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Figure 1: Comparison of different Gaussian-based reconstruction pipelines. (a) Pixel-based methods
reconstruct the multi-view scenes by predicting per-pixel Gaussians, resulting in ≈540K Gaussians.
(b) The Omni-Gaussian method employs both pixel- and voxel-based predictors, thereby improv-
ing reconstruction quality while introducing significant redundancy (≈2.3M Gaussians). (c) Our
GaussUnveil selectively refines only occlusion-prone regions, achieving comparable quality with
far fewer Gaussians (≈600K).

ABSTRACT

Ego-centric 3D reconstruction from sparse, low-overlap views is challenging, as
cross-view correspondences are limited, occlusions occur frequently, and per-
camera frusta often truncate scene structures. Explicit Gaussian pipelines miti-
gate some of these challenges, and the dual-branch methods that couple pixel- and
volume-based Gaussians (e.g., Omni-Scene) further enhance robustness. How-
ever, they typically refine large numbers of Gaussians uniformly, regardless of
visibility or structural ambiguity. We propose GaussUnveil, an occlusion-aware
selective-refinement framework that shifts the paradigm from refining everywhere
to refining where it matters. By unveiling regions of uncertainty near occlusions,
GaussUnveil identifies where additional Gaussian refinement is needed. Specif-
ically, we derive occlusion masks from depth-gradient discontinuities, lift them
into the 3D volume to initialize a compact set of Gaussian queries. Then, we
employ a lightweight refinement block that aggregates self-context and multi-
view features while iteratively updating the mean and covariance of each Gaus-
sian query under differentiable rendering. Extensive experiments on both ego-
centric and scene-centric benchmarks demonstrate the effectiveness of the pro-
posed method compared to the state-of-the-art reconstruction methods. For in-
stance, GaussUnveil delivers superior performance while using about 30% fewer
Gaussians and is approximately 34% faster than Omni-Scene.
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1 INTRODUCTION

“I cannot see the true face of Mount Lu, for I am within this very mountain.”

–— Su Shi, Inscription on the Wall of Xilin Temple

Sparse-view scene reconstruction aims to recover 3D structures from only a few input views, and
has become a fundamental problem in computer vision, contributing to various downstream tasks in
autonomous driving Wang et al. (2024); Tang et al. (2024); Huang et al. (2021); Li et al. (2022b;a);
Liu et al. (2023); Hu et al. (2023); Jiang et al. (2023); Jia et al. (2023). Recent advances (Yu et al.,
2021b; Wang et al., 2021; Liu et al., 2022; Chen et al., 2021; Johari et al., 2022) have incorporated 3D
structural priors into neural networks, enabling the prediction of implicit neural fields (Mildenhall
et al., 2020), light fields (Suhail et al., 2022), or explicit 3D Gaussians (Kerbl et al., 2023) in a
single forward pass. Among them, Gaussian-based methods have shown clear advantages in both
inference speed and visual quality, benefiting from their explicit parameterization and the efficiency
of rasterization-based differentiable rendering.

A central design choice in Gaussian-based methods lies in how Gaussians are parameterized. Pixel-
based Gaussians (Chen et al., 2024; Charatan et al., 2024) predict per-pixel depths and unproject
them into 3D along camera rays, producing detailed reconstructions when dense overlaps exist.
However, these methods rely on substantial cross-view overlap, an assumption that seldom holds
in practice, especially for autonomous driving. In ego-centric settings, the overlaps are small and
objects are often occluded or truncated, which introduces scale ambiguity and leads to frequent
failures. Volume-based Gaussians (Huang et al., 2024; Zuo et al., 2025), in contrast, directly lift
features into 3D space, where volumetric continuity allows partial completion of occluded or trun-
cated regions. This makes them more robust under sparse observations, but their bounded extent
prevents recovery of distant structures, and their cubic complexity constrains resolution, leading to
missing fine-grained details. Notably, Omni-Scene (Wei et al., 2025) fuses pixel- and volume-based
Gaussians to exploit complementary cues and achieves strong performance.

However, this dual-branch architecture introduces substantial redundancy with large numbers of
Gaussians regardless of visibility or geometric certainty, including well-observed regions and oc-
cluded areas. Further analysis reveals that the voxel-based branch places Gaussians in every voxel
of the 3D grid, often reaching millions of Gaussians, far more than the pixel-based branch. As
stated in Wei et al. (2025), most regions are sufficiently observed and can be accurately recon-
structed by pixel Gaussians alone, while voxel Gaussians primarily contribute near occlusions and
other visibility gaps. This observation motivates us to present a unified pipeline that produces a
coarse reconstruction, then identifies occluded or uncertain regions and restricts Gaussian refine-
ment to those regions only. By reframing the task from refine everywhere to refine where it matters,
we significantly cut redundant Gaussians and computational overhead as shown in Figure 1.

In this paper, we propose GaussUnveil, a lightweight yet effective framework that predicts pixel-
based Gaussians from multi-view inputs and performs 3D refinement only to regions likely affected
by occlusion. Our key insight is that uncertainty in ego-centric scenes concentrates at visibility
transitions, so we localize unreliable geometry and refine only the affected Gaussians to preserve
accuracy while reducing redundant computation. To be specific, we interpret sharp depth-gradient
changes as visibility boundaries and convert them into a narrow-band uncertainty region via thresh-
olding and kernel dilation. The resulting occlusion mask serves as a low-cost, robust where-to-
refine prior that localizes likely occlusions and geometric discontinuities. We further introduce a
lightweight Refine Block that targets uncertain regions by initializing a set of queries to instanti-
ate 3D Gaussians and updating them via interleaved self-aggregation, cross-view aggregation, and
Gaussian refinement layers.

GaussUnveil exhibits properties absent from prior models: (1) it identifies likely occluded regions
across different views with a simple forward pass; (2) by restricting Gaussian refinement updates to
the where-to-refine regions, it dramatically reduces the number of Gaussians that must be rendered.
We evaluate the effectiveness of GaussUnveil on both ego-centric and scene-centric benchmarks and
show promising results compared with the state-of-the-art methods. Notably, GaussUnveil reduces
the number of Gaussians by up to 30% while still exhibiting performance gains in reconstruction
quality on nuScenes. Our contributions are summarized as follows:
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• We propose GaussUnveil, a unified 3D Gaussian framework that predicts pixel-based Gaus-
sians and selectively refines regions likely affected by occlusion.

• We introduce a compact 3D refinement block that iteratively updates Gaussians only in
masked regions, enabling recovery of fine-grained details by refined Gaussians;

• Extensive experiments on several reconstruction benchmarks demonstrate that GaussUnveil
reduces the Gaussians by up to 30% while achieving state-of-the-art performance.

2 RELATED WORK

3D Scene Reconstruction. Neural radiance fields model a scene as a continuous volumetric function
and optimize it by backpropagation. NeRF achieves high-fidelity novel views but needs dense per-
ray sampling, so even accelerated variants still carry notable computational cost and often require
per-scene optimization with dense captures (Mildenhall et al., 2020; Yu et al., 2021a; Müller et al.,
2022; Johari et al., 2022; Barron et al., 2021; Tancik et al., 2022). To avoid per-scene training, feed-
forward implicit methods inject 3D priors into the network. NeRF-based pipelines estimate radiance
fields using multi-view attention or projective cues such as epipolar geometry and cost volumes,
yet they inherit the expensive ray querying and remain slow at both training and inference (Yu
et al., 2021b; Wang et al., 2021; Chen et al., 2021). Light-field approaches predict per-ray colors
directly from images, which improves efficiency but loses 3D interpretability and cannot recover
geometry (Mildenhall et al., 2019; Sitzmann et al., 2021). Explicit Gaussian representations replace
volumetric integration with rasterization. 3D Gaussian Splatting (Kerbl et al., 2023) models scenes
with anisotropic Gaussians and supports real-time rendering with competitive quality. Building on
this idea, recent feed-forward pipelines (Chen et al., 2021; Charatan et al., 2024) predict pixel-
based Gaussians from few views while using priors such as epipolar lines, cost volumes, or multi-
view attention to guide geometry. These designs are effective when cross-view overlap is large,
but they degrade under occlusion and frustum truncation in scene-centric scenarios, particularly in
autonomous driving applications. In this paper, we focus on sparse-view reconstruction and propose
GaussUnveil to address the above limitations in ego-centric scenarios.

Gaussian Splatting in Autonomous Driving. Recently, there has been an explosion of research
adapting 3DGS (Kerbl et al., 2023) to autonomous driving, especially for driving scene reconstruc-
tion and perception tasks (Zhou et al., 2024; Lu et al., 2024; Song et al., 2025; Huang et al., 2024;
Yan et al., 2024). GaussianFormer (Huang et al., 2024) encodes scenes with semantic Gaussians,
where each Gaussian acts as a flexible region of interest that carries geometric and semantic fea-
tures. Per-scene reconstruction methods excel in fidelity by leveraging all available sensor data
for that scene. For instance, StreetGaussians (Yan et al., 2024) model a dynamic urban street with
3DGS first, which represents the static background and moving vehicles as separate Gaussian sets
and introduces a layered optimization to handle dynamic cars. In parallel, researchers have devel-
oped generalizable 3DGS models (Chen et al., 2024; Charatan et al., 2024) that can reconstruct new
scenes without per-scene training, using learned priors. These are typically feed-forward networks
that take a small set of images (even a single view) of a scene and directly predict a 3D Gaussian
scene representation. ADGaussian (Song et al., 2025) proposes a generalizable Gaussian splatting
framework designed for street view reconstruction from minimal inputs. Despite these advances,
egocentric driving presents limited cross-view overlap and frequent occlusion or truncation, which
makes sparse-view reconstruction particularly challenging. OmniScene (Wei et al., 2025) introduces
Omni-Gaussian representation that can reach the best of both pixel and volume-based Gaussian rep-
resentations for ego-centric sparse-view scene reconstruction. Although this dual-branch architec-
ture performs well in sparse-view reconstruction, it instantiates a large number of Gaussians across
3D space, which incurs substantial computational overhead. GaussUnveil tackles this challenge by
shifting the paradigm from refining everywhere to refining where it matters, preserving accuracy
while substantially reducing the number of Gaussians.

3 PRELIMINARIES

We briefly review 3D Gaussian Splatting (3DGS) as the basis of our method. A 3D scene is repre-
sented by a finite set of Gaussians G = {Gk}Nk=1. Each Gaussian projects to an elliptical footprint

3
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Figure 2: Overview of GaussUnveil. A uniform pixel-based pipeline (top) encodes multi-view
images and decodes them into initial pixel Gaussians. To resolve visibility ambiguity, GaussUnveil
localizes visibility transitions (bottom left) by deriving occlusion masks from depth gradients and
lifting them into 3D to seed occlusion Gaussians. A compact 3D Gaussian refinement block (bottom
right) then updates these Gaussians by the stack of self-context aggregation, cross-view aggregation,
and corrective refinement layers. Finally, we concatenate the refined, occlusion-aware Gaussians
with the pixel Gaussians to produce a more accurate and efficient reconstruction.

on the image plane, and the pixel color along a ray r is rendered by alpha compositing

Î(r) =

N∑
k=1

Tk αk ck, Tk =
∏
j<k

(
1− αj

)
, (1)

where ck ∈ R3 and αk ∈ [0, 1] denote the color and the opacity, respectively. This differentiable
formulation allows end-to-end optimization against ground-truth images.

Pixel-based Gaussians unproject per-pixel depths into 3D and yield detailed reconstructions when
view overlap is high, but they fail under occlusions and frustum truncation. Voxel-based Gaussians
lift features into a 3D grid, offering volumetric continuity at the cost of cubic complexity and redun-
dancy. Dual-branch designs such as Omni-Scene (Wei et al., 2025) combine both, but often saturate
the scene with millions of Gaussians, many unnecessary in well-observed regions. In sparse-view,
ego-centric settings (e.g., autonomous driving), these issues are amplified: overlaps are limited, oc-
clusions frequent, and redundant Gaussians dominate memory and rendering cost. To formalize, we
define the reconstruction objective

L(G) = Er∼D

[
ℓ
(
Î(r;G), I⋆(r)

) ]
, (2)

where r is a camera ray sampled from D, Î(r;G) is the rendered color, I⋆(r) is the ground-truth
color, and ℓ(·, ·) is a per-ray discrepancy. We partition the image domain Ω into regular regions Ωreg

and occlusion-prone regions Ωocc, yielding

L(G) = (1− κ)Lreg + κLocc, κ =
|Ωocc|
|Ω|

. (3)

Since errors are concentrated in Ωocc, reducing Locc delivers the greatest overall improvement,
motivating the refine where it matters design of GaussUnveil.

4 PROPOSED APPROACH

We present GaussUnveil, which generates 3D scenes from surround-view images in a single feed-
forward pass. Section 4.1 presents the overall framework of GaussUnveil. Section 4.2 describes the
visibility-transition localization. Finally, Section 4.3 details the 3D refinement block architecture.
More details of our method are listed in appendix.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Depth Map Central Difference
Gradient

!!:
−1 0 1
−1 0 1
−1 0 1

!":
−1 −1 −1
0 0 0
1 1 1

Occlusion Edge
Detection Occlusion MaskDilation

&#×#:
1 1 1
1 1 1
1 1 1

Multi-view
Image Features

Lift Mask Region Gaussian Sampling Occlusion Gaussians

Occlusion Mask Generation

Occlusion Mask Lifting

Figure 3: The paradigm of occlusion mask generation and lifting in GaussUnveil. Top: Occlusion
mask generation. Depth maps are processed with central-difference gradient filters to detect sharp
depth changes, followed by dilation to produce robust occlusion masks. Bottom: Occlusion mask
lifting. We lift the mask regions to 3D space with multi-view image features, where Gaussian
sampling is performed to instantiate a compact set of occlusion Gaussians that focus refinement on
visibility-ambiguous areas.

4.1 OVERALL FRAMEWORK

GaussUnveil is a unified reconstruction framework that infers 3D Gaussians from unconstrained
viewpoints and performs 3D refinement only to regions likely affected by occlusion. Given multi-
view RGB inputs {Ii}Ni=1 ∈ RN×H×W×3, we first extract 4× down-sampled image features
{Fi}Ni=1 ∈ RN×H

4 ×W
4 ×3 using 2D pretraind image backbones. Then we aim to learn a function

M that maps the down-sampled image features to a set of 3D Gaussians:

M : {Fi}Ni=1 →
{
(δj , αj , sj , qj , cj)}Kj=1, (4)

where K denote the number of 3D Gaussians. δj , αv , sv , qv , and cv represent the learned offset,
opacity, scale, rotation quaternion, and RGB color, respectively.

As shown in Figure 2, we adopt a UNet-style Gaussian encoder–decoder to predict 3D Gaussians
from multi-view image features {Fi}Ni=1, following the design of (Wei et al., 2025). We first up-
sample the image features and enhance them with Plücker ray encodings and learnable camera em-
beddings, injecting geometric and view-specific priors. We further concatenate pseudo-depth and
its confidence to provide explicit geometry. The resulting features are processed with a stack of
downsampling blocks, a bottleneck block, and symmetric upsampling blocks with skip connections,
enabling hierarchical context aggregation. These blocks utilized patchified cross attentions for ef-
ficient cross-view correlation. These aggregation features are fed into several convolution layers to
obtain the per-pixel depth and 3D Gaussians. To compute the center µp, we first unproject the pixel
from the ray origin op along the ray direction rp using the depth dp, then refine this coarse position
with the learned offset δp ∈ R3, represented as

µp = op + dp rp + δp. (5)

Throughout the above steps, we obtain the pixel-based Gaussians {(δj , αj , sj , qj , cj))}
Kp

j=1. Al-
though pixel-based Gaussians can reconstruct most regions effectively, our experiments and theoreti-
cal analysis reveal that potentially occluded areas in multi-view images introduce ambiguities during
rendering and lead to performance degradation. Unlike the previous dual-branch OmniScene (Wei
et al., 2025), we explicitly localize these potentially occluded regions by a visibility transition lo-
calization module (Section 4.2) and further refine the Gaussians from these occlusion regions with
a 3D Gaussian refinement module (Section 4.3). This strategy not only preserves reconstruction
performance but also significantly reduces the number of Gaussians, thereby improving inference
efficiency.
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4.2 VISIBILITY TRANSITION LOCALIZATION

Pixel unprojection accounts for most rays in sparse-view reconstruction, while large errors arise at
visibility transitions where sightlines shift between foreground and background. To address this, we
detect such transitions, expand them into an occlusion mask, lift the mask into 3D, and refine only
within the masked regions shown in Figure 3.

Occlusion Mask Generation. In surround-view images, the depth at each pixel is the distance to
the first surface along its camera ray. When the same surface stays visible as the pixel moves a
little, depth changes smoothly. At an occlusion boundary, the frontmost surface switches from the
foreground to the background, leading to an abrupt change in depth. We then utilize finite differ-
ences at this switch yields large depth gradients, which can detect occlusion boundaries effectively.
Specifically, for the multi-view images with the corresponding predicted depth Zi, we compute
central-difference gradients as

Dx = Zi ×Kx, Dy = Zi ×Ky, Ei =
√
D 2

x +D 2
y , (6)

with Kx = [−1, 0, 1], Ky = [−1, 0, 1]⊤ and the operator × denote the 2D convolution. We further
introduce a hyperparameter τg to threshold the computed difference gradients to obtain the boundary
between foreground and background,

Ob(x, y) =

{
1, if Ei(x, y) ≥ τg
0, otherwise

(7)

where {x, y} denote the corresponding coordinates of the image plane. Subsequently, we utilize
morphological dilation with a square structuring element to expand these boundaries into uncertainty
bands, yielding an occlusion mask that localizes likely occluded or geometry-discontinuous regions.
In generally, a square structuring window of size k (radius r = k−1

2 ), we obtain the dilated mask Od

as

Od(x, y) = 1

 r∑
i=−r

r∑
j=−r

E(x+ i, y + j) > 0

 , (8)

where 1(·) is the indicator function. This means that if there is at least one pixel within the k × k
neighborhood centered at (x, y), the dilation result at that position is set to 1. In this way, the original
boundaries are expanded into a wider occlusion mask region.

Occlusion Mask Lifting. Given per-view occlusion masks Od ∈ {0, 1}H×W , we lift them to
a thin 3D neighborhood around depth discontinuities, which we call the visibility transition tube
O3d ⊂ R3. We project the occluded pixels into rays in the camera coordinate system and further
transform them into rays in the world coordinate system. For each potentially occluded pixel, we
take its predicted depth dcenter as the center of a line segment and then compute the near and far
endpoints [p0,p1] as

p0 = op + (dcenter − δp) dp,

p1 = op + (dcenter + δp) dp.
(9)

Here, δp denotes the longitudinal thickness along the ray, which can be adjusted according to scale
or uncertainty, and can be expressed as

δp(u) = κrel · dcenter + κabs, (10)

where κrel and κabs are two hyperparameters used to control the longitudinal length along the camera
ray, allowing the thickness to increase linearly with depth: the farther the point, the greater the
permitted longitudinal uncertainty. We assume that sampling along the line segment [p0,p1] can
effectively cover the 3D spatial position of the occluded point. The 3D tube O3d is the union of all
lifted segments across views,

O3d =
⋃
v∈V

⋃
Ov(x,y)=1

Sv
x,y, (11)

where Sv
x,y denote the 3D segment at position {x, y} in different views v.
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4.3 3D GAUSSIAN REFINEMENT

Pixel-based Gaussians already reconstruct most of the scene under sparse views, but they break down
near visibility changes where geometry is hidden or truncated. Motivated by (Huang et al., 2024),
we propose a lightweight 3D Gaussian refinement block to refine these Gaussians using the visibility
transition tube from Section 4.2. We first initialize the Gaussian queries as learnable vectors. Then,
we iteratively refine the Gaussians within N 3D Gaussian Refinement blocks. Each block consists of
a self-context aggregation layer to aggregate the context information of Gaussian queries, a cross-
view aggregation layer to aggregate visual cues from different views, and a corrective refinement
layer to rectify the properties of 3D Gaussians.

Self-context Aggregation. We utilize 3D sparse convolution (Contributors, 2022) to build our self-
context aggregation layer. We voxelize the point represented by the center of each Gaussian and
then perform 3D sparse convolution on the occupied voxels only. Since the number of Gaussians is
far smaller than the dense grid size X×Y ×Z, this operation avoids the cubic cost of dense 3D pro-
cessing. The range of receptive can be expanded by stacking multiple layers of sparse convolution.
To maintain the spatial sparsity, we use one 3D convolution in a self-context aggregation layer.

Cross-view Aggregation. We introduce the cross-view aggregation layer to enrich these Gaussian
queries with cross-view context. Specifically, for a 3D Gaussian query Q3d, we perform deformable
attention (DA) (Zhu et al., 2020) onto multi-view image feature maps to aggregate visual cues from
different views. Cross-view aggregation effectively addresses occlusions that occur in single views,
as it allows each Gaussian to acquire complementary features from multiple viewpoints.

Corrective Refinement. The goal of the corrective refinement layer is to rectify the Gaussian prop-
erties with the corresponding Gaussian queries updated from self-context aggregation and cross-
view aggregation layers. Specifically, we utilize a multi-layer perceptron (MLP) to decode the up-
dated Gaussian properties from the Gaussian queries. Notably, we refine the mean of each Gaussian
through a residual structure, while the other properties are directly replaced by their updated values.

We can obtain a compact, occlusion-aware Gaussian representation in 3D space by stacking several
3D Gaussian refinement blocks. Compared with pixel-based Gaussians, this representation mitigates
boundary ambiguities arising from occlusions and improves multi-view consistency, leading to more
robust reconstructions.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Evaluation Tasks. We follow the experimental protocol of OmniScene (Wei et al., 2025) and eval-
uate GaussUnveil in two settings: the ego-centric setting on nuScenes (Caesar et al., 2020) and the
scene-centric setting on RealEstate10K (Zhou et al., 2018). For both datasets, we compare against
the 3DGS-based methods OmniScene (Wei et al., 2025), pixelSplat (Charatan et al., 2024), and
MVSplat (Chen et al., 2024), as well as the light-field approach AttnRend (Du et al., 2023) and the
NeRF-based method MuRF (Xu et al., 2024). Additional details are provided in the appendix.

Metrics. We adopt three widely used metrics from prior reconstruction studies (Wei et al., 2025;
Chen et al., 2024; Charatan et al., 2024) to evaluate visual quality: peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM) (Wang et al., 2004), and learned perceptual image patch similar-
ity (LPIPS) (Zhang et al., 2018). Higher values indicate better performance for PSNR and SSIM,
whereas lower values are preferred for LPIPS. In addition, we report the Pearson correlation coeffi-
cient (PCC) (Sedgwick, 2012) to assess the geometric fidelity of reconstructed 3D scenes.

Implementation Details. We implement GaussUnveil in PyTorch using the open-source Gaus-
sian renderer (Kerbl et al., 2023). Multi-view image features are extracted with a ResNet-50 back-
bone pre-trained using DINO (Caron et al., 2021). For occlusion mask generation, depth values
are clipped to the range [0, 100], with the dilation kernel size as 7 and threshold as 3. We em-
ploy four Gaussian refinement blocks to update Gaussians within the visibility transition tube.
Training is performed on two NVIDIA A800 GPUs for 100k iterations with a batch size of 4 on
nuScenes (Caesar et al., 2020), and on a single A800 GPU for 300k iterations with a batch size of

7
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Figure 4: The qualitative comparison of reconstruction performance between Omni-Scene (Wei
et al., 2025) and our GaussUnveil (better viewed when zoomed in). We render six views to cover
the full 360° panorama, ensuring approximately 15% overlap between adjacent viewpoints. The red
boxes indicate the overlapping regions across different views.

Table 1: Quantitative results of the ego-centric reconstruction task on nuScenes (Caesar et al., 2020).
PCC is reported as N/A for AttnRend (Du et al., 2023), since it does not produce an interpretable
3D structure for depth rendering.

Method Time(s) Param(M) PSNR↑ SSIM↑ LPIPS↓ PCC↑
AttnRend (Du et al., 2023) 9.98 125.1 20.96 0.533 0.467 N/A
MuRF (Xu et al., 2024) 0.672 5.3 20.34 0.504 0.433 -0.332
pixelSplat (Charatan et al., 2024) 0.508 125.4 21.51 0.616 0.372 0.001
MVSplat (Chen et al., 2024) 0.174 12.0 21.61 0.658 0.295 0.181
OmniScene (Wei et al., 2025) 0.088 81.7 24.27 0.736 0.237 0.800
GaussUnveil (ours) 0.058 80.3 24.65 0.754 0.220 0.837

8 on RealEstate10K (Zhou et al., 2018). Optimization uses AdamW (Kingma & Ba, 2014) with an
initial learning rate of 1× 10−4 and cosine decay. More details are provided in the appendix.

5.2 MAIN RESULTS

Results on nuScenes. Table 1 presents a comparison between GaussUnveil and existing baselines
on the nuScenes dataset. Compared to the state-of-the-art Omni-Scene (Wei et al., 2025), specifi-
cally designed for the ego-centric setting, our approach is ≈34% faster while also achieving higher
accuracy. Feed-forward sparse-view methods (Chen et al., 2024; Charatan et al., 2024; Xu et al.,
2024; Du et al., 2023) perform worst, particularly on the PCC metric, as limited view overlap in
ego-centric settings makes depth estimation unreliable. While Omni-Scene improves over MVSplat
and PixelSplat, its voxel-based Gaussian branch has millions of primitives, even in well-observed
regions where pixel-based Gaussians suffice. In contrast, our method targets refinement only to oc-
cluded regions, substantially reducing Gaussian count while preserving performance. Qualitative
results on nuScenes (Figure 4) further show that GaussUnveil achieves reconstructions on par with
OmniScene while operating more efficiently.

Results on RealEstate10K. To further demonstrate the effectiveness and generalization of
our proposed method, we also conduct evaluations on the RealEstate10K (Zhou et al.,
2018) dataset, a scene-centric benchmark widely used for sparse-view reconstruction tasks.

8
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Table 2: Quantitative results of RealEstate10K (Zhou
et al., 2018) under scene-centric reconstruction setting.

Method PSNR↑ SSIM↑ LPIPS↓ PCC↑

AttnRend (Du et al., 2023) 24.78 0.820 0.213 N/A
MuRF (Xu et al., 2024) 26.10 0.858 0.143 0.344
pixelSplat (Charatan et al., 2024) 25.89 0.858 0.142 0.285
MVSplat (Chen et al., 2024) 26.39 0.869 0.128 0.363
OmniScene (Wei et al., 2025) 26.19 0.865 0.131 0.368
GaussUnveil (ours) 26.32 0.872 0.123 0.365

As shown in Figure 2, GaussUnveil
achieves the best performance on SSIM
and LPIPS metrics. We also note
that feed-forward baselines, such as
pixelSplat (Charatan et al., 2024) and
MuRF (Xu et al., 2024), although ef-
ficient, suffer from limited geomet-
ric fidelity, particularly in terms of
PCC. The comparison between ego-
centric methods, such as OmniScene,
and GaussUnveil underscores the effectiveness of the proposed refine where it matters strategy.

5.3 ABLATION STUDY

Effectiveness of Occlusion-aware Refinement. We conduct ablations to evaluate the ef-
fectiveness of our core contribution, the Occlusion-aware Refinement. ‘w/o Refinement’
denotes retaining only the backbone network without refining potentially occluded regions,

Table 3: Ablation study on ego-centric reconstruc-
tion on nuScenes (Caesar et al., 2020).

Method PSNR↑ SSIM↑ LPIPS↓ PCC↑
w/o. Refinement 22.89 0.698 0.290 0.780
w/o Depth Init 24.41 0.743 0.226 0.654
w/o. Mask 21.40 0.654 0.306 0.720

w/o. SA 24.04 0.738 0.234 0.827
w/o. CA 23.30 0.723 0.265 0.802
Ours 24.65 0.754 0.220 0.837

making the structure similar to the pixel-based
Gaussian branch in Omni-Scene. ‘w/o. Depth
Init’ indicates that our method does not use
depth from Metric3D (Yin et al., 2023) for
initialization. ‘w/o. Mask’ means we still
perform Gaussian refinement, but instead of
initializing Gaussians in potentially occluded
regions, we randomly select their positions.
As shown in Table 3, we find that removing
any of these components leads to performance
degradation. We observe that eliminating the
occlusion-aware refinement significantly degrades performance, with PSNR dropping to 22.89 and
SSIM to 0.698. This highlights the importance of selectively refining occluded regions, as the back-
bone alone struggles to handle visibility ambiguities. We also note that removing depth initialization
leads to a notable decline in PCC, indicating that depth maps are crucial for geometric structure. Fi-
nally, performing refinement without occlusion masks, i.e., randomly seeding Gaussians, yields the
worst overall results, demonstrating that targeted seeding in ambiguous regions is key to both recon-
struction accuracy and perceptual quality.

Effectiveness of 3D Gaussian Refinement. We further conduct ablation studies on the 3D Gaussian
Refinement Block. We remove the self-context aggregation and cross-view aggregation layers, de-
noted as ‘w/o SA’ and ‘w/o CA’, respectively. The corrective refinement layer, which is responsible
for decoding the updated features of Gaussians, cannot be ablated. As shown in Table 3, removing
either aggregation module results in a noticeable performance drop. Moreover, our analysis reveals
that the cross-view aggregation layer has a stronger impact on reconstruction quality compared to
the self-context aggregation layer. This is because refined Gaussians iteratively obtain features both
from neighboring Gaussians and from multi-view image features, and the information carried by
multi-view features is substantially richer.

6 CONCLUSION

In this work, we introduced GaussUnveil, an occlusion-aware selective-refinement framework for
sparse-view ego-centric 3D reconstruction. By unveiling regions of uncertainty through depth-
gradient masks and restricting refinement to occlusion-prone areas, GaussUnveil shifts the paradigm
from refining everywhere to refining where it matters. Our lightweight refinement block effectively
updates Gaussians with self-context and multi-view features, while a mask-aware objective sta-
bilizes training around visibility boundaries. Experiments on both ego-centric and scene-centric
benchmarks confirm that GaussUnveil achieves superior reconstruction quality with significantly
fewer Gaussians compared to Omni-Scene. These results highlight that targeted refinement, rather
than uniform processing, provides a more efficient pipeline for 3D scene reconstruction.

9
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7 ETHICS STATEMENT

This research adheres to the ethical guidelines of the ICLR community. Our work focuses on de-
veloping machine learning methods for 3D scene reconstruction and does not involve collection of
sensitive personal information or data that may compromise individual privacy. All datasets used
in this study are publicly available benchmark datasets, such as nuScenes and RealEstate10K, that
have been released under appropriate licenses for research purposes. We carefully ensured com-
pliance with dataset usage policies and did not perform any data manipulation that would raise
ethical concerns. Potential societal impacts of our work include both positive and negative aspects.
On the positive side, our method may advance the state-of-the-art in autonomous driving, poten-
tially improving safety and efficiency. On the negative side, there exists the possibility of misuse in
surveillance or military applications. We acknowledge these risks and emphasize that our work is
intended solely for academic research and beneficial applications. No human subjects, personally
identifiable information, or harmful synthetic content were involved in this study. We believe the
ethical risks of this work are minimal and manageable.

8 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results, in accordance with the ICLR repro-
ducibility guidelines. We will release the core code upon publication. All datasets used in our exper-
iments are publicly available, including nuScenes and RealEstate10K. We provide complete details
of training hyperparameters (learning rate, batch size, optimizer, weight decay, training epochs, etc.)
in our draft. Detailed descriptions of our architecture, including layer configurations and parameter
counts, are reported in the Method section and appendix. Experiments were conducted on NVIDIA
A800 GPUs, and we report speed and model size. We believe these measures are sufficient for
independent researchers to fully reproduce our results.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we made limited use of large language models (LLMs), specifically
OpenAI ChatGPT, to assist with improving the clarity and style of the writing. The scientific content,
experimental design, theoretical derivations, and results were conceived, implemented, and validated
entirely by the authors. LLMs were not used for generating novel scientific ideas, experiments, or
analyses. All outputs from LLMs were carefully reviewed, verified, and edited by the authors to
ensure correctness and originality. No proprietary or unpublished data were provided to LLMs
during manuscript preparation. All datasets, code, and results reported in this paper are entirely the
work of the authors.

A.2 METHOD ANYLASIS

A.2.1 WHY Refine Where It Matters PARADIGM WORKS?

In sparse-view settings, most pixels are well-explained by pixel-based models, while uncertainty
concentrates near occlusion boundaries. Updating all regions wastes gradient budget on easy pixels
with weak or noisy signals, often irrelevant to true errors. Restricting updates to uncertainty re-
gions ensures that (i) samples target where improvement is needed, (ii) reliable regions do not bias
optimization, and (iii) gradient signal-to-noise is maximized for the same compute.

Let D = U ∪ G denote the set of uncertain and good pixels with proportions πU and πG = 1− πU .
For each pixel p, the gradient is g(p) = ∇Θℓp, with group means µU = E[g | U ], µG = E[g | G]
and covariances ΣU ,ΣG. We then optimize the masked objective as

LU (Θ) = E[ℓp(Θ) | p∈U ] . (12)

With minibatch size B, the estimators of refine everywhere (RE) and refine where it matters (RWM)
satisfy E[ĝRWM] = µU and E[ĝRE] = πUµU + πGµG. Thus RWM is unbiased for the desired
descent direction of LU , while RE estimates a mixture mean. For the same pixel budget, we define
the variance as

Var(ĝRWM) = 1
BΣU , Var(ĝRE) =

1
B (πUΣU +πGΣG)+πUπG(µU −µG)(µU −µG)

⊤. (13)

RE not only allocates effectively BπU samples to U (worse SNR by 1/πU ), but also incurs an
irreducible mixture-bias term. We assume that LU is L−smooth and tak one step Θ+ = Θ − η ĝ
with η ≤ 1/L,

E[LU (Θ
+)] ≤ LU (Θ)− η ⟨∇LU (Θ),E[ĝ]⟩︸ ︷︷ ︸

alignment & signal

+Lη2

2 E∥ĝ∥2︸ ︷︷ ︸
noise

. (14)

Under the assumption ⟨µG, µU ⟩ ≤ 0 and ∥µG∥ ≪ ∥µU∥ (good pixels need little refinement), we
obtain

∆RWM ≤ −η∥µU∥2 + Lη2

2

(
∥µU∥2 + tr ΣU

B

)
<

−η πU∥µU∥2 + Lη2

2

(
∥πUµU + πGµG∥2 + πU tr ΣU+πG tr ΣG

B

)
≤ ∆RE,

(15)

for sufficiently large B (or equivalently small η). The left inequality reflects perfect alignment
and higher useful-sample allocation of RWM; the right inequality follows from the extra mixture
magnitude/variance in RE (cf. equation 13).

The above analysis shows that for the same compute, masking to uncertainty regions produces a
gradient that is (i) unbiased for the target descent direction, (ii) higher SNR by ≈ 1/πU , and (iii)
yields a strictly larger expected one-step loss decrease. Hence refine where it matters is easier to
optimize and more compute-efficient than refine everywhere.

A.2.2 WHY Visibility Transition Localization MODULE WORKS?

In this part, we provide the theoretical analysis of our proposed Visibility Transition Localization
module. Let a calibrated pinhole camera with intrinsics (fx, fy) and projection π : R3 → R2. For
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a visible surface S with depth function z : Ω ⊂ R2 → R+, define disparity d(u) = fB/z(u)
(for stereo baseline B or any inverse-depth proxy; analysis is identical with 1/z). In piecewise-
smooth regions with a single visible surface, d is C1 and satisfies (e.g., standard shape-from-shading
geometry) ∥∇d(u)∥ ≤ Ksurf (bounded by surface curvature and foreshortening). At occluding
contours (depth/visibility transitions), the frontmost surface changes discontinuously along the ray:
the visibility indicator χ(z) (front-most along the ray) is a step function in z, and d(u) is piecewise-
smooth with jump discontinuities. Formally, along any scanline γ(t) crossing an occlusion at t0,

d(γ(t)) =

{
d1(t) t < t0,

d2(t) t > t0,
d1, d2 ∈ C1, lim

t↑t0
d1(t) ̸= lim

t↓t0
d2(t). (16)

Hence d is a bounded variation (BV) function with distributional derivative

∇d = ∇dac + ν δΓ, (17)

where ∇dac is absolutely continuous (bounded in smooth regions), Γ is the occluding contour, δΓ is
a 1-D Dirac measure supported on Γ, and ν is the jump magnitude.

Let Gh be a finite-difference gradient operator at pixel spacing h. Then for pixels u not on Γ,

∥Ghd(u)∥ ≤ Ksurf +O(h), (18)

while for pixels whose stencil intersects Γ,

∥Ghd(u)∥ ≥ |ν|
h

−O(1), (19)

i.e., the discrete gradient blows up as h → 0 at visibility transitions.

Edges localize the 2D projection of visibility transitions while true uncertainty extends slightly
around them because of calibration noise, quantization, and coarse 3D initialization. We there-
fore dilate edges by a radius that upper-bounds pixel-space uncertainty. Let u = π(X) and let the
total 2D localization error be

r ≥
∥∥ ∂π
∂X

∥∥σX︸ ︷︷ ︸
3D init error

+ σcal︸︷︷︸
calibration

+ σdisc︸︷︷︸
discretization

+ σnoise︸ ︷︷ ︸
sensor

. (20)

We define the uncertainty region as the morphological dilation

B = {u : dist(u,Γ) ≤ r} = E ⊕ Br. (21)

A first-order perturbation moves the projected edge by at most r in pixels. Dilation by r covers all
projections under the bounded perturbation model; hence any 3D point whose visibility is ambigu-
ous projects inside B. Thresholding removes smooth regions; dilation can only admit pixels within
distance r of detected edges. If r is smaller than the separation to other (non-occluding) edges, they
remain excluded.

A.3 ADDITIONAL EXPERIMENTS

A.3.1 EXPERIMENTAL SETTINGS

Dataset. For the ego-centric setting, we evaluate GaussUnveil on nuScenes (Caesar et al., 2020)
following OmniScene (Wei et al., 2025). There are 700 training scenes and 150 validation scenes in
nuScenes are divided into uniformly spaced bins along the vehicle trajectory. In each bin, the first
and last frames are 3.2 m apart. The center frame provides six surround-view images as input views,
and the first and last frames provide twelve images as target novel views. We use 135,941 bins for
training and 30,080 bins for validation, with an image resolution of 224 × 400. To compare with
prior feed-forward reconstruction methods, we also conduct evaluations on RealEstate10K (Zhou
et al., 2018), a large scene-centric dataset with indoor and outdoor scenes under the scene-centric
setting. RealEstate10K (Zhou et al., 2018)is collected from in-the-wild YouTube videos of real
estate tours. It contains approximately 10,000 videos, from which multi-view image sequences with
associated camera poses are extracted. The dataset covers a wide variety of indoor scenes with
diverse layouts and lighting conditions, making it a standard benchmark for novel view synthesis

14
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and scene-centric 3D reconstruction. Following the protocol in prior work (Wei et al., 2025; Chen
et al., 2024; Charatan et al., 2024), we use 67,477 scenes for training and 7,289 scenes for testing.

Metrics. We use PSNR, SSIM, LPIPS and PCC metrics to evaluate the performance of our method.
PSNR measures pixel-level fidelity based on mean squared error (MSE) as

PSNR = 10 · log10
(

MAX2
I

MSE

)
, MSE =

1

HW

H∑
i=1

W∑
j=1

(Iij − Îij)
2, (22)

where MAXI is the maximum pixel value, and I, Î denote the ground-truth and reconstructed im-
ages. Higher PSNR indicates better low-level fidelity. SSIM evaluates perceptual quality by com-
paring luminance, contrast, and structure as

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (23)

where µx, µy are means, σ2
x, σ

2
y are variances, and σxy is covariance. C1, C2 are constants to sta-

bilize the division. LPIPS measures perceptual distance using deep features ϕl(·) from pretrained
networks as

LPIPS(x, y) =
∑
l

1

HlWl

∑
h,w

∥∥wl ⊙
(
ϕl(x)h,w − ϕl(y)h,w

)∥∥2
2
, (24)

where wl are learned weights for each feature channel. Lower LPIPS values correspond to re-
constructions that are perceptually closer to human judgments. PCC measures linear correlation
between predicted geometry X and ground truth Y as

PCC(X,Y ) =

∑N
i=1(Xi − X̄)(Yi − Ȳ )√∑N

i=1(Xi − X̄)2
√∑N

i=1(Yi − Ȳ )2
, (25)

where X̄, Ȳ are the means. Values closer to 1 indicate stronger geometric consistency.

Implementation Details. For the 2D image encoder, we adopt a ResNet-50 backbone pre-trained
with DINO, and employ a feature pyramid network (FPN) with the P2 level for feature extraction.
The extracted multi-view features are subsequently fed into the reconstruction pipeline. The pixel-
based Gaussian predictor is configured with four downsampling and four upsampling stages. The
channel dimensions for the downsampling path are set to {128, 256, 512, 512}, while the upsampling
path mirrors this structure with {512, 512, 256, 128}. Correspondingly, the number of patches per
stage is {8, 8, 4, 2} for downsampling and {2, 4, 8, 8} for upsampling. This design allows for multi-
scale feature aggregation across views. Then, we utilize three convolutional layers, which decode
the fused features into pixel-aligned Gaussians. For training, we adopt the Adam optimizer with
β1 = 0.9 and β2 = 0.999, a weight decay of 0.01, and a cosine learning rate scheduler. The
model is trained for 100k iterations with an initial learning rate of 1 × 10−4. A warm-up phase of
1000 iterations is used, and gradient clipping is applied with a maximum norm of 1.0 to stabilize
optimization.

Rendering Settings for Visualization. We generate a 360◦ sweep of six in-place yaw views by
rotating a base pose Tbase ∈ SE(3) (with Rbase ∈ SO(3), tbase ∈ R3) about its local y-axis while
fixing the optical center. Let the horizontal FoV be ϕx (radians) and define the uniform step

∆θ =
2π

n
, n = 6. (26)

To obtain an adjacent horizontal overlap κ ∈ (0, 1), we match 1D angular coverage,

κ ≈ 1− ∆θ

ϕx
⇒ ϕx ≈ 2π

n(1− κ)
. (27)

With κ = 0.15 and n = 6,

ϕ⋆
x =

2π

6(1− 0.15)
=

2π

5.1
. (28)

Given a base FoV ϕ
(0)
x , we use ϕx = max

(
ϕ
(0)
x , ϕ⋆

x

)
(vertical FoV ϕy remains ϕ

(0)
y ). Yaw angles

are
θi = i∆θ, i = 0, . . . , n− 1, (29)
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with local rotation

Ry(θ) =

[
cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

]
, Ty(θ) =

[
Ry(θ) 0
0⊤ 1

]
, (30)

and synthesized poses
Ti = TbaseTy(θi), (31)

which rotate the camera in place. Using ϕ
(i)
x ≡ ϕx and ϕ

(i)
y ≡ ϕ

(0)
y , we render Gaussians G as

(Ii,Di) = Render
(
G, Ti, ϕ

(i)
x , ϕ(i)

y

)
, i = 0, . . . , 5, (32)

yielding six evenly spaced views around the circle with ≈ 15% horizontal overlap.

A.3.2 MORE EXPERIMENTS

Table 4: The different settings of GaussUnveil on nuScenes. We report PSNR, SSIM, LPIPS and
PCC metrics.

(a) Gaussian numbers. The best
Gaussian Nums is 10000.

Nums PSNR SSIM LPIPS PCC
5000 23.79 0.747 0.231 0.830
10000 24.65 0.753 0.220 0.837
20000 24.67 0.756 0.218 0.842

(b) Refinement blocks number.
Four works best.

Nums PSNR SSIM LPIPS PCC
1 23.76 0.747 0.224 0.828
4 24.65 0.753 0.220 0.837
6 24.56 0.744 0.226 0.841

(c) Dilation kernel size. Seven works
best.

Size PSNR SSIM LPIPS PCC
1 23.78 0.736 0.232 0.835
3 24.13 0.750 0.226 0.832
7 24.65 0.753 0.220 0.837

Additional ablations. We conduct several ablations on different settings of GaussUnveil on
nuScenes. Table 4 presents ablations on the number of Gaussians, the number of refinement blocks,
and the dilation kernel size for occlusion mask generation, evaluated on nuScenes. We vary the
number of initial Gaussians from 5k to 20k. Performance steadily improves with more Gaussians,
peaking at 20k (PSNR 24.67, SSIM 0.756, LPIPS 0.218, PCC 0.842). However, the gap between
10k and 20k is marginal, while 10k maintains a lower memory footprint. Thus, we adopt 10k as
the default. We test between 1 and 7 refinement blocks. Using only one block underfits (PSNR
23.76, LPIPS 0.224), while stacking four blocks achieves the best trade-off (PSNR 24.65, SSIM
0.753, LPIPS 0.220, PCC 0.837). Increasing to seven blocks brings no further benefit, suggesting
diminishing returns with deeper refinement. For occlusion mask generation, we vary the dilation
kernel size from 1 to 7. A kernel size of 1 yields poor SSIM and LPIPS due to under-coverage of
uncertainty regions. A kernel size of 7 achieves the best overall performance (PSNR 24.65, SSIM
0.753, LPIPS 0.220, PCC 0.837), while excessively large kernels risk including irrelevant pixels.

More Visualizations. We also provide more qualitative comparisons of reconstruction performance
with other methods. We can observe that our GaussUnveil also achieves promising reconstruction
quality using fewer additional Gaussians.
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Figure 5: The qualitative comparison of reconstruction performance between Omni-Scene (Wei
et al., 2025), pixel-based method, and our GaussUnveil (better viewed when zoomed in). We render
six views to cover the full 360° panorama, ensuring approximately 15% overlap between adjacent
viewpoints. The red boxes indicate the overlapping regions across different views.
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