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Abstract
Few-shot named entity recognition can identify001
new types of named entities based on a few002
labeled examples. Previous methods employ-003
ing token-level or span-level metric learning004
suffer from the computational burden and a005
large number of negative sample spans. In this006
paper, we propose the Hybrid Multi-stage De-007
coding for Few-shot NER with Entity-aware008
Contrastive Learning (MsFNER). Specifically,009
we first detect named entities without type and010
then classify entity types by the entity classi-011
fication module. We divide MsFNER into 3012
stages: training stage, finetuning stage, and in-013
ference stage. In the training stage, we train014
the entity-span detection model and the entity015
classification model separately on the source016
domain, where we create a contrastive learn-017
ing module to enhance entity representations018
for entity classification. During finetuning, we019
finetune the model on the support dataset of020
target domain. In the inference stage, we re-021
place the contrastive learning module with a022
KNN module and the final entity type infer-023
ence is jointly determined by KNN and entity024
classification module. We conduct experiments025
on the open FewNERD dataset and the results026
demonstrate the advance of MsFNER.027

1 Introduction028

Named Entity Recognition (NER) is a fundamen-029

tal task in Natural Language Processing (NLP),030

involving the identification and categorization of031

text spans into predefined classes such as people,032

organizations, and locations (Yadav and Bethard,033

2018; Li et al., 2022). Although traditional deep034

neural network architectures have achieved success035

in the fully supervised named entity recognition036

(NER) task with sufficient training data (Lample037

et al., 2016; Ma and Hovy, 2016), they are difficult038

to adapt to the dynamic nature of real-world appli-039

cations, which require the model to quickly adjust040

itself to new data or environmental changes. In041

this case, researchers have proposed the few-shot042

named entity recognition (Few-shot NER) to ex- 043

plore entity recognition with limited labeled data 044

(Fritzler et al., 2019). Few-shot NER enables exist- 045

ing models to quickly transfer learned knowledge 046

and adapt to new domains or entity classes. 047

Specifically, the Few-shot NER model is first 048

trained on the source domain dataset Dsource = 049

(Ssource, Qsource) and then the trained model is 050

transferred to new target domain dataset Dtarget = 051

(Starget, Qtarget) to infer for Qtarget (Snell et al., 052

2017). We can consider a piece of data in Dsource 053

or Dtarget as a Few-shot NER task and formalize 054

it as T = (S,Q), where S represents the support 055

dataset comprising N entity types (N -way), and 056

each type is exemplified by K annotated exam- 057

ples (K-shot). The Q is the query dataset with the 058

same entity types as the support dataset. Few-shot 059

paradigm can offer a flexible and cost-effective so- 060

lution to the adaptability challenge, making it a 061

focal point of research to enhance the performance 062

of NER systems in scenarios with limited labeled 063

data or emerging entity types. 064

Currently, there are two mainstream researches 065

for Few-shot NER: token-level (Fritzler et al., 2019; 066

Hou et al., 2020; Yang and Katiyar, 2020; Das 067

et al., 2022) and span-level metric learning meth- 068

ods (Wang et al., 2022a; Yu et al., 2021; Ma et al., 069

2022). In token-level methods, each token is as- 070

signed an entity label based on its distances from 071

the prototypes of entity classes or the support to- 072

kens. However, these approaches often have high 073

computational costs and fail to maintain the seman- 074

tic integrity of entity tokens, leading to increased 075

susceptibility to interference from non-entity mark- 076

ers. On the other hand, although span-level meth- 077

ods can mitigate the partial issues associated with 078

token-level approaches by evaluating entities as 079

spans, all possible spans are enumerated would re- 080

sult in an N-square complexity and an increase in 081

noise from a large number of negative samples. 082

Considering the challenges, we hope to solve the 083
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following problems: 1) To improve the Few-shot084

NER identification efficiency, how can we encour-085

age the semantic divergence between entities and086

non-entities to determine effective entity spans? 2)087

To improve the entity span classification, how can088

we control and coordinate the semantic distance089

of different entity types to make the semantic rep-090

resentations of entities within the same types be091

proximate while those in disparate types be distant?092

In this paper, we propose a hybrid multi-stage de-093

coding approach for few-shot NER with contrastive094

learning (i.e., MsFNER). Specifically, MsFNER095

can be divided into three stages: training stage,096

finetuning stage, and inference stage. The training097

stage consists of two objectives: training the best098

entity span detection model and the best entity clas-099

sification model separately based on the supervised100

dataset of source domain. In this stage, we train101

entity detection model by employing the Condi-102

tional Random Field (CRF) layer, and train entity103

classification model through the entity-aware con-104

trastive learning and a softmax layer. In the finetun-105

ing stage, we finetune the trained entity detection106

model and entity classification model on the sup-107

port dataset of target domain. In the inference stage,108

we deploy the KNN and two finetuned models on109

the query dataset of target domain to predict entity110

spans and their types, and there are four phases for111

prediction. In the first phase, we build a key-value112

datastore Dknn with the support dataset Starget,113

where key is the entity representation and value is114

the corresponding label. Subsequently, we apply115

the entity detection model to get entity spans. With116

the entity detection model, we could reduce the im-117

pact of negative samples and reduce computational118

complexity. After that, we pass the representations119

of detected entity spans into the entity classification120

model to produce their predicted type distribution121

psoft while we also feed the representations into122

KNN to obtain the predicted results pknn based on123

the Dknn. In the final phase, we combine psoft and124

pknn to obtain final types for prediction entities.125

We summarize our contributions as follows:126

• We propose a hybrid multi-stage decoding for127

few-shot NER with entity-aware contrastive128

learning, in which we first detect entity spans129

to improve efficiency and then employ con-130

trastive learning or KNN to augment entity131

classification performance.132

• Experimental results show that our model133

achieves new SOTA performance compared134

with previous works. We also evaluate the 135

few-shot NER task on LLM ChatGPT and the 136

experimental results show that our model out- 137

performs ChatGPT in terms of performance 138

and efficiency. 139

2 Methodology 140

In this section, we will introduce the details of 141

MsFNER. The following content is arranged ac- 142

cording to the three stages of the model. 143

2.1 Training Stage 144

In this stage, we introduce the separate process of 145

training and finding the optimal entity span detec- 146

tion model and entity classification model.
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Figure 1: The schematic diagram of the training stage.
147

2.1.1 Entity Span Detection (ESD) 148

In this module, we regard the entity span detection 149

as a sequence labeling task with the BIOES tagging 150

scheme. The tag set L = {B, I, O, E, S} means that 151

we only care about the boundaries of the entities 152

without entity types. 153

For a given sentence x with n tokens 154

x=(x1, x2, ..., xn) in Dsource, we first encode it 155

using the pre-trained language model BERT. After 156

that, we can obtain the contextualized representa- 157

tions h = (h1, h2, ..., hn) for all tokens. 158

The sequence token representations are then sent 159

into a CRF to detect entity spans. Finally, the train- 160

ing loss in Dsource can be depicted as: 161

LESD = −
∑

logP (y|x) (1) 162
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163

P (y|x) =
∏|x|

i=1 φi(yi−1, yi, x)∑
y′
∏|x|

i=1 φi(y
′
i−1, y

′
i, x)

(2)164

where φi(yi−1, yi, x) and φi(y
′
i−1, y

′
i, x) are poten-165

tial functions.166

2.1.2 Entity Classification167

For an entity ek = (xf , ..., xf+l), where f is the168

first token index and f + l is the last token index169

in the sequence, we employ the max-pooling to get170

its representation when l >= 1 :171

êk = max(hf , ..., hf+l) (3)172

Contrastive learning could enhance the consis-173

tency between entities within the same types and174

widen the distance between entities belonging to175

different types. As ek is the sample with certain176

type from the supervised Dsource, we consider us-177

ing the supervised contrastive learning to deepen178

the distinctiveness of entity types and augment rep-179

resentations of entities for entity classification im-180

provement.181

In details, given a batch with N entities and the182

anchor index j ∈ {1,2,...,N}, an entity-aware con-183

trastive loss can be defined as follows:184

LCL =
∑
j

−
1

|P (j)|
∑

p∈P (j)

log
exp(sim(zj , zp)/τ)∑

a∈A(j) exp(sim(zj , za)/τ)

(4)185

where P(j) is the positive set whose entities are186

from the same type with ej , zj is the result of187

transforming êj through a projection network MLP,188

A(j) is the set containing all N entities except for189

ej , sim(·,·) denotes the KL-divergence for K-shot190

(K>1) but the squared euclidean distance for K-191

shot (K=1) referring to (Das et al., 2022), and τ is192

a temperature hyperparameter.193

After pulling entities of the same type together194

and entities of different types farther apart in the se-195

mantic space with contrastive learning, we discard196

the projection network at classification time fol-197

lowing the previous works of contrastive learning198

(Chen et al., 2020; Khosla et al., 2020; Liu et al.,199

2023). As a consequence, we put the entity repre-200

sentation êk into the softmax function to compute201

the probability distribution of entity types (K shot)202

and also get entity classification loss with the cross203

entropy(CE) function:204

psoft(ek) = softmax(êk) (5)205206

LEC =
1

N

∑
k

CE(yk, psoft(ek)) (6)207

where psoft(ek) ∈ R|K|, yk is the truth type of ek.208

2.2 Finetuning Stage 209

Model finetuning aims to enable the model to adapt 210

to new knowledge types during the domain transfer 211

process. We finetune the trained models for entity 212

detection and entity classification on the support 213

dataset of the target domain Starget, using the same 214

method as training stage. 215

2.3 Inference Stage 216
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Figure 2: The schematic diagram of the inference stage
for entity classification.

In the inference stage, we test the finetuned 217

model on query dataset Qtarget, and we will 218

present this stage by four parts: 219

(1) We compute the representation êk of each 220

true entity in the support dataset Starget by Eq.3 221

and build a key-value datastore Dknn where key is 222

the entity representation and value is entity type. 223

(2) We input the query sentence x′ into the fine- 224

tuned best model for entity span detection (ESD) 225

to get all entities. Specifically, we apply the Viterbi 226

algorithm (Forney, 1973) for decoding, and derive 227

the entities from the maximum sequence probabil- 228

ity of Eq.2: 229

y∗ = argmaxy∈YP (y|x′) (7) 230

where Y is a set of all possible label sequences. 231

(3) Firstly, we compute the representation ê′k of 232

each detected entity e′k by Eq.3. Then, we input ê′k 233

into two independent modules: on one hand, we 234

feed the ê′k into KNN to obtain the predicted result 235

pknn based on the Dknn (Wang et al., 2022b), and 236

on the other hand we pass the ê′k into the finetuned 237

best model for entity classification to produce its 238

predicted type distribution psoft by Eq.5. 239

(4) The final prediction type of the detected en- 240

tity e′k is jointly determined by KNN and the entity 241

classification model: 242

p(y|e′k) = λpknn(y|e′k)+ (1−λ)psoft(y|e′k) (8) 243

where the λ is a hyper-parameter that makes a bal- 244
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Models
FewNERD-INTRA FewNERD-INTER

1-2 shot 5-10 shot 1-2 shot 5-10 shot

5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way

ProtoBERT† 23.45±0.92 19.76±0.59 41.93±0.55 34.61±0.59 44.44±0.11 39.09±0.87 58.80±1.42 53.97±0.38
NNShot† 31.01±1.21 21.88±0.23 35.74±2.36 27.67±1.06 54.29±0.40 46.98±1.96 50.56±3.33 50.00±0.36
StructShot† 35.92±0.69 25.38±0.84 38.83±1.72 26.39±2.59 57.33±0.53 49.46±0.53 57.16±2.09 49.39±1.77
CONTAINER† 40.436 33.84 53.70 47.49 55.95 48.35 61.83 57.12
ESD† 41.44±1.16 32.29±1.10 50.68±0.94 42.92±0.75 66.46±0.49 59.95±0.69 74.14±0.80 67.91±1.41
MAML-ProtoNet† 52.04±0.44 43.50±0.59 63.23±0.45 56.84±0.14 68.77±0.24 63.26±0.40 71.62±0.16 68.32±0.10
ChatGPT‡ 61.86 55.61 64.17 54.79 61.05 57.94 64.34 58.58
MsFNER (Ours) 54.25±0.34 46.69±0.5 66.57±0.29 58.70±1.39 72.91±0.34 66.34±0.65 78.41±0.30 72.06±0.11
w/o cl* — — 65.72±0.33 57.33±0.08 — — 77.84±0.42 71.23±0.47
w/o KNN 53.86±0.47 46.24±0.29 66.04±0.65 57.56±0.41 72.75±0.29 65.38±0.72 77.99±0.25 71.92±0.14

Table 1: F1 scores with standard deviations on FewNERD. †denotes the results reported in (Ma et al., 2022). ‡are
the results we produce by LLM. * means the abbreviation of ‘contrastive learning’. The best results are in bold.

ance between KNN and softmax.245

3 Experiments246

3.1 Experiments Setup247

Datasets We conduct experiments on the FewN-248

ERD dataset (Ding et al., 2021). And more details249

about FewNERD are shown at A.1.1.250

Parameter Settings The details are at A.1.2.251

Baselines The baseline models include Proto-252

BERT (Fritzler et al., 2019), CONTAINER (Das253

et al., 2022), NNShot (Yang and Katiyar, 2020),254

StructShot (Yang and Katiyar, 2020), ESD (Wang255

et al., 2022a), MAML-ProtoNet (Ma et al., 2022),256

ChatGPT3.5 (chatgpt, 2023). And more details are257

at A.1.3 and A.2.258

3.2 Main results259

Table 1 illustrates the main results of different meth-260

ods on FewNERD dataset. The results demonstrate261

that MsFNER significantly outperforms all the pre-262

vious state-of-the-art approaches. MsFNER attains263

average F1 improvements of 2.65 and 4.44 on IN-264

TRA and INTER, respectively, compared to the265

previous best method, MAML-ProtoNet. In the266

5-way 5-10 shot setting on the INTER dataset, we267

achieve the most substantial improvement over the268

MAML-ProtoNet method, reaching 7.79 points.269

Additionally, we perform the few-shot task employ-270

ing ChatGPT, where MsFNER surpasses ChatGPT271

in F1 performance by an average score of 8.465272

in the 5-10 shot setting. Furthermore, MsFNER273

surpasses ChatGPT by an average of 10.13 percent-274

age points in the 1-2 shot setting in the INTER275

dataset. Overall, regardless of whether it is Chat-276

GPT or small models, increasing the number of277

K-shot yields superior performance, while an in-278

crease in the number of N -way results in worse279

performance. 280

3.3 Ablation Study 281

To investigate the contributions of different mod- 282

ules of MsFNER, we conduct the ablation study 283

by removing each of them at a time to observe the 284

performance of our model. The results are shown 285

at the bottom of Table 1. Firstly, we remove the 286

contrastive learning module. In the 1 shot experi- 287

ment of this setting, KNN is unnecessary as there is 288

only one sample in the support dataset. We can see 289

that the removal of contrastive learning results in 290

a decrease of 0.905 average score, which indicates 291

the significant impact and necessity of contrastive 292

learning for enhancing representation. Secondly, 293

we remove the KNN module and reserve the con- 294

trastive learning module. The removal of KNN 295

drops 0.523 average score. We can see that the 296

impact of contrastive learning and KNN increases 297

with the number of N -way and K-shot. Removing 298

either of them will lead to a significant decrease in 299

the performance of MsFNER. 300

3.4 Model Efficiency 301

To evaluate the efficiency of MsFNER, we com- 302

pute the average inference time of MsFNER and 303

ChatGPT in different settings. More details can be 304

found at A.3. 305

4 Conclusion 306

In this paper, we propose the MsFNER, aiming 307

to improve the performance and efficiency of few- 308

shot NER. The MsFNER can be achieved by three 309

stages: training, finetuning and inferring. We eval- 310

uate MsFNER on the open FewNERD dataset, and 311

results show the advance of MsFNER compared 312

with previous few-shot NER methods and LLM. 313
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5 Limitations314

• In practical, the effectiveness of Few-shot315

NER is seriously affected due to the data spar-316

sity and data imbalance.317

• The abundant external knowledge is very help-318

ful for few-shot NER, which is worth explor-319

ing and studying.320

6 Ethical Considerations321

All the data we get is the open source, and there322

is no theft. We guarantee the originality, research323

ethics, societal impact and reproducibility of our324

work.325
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A Appendix437

A.1 Experiments Setup438

We conduct experiments on the Tesla V100 GPU.439

A.1.1 Datasets440

We conduct experiments on the FewNERD dataset441

(Ding et al., 2021) which is annotated with 8 coarse-442

grained and 66 fine-grained entity types. We eval-443

uate our method on the two settings of FewN-444

ERD: 1) FewNERD-INTRA, which pertains to a445

scenario wherein entities within the training set446

(source domain), validation set, and test set (target447

domain) are exclusively associated with distinct448

coarse-grained types. 2) FewNERD-INTER, where449

only fine-grained entity types that do not intersect450

in different sets. Furthermore, we follow the set-451

tings of ESD (Wang et al., 2022a) and adopt N -way452

K ∼ 2K-shot sampling method to construct tasks.453

A.1.2 Parameter Settings454

We use grid search for hyperparameter settings and455

we train our model for 1,000 steps and choose the456

best model on validation dataset for testing. We457

use the pretrained language model uncased BERT-458

base as our encoder. In the entity span detection459

module, we adopt the BIOES tags. We use the460

AdamW optimizer with a learning rate of 3e-5 and461

0.01 linear warmup steps. The K in KNN is set462

to 10 and the max-loss coefficient λ of KNN is 0.1463

when adding KNN. The batch size is set to 32, the464

max sequence length is set to 128 and we use a465

dropout probability of 0.2.466

A.1.3 Baselines467

We compare MsFNER with popular baselines as468

follows:469

• ProtoBERT (Fritzler et al., 2019) employs 470

the prediction of query labels by leveraging 471

the similarity between the BERT hidden states 472

derived from the support set and the query 473

tokens. 474

• CONTAINER (Das et al., 2022) employs 475

token-level contrastive learning to train BERT 476

as the token embedding function. Subse- 477

quently, BERT undergoes finetuning on the 478

support set, followed by the application of a 479

nearest neighbor method during the inference 480

phase. 481

• NNShot (Yang and Katiyar, 2020) bears re- 482

semblance to ProtoBERT in its methodology, 483

as it conducts predictions utilizing nearest 484

neighbor algorithms. 485

• StructShot (Yang and Katiyar, 2020) incor- 486

porates an augmented Viterbi decoder into the 487

inference stage atop NNShot’s framework. 488

• ESD (Wang et al., 2022a) formulates few-shot 489

sequence labeling as a span-level matching 490

problem and decomposes it into span-related 491

procedures. 492

• MAML-ProtoNet (Ma et al., 2022) proposes 493

a decomposed meta-learning approach for 494

few-shot NER, which tackles few-shot span 495

detection and entity typing using MAML to fa- 496

cilitate rapid adaptation to novel entity classes 497

and proposes MAML-ProtoNet for improved 498

representation of entity spans. 499

• ChatGPT (chatgpt, 2023) is an advanced neu- 500

ral language model developed by OpenAI, 501

which is trained on diverse corpora of text 502

and could generate human-like text. 503

A.2 ChatGPT Prompt Template 504

In this section, we introduce the ChatGPT few-shot 505

NER prompt template that we use. The prompt 506

is composed of 3 parts: task description, few-shot 507

cases, and input queries. 508

In the task description, we initially elucidate the 509

few-shot Named Entity Recognition (NER) task 510

required from ChatGPT. Subsequently, we provide 511

ChatGPT with explicit instructions for implement- 512

ing this task, including delineation of the entity 513

types involved. To facilitate easier interpretation of 514

model output, we utilize a structured output JSON 515
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Models
FewNERD-INTRA FewNERD-INTER

1-2 shot 5-10 shot 1-2 shot 5-10 shot
5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way

MsFNER 0.3442 0.3808 0.5616 1.0546 0.3482 0.3806 0.6708 1.2266
ChatGPT 4.5581 5.4897 8.1842 9.3481 3.2633 8.0579 4.7755 5.3409

Table 2: The comparison of inference time between MsFNER and ChatGPT.

format, a domain in which ChatGPT exhibits profi-516

ciency. The template is as follows:517

Your task is to perform fewshot Named Entity518

Recognition. You could perform the task by the519

following actions:520

1. Do named entity recognition task to recog-521

nize the entities. Entity type is defined as522

$ent_list523

2. Check if the entity type is in the definition list.524

3. Output a JSON object that contains the fol-525

lowing keys: text, entity_list. Note that each526

item in entity_list is a dictionary with "entity"527

and "type" as keys.528

Here are the given few-shot cases:529

‘‘‘$case_input‘‘‘530

Output: $case_output531

Recognize the entities in the text delimited by532

triple backticks.: ‘‘‘$input_text‘‘‘533

In the template above, the $ent_list denotes534

the list of entity types corresponding to N -way.535

The $case_input comprises the sentences in the536

support set corresponding to K-shot, while the537

$case_output represents the labels in the support538

set. Since ChatGPT is better at structured output,539

we use JSON format for output, with each output540

format being: {"entity": entity text ; "type": entity541

type}. The output will be merged into a list. The542

$input_text denotes the query data. When we in-543

put this prompt to ChatGPT, it will return a list of544

relevant entity-type dictionaries.545

A.3 Model Efficiency546

To evaluate the efficiency of MsFNER, we com-547

pute the average inference time of MsFNER and548

ChatGPT in different settings. And the results are549

shown in Table 2, where we can see that MsFNER550

is on the millisecond level while the ChatGPT is551

on the second level. The time consumption is re-552

lated to the amount of input data. In addition, the553

time consumption of ChatGPT will increase due to554

network impact.555
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