled dot-product
attention (Vaswani, 2017) and masked modeling (Xie et al., 2022; Cheng et al., 2022), mAtt(-) is to capture
complex global reliance after the layer normalization. Multi-head mechanism (Vaswani, 2017) is used to
project representations into subspaces calculated by different attention heads, the number of heads is denoted
by H. The process of mAtt(-) is defined as below, assuming that normalized features of z5, Norm(zs) is zin,

mAtt(zzn) = mAtt(Q7 Ka ‘/a M): (7)
(Q@)’ KO, V(i)) =z (W@,i), W U0 W(v,w) (8)
. () T .
D _ Q (i)
Zour = softmax ( + M)V 9)
Vi
if j)=1
where M, = {0’ it md(j) =1, (10)
—00, otherwise,
mAtt(Q, K, V) = Concat (z(()i)t, e 7zgi?)Wo, (11)

where @, K and V are queries, keys and values of vectors for dot production (Vaswani, 2017). W),
WD and W) are the parameters of linear operations for i-th head to control the weights of Q, K
and V respectively, ¢ = 1,--- , H. Here, the masking is operated on the attention matrix via Equation
9 by M, where we can see this masking modulating the scaled dot production between queries and keys,
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Figure 2: Temporal analysis of predictive models. Rows are from KittiCaltech, KTH and SEVIR respectively.

md(j) € {0,1}* is the random binarized output with the masking ratio r of the same size as temporal
length. M indicates all zero or all negative infinite matrices corresponding to time location j. The results
from different attention heads are concatenated and projected back into representation space through the
weight matrix WO. Here the compressed feature z,; is accessed. The mean vectors u, (zst) and variance
vectors X, (zs¢) are predicted with learnable parameters ¢, which are implemented by two dense layers. The
sampled latent features from the Gaussian distribution Zg ~ N (g, (2st), Xy (2s¢)) are the final compressed
features used for the decoder D to reconstruct xzg. D is accomplished by the cascaded convolutional layers
and D(Z,) is expected to minimize the difference between the predicted distributions and the real data
Pdata(To). The training objective is the reconstruction loss with a pixel-level mean-squared error (MSE) and
a perceptual loss (Johnson et al., 2016; Ni et al., 2023). For compression, varying spatiotemporal patterns
can be accessed by our MT-VAE, as the masking operation creates more attention matrix-based samples
along time dimensions. The attention matrix in our work is accessed from dense convolutions from previous
latent input samples. By creating more intermediate attention feature samples, complex fractions of the
same piece of spatiotemporal sequences can be linked tightly.

3.3 Condition-aware Latent Diffusion

In the second stage, it is expected to train a denoising network to predict less noisy samples from latent noise
conditioned on historical embeddings (Sohn et al., 2015; Rombach et al., 2022). Different from existing video
generation research, the condition of this task is raw historical spatiotemporal sequences rather than high
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dimensional text as conditions, while spatiotemporal sequences are full of structural details, more difficult
to comprehend. Our diffusion part consists of both the commonly used conditional generation objection and
importantly the probabilistic modeling of the condition itself, maximizing the mutual information beyond
joint distributions of conditional generation only. Given a sequence of future observations xo~pgate(Zo)
and its corresponding historical observations as conditions yo~pdata(¥o), the trained MT-VAE compresses
them into the latent features respectively as Zg and g, Zg ~ N (tg(2st), Xy (2st)), 25t = F(E(z0)) and
Cst ~ N (pp(cst), Xy(cst)), cst = F(E(yo)). Our CA-LDM is trained to simultaneously learn the denoising
diffusion process of (i) conditional generation on the distributions p(Zs:|¢st) and (ii) reconstruction of the
conditions on the distribution p(és), as in Figure 1. For pseudo-code, please refer to Algorithm 1.

Algorithm 1 Condition-aware Latent Diffusion (CA-LDM) Training

1: Input:
2:  Future observations: zg ~ pgatq(Zo); historical observations (condition): yo ~ paata(¥0);
3: Pretrained network:
4:  Pre-trained MT-VAE encoder E, transformer F', and parameter ¢;
5: Hyperparameters:
6:  Number of diffusion steps T’; variance schedule {3, }7_;;
7: Initialization:
8:  Initialized denoising network ey with parameters 6 = {w, 7};
9: procedure CA-LDM TRAINING
10: Compress observations into latent space:
11: zst = F(E(x0)); ¢st = F(E(y0));
12: Sample latent features:
13: Zot ~ Npp(2st), B (25t)); Est ~ N (pp(Cst), i (Cst));
14: fort=1to T do
15: Sample random noise: € ~ N (0,I); t ~U(1,T);
16: Add noise to latent features:
17: Za(t) = VuZst + 1 — aue; Gy = VauCo + /1 — aye; where ay = HZ:1(1 — Bs);
18: Compute conditional generation loss:
19: ELDM =E [HG — 69(€w(25t(t))7 t, Est)Hz}
20: Compute condition-aware reconstruction loss:
21: Lca :E[He769(6“,(53,5(,5)),25)”2]
22: Update parameters:
23: 0+ 0—Vo(Lrpm + Lca)

24: end for
25: end procedure
26: Output: Trained denoising network €y

Conditional generation. For learning p(Zs|¢st), the diffusion process progressively adds Gaussian noise
onto Zg until it resembles pure noise along with the sampled noisy Z,(; at timestep {. The denoising
process reverses the diffusion process iteratively to approach the original latent samples Zy (o). Instead of
using time-conditional U-Net (Ronneberger et al., 2015), our denoising network ¢y is inspired by DiTs (Ma
et al., 2024). It is consisted of the spatiotemporal self-attentions €, and cross-attentions €,, where w and
7 are learnable parameters. This denoising neural network is trained by minimizing the difference between
the actual noise and predicted ones,

Lipm:= Eist,ést,e,t [HG - 69(6w(25t{t})7 t, Est)Hz} ) (12)

where t ~ U(1,T) and € ~ N(0,I). The condition latent features ¢y is integrated to the intermediate
features of €y by the cross-attention layers €.

Condition-aware reconstruction. For learning p(és:), the diffusion process is additionally conducted onto
Cst with the sampled noisy ¢4 ;) at timestep t. The denoising phase is operated to reverse the noisy samples
to the original distribution p(és;). The training objective of this branch is to progressively reconstruct the
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Figure 3: Plots of KVD/FVD distance scores from existing models and ours on three datasets. Distance
scores between distributions of ground-truth data and predictions from predictive models are visualized.
Both metrics are the lower the better.

conditions by minimizing the difference between the actual noise and predicted ones from the denoising
network with Siamese spatiotemporal self-attentions €, in €y yet without cross-attentions,

ECA = Ecét,e t |:H6 - 69 €w cst{t} || :| (13)
The overall learning objective of CA-LDM is the combination of L;pps and Leoa,

Lca—rpm =Lrpm +Lcoa. (14)

3.4 Inference

As in Figure 1, to inference the expected spatiotemporal sequence xg with the condition yg, a Gaussian noise
zr is sampled in the latent space and the condition is compressed by MT-VAE as és. The denoising network
€g in CA-LDM is used to predict the less noisy samples zg.7—1 within the predefined T timesteps, while the la-
tent condition vectors ¢,; are fused across cross-attention layers into the intermediate features of €y to accom-
plish conditional controlling. The less noisy sample can be predicted by z;_1 ~ N (z¢_1; po (2, 1), Lo(2t, 1)).
The latent vectors zy can be approached after T timesteps denoising. Finally, the decoder in MT-VAE
decodes zy back to the pixel space, resulting predictions as close as possible to ground-truth z.

4 Experiments

4.1 Experimental Setup

Datasets and metrics. Datasets in this study include KittiCaltech (Geiger et al., 2013), KTH (Schuldt
et al., 2004) and SEVIR (Veillette et al., 2020). (i) KittiCaltech is a driving-scene dataset, comprising a
curated collection of high-quality images. The ability to predict the future dynamics of this scenario is
paramount for the advancement of autonomous driving technology and dynamic comprehension, containing
127,271 frames in total, with 74,833 frames for training and 52,438 frames for testing. (ii) KTH stands as a
benchmark in the field of human action recognition and prediction. It encompasses diverse image sequences
depicting a variety of human activities. This dataset is comprised of 51,360 frames with 20,420 frames
for training and 30,940 frames for testing. (iii) SEVIR has been curated in the realms of weather sensing
and short-term forecasting, comprising thousands of weather events in multipe sensor modalities. We use
vertically integrated liquid (VIL) data with a 5-minute interval, and 1 km spatial resolutions. They are
stored as integers ranging from 0 to 254, with a value of 255 indicating missing data. In our experiments,
all frames are processed as 128 x 128 resolutions. The temporal length of input is uniformly 10 frames and
output length is also 10 frames. For evaluating on KittiCaltech and KTH, the metrics contain MSE, PSNR,
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Table 1: Comparison between existing models and PredLDM on KittiCaltech, KTH as well as SEVIR
datasets. 1 indicates the higher the better, whereas | is the opposite. The best results are marked as bold
and the second best ones are marked as underline.

Models KittiCaltech KTH SEVIR
PSNR 1T SSIM 1t LPIPS | PSNR 1T SSIM 1T LPIPS | POD1T FAR| CSI7T
U-Net 19.34 0.591 0.232 26.75 0.813 0.079 0.691 0.185 0.612
PredRNN 19.19 0.616 0.190 28.33 0.860 0.057 0.704 0.174 0.629
PredRNN—++ 18.99 0.571 0.244 28.33 0.861 0.058 0.714 0.171 0.638
ConvLSTM 20.46 0.652 0.154 27.87 0.859 0.052 0.754 0.182 0.660
MotionRNN 19.79 0.621 0.170 28.94 0.868 0.051 0.742 0.177  0.654
SimVP 19.19 0.614 0.239 28.47 0.838 0.060 0.752 0.184 0.657
SimVPv2 19.29 0.620 0.234 28.64 0.847 0.061 0.713 0.163 0.641
MCVD 19.41 0.607 0.177 25.78 0.770 0.094 0.659 0.197 0.583
PVDM 19.94 0.631 0.174 26.25 0.781 0.086 0.681 0.173 0.610
PredLDM 19.86 0.653 0.107 28.94 0.871 0.045 0.760 0.148 0.672

Table 2: Influence of different settings of autoencoders. T indicates the higher the better, whereas | is the
opposite. The best results are marked as bold.

KittiCaltech KTH
Autoencoders
SSIM 1+ LPIPS | SSIM 1T LPIPS |
3D VAEs 0.630 0.157 0.861 0.060
2D VAEs + 1D Convs 0.647 0.121 0.869 0.045
MT-VAE (Ours): 0.653 0.107 0.871 0.045

Table 3: Influence of condition-aware latent diffusion. 7 indicates the higher the better, whereas | is the
opposite. The best results are marked as bold.

LDMs KittiCaltech KTH
SSIM 1 LPIPS | SSIM 1+ LPIPS |
LDM Lrpwm 0.622 0.184 0.858 0.067
CA-LDM (Ours):
LDM Lripm + Lca 0.653 0.107 0.871 0.045

SSIM (Jin et al., 2020; Wang et al., 2004) and LPIPS (Zhang et al., 2018). For evaluating weather patterns on
SEVIR, we use event-level short-term prediction metrics and the image quality assessment metric, including
POD (Veillette et al., 2020), FAR (Veillette et al., 2020), CSI (Schaefer, 1990) and SSIM. More details can
be accessed as in Supplementary Section A.1.

Implementation details. PredLDM is trained in two stages. In the first stage, spatiotemporal sequences
are autoencoded by MT-VAE. The masking ratio r is set as 0.6. In the second stage, trained parameters in
MT-VAE including E, F and ¢ are used to project data into latent space. The denoising model is trained to
predict less noisy samples by the linear combination of L7 pas and Lo 4. More details and hyper parameters
implementing our PredLDM are available as in Supplementary Section A.1.
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Figure 4: Predictive error analysis. a), A challenging case on KittiClatech is visualized. b), Analysis on error
of predictions accumulated with time. We calculate the accumulated error along with x-axis, the distribution
should be all blue if there is no error accumulated. c¢), Error maps of the last frame. The highlighted value
indicates the largest error.

4.2 Results with Comparison to Existing Models

Baselines in our experiments include classical encoder-forecaster architectures U-Net (Ronneberger et al.,
2015), PredRNN (Wang et al., 2017), PredRNN++ (Wang et al., 2018), ConvLSTM (Shi et al., 2015),
MotionRNN (Wu et al., 2021b), SImVP (Gao et al., 2022), SimVPv2 (Tan et al., 2023) as well as diffusion-
based probabilistic generation architectures MCVD (Voleti et al., 2022) and PVDM (Yu et al., 2023). As
in Table 1, PredLDM almost achieves best scores in all metrics on KittiCaltech and KTH, except in PSNR.
The most shining metric is LPIPS which resembles the perceptual evaluating abilities similar to human,
where 30.5% improvement is achieved by PredLDM on KittiCaltech and 11.8% improvement is made on
KTH. Results on weather nowcasting show the large margin in scores of PredLDM over other models.

4.3 Temporal Analysis

For observing temporal detailed performance, results are compiled by performance at each time point as in
Figure 2. It is evident that the descending curve decreases slowly for PredLDM, while the degradation of
other models is quite fast. This implies that PredLDM is capable of dealing with complex global temporal
variations. This phenomenon is more prominent in LPIPS on KittiCaltech and KTH.

4.4 Experiments on KVD/FVD Comparison

For further analyzing the temporal retention ability of models, we calculate Fréchet Video Distance (FVD)
and Kernel Video Distance (KVD) (Unterthiner et al., 2018) between predictions and groundtruth on Kit-
tiCaltech, KTH and SEVIR datasets. Different from frame-level metrics, these two metrics measure the
similarity of sequential distributions. As in Figure 3, results indicate better retention abilities of visual
quality in temporal dimensions.

4.5 Predictive Error Analysis

For analyzing the predictive error between existing competitive implementations and ours, we select a chal-
lenging sample when a car is driving through the corner. As in Figure 4, the visual appearance from

10
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Figure 5: Ablation study. a), Heatmaps of correlation between synthetic data v.s. real data for MT-VAE.

b), Influence of condition-aware latent diffusion. Performance in denoising processes is plotted on the left
and the decoded predictions are on the right.
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Figure 6: Influence of masking ratios on forecasting performance. SSIM scores with different masking ratios
of PredLDM on KittiCaltech, KTH and SEVIR are reported.

PredLDM shares quite similar details as the ground truth while others show evident visual difference. For
visualizing the accumulated error over time on these models, we count the cumulative values of all absolute
errors along the x-axis direction through time. The plot shows that the accumulated error over time is
smaller for predictions from PredLDM than others. For the error map calculated from the last predicted
frame, the error of the results is very limited from ours. It can be observed that the visual quality and
accumulative error are evidently improved by our model.

4.6 Ablation Study

For organizing the ablation study, we firstly compile the performance on different settings of autoencoders
including 3D VAEs, 2D VAEs + 1D convolutions and ours MT-VAE, as in Table 2. It can be seen that
the setting of 2D VAEs with 1D convolutional attention is more competitive than 3D VAEs, consistent with
existing research (Tran et al., 2018). Our setting of MT-VAE is better than this competitive one. Then
we report the influence of condition-aware latent diffusion as in Table 3, showing that the condition-aware
reconstruction-based loss is beneficial.

11
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Figure 7: Challenging cases on three datasets. Visualized challenging cases on KittiCaltech, KTH and

SEVIR are presented. The first row refers to input and ground-truth spatiotemporal sequences, following
rows indicate predictions.

b
b

Further study is conducted as Figure 5. Correlations are analyzed from settings of autoencoders in Table 2.
It shows that our MT-VAE is better for generating realistic data, where the correlation-based distributions
of ours indicate the most similar behavior as realistic structures. The mean square error of sampled results
during the denoising process shows that the addition of condition-aware constraint brings lower error. From
the decoded visual appearance, CA-LDM can produce more realistic visual quality. More analysis is available
in Supplementary Section A.2.

4.7 Influence on Masking Ratios

For investigating the influence of the masking ratio r on forecasting performance on three datasets, different
settings of masking ratios are experimented as in Figure 6. More results are provided as in Supplementary
Section A.3. Firstly, when the masking ratio is 0, the setting refers to the masking mechanism does not
work in MT-VAE and instead the non-masked transformer-based VAE compresses spatiotemporal data.
Comparing against the non-masked settings, it can be witnessed that the masked attention in MT-VAE is
effective in most aspects on three datasets. Meanwhile, these results also indicate that the setting of masking
ratio is preferred as 0.6 in our experiments.

4.8 Case Study

Predictions of existing models and ours PredLDM on challenging cases of three datasets can be accessed in
Figure 7. It can be seen that the predictions form PredLDM not only show the realistic visual appearance,
but also share the most similar movement as the ground-truth sequences. More examples are available in
Supplementary Section A.4.

12
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4.9 Discussion and Limitation

Distortion-perception trade-off. We have observed a phenomenon from our experimental results especially in
Table 1 that some classical predictive models such as ConvLSTM and MotionRNN behave excellent perfor-
mance in structured-based metrics PSNR and SSIM, while not good at perceptual metric LPIPS. This states
the trade-off in this context. Distortion (measured by PSNR and SSIM) and perceptual quality (LPIPS) are
at odds with each other. Through our experiments, it can be found out that classical deterministic models
excel in PSNR/SSIM because they are optimized for pixel-level fidelity, while probabilistic ones excel in
perceptual metrics because they are optimized for statistical realism and diversity of outputs. This reveals
the selection preference for specific downstream usage. For example, in some accuracy required occasions
for example scientific measurement, the easy-implement and accurate classical models are preferred, while
for some realistic necessary usages, probabilistic modeling may be an excellent choice.

Time-evolving performance. For autoregressive models like ConvLSTM, PredRNN and MotionRNN;, a pro-
cess generating frames or tokens one at a time. For sequence-to-sequence models like U-Net and SimVP, the
whole spatiotemporal sequence is predicted by deterministic optimization. For diffusion-based models, the
denoising process runs for a predefined number of steps to predict results from noise. From results in Figure
2, Figure 4 and Figure 5, it can be observed that the diffusion-based modeling is beneficial to reduce time
iterative error. Besides, the proposed PredLDM can serve as a competitive baseline in this field.

Masked operations in attention matrix are beneficial to temporal modeling. DiT (Ma et al., 2024) proposes
two kinds of masking strategies, including simple masking from one-hot notes on time tokens and frame-level
masking, which is operated on the direct pixel of frames. SVD (Blattmann et al., 2023a) additionally exploits
a binary mask where 1 indicates the presence of a conditioning frame and 0 that of a mask embedding on
the input of U-Net denoising network. We can see their masking is on the input of denoising network by
concatenating a masking conditioning frame-size embedding. Make-A-Video (Singer et al., 2022) uses the
image-based masking trained for frame interpolation, still limited on data-level. MCVD (Voleti et al., 2022)
masks frames in two ways on both past and future frames. Different from these methods, our MT-VAE
is operated on the attention matrix, especially on the scaled dot production matrix from query and key in
transformers of VAE. From results in Figure 6 and Figure 10, it can be observed that our masked modeling
is also beneficial against the version without masking (when the masking ratio is 0). For future research,
more deep research on attention matrix-based masked modeling may be of much value.

Real-time performance. While our model demonstrates competitive performance, it is important to acknowl-
edge its computational limitations. Although the model scale and computational cost are not excessive com-
pared to the diffusion baseline (MCVD) and our inference speed of 1.33 seconds per sequence is faster, the
current setting is not ideal yet for real-world fast applications satisfying real-time usage such as autonomous
driving. Specifically, generating 10 frames takes 1.331 seconds, even with the compression provided by the
MT-VAE. Therefore, for practical real-time deployment, further acceleration techniques would be necessary.
For offline usages like urban supervision, analyzing or weather forecasting, it may remain capable of serving.

5 Conclusion

In this study, we propose a spatiotemporal predictive model with LDMs called PredLDM, towards predicting
the accurate and realistic future. Under consideraton of intricate global coherence and comprehensive his-
tory understanding, corresponding designs are made. (i) MT-VAE is proposed to compress intricate global
coherent spatiotemporal latent representations with the combination of transformers with masked attention
and convolutional VAEs. (ii) CA-LDM is proposed by learning distributions of both conditional generation
and condition-aware reconstruction, to comprehensively understand conditions which are spatiotemporal se-
quences with diverse and complex context. Through extensive experiments on multiple scenarios, PredLDM
shows accurate performance and realistic appearance in predictions, revealing promising potential in future
research and applications.
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A Appendix

A.1 More Details on Data and Implementation

Data. Datasets in this study include driving scene-related dataset KittiCaltech (Geiger et al., 2013), human
action-related dataset KTH (Schuldt et al., 2004) and weather pattern-related dataset SEVIR (Veillette
et al., 2020). (i) KittiCaltech dataset is a cornerstone in the domain of computer vision, serving as an
essential resource for autonomous driving research. It comprises a curated collection of high-quality images
that are vital for the understanding of driving scenarios. The ability to predict the future dynamics of
these scenarios is paramount for the advancement of autonomous driving technology, rendering this dataset
exceptionally valuable for research in vision field, particularly in the areas of future scenario prediction and
dynamic comprehension. This dataset is meticulously organized, consisting of a total of 127,271 frames.
Within this collection, 74,833 frames are allocated for training purposes, while 52,438 frames are reserved
for testing. This structured distribution ensures a comprehensive framework for both the development and
validation of autonomous driving algorithms. (ii) KTH dataset stands as a benchmark in the field of human
action recognition and prediction. It encompasses a diverse array of image sequences depicting a variety
of human activities, such as walking, jogging, running, boxing, waving, and clapping, totaling six distinct
categories, capturing the intricacies of different individuals performing various actions. Comprising a total
of 51,360 frames, the KTH dataset is segmented into 20,420 frames for training and 30,940 frames for
testing. To maintain uniformity in evaluation, all frames are centrally cropped and resized to a consistent
dimension of 128 x 128 pixels. The dataset’s processing protocol specifies that the input consists of 10 frames,
with the output also comprising 10 frames, ensuring a standardized framework for analysis and comparison.
(iii) SEVIR dataset has been curated to accelerate research in the realms of weather sensing, avoidance
and short-term forecasting. This comprehensive collection comprises thousands of weather events with each
represented as a 4-hour sequence. Researchers are empowered to synthesize and harmonize diverse weather
sensor data into a unified dataset through SEVIR. The dataset encompasses a variety of sensor modalities,
including TR069 (infrared satellite imagery at 6.9 m), IR107 (infrared satellite imagery at 10.7 m), VIL
(vertically integrated liquid), and LGHT (Lightning). In this study, we use VIL modality. The VIL data is
derived from NEXRAD radar mosaics, featuring a 384 x 384 pixel resolution, a 5-minute interval, and a 1 km
spatial resolution. The geographically and chronologically aligned imagery, depicting a spectrum of weather
events including high winds, tornadoes, and hail, is captured by GEOS-16 satellites and NEXRAD weather
radars. This data is publicly available in HDF files, we convert them into recordings of images. The pixel
values within these spatial grids correspond to processed statistics derived from the actual sensor readings.
VIL images are stored as integers ranging from 0 to 254, with a value of 255 indicating missing data. All
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Figure 8: Additional ablation study on KTH. a), Heatmaps of correlation between synthetic data v.s. real
data for MT-VAE. b), Influence of condition-aware latent diffusion. Performance in denoising processes is

plotted on the left and the decoded predictions are on the right.

frames have been reprocessed to a 128 x 128 resolution. The temporal length of input is uniformly 10 frames
and output length is also 10 frames.

Implementation Details. The training of PredLDM is comprised of two stages. In the first stage, spa-
tiotemporal sequences are autoencoded by our MT-VAE with the loss £4g. The ADAM optimizer (Kingma,
2014) with a constant learning rate of le — 4 is used. The batch size for training is set to be 4 and the
number of total epochs is 100. The pretrained weights from image-based 2D VAEs (Rombach et al., 2022)
used for image synthesis are employed for the initialization of the convolutional encoder and decoder, where
the loaded weights of E, D stay fixed during training. The parameters of the transformer F and dense
layers ¢ are updated in this stage. No weight decaying schedule and data augmentation is used. For the
designed temporal self-attention architecture, the number M of stacked attention layers is set to be 8 and
the hidden dimension is 128 in this study. The masking ratio r is set as 0.6. In the second stage, the trained
parameters in MT-VAE including E, F' and ¢ are used to project data into latent space. In latent space,
the denoising model is trained to predict less noisy samples by the 1:1 linear combination of £y pas and
Lea. The diffusion transformer (DiT) structure (Peebles & Xie, 2023) is used for constructing the denoising
model with cascaded transformers. The ADAM optimizer with the same learning rate of 1le —4 is used. The
batch size is set to be 4 and the total epochs are 100. The parameters of the denoising model are the only
learnable parameters in this stage. There are also no special weight decaying and augmentation schedules
used. The number N of cascaded DiTs is set to be 32 and the hidden size is 1152. These two stages are both
performed on NVIDIA GeForce RTX 4090 with 24 GB x4. To inference with our PredLDM, the process is
conducted and the timesteps T" for denoising is 1000.

20



Under review as submission to TMLR

MT-VAE (Ours)

Latent diffusion model
Conditional generation | |

I ConMaware latent diffusion model

7 3 !
L4 ‘s “ = fx

GTatt = 10 Timesteps = 200 Timesteps = 200
on SEVIR with LDM with CA-LDM

—Condition-aware
reconstruction + Conditional generation

N

1T T
0 200 400 600 800 1000 !
Denoising timesteps GTatt =10 Timesteps = 1K Timesteps = 1K

on SEVIR with LDM with CA-LDM

False alarm rate
[—]
w

Figure 9: Additional ablation study on SEVIR. a), Heatmaps of correlation between synthetic data v.s. real
data for MT-VAE. b), Influence of condition-aware latent diffusion. Performance in denoising processes is
plotted on the left and the decoded predictions are on the right.

A.2 Additional Analysis on Critical Designs

For additional study of critical designs on KTH and SEVIR datasets, different settings of autoencoders
including 3D VAEs, 2D VAEs + 1D convolutions and our MT-VAE are evaluated by pair-wise column
correlation between synthetic data and real data. The value in heatmaps of correlation indicates the absolute
divergence, where the more red area means the better correlation to real distributions. Meanwhile the
performance calculated from predicted less noisy samples and ground truth during denoising processes with
the trained denoising network with or without condition-aware reconstruction based constraints is plotted.
The decoded predictions at different timesteps on these two datasets are also provided in this section.

For analysis on KTH dataset, the results can be seen as in Figure 8. As the directions of human movement
in this dataset are always vertical or horizontal and close to the center of images, the heatmaps of correlation
reflect this characteristic. Results show that the synthetic distributions of MT-VAE are the closest to the real
distribution. The setting of 2D VAEs 4+ 1D convolutional temporal layers follows our setting and the setting
of 3D VAEs behaves not competitive. This phenomenon shows that our MT-VAE is better at compressing
spatiotemporal content into latent space with realistic distributions and our setting is effective. From the
mean square error of sampled results during the denoising process, it is evident that the condition-aware
reconstruction of CA-LDM is beneficial as the error of predictions from CA-LDM is much lower than the
trained denoising model with only the original conditional generation related constraint. For the decoded
visual results from timesteps at 200 and 1, 000, the decoded visual quality from CA-LDM is better than the
LDM setting and more timesteps are more conducive to producing detailed realistic visual appearance.
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Figure 10: More results on influence of masking ratios. Remaining metrics on three datasets are presented.

For analysis on SEVIR, dataset, results are available as in Figure 9. The evolution of observations related
to vertical liquid precipitation captured by the weather radar is distributed diversely in terms of physical
geographic space, resulting the predicted dynamics difficult to be similar as ground truth, so heatmaps of
correlation here are distributed in a disorderly manner. Results show that our setting of MT-VAE is still
the best choice compared to other two settings, with highest relation to the distribution of real data. This
again reveals that our MT-VAE is better at handling perceptual autoencoding. From the mean square error
of sampled results during denoising processes, it can be seen that the false alarm rate of our predictions is
much lower than predictions from the denoising model without condition-aware constraints. For the decoded
visual results from different timesteps, the decoded predictions in this dataset reveal more accurate dynamics
of heavy precipitation and realistic distributions of CA-LDM. Besides, realistic visual appearance with more
details can be accessed by more denoising timesteps.

A.3 More Results on Influence of Masking Ratios

To supplement the results in checking influence of masked modeling, we provide more results as in Figure 10.
These results show the similar phenomenon as in experiments of the manuscript that the masked attention
is necessary in our pipeline and the preferred setting is 0.6, although more settings like 0.65 are not tested,
meaning more performance gain may lie in this ratio. Besides, for recommendations on tuning for new
datasets, we suggest directly using a medium ratio as the first choice, evidenced by good performance in
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Table 4: Sensitivity analysis on the weighting scheme between conditional generation and condition-aware
reconstruction on KittiCaltech. 1 indicates the higher the better, whereas | is the opposite. The best results
are marked as bold.

Lrpyu  Lca SSIM 1+ LPIPS| SSIM{T LPIPS|

0.10 0.90 0.169 19.18 0.606 0.252
0.25 0.75 0.132 19.75 0.649 0.120
0.50 0.50 0.092 19.86 0.653 0.107
0.75 0.25 0.138 19.68 0.641 0.176
1.00 0.00 0.155 19.65 0.622 0.184

Table 5: Computational cost on FLOPS, model parameters, inference time, training time and GPU memory.

FLOPs (G) Params (M) Inference time (s/seq) Training time (GPU hours) GPU memory (GB)

ConvLSTM 129.64 2.02 0.052 9.2 (1) / 2.3 (4) 2.1
PredRNN 243.06 7.25 0.495 84.1 (1) / 21.0 (4) 4.3
MCVD 5,434.28 367.60 1.620 646.1 (1) / 161.5 (4) 8.9
Ours 4,566.57 421.26 1.331 530.4 (1) / 132.6 (4) 14.8

our experiments on three different-occasion datasets. The alternative choice may be a larger one like 0.8,
because for some simple occasions like KTH datasets a large ratio is still beneficial.

A.4 More Challenging Cases

Additional challenging cases are visualized with predictions by predictive models on KittiCaltech, KTH and
SEVIR datasets. As in Figure 12 and Figure 13, the challenging cases on KittiCaltech are presented. The
predictions show the accurate modeling capability in spatiotemporal variations on car driving scenes, with
realistic visual appearance compared to other models where our predictions are of high fidelity and results
of other models are in more blur over time. As in Figure 14 and Figure 15, the challenging cases on KTH
dataset are available. In these challenging cases, we can witness that many models are in trouble of handling
these cases, where small parts of image sequences appear significant variations of motion. Predictions from
existing models are highly likely to generate blur, while the predictions of PredLDM are quite attractive
that they still appear realistic even to the last predicted frame. Besides, the better accuracy of predicted
movement in these cases is evident for our model. As in Figure 16 and Figure 17, the challenging cases on
SEVIR dataset are given. In weather pattern-related examples, existing predictive models are still likely to
produce precipitation values with rough geophysical details, where the locations with high probabilities of
rainfall are easy to omit, leading high risk for social failure preventing natural disasters. However, to results
from PredLDM, predicted locations of heavy precipitation are more accurate and the overall distribution is
more alike to the ground truth.

A.5 Sensitivity Analysis on Weighting Scheme of Diffusion-based Loss

To investigate the sensitivity on the weighting scheme of diffusion-based loss functions, we conduct an
additional experiment on weights of traditional diffusion-based conditional generation loss and condition-
aware reconstruction-based loss. Results are reported in the Table 4. It needs to be mentioned that the
setting for the conditional generation must not be 0, as this loss is critical to the task future prediction,
so the minimum setting of this loss is 0.1. From experimental results on KittiCaltech, it appears that the
setting of condition-aware loss is necessary. When the weight of Lo 4 becomes larger, scores on KittiClatech
are more competitive. Besides, the setting of L1, pys should not be very small as this is the basic objective in
spatiotemporal predictive tasks. It indicates that the linear combination of these loss functions is satisfied
with the performance gain for common occasions.
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Figure 11: Additional analysis of our model at longer horizons and larger resulutions. Evaluation of our
model on Sthv2 dataset is conducted as the inference manner in a), iteratively predicting future frames. b),
predictions of our model over longer time are visualized. Degration of preformance for our model is plotted
as in ¢, where MSE, PSNR, SSIM and LPIPS are evaluated.

A.6 Analysis on Computational Cost

We report scores of ours and some baselines for better showing the cost as in below Table 5. Results show
that the model scale and computational cost of classical predictive methods like ConvLSTM and PredRNN
are attractive. But these two cost-related scores of ours are not very expensive compared to the diffusion
baseline. Our inference speed is faster than MCVD, processing one sequence in 1.33 seconds. For training
our architecture, firstly the MT-VAE is trained from scratch with around 39.3 GPU hours, around 9 hours by
4 Nvidia GeForce 4090 GPUs. For the diffusion process, i.e., the second training stage may cost 530.4 GPU
hours, around 5.5 days with 4 Nvidia GeForce 4090 GPUs. When inferencing one sequence, 14.8 GB GPU
memory is needed, it can be easily deployed on Nvidia GeForce 4090. Considering the compiled data here,
we think the current setting is not quite real-time, where PredLDM produces 10 frames in 1.331 seconds,
even with the compression ability from MT-VAE. If considering real-time application, acceleration skills are
still needed.

A.7 Inference by Higher Resolutions and Longer Horizons

To evaluate by higher resolutions and longer horizons, we adopt an iterative inference strategy (Pathak et al.,
2022; Bi et al., 2023). Given by 10 input frames, the model predicts the next 10 frames, which are then
recursively fed back as input for subsequent predictions, as illustrated in Figure 11. Experimental results
on the Sthv2 (Goyal et al., 2017) dataset where frames are processed at 256 x 256, revealing an acceptable
decline in visual quality over extended time horizons, which is corroborated by a gradual degradation in
quantitative metrics, including MSE, PSNR, SSIM, and LPIPS.

A.8 More Discussion on MT-VAE and CA-LDM

Firstly, we discuss more on the masked attention in MT-VAE, related with masking methods compared to
DiT (Ma et al., 2024), SVD (Blattmann et al., 2023a), Make-A-Video (Singer et al., 2022) and MCVD (Voleti
et al., 2022). DiT (Ma et al., 2024) proposes two kinds of masking strategy noted by Only Video and
Temporal Mask. For the first masking, they use simple masking from 0 or 1 on time tokens. For the
second masking, they use frame-level one. Masking modeling is operated on the data space, on temporal
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tokens or the direct pixel of frames. SVD (Blattmann et al., 2023a) additionally exploits a binary mask
where 1 indicates the presence of a conditioning frame and 0 refers to a mask embedding on the input of
U-Net denoising network. We can see their masking is on the input of denoising network by concatenating
a masking conditioning frame-size embedding. Make-A-Video (Singer et al., 2022) uses the image-based
masking trained for frame interpolation, their masking is on data-level. MCVD (Voleti et al., 2022) masks
frames in two ways including masking future/past frames, masking both past and future frames. It directly
masks historical frames or future frames in data space. Different from these methods, our MT-VAE is
operated on the attention matrix, especially on the scaled dot production matrix from query and key in
transformers of VAE. Secondly, more discussion is conducted on CA-LDM. From many classical generation
or prediction methods (Ma et al., 2024; Blattmann et al., 2023a; Singer et al., 2022; Voleti et al., 2022), they
can all refer to the main architectures DDPM or DDIM. For ours, architectural novelty may be the CA-LDM
by additional condition-aware reconstruction of historical observations. Another diffusion denoising network
is also used to probabilistically modeling only on the condition, i.e., historical spatiotemporal sequences. Our
diffusion part design consists both the commonly used conditional generation objection and importantly the
probabilistic modeling of the condition itself. The reason we design this process in the denoising diffusion
process is that different from existing T2V research, the condition of this task is raw historical spatiotemporal
sequences while T2V methods use text as conditions, where text is high dimensional and our condition is
more low-level and with plentiful structural details, more difficult to comprehend. So an additional diffusion
denoising process is designed in our PredLDM.
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Figure 12: Challenging cases on KittiCaltech dataset. The first row refers to input spatiotemporal sequences
and ground truth. The second row indicates sequences predicted by our PredLDM. Following rows are
predictions from other models.
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Figure 13: Challenging cases on KittiCaltech dataset. The first row refers to input spatiotemporal sequences
and ground truth. The second row indicates sequences predicted by our PredLDM. Following rows are
predictions from other models.
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Figure 14: Challenging cases on KTH dataset. The first row refers to input spatiotemporal sequences and
ground truth. The second row indicates sequences predicted by our PredLDM. Following rows are predictions
from other models.
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Figure 15: Challenging cases on KTH dataset. The first row refers to input spatiotemporal sequences and
ground truth. The second row indicates sequences predicted by our PredLDM. Following rows are predictions
from other models.
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Figure 16: Challenging cases on SEVIR dataset. The first row refers to input spatiotemporal sequences and
ground truth. The second row indicates sequences predicted by our PredLDM. Following rows are predictions
from other models.
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Figure 17: Challenging cases on SEVIR dataset. The first row refers to input spatiotemporal sequences and
ground truth. The second row indicates sequences predicted by our PredLDM. Following rows are predictions
from other models.
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