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Subject Motion Generated Videos

“A corgi is surfing on a surfboard, cherry blossoms sway in the breeze”

A fish is swimming underwater

“A red toy is dancing in the room”

“A plush toy sloth is walking on the beach”

“A cat is eating pizza”

Figure 1: Customized video generation results of DreamCustomizer. Our method precisely
generates customized subjects at specified positions without fine-tuning at inference time.

ABSTRACT

Recent advances in customized video generation have enabled users to create
videos tailored to both specific subjects and motion trajectories. However, existing
methods often require complicated test-time fine-tuning and struggle with balanc-
ing subject learning and motion control, limiting their real-world applications. In
this paper, we present DreamCustomizer, a zero-shot video customization frame-
work capable of generating videos with a specific subject and motion trajectory,
guided by a single image and a bounding box sequence, respectively, and without
the need for test-time fine-tuning. Specifically, we introduce reference attention,
which leverages the model’s inherent capabilities for subject learning, and devise
a mask-guided motion module to achieve precise motion control by fully utiliz-
ing the robust motion signal of box masks derived from bounding boxes. While
these two components achieve their intended functions, we empirically observe
that motion control tends to dominate over subject learning. To address this, we
propose two key designs: 1) the masked reference attention, which integrates a
blended latent mask modeling scheme into reference attention to enhance subject
representations at the desired positions, and 2) a reweighted diffusion loss, which
differentiates the contributions of regions inside and outside the bounding boxes to
ensure a balance between subject and motion control. Extensive experimental re-
sults on a newly curated dataset demonstrate that DreamCustomizer outperforms
state-of-the-art methods in both subject customization and motion control. The
dataset, code, and models will be made publicly available.

1 INTRODUCTION

Customized video generation (Molad et al., 2023; Zhao et al., 2023; Wei et al., 2024) has made
significant strides, largely driven by the remarkable advances in pre-trained text-to-video generation
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models (Ho et al., 2022b; Wang et al., 2023a). These innovations enable users to create videos with
specific subjects and precise motion trajectories (Wu et al., 2024b; Yang et al., 2024; Wang et al.,
2024e), thereby broadening the scope of real-world applications for video generation.

Pioneering research efforts have explored customized video generation (Chen et al., 2023b; Jeong
et al., 2024; Jiang et al., 2024; Wei et al., 2024), but they encounter significant limitations in: (1)
the lack of comprehensive control over subjects and motions in a zero-shot manner, and (2) the
conflict between subject learning and motion control. For instance, VideoBooth (Jiang et al., 2024)
employs a tuning-free framework to inject subject embeddings from image prompts for subject
customization, but it fails to control motion dynamics, leading to generated videos with minimal
or absent motion. In contrast, some fine-tuning-based approaches attempt to control subject and
motion simultaneously. For example, DreamVideo (Wei et al., 2024) trains two adapters separately
and combines them during inference, while MotionBooth (Wu et al., 2024a) trains a customized
model and manipulates attention maps to control motion during inference. However, an empirical
training-inference gap persists, preventing these methods from achieving a balance between subject
and motion learning. Therefore, simultaneously enhancing and balancing subject learning and
motion control in a zero-shot manner holds great potential for practical video customization.

To that end, we propose an innovative zero-shot video customization framework, DreamCus-
tomizer, which can generate videos with a specified subject and motion trajectory, derived from a
single image and a bounding box sequence, respectively, as illustrated in Fig. 1. DreamCustomizer
concurrently learns subject appearance and motion during training, allowing for harmonious subject
and motion control without additional fine-tuning or manipulation during inference. To effectively
inject detailed appearance information from a subject image, we introduce reference attention that
leverages multi-scale features extracted from the original video diffusion model. For motion con-
trol, we devise a mask-guided motion module comprised of a spatiotemporal encoder and a spatial
ControlNet (Zhang et al., 2023b), which adopts binary box masks derived from the bounding boxes
as the robust motion control signal, significantly improving control precision.

While these two components can achieve their intended functions of subject and motion control,
systematic experiments empirically reveal that motion control tends to dominate over subject learn-
ing, partially due to the simpler objective of generating subjects at specified positions, which com-
promises subject preservation quality. To mitigate this issue, we aim to strengthen the learning of
subjects with two new technical contributions: 1) the masked reference attention, which introduces a
blended latent mask modeling scheme into our reference attention to enhance subject identity repre-
sentations at desired positions by leveraging box masks; and 2) a reweighted diffusion loss function,
which differentiates the contributions of regions inside and outside the bounding boxes to ensure a
balance between subject and motion control.

To facilitate the zero-shot video customization task, we curate a new single-subject video dataset
with comprehensive annotations, comprising the caption and each frame’s subject mask and bound-
ing box. This dataset is not only larger but also considerably more diverse than previous video
customization datasets. Extensive experimental results on this dataset demonstrate that DreamCus-
tomizer outperforms state-of-the-art methods in both customization and control capabilities.

Contributions. The contributions of this work can be summarized as follows. 1) We propose
DreamCustomizer, the first tuning-free framework for zero-shot subject-driven video customization
with precise motion trajectory control, achieved through the devised reference attention and the
mask-guided motion module that uses binary box masks as motion control signals. 2) We identify
the problem of motion control dominance in DreamCustomizer, and address it by enhancing ref-
erence attention with blended masks (i.e., masked reference attention) and designing a reweighted
diffusion loss, effectively balancing subject learning and motion control. 3) We curate a large, com-
prehensive, and diverse video dataset to support the zero-shot video customization task. Extensive
experimental results demonstrate the superiority of DreamCustomizer over the existing state-of-the-
art video customization methods.

2 RELATED WORK

Text-to-video diffusion models. Diffusion models have made a significant breakthrough in the
generation of highly realistic samples from textual prompts (Ho et al., 2020; Rombach et al., 2022;
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Podell et al., 2023). Recent advancements in text-to-video generation have expanded upon these
models by incorporating temporal dynamics, enabling the production of high-quality and diverse
video content (He et al., 2022; Esser et al., 2023; An et al., 2023; Zhang et al., 2023a;c; Qing et al.,
2024; Wang et al., 2023c; 2024c; Singer et al., 2022; Ho et al., 2022a; Zhou et al., 2022; Wang
et al., 2023d; Yuan et al., 2024; Ma et al., 2024a; Gupta et al., 2023; Bar-Tal et al., 2024; Wang
et al., 2023b; Tu et al., 2024b; Xu et al., 2024a; Tu et al., 2024a; Xu et al., 2024b). VDM (Ho et al.,
2022b) first introduces diffusion models into video generation by modeling the video distribution
in pixel space. VLDM (Blattmann et al., 2023b) optimizes the diffusion process in the latent space
to mitigate computational demands. ModelScopeT2V (Wang et al., 2023a) and VideoCrafter (Chen
et al., 2023a; 2024b) incorporate spatiotemporal blocks for text-to-video generation. AnimateD-
iff (Guo et al., 2023b) trains a motion module appended to the pre-trained text-to-image mod-
els. SVD (Blattmann et al., 2023a) enhances the scalability of the latent video diffusion model.
VideoPoet (Kondratyuk et al., 2023) investigates autoregressive video generation. Sora (Brooks
et al., 2024) significantly improves the quality and stability of video generation. These advanced
video generative models pave the way for customized video generation.

Customized generation. Customized image generation has garnered growing attention since it
accommodates user preferences (Chen et al., 2023c; Han et al., 2023; Chen et al., 2024d; Wei et al.,
2023; Shi et al., 2024; Li et al., 2024a; Ruiz et al., 2024; Hua et al., 2023; Han et al., 2024; Gu et al.,
2024; Liu et al., 2023b; Xiao et al., 2023; Kumari et al., 2023; Liu et al., 2023c; Chen et al., 2023d).
The representative works are Textual Inversion (Gal et al., 2022) and DreamBooth (Ruiz et al., 2023),
where Textual Inversion optimizes text embeddings and DreamBooth fine-tunes an image diffusion
model. Building upon these methods, many works explore customized video generation using a
few subject or facial images (Molad et al., 2023; Chefer et al., 2024; Ma et al., 2024b; He et al.,
2024). Furthermore, several works study the more challenging multi-subject video customization
task (Chen et al., 2023b; Wang et al., 2024d; Chen et al., 2024c). Considering that spatial content
and temporal dynamics are two indispensable components of videos, DreamVideo (Wei et al., 2024)
customizes both subject and motion by training two adapters and combining them at inference time,
while MotionBooth (Wu et al., 2024a) fully fine-tunes a video diffusion model to learn subjects
during training and edits the attention maps to control motion during inference. However, both
methods require complicated test-time fine-tuning and struggle with balancing subject and motion
control due to an empirical training-inference gap. In contrast, our DreamCustomizer generates
videos with harmonious subject and motion control in a tuning-free manner.

Motion control in video generation. Recent advancements in controllable video generation pri-
marily focus on enhancing motion dynamics through additional control signals. Many motion cus-
tomization methods learn motion patterns from intuitive reference videos (Zhao et al., 2023; Jeong
et al., 2024; Ren et al., 2024; Yatim et al., 2024; Wang et al., 2024b; Wu et al., 2023), but they
often require complicated fine-tuning for each motion at inference time. To circumvent the need for
fine-tuning, some training-free methods manipulate attention map values through bounding boxes to
control the object movements (Jain et al., 2024; Yang et al., 2024; Ma et al., 2023; Chen et al., 2024a;
Qiu et al., 2024), However, these methods fail to achieve precise motion control, resulting in incon-
sistent frames. In contrast, several works use trajectories or coordinates as additional conditions to
train a motion control module (Yin et al., 2023; Wang et al., 2024e;a; Li et al., 2024b). Nonetheless,
they tend to achieve general motion control but fail to incorporate user-specified object appearances,
which may limit their practical applicability. In this work, we propose masked reference attention
and devise a mask-guided motion module to control the subject and motion simultaneously, effec-
tively mitigating the control conflict using a devised reweighted diffusion loss.

3 PRELIMINARY

Video diffusion models. Video diffusion models (VDMs) (Ho et al., 2022b) aim to generate video
data using diffusion processes (Ho et al., 2020). Most VDMs (Blattmann et al., 2023b; Wang et al.,
2023a;b) perform the diffusion processes in a latent space using a VAE (Kingma & Welling, 2013)
encoder E to map a video x0 ∈ RF×H×W×3 into its latent code z0 = E(x0), z0 ∈ RF×h×w×4, and
a decoder D to reconstruct the video x̂0 = D(z0). The forward process gradually adds noise to the
latent code z0 according to a predetermined schedule {βt}Tt=1 with T steps: zt =

√
ᾱtz+

√
1− ᾱtϵ,

where ᾱt =
∏t

s=1 αs, αt = 1− βt, and ϵ ∈ N (0, 1) is random noise from a Gaussian distribution.
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Z0
s

Figure 2: Overall framework of DreamCustomizer. During training, a random video frame is
segmented to obtain the subject image with a blank background. The bounding boxes extracted
from the training video are converted into binary box masks. Then, the subject image is treated as
a single-frame video and processed in parallel with the video by masked reference attention that
incorporates blended masks to learn the subject appearance. Meanwhile, box masks are fed into a
motion module that includes a spatiotemporal encoder and a ControlNet for motion control. Both
the masked reference attention and motion module are trained using a reweighted diffusion loss.

The reverse process adopts a network ϵθ to predict the added noise ϵ at each timestep t based on an
additional condition c. The training objective can be simplified as a reconstruction loss:

L(θ) = Ez,ϵ,c,t

[
∥ϵ− ϵθ(zt, c, t)∥22

]
. (1)

Attention mechanism in VDMs. In most text-to-video VDMs, self-attention serves to capture
contextual features, while cross-attention facilitates the integration of additional conditions, such
as textual features ctxt. Given the features Z from the latent code, the standard formulation of the
attention mechanism can be expressed as:

Z′ = Attention(Q,K,V) = Softmax

(
QK⊤
√
d

)
V, (2)

where Z′ is the output attention features. Q, K, and V are the query, key, and value matrices,
respectively. For self-attention, Q = ZWQ, K = ZWK , V = ZWV , and for cross-attention,
Q = ZWQ, K = cWK , V = cWV . Here, WQ, WK , WV are the corresponding projection
matrices. d is the dimension of key features.

4 METHODOLOGY

Given a single subject image that defines the subject’s appearance and a bounding box sequence that
delineates the motion trajectory, our DreamCustomizer aims to generate videos featuring specified
subjects and motion trajectories without fine-tuning or manipulation at inference time, as illustrated
in Fig. 2. To learn the subject appearance, we leverage the model’s inherent capabilities and intro-
duce reference attention in Sec. 4.1. For motion control, we propose using box masks as the motion
control signal and devise a mask-guided motion module in Sec. 4.2. Furthermore, to balance subject
learning and motion control, we enhance reference attention with blended masks (i.e., masked ref-
erence attention) and design a reweighted diffusion loss in Sec. 4.3. Finally, we detail the training,
inference, and dataset construction processes in Sec. 4.4.
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4.1 SUBJECT LEARNING VIA REFERENCE ATTENTION

For subject learning, we focus on using a single image to capture the appearance details, which is
challenging but facilitates real-world applications. Given a single input image, we first segment it
to obtain the subject image cimg with a blank background, effectively preserving distinct identity
features while minimizing background interference (Chen et al., 2024e; Jiang et al., 2024).

To capture the intricate details of the subject’s appearance, previous works usually employ an extra
image encoder (e.g., CLIP (Ye et al., 2023; Jiang et al., 2024), ControlNet-like encoder (Chen et al.,
2023d), ReferenceNet (Hu, 2024)) to extract image features. However, incorporating additional
networks tends to escalate both parameter counts and training costs. In this work, we identify that
the video diffusion model itself is capable of extracting appearance features, thus improving training
efficiency without requiring auxiliary modules.

To that end, we introduce reference attention, which leverages the model’s inherent capabilities to
extract multi-scale subject features. Specifically, we treat the subject image as a single-frame video
and input it into the original video diffusion model to obtain subject attention features Z′

s, which is
the output of self-attention or cross-attention according to Eq. (2). Our reference attention infuses the
subject attention features into video attention features Z′ by implementing a residual cross-attention:

Z′′ = Z′ +Attention(Q′,K′,V′), (3)

where Q′ = Z′W′
Q, K′ = Z′

sW
′
K , V′ = Z′

sW
′
V . W′

Q, W′
K , and W′

V are the projection matrices
of reference attention and are initialized randomly. In addition, we initialize the weights of the output
linear layer in reference attention with zeros to protect the pre-trained model from being damaged
at the beginning of training (Zhang et al., 2023b; Wei et al., 2024).

4.2 MOTION CONTROL VIA MASK-GUIDED MOTION MODULE

To facilitate motion control, we utilize bounding boxes as user inputs to delineate subject tra-
jectories, offering both flexibility and convenience. We define an input sequence of bounding
boxes as B = [B1,B2, . . . ,BF ], where each box Bi includes coordinates of its top-left and
bottom-right corners. Then, we convert these bounding boxes into a binary box mask sequence
M = [M1,M2, . . . ,MF ], where each mask Mi ∈ RH×W has pixel values of 1 for the fore-
ground subject and 0 for the background.

The final motion control signal is represented as cm = 1 − M to align with the subject image
containing a blank background. Compared to directly using trajectories for training in previous
work (Wang et al., 2024e), the box masks provide enhanced control signals and constrain subjects
within the bounding box, improving training efficiency and motion control precision.

To capture motion information from the box mask sequence, we devise a mask-guided motion mod-
ule, which employs a spatiotemporal encoder and a spatial ControlNet (Zhang et al., 2023b), as
depicted in Fig. 2. While previous research (Guo et al., 2023a) demonstrates the efficacy of a 3D
ControlNet for extracting control information from sequential inputs, its high training costs present
potential drawbacks in practical applications. Given the straightforward temporal relationships in
the box mask sequence, we establish that a lightweight spatiotemporal encoder is adequate for ex-
tracting the necessary temporal information. Thus, we only employ a spatial ControlNet appended to
this encoder to further enhance control precision. The spatiotemporal encoder consists of repeated
2D convolutions and non-linear layers, followed by two temporal attention layers and an output
convolutional layer, as shown in the right side of Fig. 2. In addition, the spatial ControlNet extracts
multi-scale features and adds them to the input of convolutional layers of the VDM’s decoder blocks.

4.3 BALANCING SUBJECT LEARNING AND MOTION CONTROL

While the above two components achieve their intended functions, we empirically observe that
motion control tends to dominate over subject learning, which compromises identity preservation
quality. As shown in Fig. 3(b), the model learns motion control using a few steps, partially due to
the simpler objective of generating subjects at specified positions. In Fig. 3(c), joint training of the
reference attention and motion module retains the dominance of motion control, even with extended
training steps, resulting in corrupted subject identity. In contrast, as shown in Fig. 3(d), our method
effectively balances subject learning and motion control by proposing the following two key designs.
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Masked reference attention. To enhance the subject identity representations at desired posi-
tions, we introduce blended latent mask modeling into our reference attention through binary
box masks. Specifically, we resize the binary box masks M into latent box masks M =
[M1,M2, . . . ,MF |Mi ∈ Rh×w] to match the size of attention features across different layers.

Ref Attn w/
Hard Mask

w/o Motion 
Enconder

Ref Attn w/o
Mask

Subject
+

Motion

w/o Reweighted 
Diffusion Loss

VideoCustomizer
(ours)

2 4 8 13 

“A dog is running on 
the beach”+

(b) Train 6k steps (simple joint training)

(d) Train 15k steps (ours)

(a) Input control signals

(c) Train 20k steps (simple joint training)

1 12 

Figure 3: Illustration of motion control domi-
nation in DreamCustomizer. As seen in (b) and
(c), motion control tends to dominate over subject
learning during training, causing the degradation
of subject identity. In (d), our method ensures a
balance between subject and motion control.

Then, we assign a relatively lower weight to the
background (i.e., regions outside the bounding
boxes) in M to obtain blended masks M̂, forc-
ing the model to focus more on the subject and
less on the background at the feature level:

M̂ = M+ λM(1−M), (4)

where λM is the weight of background in mask.
Compared to using binary masks M, which ig-
nore background information, blended masks
M̂ can enhance the subject representations at
desired positions while mitigating the back-
ground distortion. Finally, our masked refer-
ence attention can be formulated as:

Z′′
M = Z′ + M̂ ·Attention(Q′,K′,V′), (5)

where · denotes the element-wise multiplication operation. For subject learning, we freeze all orig-
inal UNet parameters and only train the masked reference attentions, which are appended to both
self-attention and cross-attention within each spatial transformer block, as shown in Fig. 2.

Reweighted diffusion loss. To balance subject learning and motion control, we further propose
a reweighted diffusion loss that differentiates the contributions of regions inside and outside the
bounding boxes to the standard diffusion loss. Specifically, we amplify the contributions within
bounding boxes to enhance subject learning while preserving the original diffusion loss for regions
outside these boxes. Our designed reweighted diffusion loss can be defined as:

L(θ) = Ez,ϵ,c,t

(λLM︸ ︷︷ ︸
inside

+(1−M)︸ ︷︷ ︸
outside

)
·
∥∥∥ϵ− ϵθ(zt, ctxt, cimg, cm, t)

∥∥∥2
2

 , (6)

where λL > 1 is the loss weight to adjust the subject identity enhancement.

4.4 TRAINING, INFERENCE, AND DATASET CONSTRUCTION

Training. We randomly select a frame from the training video and segment it to obtain the subject
image with a blank background, which alleviates overfitting compared to using the first frame as
in (Jiang et al., 2024). We also extract the subject’s bounding boxes from all frames of the training
video and convert them into box masks as the motion control signal. During training, we freeze
the original 3D UNet parameters and jointly train the newly added masked reference attention, spa-
tiotemporal encoder, and ControlNet according to Eq. (6).

Inference. Our DreamCustomizer is tuning-free and does not require attention map manipulations
during inference. Users only need to provide a subject image and a bounding box sequence to flexi-
bly generate customized videos featuring the specified subject and motion trajectory. The bounding
boxes can be derived from various types of signals, including boxes of the first and last frames, a
bounding box of the first frame accompanied by a motion trajectory, or a reference video. These
signals are then converted into binary box masks for input.

Dataset Construction. To facilitate the zero-shot video customization task with subject and mo-
tion control, we curate a single-subject video dataset containing both video masks and bounding
boxes from the WebVid-10M (Bain et al., 2021) dataset and our internal data. Annotations are gener-
ated using the Grounding DINO (Liu et al., 2023a), SAM (Kirillov et al., 2023), and DEVA (Cheng
et al., 2023) models. The comparison of our dataset and previous datasets is presented in Tab. 1.
Currently, we have processed 261,118 videos for training, and more details are in Appendix A.1.
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Number of
Videos

Number of
Object Classes Caption Mask of

All Frames
Box of

All Frames
WebVid-10M (Bain et al., 2021) ∼10M - ✓ ✗ ✗
UCF-101 (Soomro et al., 2012) 13,320 - ✗ ✗ ✗
DAVIS (Pont-Tuset et al., 2017) 50 50 ✗ ✓ ✓
GOT-10k (Huang et al., 2019) 9,695 563 ✗ ✗ ✓
VideoBooth Dataset (Jiang et al., 2024) 48,724 9 ✓ ✗ ✗

DreamCustomizer Dataset 261,118 8,197 ✓ ✓ ✓

Table 1: Comparsion of our dataset with related video datasets. Our dataset contains compre-
hensive annotations, and is larger and more diverse than previous video customization datasets.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Datasets. We train DreamCustomizer on our curated video dataset and evaluate it through a col-
lected test set containing 50 subjects, 36 bounding boxes, and 60 text prompt templates. The subject
images are sourced from previous papers (Ruiz et al., 2023; Kumari et al., 2023) and the Internet,
while bounding boxes are obtained from the videos in DAVIS dataset (Pont-Tuset et al., 2017) and
boxes used in FreeTraj (Qiu et al., 2024); see Appendix A.2 for more details on experimental setting.

Implementation details. We jointly train all modules using the AdamW (Loshchilov, 2017) opti-
mizer with a learning rate of 1e-4. The weight decay is set to 0, and the training iteration is 30,000.
We set blended mask weight λM to 0.75 and reweighted diffusion loss weight λL to 2 for train-
ing. The spatial resolution of the videos is 448×256, and the number of video frames F is 16. We
set the total batch size to 144, and adopt ModelScopeT2V (Wang et al., 2023a) as the base model.
During inference, we employ 50-step DDIM (Song et al., 2020) and classifier-free guidance (Ho &
Salimans, 2022) with guidance scale 9.0 to generate 8-fps videos.

Baselines. We compare our method with DreamVideo (Wei et al., 2024) and MotionBooth (Wu
et al., 2024a) for both subject customization and motion control. We also compare with DreamVideo
and VideoBooth (Jiang et al., 2024) for independent subject customization, while Peekaboo (Jain
et al., 2024), Direct-a-Video (Yang et al., 2024), and MotionCtrl (Wang et al., 2024e) for motion
trajectory control. More implementation details of all methods are provided in Appendix A.2.

Evaluation metrics. We evaluate our method using 9 metrics, focusing on three aspects: overall
consistency, subject fidelity, and motion control precision. 1) For overall consistency, we employ
CLIP image-text similarity (CLIP-T), Temporal Consistency (T. Cons.) (Esser et al., 2023), and Dy-
namic Degree (DD) (Huang et al., 2024) metrics. DD uses optical flow to measure motion dynamics.
2) For subject fidelity, we introduce four metrics: CLIP image similarity (CLIP-I), DINO image sim-
ilarity (DINO-I), region CLIP-I (R-CLIP), and region DINO-I (R-DINO) metrics (Ruiz et al., 2023;
Wei et al., 2024; Wu et al., 2024a). R-CLIP and R-DINO compute the similarities between the
subject image and frame regions defined by bounding boxes, following (Wu et al., 2024a). 3) For
motion control precision, we use the Mean Intersection of Union (mIoU) and Centroid Distance
(CD) metrics (Qiu et al., 2024). CD computes the normalized distance between the centroid of the
generated subject and target bounding boxes. We use Grounding-DINO (Liu et al., 2023a) to predict
the bounding boxes of generated videos. More details of metrics are reported in Appendix A.2.

5.2 MAIN RESULTS

Joint subject customization and motion control. We conduct qualitative comparison between
our method and baselines for generating videos featuring both specified subjects and motion trajec-
tories, as depicted in Fig. 4. We observe that DreamVideo and MotionBooth struggle with balancing
subject preservation and motion control, especially when trained on a single subject image. We
argue that the imbalanced control strengths of subject and motion hinder their performance, lead-
ing to trade-offs where enhancing one aspect degrades another. In contrast, our DreamCustomizer
harmoniously generates customized videos with desired subject appearances and motion movements
under various contexts. Furthermore, our method effectively constrains subjects within the bounding
boxes, better aligning with user preferences and improving real-world applicability.
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MotionBooth

DreamCustomizer

DreamVideo

Subject
+

Motion

“A plush toy wolf is walking in the forest”

+

“A cat is skateboarding on the road”

4 9 16 

+

DreamCustomizer

VideoBooth

Subject “A duck toy is moving on the road”+ +

DreamVideo

“A fish is swimming”

Direct-a-Video

MotionCtrl

Motion
“A dog is walking 

among the flowers”+
“A cat is surfing 
on a surfboard”+

DreamCustomizer

1 8 14 2 7 14 

Peekaboo

Figure 4: Qualitative comparison of joint subject customization and motion control. Dream-
Customizer generates videos with customized subjects and precise motion trajectory control, while
other methods suffer from the control conflict, especially when trained on a single subject image.

Method CLIP-T R-CLIP R-DINO CLIP-I DINO-I T. Cons. mIoU CD ↓
DreamVideo 0.289 0.682 0.244 0.692 0.386 0.966 0.169 0.196
MotionBooth 0.267 0.708 0.301 0.686 0.383 0.970 0.351 0.097

DreamCustomizer 0.303 0.751 0.392 0.694 0.411 0.968 0.670 0.048

Table 2: Quantitative comparison of joint subject customization and motion control.

The quantitative comparison results are presented in Tab. 2. Our DreamCustomizer consistently
surpasses all baseline methods in text alignment, subject fidelity, and motion control precision, while
achieving comparable Temporal Consistency. Notably, our approach significantly outperforms the
baselines in the mIoU and CD metrics, verifying our robust motion control capabilities. In contrast,
DreamVideo shows the second-best CLIP-I and DINO-I scores but inferior mIoU and CD, indicating
its strength in preserving subject identity despite limitations in motion movements. MotionBooth
exhibits the lowest CLIP-T due to the fine-tuning of the whole model, but achieves better mIoU and
CD metrics than DreamVideo, suggesting that using explicit motion control signals (e.g., bounding
boxes) may be more effective than learning from the reference video.

Method CLIP-T CLIP-I DINO-I T. Cons. DD
DreamVideo 0.290 0.714 0.470 0.975 0.592
VideoBooth 0.274 0.724 0.459 0.970 0.780

DreamCustomizer 0.297 0.721 0.472 0.972 0.952

Table 3: Quantitative comparison of subject
customization.

Subject customization. We evaluate the in-
dependent subject customization capabilities.
Fig. 5 presents qualitative comparison results.
We observe that VideoBooth exhibits limited
generalization for subjects not included in its
training data, while DreamVideo fails to cap-
ture appearance details when trained on a single image. In contrast, when trained on the same
dataset as VideoBooth, our DreamCustomizer with reference attention and reweighted diffusion
loss generates videos with desired subjects while conforming to textual prompts.

Tab. 3 shows the quantitative comparison results. While DreamCustomizer remains comparable
CLIP-I and Temporal Consistency, it achieves the highest CLIP-T, DINO-I, and Dynamic Degree,
verifying the superior of our method in text alignment, subject fidelity, and motion dynamics.

Method CLIP-T T. Cons. mIoU CD ↓
Peekaboo 0.318 0.968 0.322 0.117

Direct-a-Video 0.312 0.965 0.355 0.124
MotionCtrl 0.321 0.971 0.248 0.122

DreamCustomizer 0.322 0.969 0.752 0.039

Table 4: Quantitative comparison of motion
control.

Motion control. Besides subject customiza-
tion, we also evaluate the motion control capa-
bilities, as shown in Fig. 6. The results suggest
that all baselines struggle to accurately con-
trol subject movements as defined by bounding
boxes. Meanwhile, Direct-a-Video may gen-
erate videos with corrupted object appearances
due to its manipulation of attention map values.
In contrast, DreamCustomizer with only motion encoder achieves precise motion control and effec-
tively ensures subjects remain within the bounding boxes, demonstrating robust control capabilities.
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Figure 5: Qualitative comparison of subject customization. DreamCustomizer generates videos
with accurate subject appearance and enhanced motion dynamics, aligning with provided prompts.
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Figure 6: Qualitative comparison of motion control. Our DreamCustomizer achieves precise
motion trajectory control and effectively maintains subjects within the specified bounding boxes.

As shown in Tab. 4, our method, while exhibiting a slightly lower T. Cons. compared to MotionCtrl,
achieves the highest CLIP-T and substantially outperforms baselines in both mIoU and CD metrics.
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Figure 7: Human evaluation on joint subject cus-
tomization and motion control.

User study. We conduct user studies to fur-
ther evaluate our DreamCustomizer. We ask 15
annotators to rate 300 groups of videos gener-
ated by three methods. Each group contains
3 generated videos, a subject image, a textual
prompt, and corresponding bounding boxes.
We evaluate all methods with a majority vote
from four aspects: Text Alignment, Subject Fi-
delity, Motion Alignment, and Overall Quality.
Results in Fig. 7 indicate that our method is
most preferred by users across four aspects; see
Appendix A.4 for more details of user study.

5.3 ABLATION STUDIES

Effects of each component. We perform an ablation study on the effects of each component, as
shown in Fig. 8(a). We observe that without the mask mechanism or the reweighted diffusion loss,
the quality of subject identity degrades due to the dominance of motion control. While employing
binary masks in masked reference attention helps retain subject identity, it often results in a blurry
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Figure 8: Qualitative ablation studies on each component and blended mask weight.

CLIP-T R-CLIP R-DINO CLIP-I DINO-I T. Cons. mIoU CD ↓
Ref Attn w/o Mask (λM = 1) 0.301 0.744 0.370 0.682 0.375 0.963 0.601 0.055
Ref Attn w/ Binary Mask (λM = 0) 0.293 0.755 0.388 0.696 0.394 0.967 0.706 0.044
Ref Attn w/ Blended Mask (λM = 0.25) 0.299 0.748 0.379 0.685 0.395 0.964 0.693 0.041
Ref Attn w/ Blended Mask (λM = 0.5) 0.301 0.748 0.376 0.694 0.386 0.961 0.664 0.051
w/o Motion Encoder 0.302 0.731 0.325 0.690 0.389 0.963 0.587 0.062
w/o Reweighted Diffusion Loss 0.300 0.740 0.362 0.673 0.382 0.961 0.650 0.053
DreamCustomizer (λM = 0.75) 0.303 0.751 0.392 0.694 0.411 0.968 0.670 0.048

Table 5: Quantitative ablation studies on each component and blended mask weight.

background and low-quality video due to ignoring the background information in attention. Notably,
without the motion encoder, our masked reference attention still achieves rough trajectory control.

Quantitative results in Tab. 5 demonstrate that removing the mask mechanism, motion encoder, or
reweighted diffusion loss consistently degrades performance across all metrics. This confirms that
each component contributes to the overall performance; see Appendix A.3 for more ablation studies.

Effects of blended mask weight λM. To determine the optimal blended mask weight λM, we
vary its value and measure its impact. As shown in Fig. 8(b), using λM = 1 results in a degradation
of subject identity, while λM = 0 leads to blurred backgrounds. We also observe that increasing λM

can enhance video quality. To balance subject identity and video quality, we finalize on λM = 0.75.

Tab. 5 shows the quantitative results. λM = 0 causes the worst CLIP-T but the highest mIoU.
We argue that a smaller λM enhances positional information but suppresses background, resulting
in improved control precision but degraded video quality. Additionally, results indicate that using
blended masks consistently outperforms its absence in subject fidelity, underscoring its efficacy.

6 CONCLUSION

In this paper, we present DreamCustomizer, a novel zero-shot video customization framework that
generates videos with specified subjects and motion trajectories. We introduce reference attention
for subject learning and devise a mask-guided motion module for motion control. To address the
problem of motion control dominance in DreamCustomizer, we introduce blended masks into ref-
erence attention and design a reweighted diffusion loss, effectively balancing subject learning and
motion control. Extensive experimental results on our newly curated video dataset demonstrate the
superiority of DreamCustomizer in both subject customization and motion trajectory control.
Limitations. Although our method can customize a single subject with a single trajectory, it fails
to generate videos containing multiple subjects and trajectories. One solution is to construct a more
diverse dataset and train a general model. We provide more discussions in Appendix A.5.
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7 ETHICS STATEMENT

Unlike previous video customization methods that require complicated test-time fine-tuning, our
approach enables users to flexibly create customized videos featuring specified subjects and mo-
tion trajectories, without the need for fine-tuning or manipulation during inference. This tuning-
free paradigm significantly enhances the real-world applications of customized video generation.
Nonetheless, our method still encounters challenges common to generative models, such as the po-
tential for creating fake data. Implementing robust video forgery detection techniques may address
these concerns. In addition, we commit to adhering to ethical guidelines when releasing our dataset.

8 REPRODUCIBILITY STATEMENT

We make the following efforts to ensure the reproducibility of DreamCustomizer: (1) Our dataset,
code, and trained model weights will be made publicly available. (2) We provide the complete
descriptions of the dataset construction pipeline in Appendix A.1. (3) We provide implementation
details in Sec. 5.1 and Appendix A.2. (4) We present the details of the human evaluation setups in
Appendix A.4.
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A APPENDIX

A.1 DATASET CONSTRUCTION

To facilitate the task of zero-shot video customization with subject and motion control, we curate
a single-subject video dataset that encompasses video captions, video masks, and bounding boxes
from the WebVid-10M (Bain et al., 2021) dataset and our internal data. The WebVid-10M dataset
comprises 10 million video-text data pairs and is widely used for text-to-video generation.

We obtain comprehensive annotations by segmenting the subjects of all frames for each video using
the Grounding DINO (Liu et al., 2023a), SAM (Kirillov et al., 2023), and DEVA (Cheng et al., 2023)
models, as shown in Fig. 9. Specifically, we first extract noun chunks as the initial subject word from
the video caption using the spaCy and NLTK library. For videos that lack the caption, we use a pre-
trained Visual Language Model (Lin et al., 2024) to get its textual description. Then, we use the
NLTK library to perform lemmatization and filter out non-words while asking some annotators to
refine the subject words to better align with the video content. Subsequently, we generate the first
frame’s bounding boxes using Grounding DINO based on the subject word and feed the bounding
boxes into SAM to get the subject mask. We then utilize the object tracker DEVA to populate the
mask across all frames of the video, thereby acquiring bounding boxes and masks for all frames.

Since we focus on single-subject video customization, we filter out videos that contain multiple
subjects for the subject word by the number of bounding boxes in the first frame. We also filter out
subjects that are either too small or too large (i.e., those nearly matching the size of the entire video)
by assessing the ratio of the width, height, and area of the subject’s bounding box to the entire video.
To improve the annotation precision, we set a relatively high threshold to filter out detections that
the model is uncertain about. Furthermore, we observe a considerable proportion of WebVid-10M
videos lacking substantial subject movements. To ensure the motion dynamic of our dataset, we
evaluate each video in the WebVid-10M dataset by comparing their bounding boxes of the first and
last frames, retaining those clips where sufficient differences exist between these frames.

After data filtering, we obtain 261,118 video data pairs and 8,197 subject classes in the current
version. The detailed comparison of our dataset with related video datasets is summarized in Tab. 1.
We will further process the WebVid-10M dataset and incorporate more filtered data into our dataset.

A.2 EXPERIMENTAL DETAILS

Evaluation setting. To ensure the diversity of the evaluation, each subject in the test set is paired
with every bounding box (BBox) during evaluation, and vice versa. This results in a total number
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Figure 9: Pipeline of dataset construction.

of subject-BBox pairs equal to the product of the number of subjects and bounding boxes, which
can fully validate the effectiveness and generalization of our method against baselines. For joint
subject customization and motion control, since DreamVideo (Wei et al., 2024) requires reference
videos to learn motion patterns and 8 boxes from FreeTraj (Qiu et al., 2024) lack corresponding
videos, we solely use 28 bounding boxes from DAVIS videos and 50 subject images, resulting in
50× 28 = 1400 subject-BBox pairs for joint subject customization and motion control. We use all
50 subjects for independent subject customization and all 36 boxes for independent motion control
evaluation. For used textual prompts, we design a total of 60 prompt templates, such as “a { } is
running on the grass.” For a comprehensive assessment, each subject-BBox pair is matched with a
randomly selected prompt by replacing “{ }” with the corresponding subject class word.

Baselines. Since ModelScopeT2V (Wang et al., 2023a) generates videos at a resolution of
256×256 and exhibits relatively low quality, we adopt ZeroScope, which is further trained on
ModelScopeT2V with additional data to produce relatively high-quality videos at a resolution of
576×320, as the base model for all baselines except VideoBooth (Jiang et al., 2024) and MotionC-
trl (Wang et al., 2024e), which utilize their collected datasets to train their own models. We follow
the default hyperparameter settings from baseline papers for all comparison experiments.

For the task of simultaneously controlling subject appearances and motions, there are currently two
methods for us to compare: DreamVideo (Wei et al., 2024) and MotionBooth (Wu et al., 2024a),
both requiring fine-tuning at inference time. Since DreamVideo takes reference videos instead of
bounding boxes as motion control signals, we use the video corresponding to the bounding boxes
from the DAVIS (Pont-Tuset et al., 2017) dataset for training DreamVideo’s motion adapter.

In addition, we evaluate the performance of independent subject customization or motion control.
For subject customization, we compare our method to DreamVideo and VideoBooth. Since Video-
Booth is also a tuning-free framework, we train our DreamCustomizer without the motion encoder
and blended mask mechanism, using the same dataset as VideoBooth for a fair comparison. For mo-
tion control, we compare our approach with Peekaboo (Jain et al., 2024), Direct-a-Video Yang et al.
(2024) and MotionCtrl (Wang et al., 2024e). Both Peekaboo and Direct-a-Video are training-free
methods, while MotionCtrl samples 243,000 videos from the WebVid dataset to train its object mo-
tion control module. Since MotionCtrl has not yet open-sourced its dataset, we randomly sampled
the same number of WebVid videos from our constructed dataset during training for a fair compari-
son. Here, we only train the motion encoder in our DreamCustomizer to enable motion control.

Evaluation metrics. We detail the use of 9 metrics mentioned in the main paper as follows: 1)
For overall consistency, we employ CLIP image-text similarity (CLIP-T), Temporal Consistency (T.
Cons.) (Esser et al., 2023), and Dynamic Degree (DD) (Huang et al., 2024) metrics. CLIP-T cal-
culates the average cosine similarity between CLIP (Radford et al., 2021) image embeddings of all
generated frames and their text embedding. T. Cons. computes the average cosine similarity across
all pairs of consecutive generated frames. DD uses optical flow to measure the motion intensity, fol-
lowing VBench (Huang et al., 2024). 2) For subject fidelity, we introduce four metrics: CLIP image
similarity (CLIP-I), DINO image similarity (DINO-I), region CLIP-I (R-CLIP), and region DINO-I
(R-DINO) metrics (Ruiz et al., 2023; Wei et al., 2024; Wu et al., 2024a). CLIP-I and DINO-I use
the CLIP model and ViTS/16 DINO Caron et al. (2021) model to compute the average cosine simi-
larities between the subject image and generated frames, respectively. Furthermore, since we focus
on subjects appearing in desired positions, we adopt R-CLIP and R-DINO metrics to evaluate the
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region subject fidelity, following (Wu et al., 2024a). R-CLIP and R-DINO compute the similarities
between the subject image and frame regions defined by bounding boxes. 3) For motion control
precision, we use the Mean Intersection of Union (mIoU) and Centroid Distance (CD) metrics (Qiu
et al., 2024). mIoU calculates the average overlap between predicted and ground truth bounding
boxes. CD computes the normalized distance between the centroid of the generated subject and
target bounding boxes.

A.3 MORE ABLATION STUDIES

Effects of reweighted diffusion loss weight λL. To evaluate the effects of reweighted diffusion
loss weight on performance, we test various values of λL, as summarized in Tab. 6. Our results
indicate that without using reweighted diffusion loss (i.e., λL=1) results in the poorest performance
across most metrics. Increasing λL to 1.5 or 2 yields improvements in all metrics, confirming
that enhancing the loss weight of regions inside bounding boxes during training strengthens subject
identity. On the other hand, setting λL too high (e.g., λL = 4) does not improve subject fidelity
metrics but negatively affects motion control metrics such as mIoU and CD. Therefore, we select
λL = 2 for our training.

λL CLIP-T R-CLIP R-DINO CLIP-I DINO-I T. Cons. mIoU CD ↓
1 0.300 0.740 0.362 0.673 0.382 0.961 0.650 0.053

1.5 0.302 0.745 0.370 0.687 0.385 0.965 0.676 0.050
2 0.303 0.751 0.392 0.694 0.411 0.968 0.670 0.048
4 0.298 0.750 0.389 0.693 0.399 0.964 0.647 0.056

Table 6: Ablation study on reweighted diffusion loss weight λL.

A.4 MORE RESULTS

Details about the user study. We conduct a user study involving 20 subjects and 15 motion tra-
jectories, generating 300 videos per method using randomly selected textual prompts. Participants
are presented with four sets of questions for each of the three anonymous methods, paired with one
reference image and one bounding box sequence indicating motion trajectory. Given the three gen-
erated videos in each group, we ask each participant the following questions: (1) Text Alignment:
“Which video better matches the text description?”; (2) Subject Fidelity: “Which video’s subject is
more similar to the target subject?”; (3) Motion Alignment: “Which video’s subject movement is
more consistent with the target trajectory?”; and (4) Overall Quality: “Which video exhibits better
quality and minimal flicker?”. Results of the user study are illustrated in Fig. 7.

More qualitative results. We showcase more results of joint subject customization and motion
control in Fig. 11, providing further evidence of the superiority of our DreamCustomizer.

Results on Flow Error metric. To further evaluate the motion control performance, we adopt the
Flow Error metric, used by Direct-a-Video, to independently measure the accuracy of subject mo-
tion. Specifically, following Direct-a-Video, we compute the Flow Error by (i) calculating frame-
wise optical flows for both the generated video and the ground truth video (i.e., the video corre-
sponding to the bounding boxes), (ii) extracting optical flows within the bounding box areas for
both videos and (iii) computing the average endpoint error between them. Here, we employ Vide-
oFlow (Shi et al., 2023) to extract optical flow maps. The results are shown in Tab. 7. Our method
achieves the best Flow Error, further demonstrating the effectiveness of our motion trajectory con-
trol.

DreamVideo MotionBooth DreamCustomizer
Flow Error ↓ 3.717 3.710 3.158

Table 7: Quantitative comparison on the Flow Error metric.

Better qualitative results based on VideoCrafter2. To further validate the effectiveness of our
method and generate more high-quality videos, we retrain our DreamCustomizer on a more powerful
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video base model, VideoCrafter2 (Chen et al., 2024b). The generated video resolution is 512× 320
with a fps 8. The frame number is 16. The training setting is the same as our default setting of
DreamCustomizer. For inference, we set classifier-free guidance as 12. The fps condition is set to
4. The other inference setting is the same as our default setting.

As illustrated in Fig. 12, the additional results indicate that replacing the backbone with
VideoCrafter2 significantly improves video quality, encompassing both aesthetics and clarity. Con-
sequently, this change enhances the transferability and generalization of our method across different
models. In fact, our DreamCustomizer represents a novel zero-shot video customization paradigm,
and we anticipate that it will function independently of specific foundational models. We also be-
lieve that our method could yield even better results when applied to more powerful models.

We present more visual results based on VideoCrafter2 in Fig. 13. We observe that the generated
videos exhibit higher quality and natural motion.

A.5 LIMITATIONS AND FUTURE WORKS

In addition to the limitations mentioned in Sec. 6, we also provide several failure cases in Fig. 10.
Since we freeze the original 3D UNet parameters during training, our approach is limited by the base
model’s inherent capabilities, and may fail to generate some rare motions that the subject is unlikely
to exhibit. For example, in Fig. 10(a), the basic model fails to generate a video like “a dog is playing
guitar on Mars”, causing our method to inherit this limitation. Employing more advanced T2V
models could mitigate this issue. Another limitation is that our method struggles with decoupling
camera and object motion control. As shown in Fig. 10(b), the model may generate videos with
moving cameras and static subjects. We propose two solutions to address this issue: (1) Utilize text
prompts to control a fixed camera movement, as shown in Fig. 14. Benefiting from the capabilities
of pre-trained models, we empirically observed that some prompts, such as ”Fixed camera view,”
can control the static camera movement and alleviate this problem. (2) Construct a dataset with a
decoupled camera and object motion using both automated and manual annotation techniques and
designing separate modules to control each aspect independently (Wang et al., 2024e; Yang et al.,
2024; Li et al., 2024b).

Future work will focus on overcoming these limitations by leveraging a more powerful base T2V
model and separating camera movement from our training dataset. We believe that our proposed
method could offer benefits for various real-world applications, including personalized filmmaking,
advertising creation, and personal blogging, and inspire future work in customized video generation,
such as exploring a unified module for controlling both subject appearance and motion.

“A dog is playing 
guitar on Mars”

Generated
Video
(ours)

Generated
Video

(base model)

(a) Failure case on hard motions guided by text

(b) Failure case on decoupling camera and motion control

“A plush toy 
tortoise is crawling 
on the beach”

Generated
Video

Input 
Signals

Input 
Signals

Figure 10: Failure cases. (a) Our method is limited by the base model’s inherent capabilities. (b)
Our method struggles to decouple the camera and motion control.
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“A fish is swimming underwater”

“A cat is skateboarding in the park”

Subject Motion Generated Videos

“A corgi is swimming”

“A cat is walking on Mars”

“A car is moving on the road”

“A cartoon is walking on the snow”

“A dog is running on the snow”

“A cat is walking under Eiffel Tower”

“A dog is running on the grass”

“A fish is swimming underwater”

Figure 11: More qualitative results of DreamCustomizer.Zoom-in for better view.
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“A corgi is surfing on a surfboard, 
cherry blossoms sway in the breeze”

ModelScopeT2V VideoCrafter2Subject + Motion

“A dog is walking among the flowers”

Figure 12: Video quality comparison between results based on ModelScopeT2V and
VideoCrafter2. Using a more powerful video base model could significantly enhance the gener-
ated video quality of our DreamCustomizer.
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Subject Motion DreamCustomizer based on VideoCrafter2

“A panda is dancing a funny dance on the flowers”

“A corgi is swimming”

“A dog is walking on the Great Wall”

“A cat is walking on the sunlit meadow”

“A dog is running on the beach”

Figure 13: More qualitative results based on VideoCrafter2.

Subject Motion

“A dog is running on the Great Wall. 
Fixed camera view”

“A dog is running on the Great Wall”

Figure 14: One solution to mitigate the problem of coupling camera movement and subject motion
is to utilize textual prompts like “Fixed camera view.”
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