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ABSTRACT

Large Language Models (LLMs) have significantly advanced natural language
processing with exceptional task generalization capabilities. Low-Rank Adaption
(LoRA) offers a cost-effective fine-tuning solution, freezing the original model pa-
rameters and training only lightweight, low-rank adapter matrices. However, the
memory footprint of LoRA is largely dominated by the original model parameters.
To mitigate this, we propose LORAM, a memory-efficient LoRA training scheme
founded on the intuition that many neurons in over-parameterized LLMs have low
training utility but are essential for inference. LORAM presents a unique twist:
it trains on a pruned (small) model to obtain pruned low-rank matrices, which
are then recovered and utilized with the original (large) model for inference. Ad-
ditionally, minimal-cost continual pre-training, performed by the model publish-
ers in advance, aligns the knowledge discrepancy between pruned and original
models. Our extensive experiments demonstrate the efficacy of LORAM across
various pruning strategies and downstream tasks. For a model with 70 billion
parameters, LORAM enables training on a GPU with only 20G HBM, replacing
an A100-80G GPU for LoRA training and 15 GPUs for full fine-tuning. Specifi-
cally, QLORAM implemented by structured pruning combined with 4-bit quanti-
zation, for LLaMA-3.1-70B (LLaMA-2-70B), reduces the parameter storage cost
that dominates the memory usage in low-rank matrix training by 7.07× (8.21×),
while achieving dominant performance gains over both the original LLaMA-3.1-
70B (LLaMA-2-70B) and LoRA-trained LLaMA-3.1-8B (LLaMA-2-13B).

1 INTRODUCTION

Large language models (LLMs), such as GPT-4 (OpenAI, 2023), LLaMA (Touvron et al., 2023a;b;
Dubey et al., 2024), and PaLM (Chowdhery et al., 2023), have recently revolutionized natural lan-
guage applications. These models excel in task generalization, driven by their exponential increase
in scale, with some exceeding 400 billion parameters (Dubey et al., 2024). Fine-tuning pre-trained
LLMs is critical for task-specific customization, enhancing desired behaviors while mitigating un-
desired ones (Qi et al., 2024). However, this process is constrained by substantial memory re-
quirements; for instance, fine-tuning a 70B LLaMA in 16-bit precision demands over 1178GB1 of
memory, necessitating an expensive setup of 15 GPUs (A100 or H100, each with 80GB HBM).

To mitigate the high cost of fine-tuning LLMs, parameter-efficient fine-tuning (Li & Liang, 2021;
Lester et al., 2021; Liu et al., 2021; Qiu et al., 2023; Liu et al., 2024b; 2022), particularly Low-
Rank Adaption (LoRA) (Hu et al., 2022) and its variants (Liu et al., 2024a; Ding et al., 2023; Zi
et al., 2023; Zhang et al., 2023b; Kalajdzievski, 2023), freezes the original LLM weights and only
updates the injected low-rank matrices to adapt to new tasks under limited resources. However,
during training, they still struggle with the significant memory footprint of the parameters of the
base LLM, even with quantization (Dettmers et al., 2023; Xu et al., 2024; Li et al., 2024; Guo et al.,
2024; Frantar et al., 2023; Chai et al., 2023). Typically, they reduce the precision to 4 bits at most
due to quality considerations. This memory dilemma raises an interesting and necessary question:

Can we further reduce the memory overhead of the base model during LoRA training while still
maintaining the inference accuracy?

1Training is performed on one sample with a length of 4K using BF16 mixed precision with the Adam
optimizer, incorporating gradient checkpointing.
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Our answer is a resounding Yes! In this paper, we propose Memory-efficient LoRA training, coined
LORAM, a novel scheme to reduce the memory overhead of LoRA fine-tuning for LLMs. We revisit
the training and inference process of the LoRA paradigm, building on it with a unique twist: Unlike
typical LoRA, which uses the same original model for training and inference, LORAM employs
different models at each stage, i.e., it trains a pruned (small) model by updating the pruned LoRA
weights and then performs inference on the original (large) model with the recovered low-rank ma-
trices. This recovery process reshapes the pruned matrices to ensure be merged into the original
model, allowing for the updating of unpruned weights while utilizing the pruned weights during in-
ference. The key insight driving our approach comes from reconciling two seemingly contradictory
concepts. The scaling laws (Hoffmann et al., 2022; Kaplan et al., 2020; Hernandez et al., 2021)
suggest that a large number of parameters of LLMs is essential for effective model generalization.

T: Train via I: Infer
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Figure 1: Idea of LORAM

Conversely, sparsity in LLMs (Zhang et al., 2024b; Ma et al.,
2023; Sun et al., 2024; Frantar & Alistarh, 2023a; Xia et al., 2024)
show that these pre-trained models can be compressed by remov-
ing redundant weights. The goal is to minimize the difference
in the model’s output before and after pruning. However, such
methods tend to falter at higher pruning ratios and aggressively
pruned models lose critical reasoning capabilities, e.g., only prun-
ing 10%∼20% (Ma et al., 2023; Frantar & Alistarh, 2023a). Our
intuition builds on this: some critical parameters contribute signif-
icantly to fine-tuning, while other parameters, though essential for
inference, usually remain unchanged during fine-tuning. Therefore,
LORAM leverages this insight by updating the weights retained
through pruning from LoRA training (yellow blocks in Fig. 1) to
significantly reduce memory usage and training time, while em-
ploying the pruned weights (blue blocks in Fig. 1) during inference
to enhance generation performance (see Section 4.5).

Despite the significant reduction in memory cost achieved by the pruning-recovery process of LO-
RAM, maintaining gains at more aggressive pruning rates (e.g., 65% or higher) remains challenging.
We attribute this to the knowledge inconsistency between the pruned model used for training and
the original model used for inference. To address this, we propose an effective alignment strategy:
low-cost continual pre-training of the pruned model on a small dataset. This alignment is performed
once offline, allowing the model’s publisher to execute it. For instance, Meta AI could release a set
of aligned pruned models for LLaMA-3, enabling low-resource users to fine-tune large models for
customized tasks using LORAM. Notably, as a bonus, LORAM seamlessly integrates with exist-
ing quantization schemes designed for LoRA, such as QLoRA, forming QLORAM, which further
reduces memory overhead.

The contributions of this work are summarized as follows:

(1) Novel Training Scheme: We propose LORAM, a memory-efficient LoRA training scheme.
LORAM trains a pruned model by updating the pruned low-rank matrices and then uses di-
mensionally recovered low-rank matrices to integrate with the original model for inference.
The process significantly reduces the memory consumption incurred by the model parameters
during training, and synergistically boosts performance by leveraging the full original param-
eters during inference. Thus, LORAM efficiently enhances performance under limited device
memory resources.

(2) Effective Alignment Strategy: We identify that the knowledge inconsistency between the pruned
model used for training and the original model used for inference limits the performance gain
of LORAM under aggressive pruning rates. To tackle this, we train the pruned model on a
small amount of general corpus to achieve alignment, which is a one-shot offline process and
can be easily performed by the model publisher.

(3) Extensive Experimental Evaluation: We conduct comprehensive experiments to validate the
effectiveness of LORAM across various pruning algorithms, models of different sizes, and
tasks in different domains. Notably, QLORAM which combines LORAM with structured
pruning and 4-bit quantization reduces the memory cost of LLaMA-2-70B parameters by 8.21×
while effectively achieving performance gains superior to both the original LLaMA-2-70B and
LLaMA-2-13B fine-tuned with LoRA.
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2 RELATED WORK

Low-Rank Adaptation. LoRA (Low-Rank Adaptation) (Hu et al., 2022) has emerged as a promi-
nent technique for parameter-efficient fine-tuning (PEFT) (Li & Liang, 2021; Lester et al., 2021; Liu
et al., 2021; Qiu et al., 2023; Liu et al., 2024b; 2022). By injecting lightweight, trainable low-rank
decomposition matrices into frozen pre-trained weights, LoRA enables efficient task customization,
especially in resource-constrained settings. Some LoRA variants (Liu et al., 2024a; Ding et al.,
2023; Zi et al., 2023; Zhang et al., 2023b; Kalajdzievski, 2023) have been developed to enhance its
generalization and robustness, while others (Zhou et al., 2024; Zhang et al., 2023a; Kopiczko et al.,
2024; Azizi et al., 2024; Wang et al., 2024) address the increased memory overhead associated with
scaling up model sizes. However, during training, these efficient LoRA variants still struggle with
the substantial memory footprint of the original LLM parameters.

LoRA-related Compression. Model compression techniques like quantization (Han et al., 2015;
Jacob et al., 2018; Nagel et al., 2019; Zhao et al., 2019; Yao et al., 2022; Park et al., 2022; Dettmers
et al., 2022; Xiao et al., 2022; Frantar et al., 2022), sparsification (Molchanov et al., 2016; Liu et al.,
2018; He et al., 2019; Hoefler et al., 2021; Frantar & Alistarh, 2023b; Liu et al., 2023; Bansal et al.,
2022), and distillation (Hinton et al., 2015; Cho & Hariharan, 2019; Tang et al., 2019; Touvron
et al., 2021; Hsieh et al., 2023; Gu et al., 2024) have proven effective in reducing the memory
footprint of LLM during training and inference. Naturally, the concept of compression has been
adapted to LoRA to alleviate the substantial memory consumption dominated by pre-trained model
parameters. In particular, LoRA-related quantization schemes (Dettmers et al., 2023; Xu et al., 2024;
Li et al., 2024; Guo et al., 2024; Frantar et al., 2023; Chai et al., 2023) have been widely explored,
but they still face the limitations of 1-bit precision, typically quantize weights to 4-bit to balance
training efficiency with performance. Our work aims to push the boundaries of memory-efficient
LoRA training by leveraging sparsification to achieve cost-effective performance improvements.
Notably, existing LoRA-related sparsification works (Chen et al., 2023; Zhang et al., 2024a) focus
on designing pruning algorithms to slim down models and use LoRA to recover the knowledge of
pruned models, thereby producing compact but high-quality models.

3 MEMORY-EFFICIENT LORA TRAINING — LORAM

3.1 LOW-RANK ADAPTATION

Given a pre-trained weight matrix W0 ∈ Rm×n, a typical full-parameter fine-tuning process adapts
to new tasks by updating the entire full-rank matrix W0. Inspired by the insight that pre-trained
weights of LLMs exhibit low “intrinsic dimension” when adapting to specific tasks (Aghajanyan
et al., 2021), LoRA (Hu et al., 2022) further suggests that the updated weights have a low “intrinsic
rank”. Consequently, LoRA reparameterizes the model weights as W0+W∆ = W0+BA, where
B ∈ Rm×r and A ∈ Rr×n, and W∆ = BA represents a low-rank decomposition matrix with the
rank r ≪ min(m,n).

During training, as illustrated in Fig. 2 (a), the pre-trained weight matrix W0 is frozen to avoid
gradient computation. Instead, the low-rank matrices B and A are updated to enable parameter-
efficient fine-tuning, which defaults to standard supervised fine-tuning, with the objective function
LSFT defined as the cross-entropy loss between the predicted logits and the ground-truth answers.
Given an input feature vector x of length m, the forward pass of LoRA modifies the output activation
from fully fine-tuning, represented by h = xW0 (of length n), to:

h = xW0 + xW∆ = xW0 + xBA. (1)

Once low-rank matrices B⋆ and A⋆ are trained by minimizing the LSFT, as shown in the Fig. 2 (c),
the computation of activation h for x is reformulated to improve inference efficiency:

h = x(W0 +W⋆
∆) = x(W0 +B⋆A⋆). (2)

3.2 MEMORY-EFFICIENT LORA TRAINING

Consider the LLaMA-2-13B model, we introduce low-rank matrices (r = 8) for the four projection
matrices (Wq, Wk, Wv, and Wo) in the attention layer, the three projection matrices (Wup, Wgate,

3
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Figure 2: Comparison of LORAM and LoRA: Training (subfigures a and b) and Inference (c and d).
Key stages include the offline process of the frozen full-rank matrix W∗

0 (subfigure e) and the online
generation of the learnable low-rank matrix W∗

∆ (f) during LORAM training (b) and inference (d).

and Wdown) in the MLP layer, and the weight matrix Wlm head in output layer. Despite the additional
32 million parameters, the number of trainable parameters is reduced by 406× compared to the full
parameters. Many LoRA variats (Zhou et al., 2024; Zhang et al., 2023a; Kopiczko et al., 2024;
Azizi et al., 2024; Wang et al., 2024) aim to address the significant memory overhead associated
with W∆ as W0 scales, but they still necessitate storing a complete copy of W0 in memory, which
dominates training memory usage. Even with quantization methods designed for LoRA (Dettmers
et al., 2023; Xu et al., 2024; Li et al., 2024; Guo et al., 2024; Frantar et al., 2023; Chai et al., 2023),
training performance constraints often limit the representation of W0 to 4 bits. Consequently, for the
LLaMA-2-13B, storage requirements are reduced from 26 GB in FP16 to 6.5 GB in NF4. However,
this is still significantly higher than the memory required for W∆ in BF16, which occupies only
64MB of storage and has a peak memory requirement of 576MB during training. Thus, the memory
needed for the frozen quantized W0 is 11.5× greater than that required for learnable W∆.

To mitigate the memory overhead dominated by W0 while achieving inference performance gain,
we propose a memory-efficient LoRA training called LORAM. LORAM first prunes the model to
a smaller size and performs LoRA fine-tuning on the pruned model. After training, it recovers the
LoRA weights, applies them to the original model, and then conducts inference. We now describe
the various stages of LORAM. The complete algorithm of LORAM is presented in Appendix E

Pruned Full-Rank Weight Generation. First, we employ a pruning algorithm P(·) to derive the
pruned weight matrix WP

0 from the original weights W0. Specifically, WP
0 is computed as:

WP
0 = P(W0) = W0 ◦MP, (3)

where MP ∈ {0, 1}m×n is a binary mask matrix indicating retained parameters (‘1’) and pruned
parameters (‘0’), and ◦ denotes the Hadamard product.

Pruned Low-Rank Matrix Training. After obtaining the pruned weight matrix WP
0, we modify

the standard LoRA training process. Instead of updating the low-rank matrices B and A for the
original W0, we train the pruned low-rank decomposition matrix WP

∆ = W∆ ◦ MP = BPAP,
while keeping WP

0 frozen as shown in Fig. 2 (b). The output activation h for an input feature vector
x is calculated as:

h = xWP
0 + xWP

∆ = xWP
0 + x(BPAP). (4)

Recovered Low-Rank Matrix Generation. By optimizing the objective function LSFT, we obtain
the trained pruned low-rank matrix WP⋆

∆ . To fully leverage the original model weights for improved
inference performance, we introduce a recovery function R(·), guided by the pruning mask MP.
This function recovers the shape of the trained low-rank matrix by filling zeros at pruned positions,
resulting in WR⋆

∆ as follows:

WR⋆

∆ = BR⋆AR⋆ = R(WP⋆

∆ ) = WP⋆

∆ ◦ (1−MP). (5)

This operation ensures that the recovered low-rank matrix WR⋆

∆ can be seamlessly merged with the
original pre-trained weights W0, forming W0 +WR⋆

∆ as follows:

4
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(W0 +WR⋆

∆ )[i, j] =

{
W0[i, j] if MP[i, j] = 1

W0[i, j] +WR⋆

∆ [i, j] if MP[i, j] = 0
(6)

This formula indicates that, for positions where the pruning mask MP is ‘1’, the merged matrix
W0 + WR⋆

∆ retains the original values from the pre-trained matrix W0. For positions where the
mask is ‘0’, the elements in the merged matrix are updated to be the sum of the corresponding
values from W0 and the recovered low-rank matrix WR⋆

∆ .

Recovered Low-Rank Matrix Inference. Once we obtain the recovered low-rank matrix WR⋆

∆ ,
during inference, the forward pass output activation h for an input feature x is computed as follows:

h = x(W0 +WR⋆

∆ ) = x(W0 +BR⋆AR⋆). (7)

Our experiments (see Section 4.2 and Section 4.3) show that LORAM maintains high performance
across various pruning strategies P(·), including structured (Ma et al., 2023) and non-structured
pruning (semi-structured & unstructured pruning) (Frantar & Alistarh, 2023a). The four stages out-
lined above summarize the core steps of LORAM. To avoid notational clutter, we have streamlined
the algorithmic details. Nonetheless, three key considerations for deployment must be emphasized:

C1 Pruned Full-Rank Weight Generation: For non-structured pruning, the matrix dimension
remains unchanged, with WP

0 compressed into a sparse matrix populated by zeros. In structured
pruning, weights are physically removed, yielding a compact, dense WP

0.

C2 Recovered Low-Rank Matrix Generation: For non-structured pruning, the weights in WP
∆

corresponding to pruned positions in MP are excluded from backpropagation by setting their
gradients to zero, ensuring that only the retained components are updated during training.

C3 Recovered Low-Rank Matrix Inference: For non-structured pruning, the shapes of both the
pre-trained and low-rank weights are identical (see C1), and the gradients of the pruned weights
are blocked (see C2). Consequently, we can bypass the recovery phase, resulting in WR⋆

∆ =

BR⋆AR⋆ = BP⋆AP⋆ . In the case of structured pruning, the shapes of the weight matrices vary
significantly across different pruning strategies. To simplify the definitions, we standardize the
recovery process using the pruning mask.

To clearly illustrate the evolution of weight matrix dimensions across these stages, we take LLM-
Pruner (Ma et al., 2023) as an example in Appendix B, visualizing the transformation from W0 ⇒
WP

0, W∆ ⇒ WP
∆, and WP⋆

∆ ⇒ WR⋆

∆ under LORAM with structured pruning.

Pruned Full-Rank Weight Alignment. Given the original pre-trained weights W0, the optimal
low-rank matrix learned is W⋆

∆. Similarly, for pruned weights WP
0, the optimal low-rank counter-

part is WP⋆

∆ . If the knowledge encoded in W0 and WP
0 is closely aligned, the knowledge embedded

in WP⋆

∆ should approximate that of W⋆
∆. Consequently, the recovered matrix WR⋆

∆ should effec-
tively pair with W0, yielding performance improvements similar to those from W⋆

∆. However, the
pruning function P(·) disrupts some of the knowledge embedded in the original weights, leading to
mismatch between W0 and WP

0. Such knowledge mismatch causes WR⋆

∆ , when paired with W0, to
deliver suboptimal performance, particularly at higher pruning ratios.

To address the knowledge mismatch, we propose an efficient alignment scheme, namely continual
pre-training of pruned weights WP

0 into WP,A
0 on a small, general corpus DA. Formally, we minimize

the alignment loss LA defined as following:

LA = −Es∈DA

 |s|∑
t=1

log p
(
st+1 | s<t;W

P,A
0

) , (8)

where p(st+1 | s<t;W
P,A
0 ) represents the model’s predict likelihood of generating the next token

st+1 given the first t tokens s<t of input sequence s (token number is |s|) and current parameter
matrices WP,A

0 . This alignment process is a one-time, offline operation on a relatively small corpus

5
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(about 105 million tokens), making it a cost-effective solution for model publishers. Alongside the
base model, they can release the aligned pruned model, enabling low-resource users to fine-tune the
base model via LORAM for specific downstream tasks.

Pruned Full-Rank Weight Quantization. The design of LORAM inherently supports the seam-
less integration of quantization techniques, further reducing memory consumption during training
by applying quantization to pruned models. For example, by adapting the LoRA-specific quantiza-
tion scheme QLoRA (Dettmers et al., 2023), LORAM extends into QLORAM, the pruned full-rank
weight matrix is quantized into the NF4 format, while the pruned low-rank matrices BP and AP re-
main in full or half precision, striking a balance between memory efficiency and fine-tuning quality.

Formally, given a quantization function Q(·), during training, the forward pass output activation
vector h for an input feature vector x is computed as:

h = xQ(WP
0) + xBPAP = xWP,Q

0 + xBPAP, (9)

where WP,Q
0 represents the full-rank weight W0 after undergoing pruning via P(·), followed by

quantization using Q(·). We can also quantize the pruned full-rank weight after alignment to WP,A,Q
0 .

For inference, unless additional quantization is required, QLORAM operates identically to LO-
RAM, as shown in Fig. 2 (d). It utilizes the original full-rank weights W0 alongside the recovered
low-rank matrices BR⋆ and AR⋆ to perform the forward pass according to Eq. (7). In summary, for
LORAM, as shown in Fig. 2 (e), the offline processing path of the frozen full-rank matrix W∗

0 , which

minimizes video memory usage, is W0
P(·)−→ WP

0
LA−→ WP,A

0

Q(·)−→ WP,A,Q
0 ; Fig. 2 (f) shows that the

online generation path for the trained low-rank matrix W∗
∆ is W∆

P(·)−→ WP
∆

LSFT−→ WP⋆

∆

Q(·)−→ WR⋆

∆ .

4 EXPERIMENTS

4.1 SETUP

Pre-train Corpus. To align the inconsistent knowledge between the pruned model during training
and the original model during inference, we apply LORAM to continual pre-training LLMs on a
mixed corpus of FineWeb (Penedo et al., 2024) and OpenWebMath (Paster et al., 2023). Notably,
this alignment process is a one-time, offline operation that can be executed by model publishers.

Fine-tuning Data. Following the fine-tuning setup of LoRA (Hu et al., 2022), we primarily con-
duct supervised fine-tuning (SFT) on the OpenHermes-2.5 (Teknium, 2023) (referred to as Open-
Hermes) and OpenOrca (Lian et al., 2023) datasets. To effectively assess the overall fine-tuning
performance, we evaluate test perplexity not only on in-domain test sets constructed from the in-
struction fine-tuning data but also on out-of-domain test sets built from Alpaca (Taori et al., 2023).

Downstream Task. We focus on the performance of LORAM in various downstream tasks, in-
cluding MathQA (Amini et al., 2019) and GSM8K (Cobbe et al., 2021) in mathematical reason-
ing, six tasks—Arc Challenge & Easy (Clark et al., 2018), HellaSwag (Zellers et al., 2019), Open-
BookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), and WinoGrande (Sakaguchi et al., 2021)
in common sense reasoning, and HumanEval (Chen et al., 2021) in code generation.

Sparsification & Quantization. For sparsification P(·), we first establish a variant LORAM-
RAND randomly structured pruning and adapt LORAM to another three variants based on lead-
ing approaches: LORAM-STRU with the structured pruning LLM-Pruner2 (Ma et al., 2023) and
LORAM-SEMI and LORAM-UNST with the non-structured (semi-structured & unstructured) prun-
ing SparseGPT3 (Frantar & Alistarh, 2023a). For quantization Q(·), we achieve QLORAM by com-
bining LORAM with the LoRA-tailored quantization algorithm QLoRA (Dettmers et al., 2023). The
storage cost of the original model primarily drives the memory consumption during LoRA weights
training. Thus, we define the parameter reduction ratio as the count of parameters before and after
pruning, to evaluate the memory efficiency of baselines. The details of our experiment setups and
hyperparameters are provided in Appendix A.

2https://github.com/horseee/LLM-Pruner (Apache-2.0 license)
3https://github.com/IST-DASLab/sparsegpt (Apache-2.0 license)
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Figure 3: The test perplexity of training LLaMA-2-13B & LLaMA-2-70B on OpenHermes.
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Figure 4: The test perplexity of training LLaMA-2-13B & LLaMA-2-70B on OpenOrca.

4.2 FINE-TUNING CONVERGENCE

We investigate the convergence trends of LORAM across varying model scales (LLaMA-2-13B &
LLaMA-2-70B) and different instruction-tuning datasets (OpenHermes & OpenOrca). To assess
training performance, we track perplexity over training iterations on both out-of-domain (Alpaca)
and in-domain (OpenHermes or OpenOrca) test sets, as shown in Fig. 3 and Fig. 4.

Out-of-Domain Performance. LORAM consistently achieves out-of-domain performance with
similar trends, positioned between the LoRA fine-tuned models of the same scale and smaller mod-
els, across different models and datasets. As shown in Figs. 3 and 4 (a), for the 13B model, the per-
plexity of LORAM variants pruned by different algorithms is lower than that of the LoRA-trained
7B model but higher than the LoRA-trained 13B model, with LORAM-RAND and LORAM-STRU
achieving a 2.17× parameter reduction. Similarly, as shown Figs. 3 and 4 (c), for the 70B model,
this reduction extends to 6.27× under similar convergence trends.

In-Domain Performance. LORAM shows limited improvement in in-domain performance, likely
due to overfitting when the base models are fine-tuned with LoRA, resulting in relatively lower
perplexity. This is further supported by downstream evaluations, where models that excel in in-
domain perplexity often underperform in downstream tasks. As shown in Figs. 3 and 4 (b), while
the LoRA-trained 7B model outperforms 13B LORAM-RAND and LORAM-STRU on in-domain
tests, it underperforms on several downstream tasks as shown in Section 4.3.

Non-Structured LORAM Excels in In-Domain. The non-structured variants (LORAM-SEMI
& LORAM-UNST) consistently outperform their structured counterparts (LORAM-RAND &
LORAM-STRU) on in-domain test sets. As shown in Fig. 3 (a) vs. Fig. 3 (b) and Fig. 4 (a) vs. Fig. 4
(b), the in-domain perplexity of LORAM-SEMI and LORAM-UNST is notably lower, while their
out-of-domain performance shows less pronounced differences. This advantage likely arises from
the more selective weight pruning in the non-structured variants, which preserves information cap-
ture capabilities similar to the original model, thus enhancing in-domain performance.

Non-Random LORAM Benefits from Scaling. The performance gains of the non-random LO-
RAM become more evident as the model size grows. As shown in (a,b) of Figs. 3 and 4 vs. (c,d)
of Figs. 3 and 4, LORAM-STRU outperforms LORAM-RAND considerably on the 70B model,
while the difference is marginal on the 13B model. This indicates that larger models exhibit greater
differences in the redundancy of individual weights, making selective pruning more effective4.

4The trained low-rank matrices are visualized in Appendix C, and the update patterns they exhibit somewhat
align with these insights.
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Table 1: Accuracy (%) of the MathQA (1-shot) & GSM8K (8-shots) in the mathematical domain
under LLaMA-2. ▲ indicates the theoretical parameters reduction of non-structured pruning. How-
ever, these parameters are filled with zeros in actual training, so the memory footprint is not reduced.

METHOD OPENHERMES OPENORCA PARAMETER
REDU. RATIOMATHQA GSM8K MATHQA GSM8K

13B W/O FT 32.60 24.26 32.93 23.35 1.00×
7B LORA 29.61 22.82 30.95 13.87 1.93×
13B LORAM-RAND 33.77 27.22 32.83 25.93 2.17×
13B LORAM-STRU 33.80 24.64 33.07 24.49 2.17×
13B LORAM-SEMI 31.76 36.92 33.07 27.29 ▲ 1.95×
13B LORAM-UNST 30.12 31.92 32.70 26.61 ▲ 2.16×
70B W/O FT 39.53 52.01 39.53 52.01 1.00×
13B LORA 32.03 36.69 33.63 25.70 5.30×
70B QLORAM-RAND 39.66 57.62 39.40 55.72 6.27×
70B QLORAM-STRU 39.77 57.16 39.73 54.44 6.27×

Table 2: Average accuracy (%) of the CSR in the common sense reasoning domain (1-shot) under
the LLaMA-2. Baseline results for each subtask of CSR are detailed in Appendix D.

METHOD OPENHERMES OPENORCA PARAMETER
REDU. RATIOMEAN ± STD MEAN ± STD

13B W/O FT 64.28±1.30 64.28±1.30 1.00×
7B LORA 61.51±1.29 61.42±1.30 1.93×
13B LORAM-RAND 64.64±1.29 64.49±1.30 2.17×
13B LORAM-STRU 64.42±1.29 64.32±1.29 2.17×
13B LORAM-SEMI 64.38±1.29 64.73±1.30 ▲ 1.95×
13B LORAM-UNST 64.12±1.29 64.68±1.29 ▲ 2.16×
70B W/O FT 68.69±1.27 68.69±1.27 1.00×
13B LORA 65.05±1.29 65.40±1.29 5.30×
70B QLORAM-RAND 68.99±1.27 68.46±1.27 6.27×
70B QLORAM-STRU 69.10±1.27 68.94±1.27 6.27×

Table 3: PASS@1(%) and PASS@10(%) of HumanEval in the code generation domain under
LLaMA-2. The best results for all baselines are reported, selected from TEMPERATURE settings
in {0.0, 0.2, 0.4, 0.6, 0.8} with TOPP fixed at 0.95.

METHOD OPENHERMES OPENORCA PARAMETER
REDU. RATIOPASS@1 PASS@10 PASS@1 PASS@10

13B W/O FT 17.68 35.37 17.68 35.37 1.00×
7B LORA 15.24 28.04 15.85 26.21 1.93×
13B LORAM-RAND 19.51 33.54 19.51 32.32 2.17×
13B LORAM-STRU 17.68 35.37 17.07 31.71 2.17×
13B LORAM-SEMI 20.12 35.37 18.29 39.63 ▲ 1.95×
13B LORAM-UNST 22.56 34.15 18.29 37.20 ▲ 2.16×
70B W/O FT 31.71 58.54 31.71 58.54 1.00×
13B LORA 18.29 35.98 18.29 39.02 5.30×
70B QLORAM-RAND 29.27 57.32 31.71 56.71 6.27×
70B QLORAM-STRU 32.32 58.54 32.32 59.15 6.27×

4.3 DOWNSTREAM TASK PERFORMANCE

We evaluate the performance of various models trained with LORAM on different instruction data
across three downstream tasks: mathematical reasoning, common sense reasoning (CSR), and code
generation. Results are summarized in Tables 1 to 3. We highlight the core competition scenario
with a gray background, which includes the untrained original model and a smaller sibling model
trained with LoRA. For instance, for LORAM-trained LLaMA-2-13B, we report the scores of the
13B without fine-tuning and the LoRA-trained 7B model. Blue backgrounds of varying intensity
indicate the degree of improvement for each LORAM variant relative to the core competition sce-
nario: darker shades indicate greater improvements, while lighter shades signify smaller gains.

Overall, we observe that most LORAM variants outperform the core competitive baseline across
all downstream tasks, particularly in mathematical and common sense reasoning. This improve-
ment is further amplified by increasing the model scale. Specifically, as shown in Table 1, the 70B
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LORAM-RAND and LORAM-STRU models achieve a 6.27× reduction in parameters compared
to the original 70B model (70B w/o FT), exceeding the 5.30× reduction of the LoRA-trained 13B
model. In terms of performance, LORAM improves the original 70B model’s score on GSM8K
from 52% to 57%, significantly outperforming the LoRA-trained 13B model, which only achieved
37%. These results demonstrate that updating low-rank matrices on pruned models effectively re-
duces memory requirements during training. Merging the recovered low-rank matrices into the
original model yields substantial performance gains during inference.

4.4 ADAPTION TO LLAMA-3.1

Here, we extend LoRAM-Stru to LLaMA-3.1 herds and investigate two key questions: (1) How does
LoRAM perform in terms of perplexity and downstream tasks within this model series? (2) What is
the effect of continued pre-training iteration steps (proportional to corpus size) on performance?

Figure 5: The test perplexity & downstream performance of
training LLaMA-3.1-70B on OpenHermes.

As shown in Fig. 5 (a,b), QLORAM-
STRU for the LLaMA-3.1-70B model
exhibits consistent trends across both
out-of-domain and in-domain test
sets. It achieves a 7.07× param-
eters reduction while its perplexity
falls between that of the smaller
LoRA-trained 8B and LoRA-trained
70B. In downstream tasks (Fig. 5
(c)), QLORAM-STRU significantly
exceeds the 8B w/o FT, 8B LoRA,
and 70B w/o FT, even surpassing the
LoRA-trained 70B on MathQA and
HumanEval (Pass@10). Moreover,
we observe that a minimal pre-training corpus can yield substantial performance gains. For instance,
QLORAM-STRU 200, with just 200 updates (about 13 million tokens), achieves a 7.07× parameter
reduction alongside performance improvements. This one-time, low-cost alignment allows model
publishers to offer aligned pruned models for low-resource users to customize tasks.

4.5 NECESSITY OF RECOVERY & ALIGNMENT

We conduct an ablation study on two critical phases of LORAM: recovery and alignment. To assess
their necessity, we analyze the convergence trends of various pruning variants on the Alpaca test set
using LLaMA-2-13B.

Impact of Recovery. we compare the standard approach with an alternative setup where the
pruned low-rank matrices are directly combined with the pruned full-rank model weights (w/o
Recovery) and track perplexity changes over iterations. As shown in Fig. 6, for all four pruning
strategies, models without the recovery phase (solid lines, w/o Recovery & *) consistently exhibit
higher perplexity compared to those with recovery (dashed lines, w/ Recovery & *), particularly in
structured LORAM (see in Fig. 6 (a) and (b)). This highlights that the recovery phase leverages
relatively redundant neurons during training to enhance inference performance significantly.

Impact of Alignment. We also introduce a variant of LORAM without continual pre-training
for alignment (w/o Alignment). As shown in Fig. 6, aligned pruned models (yellow lines, * & w/
Alignment) consistently achieve lower perplexity than unaligned counterparts (blue lines, * & w/o
Alignment), irrespective of the pruning strategy or recovery phase. This highlights that even low-
cost continual pre-training on a small general corpus effectively narrows the knowledge gap between
pruned and original models, enhancing the overall performance of LORAM.

4.6 SCALING LAWS FOR PARAMETER REDUCTION ON LORAM

We explore the impact of scaling the parameter reduction ratios in Fig. 7. The LoRA-trained
LLaMA-2-13B (triangles) achieves a 5.30× parameter reduction, while QLORAM-STRU maintains
superior perplexity on the Alpaca and further reduces parameters across both instruction datasets.
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) (c) LoRAM-Semi
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Figure 6: Necessity of Recovery & Alignment across different pruning strategies on LLaMA-2-13B.
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Figure 7: Effect of scaling parameter reduction ratio.

In contrast, naive pruning leads to a sig-
nificant increase in perplexity with min-
imal pruning. When the parameter re-
duction ratio reaches 13.54×, QLORAM-
STRU sustains an effective perplexity of
approximately 2.5, whereas naive pruning
escalates to 621.98. These highlight LO-
RAM’s ability to drastically reduce mem-
ory of base model by updating LoRA
weights in the pruned model, while seam-
lessly integrating with the full model to
preserve inference performance.
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Figure 8: Performance of downstream tasks across different parameter reduction ratios.

We then evaluate the performance of models trained with LORAM on OpenHermes across various
downstream tasks under different pruning ratios. As shown in Fig. 8, overall performance improves
as the parameter reduction ratio increases from 4.28× to 8.21×, before declining. Notably, tasks
achieve optimal performance between parameter reduction ratios of 6.27× and 8.21×, consistently
outperforming 13B LoRA and 70B w/o FT. However, at a parameter reduction ratio of 4.28×, de-
spite the larger memory capacity available for LORAM, downstream performance does not always
exceed that of higher parameter reduction ratios. We attribute this to the fact that lower parameter re-
duction ratios fine-tune more parameters, potentially degrading the pre-trained model’s performance
on certain tasks (e.g., Fig. 8 (a,c,e)). This effect is also reflected in MathQA, where a fully fine-tuned
LoRA model underperforms the pre-trained model without fine-tuning (see Fig. 8 (b)). Moreover,
excessive pruning at a ratio of 13.54× leaves too few neurons to capture the rich information needed
for downstream improvements, particularly in tasks like code generation (see Fig. 8 (d,e)).

5 CONCLUSION

We propose LORAM, a memory-efficient LoRA training scheme for large language models. LO-
RAM significantly reduces the count of parameters of the original model by 8.21×, while main-
taining the performance of large-scale LLM fine-tuning. We identify several open questions for
LORAM, including the potential for reduced inference costs through context-aware computational
graph recovery and its applicability to model like vision transformers (Dosovitskiy et al., 2021) and
diffusion models (Ho et al., 2020). We hope our work inspires further research on memory-efficient
LoRA training from a sparsity perspective and believe LORAM will serve as a valuable tool for the
community, enabling LoRA training of large-scale models on consumer-grade hardware.
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16

https://github.com/tatsu-lab/stanford_alpaca
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288
https://arxiv.org/abs/2212.10560
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.
18653/v1/P19-1472. URL https://aclanthology.org/P19-1472.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett
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APPENDIX

A EXPERIMENTAL DETAILS

Pre-train Corpus. To align the inconsistent knowledge between the pruned model during training
and the original model during inference, we apply LORAM to continual pre-training LLMs in a
teacher-forcing manner (Bachmann & Nagarajan, 2024) on a mixed corpus of FineWeb (Penedo
et al., 2024) and OpenWebMath (Paster et al., 2023). FineWeb, containing over 15TB of cleaned
and deduplicated English web data from Common Crawl. OpenWebMath, extracted from over
200 billion HTML files on Common Crawl, provides high-quality mathematical text. Mixing these
datasets enhances the pruned model’s capabilities in both general and mathematical domains.

Unless specified otherwise, we randomly sample 102,400 instances from both FineWeb and Open-
WebMath to construct a mixed dataset with a sequence length of 512, yielding approximately 105
million tokens. The default training batch size is 128, allowing up to 1,600 update steps. We train
without data repetition over a sufficiently large corpus to simulate a realistic pre-training scenario.
Notably, this alignment process is a one-time, offline operation that model publishers can execute.

Fine-tuning Data. Following the fine-tuning scenario of LoRA (Hu et al., 2022), we primarily
conduct supervised fine-tuning (SFT) on the OpenHermes-2.5 (Teknium, 2023) (referred to as Open-
Hermes). OpenHermes is a large-scale dataset constructed from synthetically generated instructions
and chat samples, encompassing diverse sources such as Airoboros 2.2 (Wang et al., 2023), Came-
lAI Domain Expert Dataset (Li et al., 2023), ChatBot Arena (GPT-4 Only) (Zheng et al., 2023),
and more. To further demonstrate the general effectiveness of the LORAM alignment process, we
also evaluate LORAM on the OpenOrca (Lian et al., 2023) dataset. OpenOrca is a widely used
instruction fine-tuning dataset where each data instance represents entries from the FLAN collec-
tion (Longpre et al., 2023), augmented by submitting the listed questions to either GPT-4 or GPT-3.5.

By default, we train SFT on the instruction dataset with a batch size of 128 and a sequence length
of 512 for 400 steps, totaling approximately 26.2 million tokens. To effectively evaluate the overall
fine-tuning performance, we assess the perplexity of the fine-tuned model on an out-of-domain test
set. This out-of-domain test set is constructed by randomly sampling 2,000 instances from the
Alpaca (Taori et al., 2023) test set, truncated to a sequence length of 512.

Downstream Task. We focus on the performance of LORAM in various downstream tasks, in-
cluding mathematical reasoning, common sense reasoning, and code generation. All our down-
stream task evaluations are performed on lm-evaluation-harness5 and code-eval 6 with VLLM 7.

For mathematical reasoning, we benchmark the accuracy of baseline models using greedy decoding
on MathQA (Amini et al., 2019) with a 1-shot setting and GSM8K (Grade School Math 8K) (Cobbe
et al., 2021) with 8-shots, Chain of Thought (CoT) prompting and strict match MathQA is a large-
scale dataset comprising 37k English multiple-choice math word problems, covering diverse math
domains. It extends the AQuA-RAT dataset (Ling et al., 2017) by annotating problems with fully
specified operational programs using a new representation language, building on the questions, op-
tions, rationale, and correct answers provided by AQuA-RAT. The GSM8K is a dataset of 8.5K
high-quality, linguistically diverse grade school math word problems, designed to evaluate multi-
step reasoning in basic arithmetic operations (+-×÷). We conduct evaluations on its 1.3K test set
with strict-match to assess logical and mathematical reasoning in language models.

For commonsense reasoning (CSR), we report the average accuracy across six tasks—Arc Challenge
& Easy (Clark et al., 2018), HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), and WinoGrande (Sakaguchi et al., 2021)—under 1-shot and greedy de-
coding settings. These benchmarks comprehensively assess the model’s ability to apply “common-
sense” or world knowledge for reasoning, rather than relying on pattern recognition.

For code generation, we compare two pass rates, PASS@1 and PASS@10 (Kulal et al., 2019), on
HumanEval (Chen et al., 2021) of each baseline in a zero-shot setting with sampling parameters of

5 https://github.com/EleutherAI/lm-evaluation-harness (MIT License).
6 https://github.com/abacaj/code-eval (MIT License).
7 https://github.com/vllm-project/vllm (Apache-2.0 license).
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TEMPERATURE = {0.0, 0.2, 0.4, 0.6, 0.8}, and TOPP = 0.95. The HumanEval dataset released by
OpenAI consists of 164 handwritten Python programming problems, each with a function signature,
docstring, body, and unit tests. Serving as a benchmark, HumanEval assesses models on a range
of Python coding skills, from basic syntax to complex problem-solving, offering insights into their
programming capabilities alongside language-focused tasks.

Sparsification & Quantization. LORAM incorporates two model compression techniques: spar-
sification, which generates a pruned model for low-rank matrix updates, and quantization, which
forms QLORAM further to reduce the memory footprint of the pruned model. For sparsification,
to validate the general effectiveness of LORAM, we benchmark its performance across various
pruning strategies P(·). Specifically, we first establish a variant using randomly structured pruning
and adapt LORAM to another three variants based on leading approaches: the structured pruning
LLM-Pruner8 (Ma et al., 2023) and the non-structured (semi-structured & unstructured) pruning
SparseGPT9 (Frantar & Alistarh, 2023a). These baselines are summarized as follows:

• LORAM-RAND: We adhere to the pruning settings of LORAM-STRU, modifying only by
randomly removing weights instead of the original gradient-based pruning criterion.

• LORAM-STRU: We follow LLM-Pruner and employ a block-wise strategy for local structured
pruning. Attention and MLP layers are treated as separate blocks, with non-critical coupling
weights pruned based on gradient information at a uniform ratio. We retain the first four and
last two layers of both blocks, focusing pruning on the intermediate layers.

• LORAM-SEMI: We utilize SparseGPT with a 4:8 semi-structured sparsity pattern to prune
pre-trained weights across all model layers.

• LORAM-UNST: We prune individual weights uniformly across layers using a predefined
pruning ratio based on an unstructured version of SparseGPT.

For quantization Q(·), to further reduce memory usage during training, especially when dealing with
models exceeding 70 billion parameters, we achieve QLORAM by combining LORAM with the
LoRA-tailored quantization algorithm QLoRA (Dettmers et al., 2023). While LORAM is compati-
ble with the quantization of other customized LoRA methods (Xu et al., 2024; Li et al., 2024; Guo
et al., 2024; Frantar et al., 2023; Chai et al., 2023), this falls outside the scope of this article.

Architecture & Hyperparameters. We adopt a LLaMA architecture with RMSNorm (Zhang &
Sennrich, 2019) and SwiGLU activations (Shazeer, 2020; Zhao et al., 2022). We run all experiments
with BF16 format to reduce memory usage. For all configurations, we default to a learning rate of 1e-
3. However, the downstream performance of models fine-tuned on OpenOrca is relatively sensitive
to the learning rate. Therefore, in this evaluation, we tune the learning rates for each baseline within
the range of [1e-5, 1e-3] and report their respective optimal downstream scores. Specifically, we use
1e-5 for the 7B LoRA and 13B & 70B LoRAM models, and 1e-4 for the 13B LoRA model. All
experiments run on NVIDIA A100-80GB GPUs with environments of CUDA 12.2, PyTorch 2.4.0,
and Transformer 4.45.1. For LLaMA-2 herds, we set low-rank matrices B and A of rank r = 8
for Wq, Wk, Wv, and Wo in the attention layer, Wup, Wgate, and Wdown in the MLP layer, and
the head embedding matrix Wlm head; for LLaMA-3 herds, we exclude the injection of the low-rank
matrix of Wlm head.

8https://github.com/horseee/LLM-Pruner (Apache-2.0 license)
9https://github.com/IST-DASLab/sparsegpt (Apache-2.0 license)
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B VISUALIZATION OF DIMENSION EVOLUTION

To clearly illustrate the evolution of weight matrix dimensions across the multiple stages in the
proposed scheme, we take LLM-Pruner (Ma et al., 2023) as an example in (e.g., LORAM-STRU)
in Fig. 9, visualizing the transformation from W0 ⇒ WP

0, W∆ ⇒ WP
∆, and WP⋆

∆ ⇒ WR⋆

∆
under LORAM with structured pruning. For LORAM variants employing non-structured pruning,
the parameter dimensionality remains unchanged during training due to the use of a mask matrix.
Therefore, these visualizations are omitted.
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Figure 9: Dimensional evolution of the weight matrices: W0 ⇒ WP
0 (a), W∆ ⇒ WP

∆ (b), and
WP⋆

∆ ⇒ WR⋆

∆ (c) during LORAM-STRU training. This includes updates for Wq, Wk, Wv, and
Wo in the attention layer, as well as Wup, Wgate, and Wdown in the MLP layer.
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C VISUALIZATION OF LOW-RANK MATRICES

In this section, we utilize the L2-norm to evaluate variations in low-rank matrices trained with
different LORAM variants. This metric facilitates the visualization of captured features and allows
for an analysis of LORAM’s effectiveness. Specifically, we examine the updated low-rank matrices
in the self-attention and MLP layers of LLaMA-2-13B and LLaMA-2-70B, trained with LORAM
variants on OpenHermes.

C.1 HEAD-WISE NORM OF ATTENTION

For the low-rank matrices in the attention layer, denoted as W∆∗ where ∗ ∈ {q, k, v, o}, we compute
the L2 norms for each attention head. Let H∗ represent the number of heads. The L2 norms for each
head h (where h = 0, 1, . . . ,H∗ − 1) are defined as follows:

∥W(h)
∆∗∥2 =

{
∥W∆∗ [h, :]∥2 if ∗ ∈ {q, k, v}
∥W∆∗ [:, h]∥2 if ∗ = o

. (10)

The results are visualized through heatmaps in Figs. 10 and 12, effectively illustrating the distribu-
tion of features captured by different attention heads.

C.2 LAYER-WISE NORM OF MLP

For the low-rank matrices in the MLP layers, denoted as W∆∗ where ∆∗ ∈ {up, gate, down},
we denote the number of layers as L. The average L2 norm for a specific layer l (where l =
0, 1, . . . ,L − 1) is computed as follows, excluding elements equal to zero using a mask, ensuring
that only active parameters contribute to the average:

∥W(l)
∆∗∥2 =


1
m

∑m−1
i=0

∥∥∥W(l)
∆∗ [i, :]

∥∥∥
2
· I(W(l)

∆∗ [i, :] ̸= 0) if ∆∗ ∈ {up, gate}
1
n

∑n−1
j=0

∥∥∥W(l)
∆∗ [:, j]

∥∥∥
2
· I(W(l)

∆∗ [:, j] ̸= 0) if ∆∗ = down
. (11)

Here, I(·) denotes the indicator function, which returns 1 only when the corresponding element is
non-zero, effectively excluding zero elements from the average calculation. The average norms for
the MLP layers are visualized in Figs. 11 and 13, clearly depicting the trends in updating amplitudes
across the various projections.

C.3 ATTENTION UPDATE PATTERNS

Layer Update Patterns in LORAM and LoRA. Figs. 10 and 12 reveal that both LoRA and LO-
RAM display similar layer update behaviors. In any low-rank matrix W∆∗ where ∗ ∈ {q, k, v, o},
deeper colors predominantly concentrate in either shallow or deep layers, while middle layers re-
ceive relatively few updates. This suggests that training primarily focuses on optimizing the shallow
layers to capture semantic information, with deeper layers refining this knowledge, rendering middle
layers somewhat redundant.

More Uniform Projection Updates in LORAM. Figs. 10 and 12 further indicates that updates
in the LoRA-trained low-rank matrices, particularly for W∆v , are relatively uniform, exhibiting
substantial deep colors across multiple heads. In contrast, other matrices emphasize specific rows
and heads. For instance, in the 70B model’s W∆k , only the heads in the uppermost layers experience
significant updates, while lower layers show minimal changes. This suggests that the unpruned
model retains rich knowledge, requiring only minor adjustments to a few heads in certain layers
for task adaptation. Conversely, LORAM demonstrates a more uniform distribution of deep colors
across each low-rank matrix, indicating that the pruned model must effectively utilize every limited
neuron to capture knowledge, thereby enhancing downstream performance.
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Figure 10: Visualization of low-rank matrices in the attention layers of LLaMA-2-13B.
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Figure 11: Average L2 norms of low-rank matrices in the MLP layers of LLaMA-2-70B.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30 35 40 45 50 55 60

Head Index

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

La
ye

r I
nd

ex

(a) LoRA  W q

0 1 2 3 4 5 6 7

Head Index

La
ye

r I
nd

ex

(a) LoRA  W k

0 1 2 3 4 5 6 7

Head Index

La
ye

r I
nd

ex

(a) LoRA  W v

0 5 10 15 20 25 30 35 40 45 50 55 60

Head Index

La
ye

r I
nd

ex

(a) LoRA  W o

0 5 10 15 20 25 30 35 40 45 50 55 60

Head Index

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

La
ye

r I
nd

ex

(b) LoRAM-Rand  WRq

0 1 2 3 4 5 6 7

Head Index

La
ye

r I
nd

ex

(b) LoRAM-Rand  WR
k

0 1 2 3 4 5 6 7

Head Index

La
ye

r I
nd

ex

(b) LoRAM-Rand  WRv

0 5 10 15 20 25 30 35 40 45 50 55 60

Head Index

La
ye

r I
nd

ex

(b) LoRAM-Rand  WRo

0 5 10 15 20 25 30 35 40 45 50 55 60

Head Index

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

La
ye

r I
nd

ex

(c) LoRAM-Stru  WRq

0 1 2 3 4 5 6 7

Head Index

La
ye

r I
nd

ex

(c) LoRAM-Stru  WR
k

0 1 2 3 4 5 6 7

Head Index

La
ye

r I
nd

ex

(c) LoRAM-Stru  WRv

0 5 10 15 20 25 30 35 40 45 50 55 60

Head Index

La
ye

r I
nd

ex

(c) LoRAM-Stru  WRo

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 12: Visualization of low-rank matrices in the attention layers of LLaMA-2-70B.
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Figure 13: Average L2 norms of low-rank matrices in the MLP layers of LLaMA-2-70B.

C.4 MLP UPDATE PATTERNS

LORAM Exhibits Greater Update Amplitude than LoRA. For both the 13B and 70B models,
LORAM consistently exhibits a greater update amplitude across each layer compared to LoRA, as
shown in Figs. 11 and 13. This increased amplitude indicates that LORAM is more effective in
adjusting weights across all layers, thereby enhancing the model’s adaptability and overall perfor-
mance.

Distinct Update Trends in Layer Amplitudes. The amplitude changes reveal a distinct pattern
in Figs. 11 and 13: first decreasing, then increasing, and finally decreasing again. Shallow layers
(0–3) and deeper layers (25–35 for the 13B model and 50–75 for the 70B model) undergo intensive
updates. This behavior indicates that the model prioritizes foundational feature extraction in shallow
layers and the refinement of complex representations in deeper layers. Such a strategic update
distribution optimizes the learning process, ensuring effective capture of both basic and advanced
features.
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C.5 ANALYSIS OF UNCHANGED WEIGHTS

Here, we try to analyze the unchanged weights to support the motivation of LoRAM.

Fine-Grained Visualizations. As the above visualization, we conducted detailed visualizations
comparing the updated magnitudes of pruned and unpruned weights across layers. The results
demonstrate that unpruned weights in both attention and MLP layers exhibit consistently smaller
updates during fine-tuning as shown in Fig. 12, indicating their critical role in preserving the model’s
capacity for inference.

Theoretical Perspective. The phenomenon can be explained by the gradient-based importance
of these weights, which prioritize parameters with minimal updates but high sensitivity during re-
covery. These weights stabilize inference outputs, making them indispensable despite their limited
fine-tuning updates.

Quantitative Evidence Our analysis reveals a strong correlation between weight update magni-
tudes and downstream performance. Pruning weights with smaller updates significantly degrades
performance, highlighting their importance for inference and validating our intuition.

Impact on Large Models The selective pruning strategy shows notable benefits in larger models
such as LLaMA-2-70B, where it outperforms random pruning by a substantial margin. Retaining
critical parameters ensures effective task adaptation and generalization across diverse domains.
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D PERFORMANCE OF SUB-TASKS IN CSR

We report the performance of six sub-tasks in CSR, with Figs. 14 and 15 showcasing the results
for LORAM-trained LLaMA-2-13B and LLaMA-2-70B, respectively. Our findings indicate that
various LORAM variants outperform core competitive benchmarks: for the 13B model, LORAM
surpasses both the untrained 13B and the LoRA-trained 7B, while for the 70B model, it exceeds the
untrained 70B and the LoRA-trained 13B. This demonstrates that LORAM consistently achieves
performance gains across models of different scales while effectively reducing memory usage. Fur-
thermore, selective weight contributions in the 70B model significantly enhance performance, as
evidenced by LORAM-STRU’s marked improvement, particularly in the challenging Arc Challenge
multi-choice question-answering task. This suggests that LORAM-STRU effectively identifies and
leverages weight differences, focusing on the most trainable weights compared to LORAM-RAND.
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Figure 14: Performance of six CSR sub-tasks on the trained LLaMA-2-13B using LORAM.
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Figure 15: Performance of six CSR sub-tasks on the trained LLaMA-2-70B using LORAM.
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E ALGORITHM OF LORAM

Here, we present the complete algorithm of LORAM in Algorithm 1.

Algorithm 1 LORAM (Memory-Efficient LoRA Training)

Require: original full-rank pre-trained weight W0, alignment corpus DA, and flags FP,FA, FQ,FR.
1: Offline W∗

0 Process Stage:
2: if FP then
3: WP

0 = P(W0) = W0 ◦MP ▷ Pruned Full-Rank Weight Generation.
4: if FA then
5: WP,A

0 ← argmin LA(DA;W
P
0) ▷ Pruned Full-Rank Weight Alignment.

6: if FQ then
7: WP,A,Q

0 = Q(WP,A
0 ) ▷ Pruned Full-Rank Weight Quantization.

8: end if
9: else if FQ then

10: WP,Q
0 = Q(WP

0)
11: end if
12: else if FQ then
13: WQ

0 = Q(W0) ▷ Standard Quantization for LoRA
14: end if
15: Record the processing result of W0 as W∗

0 , ∗ ∈ {NULL, P, Q, (P, Q), (P, A), (P, A, Q)}.
16:
17: Online W∗

∆ Training Stage:
18: if FP then ▷ Pruned Low-Rank Matrix Generation.
19: WP

∆ = BPAP = P(W∆) = W∆ ◦MP = BA ◦MP

20: while TRAINING do ▷ Pruned Low-Rank Matrix Training.
21: Update low-rank matrix via objective LSFT with the forward pass h = xW∗

0 + xWP
∆.

22: Return trained low-rank matrix WP⋆

∆ = BP⋆AP⋆ .
23: end while
24: if FR then ▷ Recovered Low-Rank Matrix Generation.
25: WR⋆

∆ = BR⋆AR⋆ = R(WP⋆

∆ ) = WP⋆

∆ ◦ (1−MP) ▷ Structured LORAM
26: else
27: WR⋆

∆ = BR⋆AR⋆ = BP⋆AP⋆ ▷ Non-structured LORAM
28: end if
29: else
30: while TRAINING do ▷ Standard LoRA Training.
31: Update low-rank matrix via objective LSFT with the forward pass h = xW∗

0 + xW∆.
32: Return trained low-rank matrix W⋆

∆ = B⋆A⋆.
33: end while
34: end if
35: Record the trained low-rank matrix as W∗

∆, ∗ ∈ {R⋆, ⋆}.
36:
37: Online W0,W

∗
∆ Inference Stage:

38: while INFERENCE with ∗ is R⋆ do ▷ Recovered Low-Rank Matrix Inference.
39: Perform inference with the forward pass h = x(W0 +WR⋆

∆ ) = x(W0 +BR⋆AR⋆).
40: end while
41: while INFERENCE with ∗ is ⋆ do ▷ Standard LoRA Inference.
42: Perform Inference with the forward pass h = x(W0 +W⋆

∆) = x(W0 +B⋆A⋆).
43: end while
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F TUNING OF LEARNING RATE

We provide additional details on the learning rate tuning process for full LoRA applied to LLaMA-
2-7B and LLaMA-2-13B models, trained on the OpenHermes dataset. These experiments in Fig. 16
demonstrate that a learning rate of 1e-3 consistently achieves the best perplexity across both in-
domain and out-of-domain datasets, further validating the reliability of our comparison.

Figure 16: Learning rate tuning for LLaMA-2-7B and LLaMA-2-13B on OpenHermes using LoRA.

G PERFORMANCE OF DOMAIN-SPECIFIC TASK

To assess the effectiveness of LoRAM in domain-specific tasks, we conducted experiments on
GSM8K (using the training set for tuning and the test set for evaluation), a mathematical reason-
ing benchmark known for its sensitivity to sparsification. Specifically, we trained LLaMA-3.1-70B
using QLoRAM under various configurations.

The results, summarized in Table 4, highlight that LoRAM achieves excellent performance in this
domain-specific setting. Notably, LoRAM-based models maintain high accuracy with substantial
parameter reduction ratios, showcasing their robustness and efficiency in domain-specific tasks.
These findings emphasize LoRAM’s broad applicability beyond general-purpose instruction fine-
tuning.

Table 4: Evaluation of LoRAM on the GSM8K dataset for domain-specific fine-tuning. Results
show accuracy (%) and parameter reduction ratios for different configurations.

LLaMA-3.1 GSM8K Parameter Reduction Ratio
8B w/o Fine-Tuning 55.27 8.79×
8B LoRA (OpenHermes 400) 55.80 8.79×
70B w/o Fine-Tuning 75.28 1.00×
70B QLoRAM-Stru 400 (OpenHermes 400) 80.36 7.07×
70B QLoRAM-Stru 400 (GSM8K 100) 77.18 7.07×
70B QLoRAM-Stru 400 (GSM8K 200) 79.15 7.07×
70B LoRA (OpenHermes 400) 80.74 1.00×
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H ANALYSIS OF LORAM COST

Identifying the costs of LoRAM is indeed important, which is why we report both the number of
training tokens used during the alignment phase and the parameter reduction ratios in the low-rank
training phase. Below, we clarify the two stages of LoRAM:

Offline Knowledge Alignment Phase. The offline phase is task-agnostic and can be conducted
by the model publisher prior to deployment, making its cost negligible for end users. To quantify
the offline cost, we measured the number of training tokens (as in Xia et al. (2024)) rather than end-
to-end latency, which can vary based on hardware configurations. As shown in Figure 5, LoRAM
achieves significant performance gains using only 13 million tokens, demonstrating the efficiency
of the alignment phase.

Online Low-Rank Matrix Training Phase. For the online phase, the memory and latency costs
are primarily determined by the size of the base model parameters, which dominate resource con-
sumption during training. To avoid redundancy in reporting, we focused on parameter reduction
ratios instead of absolute time or memory usage.

Comparative Metrics for Online Training. Here, we provide additional metrics, including mem-
ory and latency comparisons for the online training phase. We conducted experiments using a work-
load of 1024 samples (batch size 128, micro-batch size 4, sequence length 512) randomly selected
from OpenHermes. The results in Table 5 demonstrate that LoRAM with a structured pruning ratio
of 2.17× (13B → 6B) achieves comparable peak memory, latency, and throughput to 7B LoRA,
with only minor trade-offs. These differences arise due to the larger layer count in 13B LoRAM,
introducing more non-GEMM operations, slightly affecting latency and throughput.

These results underscore the advantages of LoRAM’s design in achieving substantial resource effi-
ciency without significant trade-offs in memory or latency.

Table 5: Comparison of peak memory (MiB), latency (s), and throughput (samples/s) during the
online training phase for LoRAM and LoRA models. Results are based on a workload of 1024
samples (batch size 128, micro-batch size 4, sequence length 512).

LLaMA-2 #Model Params Reduction Ratio Memory Latency Throughput
7B LoRA 6.73B 1.93× 30,517 134.27 7.626
13B LoRA 13.02B 1.00× 51,661 206.07 4.969
13B LoRAM-Stru 6.01B 2.17× 29,799 147.86 6.925
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I ANALYSIS OF CHANGES IN PERFORMANCE TRENDS

We analyze performance at two stages: after fine-tuning but before recovery, and after both fine-
tuning and recovery.

After Fine-Tuning but Before Recovery. At this stage, the results of LoRAM align with prior
work (e.g., SparseGPT, Wanda, and LLM-Pruner). Unstructured and semi-structured pruning con-
sistently outperform structured pruning (see Fig. 6, solid lines). This trend holds true across
both aligned and unaligned settings, with the performance order as follows: LORAM-SEMI <
LORAM-UNST < LORAM-STRU < LORAM-RAND The slight advantage of LORAM-SEMI
over LORAM-UNST can be attributed to its smaller pruning ratio, which retains more parameters
and mitigates performance degradation.

After Fine-Tuning and Recovery. Post-recovery results show that structured pruning outperforms
unstructured pruning. This can be explained by two factors:

• Preserved Structure for Recovery: Structured pruning maintains the organization of the
pruned weights into coherent structures (e.g., rows and columns in MLP layers, attention
heads in attention layers), ensuring that activations after recovery are aligned with those of
the original model. This alignment improves the recovery process.

• Pruned Weight Quality: The quality of pruned weights influences the recovery effective-
ness. Structured pruning tends to remove less critical weights, leaving more recoverable
parameters. In contrast, unstructured pruning can remove weights that are more difficult to
recover, which negatively impacts performance post-recovery.

These results highlight the interplay between pruning and recovery, suggesting that structured prun-
ing, despite initial performance disadvantages, facilitates more effective recovery.
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