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ABSTRACT

Large-scale reinforcement learning with verifiable rewards (RLVR) has proven
effective in harnessing the potential of large language models (LLMs) for single-
turn reasoning tasks. In realistic reasoning scenarios, LLMs often rely on external
tools to assist in task-solving processes. However, current RL algorithms typically
employ trajectory-level rollout sampling, consistently neglecting the fine-grained
exploration of multi-turn tool-call steps. To bridge this gap, we propose Agentic
Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored
for training multi-turn LLM-based agents. Our preliminary experiments reveal that
LLMs frequently exhibit increased uncertainty after tool-call steps, as evidenced
by higher entropy in the distribution of generated tokens. Motivated by this, ARPO
incorporates an entropy-based adaptive rollout mechanism, encouraging the policy
model to adaptively branch sampling during high-entropy tool-call rounds, thereby
promoting step-level exploration of latent tool-use behaviors. By integrating an
advantage attribution estimation, ARPO enables LLMs to internalize advantage
differences in stepwise tool-use interactions. Experiments across 13 challenging
benchmarks demonstrate ARPO’s superiority over trajectory-level RL algorithms.
Remarkably, ARPO achieves improved performance using only half of the tool-use
budget required by existing methods, offering a scalable solution for aligning
LLM-based agents with real-time dynamic environments. Our codes are released
at https://github.com/RUC-NLPIR/ARPO.

1 INTRODUCTION

Recently, large-scale Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated
strong potential in unleashing the capabilities of frontier large language models (LLMs), showcasing
impressive performance across various single-turn reasoning tasks (OpenAl, 2024; DeepSeek-Al et al.,
2025; Team et al., 2025b; Qwen et al., 2024; Yang et al., 2025). However, in open-ended reasoning
scenarios (Putta et al., 2024; Shridhar et al., 2020; Qin et al., 2024), LLMs should not only cultivate
long-horizon planning and adaptive decision-making skills, but also engage in dynamic, multi-turn
interactions with external tool environments. To address these challenges, Agentic Reinforcement
Learning (Agentic RL) (Singh et al., 2025b; Zhang et al., 2025; Team et al., 2025a) enables LLMs
to autonomously interact with external tool environments during RL training, shifting the training
paradigm from static task solving to the landscape of dynamic agent-environment interactions (Silver
et al., 2017; Wen et al., 2024; Qian et al., 2025a).

Current agentic RL algorithms typically perform trajectory-level exploration during the rollout
phase (Shao et al., 2024; Yu et al., 2025), sampling complete tool-use trajectories with predefined
special tokens and assigning rewards based solely on the final output. To further address tool overuse
and sparse reward issues (Qian et al., 2025b), recent studies have proposed more refined reward
functions to better align tool-use behavior (Wang et al., 2025a; Bai et al., 2025). Despite some
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Figure 1: Overview of tool-use token entropy exploration and ARPO algorithm performance. Left:
High entropy observed in the LLM following tool usage. Right: LLM performance comparison on
deep search tasks using only 1k RL samples, along with a comparison of training tool-use budgets.

progress, these optimizations often overlook a key aspect of training LLM-based agents: the multi-
turn interaction loops between the LLM and the tool environment (Wang et al., 2025d; Xue et al.,
2025; Jiang et al., 2025; Feng et al., 2025b). Unlike the single-turn reasoning paradigm, the multi-turn
tool-use loop offers LLMs informative, real-time feedback in real-time. This highlights the necessity
of discovering effective stepwise tool-use behaviors.

To gain an insight into such step-level behaviors, we draw inspiration from a series of entropy-based
studies (Wang et al., 2025b;c; Zheng et al., 2025b) and quantify the token entropy distribution of LLM-
based agents during deep search tasks. As illustrated in Figure 1 (left), the initial tokens generated after
each round of tool-call feedback consistently exhibit high entropy. This indicates that external tool
calls significantly increase uncertainty during LLM reasoning, revealing latent tool-use behaviors that
remain underexplored (Ruan et al., 2023; Li et al., 2025h; Chen et al., 2025c¢). Unfortunately, current
trajectory-level RL methods overemphasize complete rollout sampling comparisons, neglecting the
exploration of fine-grained behavior in high-entropy tool-use steps (Xiong et al., 2024; Yu et al.,
2024). This oversight limits the diversity and scope necessary for aligning better tool-use behaviors.
Consequently, it is essential to develop an agentic RL algorithm that aligns with agent-environment
interaction characteristics to fully realize the potential of LLM-based agents.

To bridge this gap, we propose Agentic Reinforced Policy Optimization (ARPO), an agentic RL
algorithm tailored for training a multi-turn LLM-based agent. The core principle of ARPO is to
encourage the policy model to adaptively branch sampling during high-entropy tool-call rounds,
thereby efficiently aligning step-level tool-use behaviors. In detail, we propose an entropy-based
adaptive rollout mechanism that integrates both global and partial sampling perspectives. In the
rollout phase, the LLM initially performs multiple global samplings, recording the initial entropy
distribution of each sample. After each tool-calling, we further monitor the real-time token entropy
variation, regarding them as branching criteria. If the entropy variation exceeds a predefined threshold,
the model triggers additional partial sampling to explore alternative tool-integrated reasoning paths.
This design allows ARPO to effectively expand the original sampling space while balancing global
and step-level tool-use behavior learning.

To fully exploit the benefits of adaptive sampling, we introduce the advantage attribution estimation.
Specifically, we explore both hard and soft advantage settings of ARPO, assigning shared advantage
values to tokens along the same source reasoning path, while tokens on branched paths receive distinct
values. This design encourages the model to internalize stepwise differences in tool-use effectiveness.

We conduct comprehensive evaluations across 13 datasets spanning computational reasoning, knowl-
edge reasoning, and deep search domains. As shown in Figure 1, ARPO consistently surpasses
traditional trajectory-level RL algorithms in agentic training. Remarkably, ARPO achieves this with
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Figure 2: Token entropy variations and token frequency statistics of tool-use agents.

only half the tool-call budget required by other RL methods, demonstrating a compelling trade-off
between accuracy and efficiency. In summary, the key contributions are as follows:

* We pioneeringly quantify the token entropy variation of LLM during agentic reasoning, revealing
the inherent limitations of trajectory-level RL algorithms for aligning LLM-based agents.

* We propose the ARPO algorithm, which integrates an entropy-based adaptive rollout mechanism
to balance global sampling while encouraging branch sampling during high-entropy tool-use
steps. Furthermore, ARPO employs Advantage Attribution Estimation to assist the LLM in better
internalizing advantage differences in stepwise tool-use behaviors.

* Beyond heuristic motivation, we also theoretically demonstrate the rationale of applying the ARPO
algorithm in LLM-based agent training.

* ARPO significantly outperforms mainstream RL algorithms, requiring only half the tool-use
training budgets, thereby offering practical insights for exploring agentic RL algorithms.

2 PRELIMINARY

Before introducing ARPO, we first review preliminary entropy-based experiments on LLM reasoning
with tools. We also give a detailed preliminary of agentic reinforcement learning in Appendix F.1.

1) Token Entropy Calculation. Following recent entropy-based RL studies (Wang et al., 2025b;c;
Cheng et al., 2025; Zheng et al., 2025b), we compute the token-level generation entropy at step ¢ as:

14
Hi= =Y pujlogpes, wherep, = o (| Rer, i T) = Softmax (). (1)
-
j=1

Here, V is the vocabulary size, z; € RY is the pre-softmax logits, and 7 is the decoding temperature.
Note that this entropy reflects the uncertainty in the token generation distribution

2) Pilot Experiment on Token Entropy. To gain deeper insights into the reasoning process of LLM-
based tool-use agents, we conduct a pilot study with two types of agents: one using a search engine
for knowledge-intensive tasks and another using a Python interpreter for computational tasks. In
Figure 2, we measure token entropy variations throughout the reasoning process to assess uncertainty.

Our key observations are: (1) Entropy rises sharply in the first 10-50 tokens following each tool call;
(2) Entropy tends to increase during early reasoning stages, but remains lower than after receiving
tool-call feedback; (3) Search feedback introduces more uncertainty than Python feedback.

We attribute these effects to the distributional shift between external feedback and the model’s internal
reasoning (Ob.1), which introduces uncertainty often exceeding that of the original input (Ob.2).
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Figure 3: The overview of the ARPO algorithm.

Furthermore, search engines typically return informative textual content, whereas Python outputs
consist of deterministic numbers, resulting in greater entropy fluctuations in the former case (Ob.3).

These findings highlight a limitation of trajectory-level RL methods, which focus on initial reason-
ing while overlooking the uncertainty introduced by tool-call feedback. Our proposed ARPO
algorithm addresses this by incorporating entropy-based exploration tailored to LLM agent training.

3) Agentic Tool Design. In this work, we mainly focus on optimizing the training algorithms of
LLM-based tool-use agents. After a comprehensive review of agentic RL studies (Dong et al.,
2025; Feng et al., 2025a; Jin et al., 2025a), we identify three representative tools to evaluate the
effectiveness of ARPO: (1) Search Engine: Retrieves relevant information by executing queries
across the web. (2) Web Browser Agent: Accesses and parses relevant web links returned by
the search engine, extracting and summarizing key content. (3) Code Interpreter: Automatically
executes code generated by the LLM, returning execution results.

3 AGENTIC REINFORCE POLICY OPTIMIZATION

Overview. In this section, we propose the ARPO algorithm, designed to guide LLMs in exploring
step-wise tool-use behaviors under entropy-based guidance, as illustrated in Figures 3 and 4:

* Entropy-based Adaptive Rollout (§3.1): Inspired by the entropy variations observed in pre-
liminary experiments (§2), ARPO extends the traditional rollout process by performing not only
trajectory-level sampling but also branching at high-entropy tool-use steps. By striking a balance
between global and partial sampling, ARPO encourages broader exploration of tool-use behaviors.

¢ Advantage Attribution Estimation (§3.2): To better accommodate the adaptive rollout mech-
anism, we propose the advantage attribution estimation, enabling the model to more effectively
internalize the advantage differences in stepwise tool-use behaviors.

* Theoretical Analysis (§3.3): To establish the theoretical foundation, we provide a formal analysis
demonstrating ARPO’s strong adaptability in multi-turn training scenarios for LLM-based agents.

3.1 ENTROPY-BASED ADAPTIVE ROLLOUT

Inspired by preliminary experiments (§2), we incorporate both trajectory-level sampling and entropy-
based partial sampling during the rollout phase to cover a more comprehensive sampling scope. The
design of this mechanism involves the following four core steps:

(1) Rollout Initialization: Given a global rollout size of M, the LLM first generates [V trajectories
via trajectory-level sampling based on the input question ¢, while the remaining M — N trajectories
budgets are reserved for partial sampling. We then compute the entropy of the first tokens & in each
trajectory using Equation 1, forming the initial entropy matrix denoted as Hipio € RM¥F.

(2) Entropy Variation Monitoring: After recording the Hiyya € R*k the model performs
agentic reasoning with tools, as defined in Equation 8. To continuously monitor the entropy dynamics
following each tool invocation, we allow the model to generate k additional tokens after concatenating
the tool-call result. For the tool-call step ¢, we first compute a step-level entropy matrix denoted
as H; € R'¥%, then quantify the normalized change in entropy relative to the initial state as:
AH; = Normalize(H; — Hiniia1)- Notably, the normalization means summing all the values of AH
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Figure 4: Illustration of ARPO’s two core components. Left: Entropy-based adaptive beaming
dynamically expands sampling based on token-level entropy. Right: Advantage attribution assigns
shared or distinct values to tokens in inter-group reasoning paths.

and dividing by the vocab size V. A positive AH indicates an increase in uncertainty after the
tool-call step k, whereas a negative value reflects a reduction in uncertainty.

(3) Entropy-based Adaptive Beaming: To encourage adaptive exploration along tool-use paths that
exhibit beneficial entropy variations, we define the partial sampling probability at the step ¢ as:

Branch(Z), if P, > ;
Continue, otherwise.

P,=a+pB-AH,, Action(P,)= { 2)

Here, o denotes the base sampling probability, and [ represents the stability entropy. As illustrated in
Figure 4(a), the model uses P; to guide its branching behavior: if P, exceeds a threshold 7, it triggers
Branch(Z) to spawn Z partial reasoning paths from the current node; otherwise, it proceeds along
the existing trajectory. This adaptive mechanism directs exploration toward regions of the reasoning
space where rising entropy signals greater potential for informative outcomes.

(4) Termination: The process iterates until one of the conditions is satisfied: (1) if the total number of
forked paths Z reaches the partial sampling budget M — N, branching stops and sampling continues
until a final answer is produced; (2) if all paths terminate before reaching M — N, we supplement
with M — N — Z additional trajectory-level samples to satisfy condition (1).

By leveraging this efficient rollout mechanism, ARPO facilitates uncertainty-aware exploration,
allowing LLMs to more effectively identify step-level tool-calling behavior. Meanwhile, assuming the
global expansion size and the number of tokens per trajectory are n, ARPO reduces the computational
complexity of each rollout from the trajectory-level RL’s O(n?) to between O(nlogn) and O(n?) !.

3.2 ADVANTAGE ATTRIBUTION ESTIMATION

Our adaptive rollout mechanism naturally produces trajectories containing both shared token segments
and distinct beam paths (Figure 4), which motivates us to explore a more principled agentic RL policy
update strategy. To this end, we consider the following two advantage shaping settings:

(1) Hard Advantage Estimation: As shown in Figure 4(b), a straightforward approach is to
explicitly distinguish the shared and individual parts of each trajectory at the advantage level, thereby
encouraging the model to capture step-level tool-use behaviors. Given d trajectories that share
certain tokens while diverging in others, we compute the advantage for the individual tokens using
ri—mean({R:}{ )
sd({Ri},
advantage across d trajectories that contain the shared segment: Aj‘_‘fred =1 Zle Ai7t.

the normalized reward R;: Ai,t = . For the shared tokens, we assign the average

(2) Soft Advantage Estimation: An elegant alternative to hard advantage shaping is to integrate the
distinction between shared and individual token segments latently during policy update. Specifically,
for the input x, the Group Relative Policy Optimization (GRPO) (Shao et al., 2024) enables the old

"Neglecting the minor overhead from token-level entropy calculations
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policy 714 to generate a response set {y1, ya, - - - , Y } and optimizes the policy by maximizing:
1 G 1 lyil R
Jarpo(0) = B0~ D {51}~y (o) | G D ] 2 (ria®) A,
i=1 7" =1

3)
clip (:.4(0),1 — €, 1 +€) Ai,t) — BDx (7 || Trref)] .

Notably, the GRPO objective incorporates the distinction between shared and individual tokens
through importance sampling ratio 7; ,(6):

i (0) = 4

7o (Yie | T, yi<t) {ri,t(ﬂ) =71;4(0), ify; <t =y, < (i-e., shared tokens);
Tod (Uit | @, Yi,<t)” \7ie(0) #75.0(0), if yi <+ # yj,<¢ (i.e., individual tokens).

As indicated by Equation (4), when trajectories y; and y; undergo a partial rollout at token ¢, they
share the same response prefix tokens, i.e., y;, < = ¥;,<¢. Consequently, the shared prefix tokens in
both trajectories are assigned the same importance weight r; ;(6).

In GRPO, the mathematical interpretation is that
the policy update is guided by the average advan- 0.6
tage of tokens within each group, which serves as
the loss signal.

0.4
. . . . 0.2
Since shared tokens have identical r; +(6), their ad-

vantage contributions are effectively aligned and 0.0

Reward Score

closely approximate A" in a hard estimation  _,, — Qwen2.5-7B w. ARPO (Soft)

. . g .. " —— Qwen2.5-7B w. ARPO (Hard)
setting. While we retain the original GRPO loss : 2 - = = n
formulation, our novel partial rollout design ex- Training Step

plicitly distinguishes the update strategies between

Fi : i f different advant
shared and individual tokens. igure 5: Comparison of different advantage

estimation methods: Hard vs. Soft.

In practice, we compare reward dynamics between

hard and soft advantage shaping during RL train-

ing. As shown in Figure 5, the soft setting consis-

tently yields more stable rewards throughout ARPO training. Accordingly, ARPO adopts the soft
setting as its default for advantage estimation 2.

Hierarchical Reward Design. The reward function serves as the optimization objective, guiding the
policy model’s behavior during training. We follow Tool-Star (Dong et al., 2025), considering both
correctness and format rewards, along with a multi-tool collaboration reward mechanism. Notably,
an additional reward rj; is given when the model generates the correct answer, follows the correct
tool invocation format, and uses multiple tools (i.e., [<search>| and [<python>|) during reasoning. The

overall reward R is formally defined as *:

max(Acc. + v, Acc.) If Format is Good & Acc.>0;
1 Ifd h h ;
R=<0 If Format is Good & Acc.=0; mv = 0 ( Snlee §ol<python>); ®)
. 0 Otherwise.
—1 Otherwise.

3.3 THEORETICAL FOUNDATION

Our approach leverages the adaptive partial rollout mechanism, which involves branching at high-
entropy tool-use steps. Here, we elucidate the rationale behind this mechanism. In Figure 4, the
adaptive partial rollout mechanism dynamically segments the Transformer-based policy’s output

tokens < OTy, OTs, ..., OT)gyipur| > into K segments. Each segment is defined as a macro action,

MA; £2< OT,,,OT}41, ..., OT} 4y, >. The corresponding macro states are defined as M.S; £<

ITy ITy, ..., IT)ipput) > and MS; L£< MS;_1,MA;_; >. This segmentation allows us to derive

’The theoretical relationship between hard and soft advantage estimation is formally proven in Appendix F.2
3The detailed flowchart for the ARPO algorithm can be found in Algorithm 1.



Published as a conference paper at ICLR 2026

the Generalized Policy Gradient (GPG) Theorem applicable to all Transformer-based policies:

K
Vo (0) =Ermry{ > [Vologme(MAr|MSr)Ar(7)]}, ©)
T=1

where T represents the macro step, and A7 (7) denotes the advantage of trajectory 7. The GPG
Theorem asserts that for any differentiable Transformer-based policy 7y and any objective function
J(0), optimization can be effectively conducted using macro actions (i.e., partial rollout segments).
This generalization encompasses the traditional Policy Gradient Theorem (Sutton et al., 1999),
VoJ(0) =E;n, {Zil [V log mg(at|st) A (7)]}, which operates on single-token actions (where
ay 1s a single output token of the Transformer), as a specific instance of our broader GPG framework.
Consequently, ARPO, as an advanced implementation of the GPG Theorem, provides a robust
theoretical foundation. The formal proof of the GPG Theorem is presented in Appendix F.3.

4 EXPERIMENTAL SETUP

Datasets. To comprehensively assess ARPO’s effectiveness in training multi-turn tool-using agents,
we conduct an evaluation on the following types of long-horizon reasoning tasks: (1) Mathemat-
ical Reasoning: including AIME2024, AIME2025*, MATH500 (Lightman et al., 2024), MATH
(Hendrycks et al., 2021), and GSM8K. (2) Knowledge-Intensive Reasoning: including HotpotQA
(Yang et al., 2018), 2WikiMultihopQA (Ho et al., 2020), and Musique (Trivedi et al., 2022) and
bamboogle (Press et al., 2023). (3) Deep Search: including General Al Assistant (GAIA) (Mialon
et al., 2024), WebWalker (Wu et al., 2025a), Humanity’s Last Exam (HLE) (Phan et al., 2025),
and xbench-DeepSearch (Chen et al., 2025a). To ensure consistency with prior work, we adopt the
Tool-Star (Dong et al., 2025) test split for math and knowledge reasoning benchmarks, and follow
WebThinker and HIRA (Li et al., 2025¢; Jin et al., 2025b) for the split in deep search benchmarks.

Baselines. To effectively evaluate the efficacy of ARPO, we consider the following three baselines:
(1) Direct Reasoning. For 10 reasoning benchmarks, we evaluate the instruction variants of the
Qwen2.5 (Qwen et al., 2024) and Llama3.1 (Dubey et al., 2024) series. Given the superior math
capabilities of the Qwen3 series (Yang et al., 2025), we adopt it as the backbone for testing RL
algorithms on the DeepSearch task. We also include strong reasoning baselines such as QwQ (Team,
2024b), DeepSeek-R1 (DeepSeek-Al et al., 2025), GPT-40 (Hurst et al., 2024)and ol-preview (Hurst
et al., 2024). (2) Trajectory-Level RL Algorithms. We compare ARPO against trajectory-level RL
algorithms, including GRPO (Shao et al., 2024), DAPO (Yu et al., 2025), and REINFORCE++ (Hu,
2025). (3) LLM-Based Search Agents. For the DeepSearch benchmark, we further benchmark
ARPO against GRPO and a set of workflow-driven search agents, including vanilla RAG (Lewis
et al., 2020), Search ol (Li et al., 2025d), WebThinker (Li et al., 2025¢), and ReAct (Yao et al., 2022).
Detailed descriptions of all baselines are provided in Appendix D.

Evaluation Metric For accuracy, F1 scores are reported on four knowledge-intensive QA tasks,
while others are judged by Qwen2.5-72B-instruct under the LLM-as-Judge setup. We adopt pass@1
with temperature 0.6 and top-p 0.95. Following Li et al. (2025d), answers are extracted from \box in
model outputs. Detailed implementation and training guidelines are provided in Appendix E.

5 EXPERIMENTAL RESULTS

5.1 MAIN RESULTS

e Results on Mathematical & Knowledge-Intensive Reasoning. Our main results are shown in
Table 1. In a fair setting, ARPO consistently outperforms all trajectory-level RL algorithms, firmly
establishing its superiority. Moreover, we highlight the following insights:

(1) Ineffectiveness of Prompting Methods: Tool-integrated prompting (Li et al., 2025d) fails to
elicit effective tool-use behaviors. For both Qwen and Llama series models, performance gains are
marginal or even inferior to direct reasoning, indicating that prompt engineering alone is insufficient
and may interfere with inherent reasoning capabilities.

4ht‘cps ://huggingface.co/datasets/AI-M0/aimo-validation-aime
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Table 1: Overall performances on 10 challenging reasoning tasks are presented. The top two
outcomes are bolded and underlined. Dataset abbreviations are as follows: WebW (WebWalker),
HQA (HotpotQA), 2Wiki. (2wikiMultiHopQA), MuSi. (MuSiQue), and Bamb (Bamboogle).

Mathematical Reasoning Knowledge-Intensive Reasoning

Method — - Avg.
AIME24 AIME25 MATH500 GSM8K MATH WebW HQA 2Wiki. MuSiQ. Bamb.

Llama3.1-8B-Instruct 3.3 0.0 433 814 60.6 3.0 243 246 104 40.0 28.8

+ TIR Prompting 33 33 394 73.8 582 150 485 475 155 584 363
+ GRPO 133 133 62.4 874 792 265 578 71.8 31.0 682 51.1
+ Reinforce ++ 133 16.7 61.4 870 772 275 571 716 299 69.1 51.1
+ DAPO 16.7 133 61.2 874 764 255 56.6 703 292 673 504
+ ARPO 23.3 16.7 64.6 880 80.2 305 654 755 348 73.8 553
Qwen2.5-7B-Instruct  10.0 10.0 70.6 902 82.0 20 122 126 6.6 24.0 320
+ TIR Prompting 6.7 10.0 68.2 64.6 782 155 148 183 95 23.6 31.0
+ GRPO 233 26.7 78.0 928 87.8 22.0 59.0 76.1 30.6 684 56.5
+ Reinforce ++ 26.7 23.3 78.0 922 888 26.0 551 689 252 649 549
+ DAPO 20.0 233 80.4 910 88.8 24.0 577 684 286 655 54.8
+ ARPO 30.0 30.0 78.8 922 888 26.0 588 761 31.1 715 58.3

(2) Trajectory-Level RL Constraints: Classic trajectory-level RL algorithms do not effectively
harness the potential for tool-integrated reasoning compared to ARPO. While DAPO excels in
single-turn tasks, it struggles in multi-turn, knowledge-intensive settings, highlighting the difficulty
of inducing step-level tool-use behaviors through trajectory-level optimization.

(3) Robust Performance of ARPO: Under identical conditions, ARPO consistently outperforms
baseline RL methods across 10 datasets, with an average accuracy gain of 4%. It generalizes well
across both Qwen and Llama backbones, demonstrating strong adaptability and efficiency.

o Results on Deep Search Tasks. To further verify the effectiveness of our ARPO in challenging
deep search scenarios, we compare the performance of the Qwen3 series models trained with only 1k
RL samples, against a series of strong baseline methods. Our observations are as follows:

(1) ARPO’s Generalization in Deep Search: In deep search settings, even state-of-the-art LLMs
like GPT-40 and DeepSeek-R1-671B perform poorly on the HLE benchmark (2.0% & 8.6%). In
contrast, ARPO achieves 10.0% and 43.2% pass@1 scores on HLE and GAIA using only Qwen3-14B
models. Remarkably, ARPO is trained with just 1K samples from an open-source web search dataset,
demonstrating strong sample efficiency and tool-use generalization.

(2) Critical Role of Step-Level Tool Use: ARPO consistently outperforms GRPO, with a 6% gain
on GAIA and WebwalkerQA. This underscores the advantage of ARPO’s balanced sampling strategy,
which integrates global and step-level exploration. This design encourages diverse tool-use behaviors,
particularly in high-entropy, multi-step reasoning tasks common in deep search.

5.2 QUANTITATIVE ANALYSIS

Analyzing Sampling at Scale.Due to the dynamic, multi-turn nature of Deepsearch evaluation,
Pass@1 alone is insufficient to fully capture a model’s tool-use potential. To address this, we
conducted extended sampling analysis using Pass@3 and Pass @5 metrics, as shown in Figure 6. Both
Qwen-8B and Qwen-14B exhibit consistent gains and clear scaling trends in Pass@3 and Pass @5 after
ARPO alignment. Notably, Qwen-14B with ARPO achieves strong Pass@5 performance—61.2%
on GAIA, 24.0% on HLE, and 59.0% on xBench-DR. These improvements reflect ARPO’s
effectiveness in promoting fine-grained tool-use exploration, thereby expanding the sampling space
and enhancing both inference efficiency and behavioral diversity.’

Tool-Call Efficiency Analysis. In agentic RL training, excessive tool calls can incur substantial
computational and financial costs. Therefore, an effective agentic RL algorithm must balance
performance with tool-use efficiency. To evaluate ARPO’s efficiency during training, we compare it

3Since xBench-DR consists entirely of Chinese queries, we use Chinese prompts for Pass@K evaluation,
resulting in improved performance compared to Table 2.
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Table 2: Overall performance on various deep search tasks, with accuracy results for each dataset
obtained using llm-as-judge. The best results are indicated in bold, and the second-best results are
underlined. Results from larger or closed-source models are presented in gray for reference.

General AI Assistant WebWalkerQA Humanity’s Last Exam XBench
Lv.l Lv.2 Lv3 Avg. Easy Med. Hard Avg. NS CE SF Avg. Avg.
Direct Reasoning (>=32B)

Method

Qwen3-32B-thinking 26.2 12.1 0 149 69 1.1 29 3.1 146 98 84 126 14.0

DeepSeek-R1-32B 215 136 00 142 75 14 42 38 66 51 65 64 10.0

QwQ-32B 309 65 52 189 75 21 46 43 115 73 52 96 10.7

GPT-40 231 154 83 175 67 6.0 42 55 27 12 32 26 18.0

DeepSeek-R1-671B  40.5 212 52 252 50 11.8 11.3 10.0 85 81 93 86 32.7

ol-previewT - - - - 119 104 79 99 129 81 6.6 11.1 -

Single-Enhanced Method (Qwen3-8B)

Vanilla RAG 282 154 16.7 204 89 107 99 100 51 1.6 129 5.8 8.0

Search-ol 359 154 0.0 214 6.7 155 97 115 76 27 53 64 10.0

WebThinker 436 115 00 223 6.7 13.1 169 13.0 73 40 63 6.6 13.0

ReAct 359 173 83 233 89 167 183 155 42 40 63 46 16.0

RL-based Method (Qwen3-8B)

Qwen3-8B 28.1 154 16.7 204 00 24 28 20 39 27 84 46 9.0
+ GRPO 48.7 25.0 83 320 244 333 268 29.0 79 40 105 7.8 20.0
+ ARPO 539 327 16.7 38.8 26.7 333 296 305 7.3 6.7 158 8.8 25.0

Single-Enhanced Method (Qwen3-14B)

Vanilla RAG 385 192 83 252 17.8 13.1 113 135 55 63 94 6.0 15.0

Search-ol 48.7 23.1 0.0 30.1 11.1 214 169 175 64 40 105 6.8 21.0

WebThinker 48.7 269 83 330 133 238 183 195 7.0 40 95 70 23.0

ReAct 48.7 250 83 320 11.1 202 127 155 58 53 105 6.6 20.0

RL-based Method (Qwen3-14B)

Qwen3-14B 333 135 0.0 194 67 24 42 40 55 6.7 11.6 68 14.0
+ GRPO 513 346 00 369 289 333 268 300 79 67 126 86 27.0
+ ARPO 56.4 404 16.7 43.7 31.1 429 31.0 36.0 10.3 10.7 13.7 10.0 32.0

Pass@1 Pass@3 P## Pass@5

o 70 70

é gg 218 55 47.0 505 :g 50.0 50.0;

8 [ . 44.0 %
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Figure 6: Analysis of Qwen3-8B and Qwen3-14B using ARPO across Pass@1 to Pass@5 metrics.

with GRPO on Qwen2.5-7B. As shown in Figure 7a, ARPO achieves higher overall accuracy while
using only half as many tool calls as GRPO. This efficiency stems from ARPO’s entropy-based
adaptive rollout strategy, which selectively explores alternative branches only at high-entropy decision
points. This targeted exploration significantly broadens the behavioral search space while minimizing
tool usage. More ablation and scaling analyses can be found in the Appendix A.2.

Rollout Sampling Diversity Analysis. To demonstrate that ARPO achieves better coverage of the
rollout solution space compared to GRPO, we randomly sampled 640 problems from 10 rollout steps,
collecting 7.6k trajectories. Using BGEM3 as the semantic embedding model, we visualized the
sampling distribution of rollouts through PCA dimensionality reduction and DBSCAN clustering.

As shown in Figure 7b, ARPO’s sampling trajectories form more distinct and clearer cluster centers
(54 clusters for ARPO vs. 48 for GRPO), with greater intra-cluster compactness and larger inter-
cluster separation. These findings indicate that ARPO effectively exploits the transformation
of high-entropy uncertainty into exploration opportunities, significantly improving rollout
diversity and making the distribution of sampled paths more structured.
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Figure 7: Comparison of GRPO and ARPO.

6 RELATED WORK

Reinforcement Learning with Verifiable Rewards. Reinforcement Learning with Verifiable
Rewards (RLVR) (Lambert et al., 2024; Kaufmann et al., 2025) has become a prominent RLHF
paradigm for LLMs, yielding substantial gains in math and code reasoning (Shao et al., 2024;
DeepSeek-Al et al., 2025; Yang et al., 2025; 2024; Team, 2024b;a; Dong et al., 2024c¢; Qiao et al.,
2024). Following OpenAl ol (OpenAl, 2024), a growing body of work seeks to reproduce and scale
RLVR recipes to broader settings (DeepSeek-Al et al., 2025; Team, 2024c; Team et al., 2025b).
Recent studies improve RLVR stability through modular algorithmic and training-recipe analyses (Yu
et al., 2025; Zeng et al., 2025; Hu et al., 2025; Yue et al., 2025; Feng et al., 2025b; Liu et al., 2025;
Kool et al., 2019; Ahmadian et al., 2024; Dong et al., 2024a; Hu, 2025), and investigate what RLVR
learns via critical-token and entropy-based perspectives (Lin et al., 2024; Gandhi et al., 2025; Li
et al., 2025b; Vassoyan et al., 2025; Wang et al., 2025b; Cheng et al., 2025; Wang et al., 2025c¢).
In parallel, segment-level RL objectives have been proposed to encourage exploration and improve
credit assignment (Guo et al., 2025; Li et al., 2025g; Zheng et al., 2025a). Despite this progress,
RLVR tailored to LLM agents remains relatively underexplored; we use entropy as a lens to study RL
algorithms that more effectively shape agent behaviors.

Agentic Reinforcement Learning. Reinforcement learning (RL) is increasingly used to train LLM
agents for interactive, open-ended environments (Lu et al., 2025; Shridhar et al., 2020; Mialon et al.,
2024). Beyond classical value-based and self-play successes (Mnih et al., 2015; Silver et al., 2017;
Narasimhan et al., 2015; Tan et al., 2024; Zhai et al., 2024; Bai et al., 2024; Wang et al., 2024;
Schulman et al., 2017; Peng et al., 2019), recent work optimizes agent trajectories that interleave
reasoning and environment interactions (Wang et al., 2025d; Zhou et al., 2024). For tool-augmented
agents, many methods rely on rule-based or verifier-based rewards to encourage correct tool use,
with extensions to multi-tool coordination and long-horizon settings (Jin et al., 2025a; Feng et al.,
2025a; Song et al., 2025; Chen et al., 2025b; Li et al., 2025f; Sun et al., 2025a; Li et al., 2025e; Singh
et al., 2025a; Qian et al., 2025a; Dong et al., 2025; Wang et al., 2025a; Li et al., 2025¢). However,
trajectory-level RL often provides overly coarse credit assignment for multi-turn tool-use decisions,
motivating our step-level ARPO.

7 CONCLUSION

In this paper, we present Agentic Reinforced Policy Optimization (ARPO), an innovative reinforce-
ment learning algorithm tailored for training multi-turn, LLM-based agents. Our experiments reveal
that LLMs exhibit high token entropy after tool usage. ARPO leverages this by incorporating an
entropy-based adaptive rollout mechanism, balancing global and step-level sampling to encourage
diverse exploration in high-entropy tool-use phases. By integrating Advantage Attribution Estimation,
ARPO enables LLM:s to internalize advantage differences in stepwise tool-use interactions. Across 13
challenging benchmarks in computational reasoning, knowledge reasoning, and deep search domains,
ARPO consistently outperforms traditional trajectory-level RL algorithms. Remarkably, it achieves
great performance with only half the tool-use budget of other methods, offering a scalable solution
for aligning LLM-based agents with dynamic environments.
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A SUPPLEMENT EXPERIMENTAL RESULTS

A.1 ABLATIONS OF BROWSER AGENTS.

To further assess the impact of the browser agent on the deepsearch task, we design three experimental
settings with progressively stronger browsing capabilities: (1) no browser, where only retrieved
snippets are available; (2) a browser agent of comparable scale to the reasoning model; and (3) a
larger-scale browser agent with more parameters.

As shown in Table 3, results show that the setting without a browser exhibits the worst performance
consistency, indicating that relying solely on rule-generated web snippet summaries is insufficient to
provide the necessary information support in deep search tasks. This highlights the necessity of web
content fetching and browsing. As the capability of the browser agent increases, model performance
also improves significantly, demonstrating that a more powerful search agent can more effectively
integrate information and extract key details relevant to the question. In summary, the capability of
the external browser agent is highly correlated with the accuracy of the Deepsearch task and shows a
clear upward trend as its scale increases.

A.2 SCALING ANALYSIS OF ARPO

To verify the scalability of ARPO and gain Table 3: Ablation studies of the backbone model
deeper insights into its characteristics, we use of browser agents in deep search tasks.

the Qwen2.5-7B model as the backbone for a

scaling analysis of three core parameters: en- Method GAIA HLE WebWalk.. Avg.
tropy value, global rollout size, and initial sam- Owen3-8B
pling size. Our observations are as follows: + Snippet only 33.0 75 290 232

Entropy Value (AH,): As shown in Figure 8 + Qwen3-8B Browser 38.8 8.8 30.5 26.0
(left), model performance increases with rising _+ QWQ-32B Browser  38.8 8.2 330 266

entropy values, peaking at 0.4. This indicates  Qwen3-14B

that integrating a moderate amount of entropy 4 Snippet only 350 84 31.0 24.8
as a clue for partial sampling substantially en- 4+ Qwen3-14B Browser 43.7 10.0 36.0 299
hances the model’s ability to explore rare tool-  + QWQ-32B Browser 47.6 32.3 38.4 394

use behaviors, thereby improving training out-
comes. However, as entropy reaches 1.0, perfor-
mance declines, suggesting a trade-off in the weight of entropy in sampling. Over-reliance on entropy
may reduce sampling diversity, confirming the necessity of balancing base sampling probabilities o
with entropy in ARPO.

Initial Sampling Size (/V): Figure 8 (middle) illustrates that as the initial sampling size increases,
model performance improves, peaking at 8. Notably, with a global rollout size of 16, increasing
the initial sampling size from O to 8 shifts the global-to-partial sampling ratio from 1:15 to 1:1.
This underscores the importance of balancing sampling proportions for improving performance. As
anticipated, increasing the size to 16 results in a great performance decline. This is because it leads to
complete global sampling, which disrupts the dynamic sampling balance.

Global Rollout Size (M): As depicted in the Figure 8 (right), increasing the global rollout size
enhances model performance, indicating that the ARPO algorithm is scalable and can improve
generalization performance with larger sizes.

B SUPPLEMENT RELATED WORK

B.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARD.

Recently, Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert et al., 2024; Kaufmann
et al., 2025) has become a leading approach in Reinforcement Learning through Human Feedback
(RLHF), particularly excelling in enhancing mathematical and programming reasoning (Shao et al.,
2024; DeepSeek-Al et al., 2025; Yang et al., 2025; 2024; Team, 2024b;a; Dong et al., 2024c; Qiao
et al., 2024). OpenAl ol (OpenAl, 2024) first showcased RL’s effectiveness in large-scale reasoning
tasks. Building on this, models like DeepSeek R1 (DeepSeek-Al et al., 2025), QwQ (Team, 2024c¢),
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Figure 8: Scaling analysis of different Hyper-parameters in Qwen2.5-7B with ARPO. The detailed
setting can be found in Appendix E.S5.

and Kimi k1.5 (Team et al., 2025b) aim to replicate and surpass its performance. To improve RL
algorithms’ performance and stability, researchers have developed models like DAPO (Yu et al., 2025)
and SimpleRLZoo (Zeng et al., 2025), exploring algorithm design across various RL modules(Hu
et al., 2025; Yue et al., 2025; Feng et al., 2025b; Liu et al., 2025; Kool et al., 2019; Ahmadian et al.,
2024; Dong et al., 2024a; Hu, 2025). Lin et al. identified key tokens affecting errors and showed that
replacing them can alter model behavior. Studies (Gandhi et al., 2025; Li et al., 2025b) found RLVR
primarily learns format over content, while several works (Vassoyan et al., 2025; Wang et al., 2025b;
Cheng et al., 2025; Wang et al., 2025¢) pointed out key tokens to high-entropy tokens to explore
RL learning’s essence. In recent work, segment-level reinforcement learning approaches have been
proposed to broaden the exploration space (Guo et al., 2025; Li et al., 2025g; Zheng et al., 2025a).
However, RLVR algorithms specifically for LLM agents remain underexplored. This paper uses
entropy as a criterion to investigate reinforcement learning algorithms suited for LLM agent behavior.

B.2 AGENTIC REINFORCEMENT LEARNING.

Reinforcement learning (RL) is essential for enabling LLM agents to adapt to dynamic and open
environments (Lu et al., 2025; Shridhar et al., 2020; Mialon et al., 2024). Foundational works like
DQN (Mnih et al., 2015) and AlphaZero (Silver et al., 2017) demonstrate that self-play-based RL can
equip agents with capabilities from natural language understanding to strategic gameplay (Narasimhan
et al., 2015). Building on this, value-based RL approaches have been employed to enhance embodied
intelligence in hardware control and complex gaming tasks (Tan et al., 2024; Zhai et al., 2024; Bai
et al., 2024; Wang et al., 2024; Schulman et al., 2017; Peng et al., 2019). Recent efforts, exemplified
by RAGEN (Wang et al., 2025d; Zhou et al., 2024), integrates reasoning states and environmental
interactions into turn-level responses using trajectory-level RL. To improve tool-integrated reasoning,
studies (Jin et al., 2025a; Feng et al., 2025a; Song et al., 2025; Jin et al., 2025a; Chen et al., 2025b;
Feng et al., 2025a; Li et al., 2025f; Sun et al., 2025a; Li et al., 2025e; Singh et al., 2025a) employ
rule-based RL to teach LLMs how to autonomously invoke external tools (e.g. search engines, Python
compilers) to boost reasoning accuracy. Further research, including ToolRL (Qian et al., 2025a), Tool-
Star (Dong et al., 2025), and OTC (Wang et al., 2025a) explores multi-tool integration and tool-use
efficiency. A series of works led by Kimi Deepresearcher ¢ and Websailor (Li et al., 2025¢) optimize
RL algorithms to better adapt to deepsearch’s long context scenarios. While most works improve tool
invocation through reward shaping and rollout mechanisms, simply applying trajectory-level RL fails
to effectively capture the multi-turn, long-horizon characteristics of LLM-based agent behavior. This
motivates the proposal of ARPO to attempt learning step-level tool-use behavior patterns.

C DATASETS

In this section, we provide a detailed introduction to the datasets used in ARPO’s experiments.

C.1

» AIME24 7 is a dataset in evaluating the mathematical reasoning ability of models. It consists
of 30 challenging math problems. All of them are from the American Invitational Mathematics

MATHEMATICAL REASONING BENCHMARKS

(’https ://moonshotai.github.io/Kimi-Researcher/
"https://huggingface.co/datasets/HuggingFaceH4/aime_2024
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Examination. The problems in the AIME24 dataset cover a wide variety of mathematical fields such
as algebraic equations and geometric puzzles. Due to the difficulty characteristics and the richness
of question types, it has become a popular benchmark for evaluating the reasoning performance of
models, and is widely used in multiple related research experiments.

AIME25 3 consists of 30 challenging math problems. It is directly composed of the real questions
from the American Invitational Mathematics Examination (AIME I & II) newly released in February
2025. AIME25’s knowledge areas are extremely wide. It deeply covers core mathematical sections
such as algebra, geometry, number theory, and combinatorial mathematics. This characteristic
enables the AIME25 dataset to effectively distinguish the mathematical reasoning abilities of
different models.

MATHS00 (Lightman et al., 2024) is selected by OpenAl from the MATH evaluation dataset. It
contains 500 high-difficulty math problems. These problems cover multiple mathematical fields
such as algebra, geometry, calculus, and number theory. The difficulty is close to or exceeds the
college level. In academic research, MATHS500 dataset is often used to evaluate the performance
of various reasoning models.

MATH (Hendrycks et al., 2021) is a significant academic dataset. It is designed to test and
enhance models’ mathematical reasoning skills. It covers a wide range of mathematical fields,
including abstract algebra, calculus, and discrete mathematics. The dataset divides training data
into three levels, which helps effectively evaluate model performance at different stages.

GSMSK (Cobbe et al., 2021) is an elementary school math problem dataset released by OpenAl.
These problems require 2 to 8 steps to solve, mainly through a series of basic calculations to obtain
the final answer. This dataset is primarily used to test the logical and mathematical abilities of
models and has been applied in multiple benchmark tests.

C.2 KNOWLEDGE-INTENSIVE REASONING BENCHMARKS

HotPotQA (Yang et al., 2018) is a question-answering dataset for multi-hop. All the documents
are sourced from Wikipedia, which provides the dataset with a rich knowledge base and relatively
structured information. It is an important benchmark for evaluating the ability of LLMs to
understand complex search tasks.

2WikiMultihopQA (Ho et al., 2020) is a dataset specifically designed for the multi-hop question-
answering task. It aims to test and evaluate the ability of natural language processing models to
answer questions that require multi-step reasoning and the integration of information from different
documents.

Musique (Trivedi et al., 2022) is a question-answering dataset specifically designed for the
multi-hop question-answering task. Musique aims to be a challenging benchmark for evaluating
models’ multi-hop question-answering ability. It promotes the development of models from simple
information retrieval to deeper semantic understanding and logical reasoning.

C.3 DEEP SEARCH BENCHMARKS

GAIA (Mialon et al., 2024) is designed to evaluate the comprehensive capabilities of LLMs in
real-world tasks. The dataset contains 466 carefully designed questions to test the performance
of Al systems in basic capabilities. It contains tasks such as reasoning, web browsing, and tool
use. The proposal of GAIA provides a new framework for the evaluation of general artificial
intelligence assistants.

HLE (Phan et al., 2025) is an emerging and highly challenging benchmark dataset. It aims
to deeply evaluate the performance of LLMs when faced with complex questions requiring
deep understanding and complex reasoning. This dataset covers a large number of marginal,
interdisciplinary problems that demand highly abstract thinking to solve. Different from traditional
benchmarks, HLE aims to simulate an ultimate test of Al intelligence.

WebWalker (Wu et al., 2025a) is a dataset used to evaluate the performance of LLMs in web
traversal tasks. This dataset contains 680 question-answer pairs. It aims to address the limitations of
LLMs when dealing with complex information. Additionally, it improves the models’ capabilities
in multi-hop reasoning and dynamic web page structures.

8ht‘cps ://huggingface.co/datasets/math-ai/aime25
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* xbench-DeepSearch (Chen et al., 2025a) is an evaluation set for assessing the deep search
capabilities of Al agents. This dataset takes full consideration of the breadth of the search space and
the depth of reasoning. Different from existing knowledge search benchmarks, xbench-DeepSearch
is more capable of examining the high-order capabilities of agents.

D BASELINES

In this section, we introduce baselines used in our work.

D.1 DIRECT REASONING

* Qwen2.5 Series (Qwen et al., 2024) is a series of LLMs developed by the Alibaba team. It includes
the general-purpose language model Qwen2.5, the programming-specific model Qwen2.5-Coder,
and the mathematics-specific model Qwen2.5-Math. The Qwen2.5 series of models have been
pretrained on large-scale datasets. Compared with past Qwen series of models, the Qwen?2.5 series
have a richer knowledge reserve. In addition, it has good performance in various tasks such as
programming, mathematics, and instruction following.

* Llama3.1 Series (Dubey et al., 2024) is a series of natural language generation model launched
by Meta. It includes three specifications: 8B, 70B, and 405B. These models can handle longer text
inputs and generate more coherent long-text outputs. This series of models also performs well in
multilingual tasks. The Llama 3.1 series of models have undergone performance tests on more than
150 benchmark datasets. Its large-scale model is competitive with leading base models in a series
of tasks. The smaller 8B and 70B models also perform well in comparisons with closed-source
and open-source models with a similar number of parameters.

* Qwen 3 Series (Yang et al., 2025) is a series of open-source model developed by Alibaba. The
Qwen3 series of models includes 2 Mixture-of-Experts (MoE) models and 6 Dense models, with
the number of parameters ranging from 0.6B to 235B. Qwen3 natively supports the thinking mode
and non-thinking mode. In the thinking mode, the model reasons step by step and is suitable for
handling complex problems. The non-thinking mode can provide a fast, nearly instant response
and is suitable for simple problems. Qwen3 builds a training corpus based on approximately 36
trillion tokens, ensuring the model’s powerful capabilities and flexibility.

* QwQ (Team, 2024b) is an open-source inference model launched by the Alibaba team. It focuses
on enhancing AI’s capabilities in mathematics, programming, and complex logical reasoning.
The QwQ-32B is a dense model with 32 billion parameters. It surpasses most existing models in
core tasks such as mathematical reasoning and code-generation ability. The QwQ-32B achieves
breakthroughs through innovative multi-stage reinforcement learning. Its core training approach
lies in gradually expanding general capabilities while consolidating specialized advantages.

* DeepSeek-R1 (DeepSeek-Al et al., 2025) is a reasoning model developed by DeepSeek-Al.
DeepSeek-R1 is trained using reinforcement learning. The inference process involves a large
amount of reflection and verification, and the length of the thought chain can reach tens of thousands
of tokens. It performs outstandingly in tasks such as mathematics, code, and various complex
logical reasoning.

* GPT-40 (Hurst et al., 2024) is a multimodal LLM released by OpenAl. GPT-40 can accept any
combination of text, audio, and images as input. In addition, it can generate any combination
of text, audio, and images as output. GPT-40 has achieved performance comparable to that of
GPT-4 Turbo in aspects such as text, reasoning, and coding. Moreover, it has also set new highs in
performance scores for multilingual, audio, and visual functions.

* ol-preview (Hurst et al., 2024) is a preview version model in the ol series of LLMs launched by
OpenAl It represents an important breakthrough in the field of reasoning. ol-preview is based
on the GPT-4 architecture and trained through reinforcement learning. It aims to enhance the
reasoning ability for complex tasks and the ability to solve practical problems. It can exhibit
powerful abilities in tasks that require in-depth reasoning.

D.2 TRAJECTORY-LEVEL RL ALGORITHMS

* GRPO (Shao et al., 2024) is a reinforcement learning algorithm based on policy optimization. It
aims to address the balance issue among stability, sample efficiency, and theoretical guarantees
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in traditional policy optimization methods. By introducing the concept of relative advantage, it
simplifies the calculation while maintaining the theoretical guarantee of policy improvement. The
GRPO algorithm is applicable to reinforcement learning tasks in both continuous and discrete
action spaces.

* DAPO (Yu et al., 2025) is a LLM reinforcement learning algorithm developed by ByteDance
Labs. It aims to address the key challenges of large-scale RL training. It performs outstandingly
in complex tasks such as mathematical reasoning and code generation. The Clip-Higher strategy
proposed by DAPO effectively increases the entropy value, facilitating the generation of more
diverse samples. In addition, it introduces mechanisms such as dynamic sampling, Token-Level
Policy Gradient Loss calculation, and Overlong Reward Shaping to stabilize the training process.

* REINFORCE++ (Hu, 2025) is a new algorithm for improved versions of the classic REINFORCE
algorithm. Its core objective is to address the limitations of the original REINFORCE, and
enhance performance by integrating multiple optimization strategies. REINFORCE++ typically
incorporates a baseline function to reduce variance by subtracting the baseline. Through the
baseline and TD estimation, REINFORCE++ makes the gradient update more stable. It doesn’t
need to wait for a complete trajectory and supports incremental updates. In addition, it avoids
premature policy rigidity through entropy regularization.

D.3 LLM-BASED SEARCH AGENT

* RAG (Lewis et al., 2020) (Retrieval-Augmented Generation) is a technical approach that combines
information retrieval with a generative model. It aims to improve the accuracy, reliability, and
timeliness of the output of generative models. Its core idea is: before generating an answer, first
retrieve information related to the question from an external knowledge base, and then let the
model generate a response based on the retrieved content. This can solve the problem of internal
knowledge deficiency or hallucination within the model to some extent.

* Search-ol (Li et al., 2025d) is an Agentic search-enhanced reasoning model framework. It is
mainly designed to address the knowledge deficiency problem existing in the reasoning process.
By integrating the Agentic RAG mechanism and the Reason-in-Documents module, it improves
the accuracy, coherence, and reliability of model reasoning. Experiments show that Search-ol
outperforms native reasoning and traditional RAG methods in complex reasoning tasks.

* WebThinker (Li et al., 2025e) is an open-source in-depth research framework launched by Renmin
University of China. It endows LRMs with the ability to autonomously search, deeply explore web
pages, and write research reports. WebThinker has developed a training strategy based on direct
preference optimization. It uses training with preference data through iterative synthesis tools to
enhance the tool utilization ability of LRMs.

* ReAct (Yao et al., 2022) is an artificial intelligence method that combines reasoning and acting. It
aims to enable models to solve complex tasks more effectively through a “thinking while doing”
mode similar to human thinking. Its core idea is to break the limitation of the traditional model,
allowing the model to actively generate reasoning steps and call external tools (such as search
engines, databases, etc.) during the decision-making process, and finally obtain the answer through
iterative optimization.

E IMPLEMENTATION DETAILS

E.1 TRAINING GUIDELINE

Our study aims to validate the effectiveness of ARPO at the algorithmic level compared to tradi-
tional RL in training LLM agents, rather than merely pursuing performance improvements. To
ensure reproducibility, all training frameworks and datasets are sourced from open-access resources.
Specifically, our experiments adhere to the cold-start SFT with RL paradigm (Song et al., 2025; Dong
et al., 2025) to mitigate reward collapse during the initial RL training phases.

1. Cold-Start Finetuning Phase: Utilizing the LLaMAFactory (Zheng et al., 2024) framework,
we leverage Tool-Star’s open-source dataset of 54K training samples. To enrich the quality of
mathematical reasoning data, we incorporate the STILL dataset (0.8K), drawing inspiration from
CORT (Li et al., 2025a).
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2. RL Phase: To assess ARPO across various scenarios, we explore the following domains:

* Deep Reasoning Tasks: This includes computational reasoning (e.g., AIME24, MATH500) and
multi-hop knowledge-based reasoning (e.g., HotpotQA, Bamboogle). We utilize Tool-Star’s 10K
open-source RL training samples for algorithmic comparison.

* Deep Search Tasks: These tasks require extensive web exploration and information integration,
necessitating longer contexts and frequent tool interactions. We use only 1K mixed hard search
samples from SimpleDeepSearcher (Sun et al., 2025b) and WebSailor (Li et al., 2025c¢) for training.

To expedite the RL training phase, we incorporate top-10 snippets from the Bing search engine as
search results, employ a Python compiler within a sandbox environment, and use token-level F1
scores as the correctness signal °.

E.2 SUPERVISED FINE-TUNING

As mentioned in Section E.1, during the supervised fine-tuning phase, we train the Qwen2.5-3B-
Instruct model using the Llama Factory framework with a learning rate of 7 x 10~5. We employ
DeepSpeed ZeRO-3 (Rasley et al., 2020) and FlashAttention2 (Dao, 2023) for optimization. The
batch size is set to 128, with a weight decay of 0.1, and the model is trained for 3 epochs. We use
BF16 mixed precision with a maximum input length of 4096 tokens.

E.3 REINFORCEMENT LEARNING

In the ARPO phase, we implement the ARPO algorithm based on the VERL framework (Sheng et al.,
2024). Notably, all tool invocation results are excluded from loss calculation to prevent bias towards
tool outputs. The loss computation only considers tokens involved in text reasoning and tool requests.
We differentiate settings for Deep Reasoning Tasks and Deep Search Tasks:

1. Deep Reasoning Tasks: For models with 7B parameters, whether using ARPO or other trajectory-
level RL methods, our standard setup includes a total training batch size of 128, a PPO mini-batch
size of 16, a global rollout size of 16, and an initial sampling size of 8. Each interaction response
length is capped at 4096 tokens. For ARPO rollouts, we set the entropy weight to 0.2, the parameter
a to 0.5, and the threshold to 0.5. To stabilize training, the KL divergence coefficient in GRPO is set
to 0. The reinforcement learning phase spans 2 epochs, conducted on 8§ NVIDIA H800 GPUs.

2. Deep Search Tasks: For models with 8B parameters, we maintain the same settings as in the Deep
Reasoning Tasks, except that each interaction response length is extended to 8192 tokens. For 14B
models, the same parameters are used, but experiments are conducted on 16 NVIDIA H800 GPUs.
Due to a limited dataset of 1K samples, the reinforcement learning phase lasts for 5 epochs.

E.4 DETAILS OF SEARCH

During the training and testing phases, we used the Bing Web Search API as the retriever, configured
with the US-English (US-EN) locale. Following a series of related works on RAG (Jin et al., 2024; Li
et al., 2024b; Dong et al., 2024e;b;d), we retrieved 10 web pages as supporting documents for each
query.

For mathematical and knowledge reasoning, we evaluated using only the top 10 snippets. However,
for deep search tasks, we fetched each page with up to 6000 tokens from the URLs and used a model
of the same size as the reasoning model as a browser agent to refine the information.

E.5 SCALING EXPERIMENT SETUP

In our scaling experiments, we align with the aforementioned settings: a total training batch size
of 128, a PPO mini-batch size of 16, a global rollout size of 16, and an initial sampling size of 8.
For ARPO rollouts, the entropy weight is 0.2, a is 0.5, and the threshold is 0.5. We vary specific
parameters for targeted experiments while keeping others constant.

°In this paper, we only use the LLM to correct grammatical errors.
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F THEORETICAL ANALYSIS AND PROOFS

F.1 PRELIMINARY OF AGENTIC REINFORCEMENT LEARNING
In this section, we formulate the agentic RL training objective as:
H}T%X EJ:N'D,yNTre(‘lfL‘;T) [T¢ (Ia y)] - 6 Dkr [7-(-9 (y | €x; T) || Trref(y | €L T)] ) @)

where 1" denotes the set of available tools, my represents the policy LLM, ¢ is the reference LLM,
r4 and Dk denotes the reward function and KL divergence respectively. The input x is sampled
from dataset D, and y is the corresponding output, possibly interleaved with tool-call feedback.

Unlike conventional RL methods that rely solely on LLM rollouts, agentic RL incorporates tool-call
feedback during the reasoning process (Chen et al., 2023; Gou et al., 2024; Li et al., 2025f; Wu et al.,
2025b; Li et al., 2024a). The rollout sampling can be decomposed as:

tr ty
P@(Ray | €T T) = HP(')(RI‘ ‘ R<t7x;T) ! H PQ(yt | y<t7Ra‘T;T)7 (8)
t=1 t=1
Agentic Reasoning Answer Generation

where R is the reasoning trajectory of length ¢, interleaved with tool-call feedback, and y is the
final answer with length ¢,,. Our ARPO is built upon rule-based RL algorithm (e.g. GRPO (Shao
et al., 2024), Reinforce++ (Hu, 2025)) designed to optimize LLM-based agents.

F.2 THEORETICAL ANALYSIS OF SOFT ADVANTAGE ESTIMATION

In this section, we conduct a detailed theoretical analysis of Soft Advantage Estimation. First, we
present the classic GRPO optimization objective:

[os]

11 . i
e Z ol Zl min (m,t(t‘))Ai,tv
i=1 t=

Clip (Ti,t(6)7 1-— €, 1 + 6) Ai,t) — BDKL(ﬂ'g || ﬂref)]

Jarpo(0) = E (g 0)wD (0,3 ~my (la)

&)

For each individual problem, we define the optimization objective as:

o]

G
1 1 . .
Jerpo(0) = c ; Torl tz:; min (ri,t(Q), clip (r;+(0),1 t€) )Ai,t — BDkL(mg || mer)  (10)
Therefore, the classical GRPO optimization objective can be expressed as:
Jorpo(0) = E (g a)wD (0.}, ~m,, (1) [TGrP0 (0)] (11)

Subsequently, we focus on analyzing Jizpo(#). Assume that for the inference of problem g, the
partial rollout operation starts from the [-th token. We define two importance sampling ratios:

rei(0)< = Wit [ . yi<t) 12
w(®) et (Yise | @, Yi,<t) 12

T3 t(9)>l = 7T9(p | .’E,q) ﬂ-g(yiat | $7Q7p»yi,<t)
’ Teet (P | @, @) et (it | T, 4, P, Yi<t)’

13)

where 7; +(6)<! and r; ;(6)>" represent the importance sampling ratios before and after the I-th token,
respectively, g represents the input question, p represents shared tokens, and y;  in 13 represents
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the sequence from shared tokens to before the ¢-th token. In addition, we define 02 as the [-th token
of the i-th sequence. Then Jiypo(6) can be expressed as:

G ‘Oll
Jerro (0) =G Z o] [Z min (TZ +(0)<!, clip (rftl (0),1+ e) )A”
[oi]
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‘We make the following definitions:
|Oz| .
‘Ol| Z min (TZ +(0)<!, clip (rftl(Q), 1+ e) )Ai,t, (15)
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o]
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where Jfl represents the optimization objective of the shared tokens part of the i-th chain, Ji>l
represents the optimization objective after partial rollout of the i-th chain, and JG>RlPo represents the
optimization objective of directly performing the classical GRPO sampling operation starting from
the [-th position. Then, the original optimization objective Jgrpo (€) can be expressed as:

G
1 0
Jarro(8) = & Y- U = I7') Tk — 8D (o | )
i=1 1"

Shared Token Advantage

(18)
(9] (9]
= Z Py -5 Z LT+ Tl — Dk (7o | )
0;
Hard Advantage Estimation Regularization Term

In this case, the GRPO optimization objective under Soft Advantage Estimation can be expressed as
the sum of a standard GRPO objective from the partial rollout position, and the weighted difference
between the objectives before and after that point. The weight of each difference is closely related to
the length of its corresponding reasoning chain.

It is worth noting that, through our theoretical derivation and decomposition of the objective, we
find that under the soft setting, the share token advantage consists of two components: (1) the first
term aligns with the Hard Advantage Estimation; (2) the second term corresponds to the portion
after the partial rollout position [, which is related to the individual token advantage. We interpret
this second component as a regularization term. As a result, the estimated advantages under the
hard and soft settings are approximately equivalent, with the key distinction being the presence
of this regularization term. This leads us to hypothesize that the improved stability of the Soft
Advantage Estimation may be attributed to this regularization effect.

F.3 THEORETICAL PROOF OF GPG THEOREM
F.3.1 TRANSFORMER-BASED POLICY

The Transformer-based policy 7 (ay|s;), by applying the chain rules, we have the following:

mo(OTy | 1Ty, 1T, .. IT ipput|) X

mg(OTy | 1Ty, ITs, ..., IT)ipput|, OT1) %

mg(OTs | 1Ty, ITs, ..., ITippus|, OT1, OT) %

. 19)

To(OT output| | IT1; s I T input|s OT1, oy OT output|—1)

=mg(OT1, 0T, ..., OT\guiput) | 111, ITo, .o, IT)ipput|)
=mg(MA | MSy)

where IT; and OT; are input tokens and output tokens, respectively; MS; 2£<

I'Ty, ITs, .o I T inpuy) > and MA L£< 0Ty, 0T, ooy OT)output| > can be token as the macro
state and the macro action, respectively.

In a more general form, we can split the complete output OT1, OTs, ..., OT|syutpuq| into K segments,
and get the generalized macro states and macro actions, i.e., MS; £< MS;_;, MA;_, > and
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MA; £< OT,,,OT )41, ...,OT )+, >. In this case, we have the following:
mo(MA | MSy)
—ro(MA; | MS))x
ro(MAs | MSy, MA;)x

W@(MAK | MSl,MAl,MAQ,...HMAK_l)
:’R’@(MAI | MSl)X (20)
7T9(MA2 | MSQ)X

iy (MAK | MSK)
K
= H 7T9(MAT | MST)
T=1
where T represents the macro timestep.

F.3.2 DERIVATION OF THE GPG THEOREM

Given the macro states and macro actions defined above, we can get the Generalized Policy Gradient
Theorem (for Transformer-based policies):

K

Vo (0) =Ermy{Y_[Vologmg(MAr|MSr)®r]} 21)
T=1

A key advantage of the GPG Theorem is that it allows macro-action segmentation of arbitrary
length. This flexibility makes the theorem highly practical: for instance, enabling trajectory splitting
based on special tokens.

The proof is as follows:

VoJ(0) (22)
=V¢E s, [R(T)] (23)
=Vy Z P(1;0)R(7) (24
= Z VoP(1;0)R(7) (25)
=3P WP YoPT:0) gy 26)

(1;0)
:ZP 7:0)Vglog P(7;0)R(T) (27)
H
_ZP 7;0)Vollog p(s1 H (atlst) P(st+1lse, ar) | R(T) (28)
= P(r;0)Vyllog H o (ar|s:)P(se41|se, a:)|R(T) (29)
. H
= Z P(7;0)Vllog H mg(agse)|R(T) (30)
7213 7:0)Vg[log H mo(M Ap|MSr)|R(7) (31)
T=1
—ZP 7:0)] ng log mg (M Ap| M Sp)|R(T) (32)
T=1
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K
:ZP(T,Q)[Z VQ lOgﬂ'g(MAT|MST)R(T)] (33)
T T=1
K
=E.r, {3 [Vo logm(MAr|MSr)R(7)]} (34)
T=1
K
:ETNTFH{Z[VG log’ITg(MAT|MST)(I)T}} (35)
T=1

Key steps in the proof are presented below:

1. From Equation (29) to Equation (30), this is because s:11 = [s¢, a¢] for Transformer-based policy,
so we have P(sy41]st,a¢) = 1.

2. From Equation (30) to Equation (31), this is because s;41 = [st, a;] for Transformer-based policy,
so we have the following derivation:

H
Hm(at|st)

—7r9(a1|81) x mp(az|s2) X ... X mo(am|sm)
=mp(ai|s1) X mp a2|51,a1) X ... X mo(am|so, a0, @1,y .oy @pr—1)
=Tp a17a27'“7aH‘81)

(
(
—WQ(MA | MSl)
_rp(MA; | MSy)x (36)
7o (

mo(MAg | MS1,MA;,MAs,...,MAr_1)

K
=[] me(MAr | MSy)
T=1

3. From Equation (34) to Equation (35), this is similar to the transition from Policy Gradient Theorem
to the general form of Policy Gradient Theorem (i.e., from traditional advantage function to GAE).

G USE ofF LLMS

In this paper, the LLM is used solely for correcting grammatical and lexical errors.

32



Published as a conference paper at ICLR 2026

H THE ALGORITHM WORKFLOW OF ARPO

In this section, we provide a detailed flowchart of the ARPO algorithm in diagram 1.

Algorithm 1 Agentic Reinforce Policy Optimization

Input initial policy model 7y, ; reward models r4; task prompts D; hyperparameters €, o, 3, i, T,
M,N,Z, k

1: policy model 7y < 7y,

2: for iteration=1,...,1do

3: reference model 7.y <— g

4 forstep=1,...,S do

5 Sample a batch Dy, from D

6: Update the old policy model 7y, , < 7y

7: Sample N reasoning 1-step paths {y;}¥.; ~ my_,,(- | ¢) for each question g € D,

8 Compute initial entropy H; ;pnitiq Of the first k tokens in each outputs

9: let all rollouts {rollout;} + {y;},
10: tool-call step ¢ < 1
11: while Any unfinished y; do
12: Parse unfinished y;, execute tools and obtain results d; = T'(y;)
13: Insert d into rollout y; < y; + d;
14: Generate k additional tokens based on inserted y; to compute step-level entropy H; ;
15: Compute normalized change in entropy AH,; ; = Normalize(H; ; — H; inintial)
for each y;
16: Compute partial sampling probability P; ; = o+ 5 - AH, ;
17: if P;; > 7 then
18: Branch out Z additional rollouts {y;}# and add them to {rollout;}
19: if |y;| = M then
20: Sample {y; } until y; produce the final answer
21: else
22: Sample {y; } to produce new reasoning step
23: tt+1
24: if |y;| < M then
25: Sample M — |y;| additional independent rollouts and add them to {rollout; }
26: Compute rewards {r; }£, for each sampled rollouts y; by running r
27: Compute /Alm for the ¢-th token of o; through group relative advantage estimation.
28: for GRPO iteration=1, ..., i do
29: Update the policy model 7y by maximizing the GRPO objective (Equation ( 3))
30: Update 7y through continuous training using a replay mechanism.
Qutput 7y
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Table 6: An example from ARPO on GAIA dataset, with special symbols used in think content,
search queries, Python codes, returned results and final answer highlighted with [purple box], [green box],
[blue box] and [red box], respectively.

Example #2 from GAIA Dataset

Question:

In terms of geographical distance between capital cities, which 2 countries are the furthest from each other
within the ASEAN bloc according to wikipedia? Answer using a comma separated list, ordering the countries
by alphabetical order.

Labeled Answer:

Indonesia, Myanmar

Model Output by ARPO(14B)

Okay, so I need to figure out which two ASEAN member countries have their capital cities that are
the furthest apart geographically. And then present them in alphabetical order, comma-separated. Let me
start by recalling what ASEAN stands for—it’s the Association of Southeast Asian Nations. The current
members include Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar (Burma), Philippines, Singapore,
Thailand, Vietnam, and maybe others like East Timor or Papua New Guinea? Wait, no, actually I think it’s
those ten countries. Let me confirm that first. (***More reasoning contentare omitted here***) First, let
me gather the list of capitals and their coordinates. I should search for ASEAN member countries and their
capitalsto ensure accuracy. Also, maybe check each country’s Wikipedia page for their capital’s coordinates.
Alternatively, look up a list that includes both names and coordinates. Let me try a search query first.[</think>]
List of ASEAN countries with capitals and geographic coordinates|</search>]

The searched web pages provide the list of ASEAN member countries along with their capitals but do
not include geographic coordinates for the capitals. For example: - **Brunei**: Capital is **Bandar Seri
Begawan**. - **Cambodia**: Capital is **Phnom Penh**. - **Indonesia**: Capital is **Jakarta®*. -
**Laos**: Capital is **Vientiane**. - **Malaysia**: Capital is **Kuala Lumpur**. - **Myanmar**: Capital
is **Naypyidaw**. - **Philippines**: Capital is **Manila**. - **Singapore**: Capital is **Singapore**. -
**Thailand**: Capital is **Bangkok**. - **Vietnam**: Capital is **Hanoi**. To proceed with calculating
distances between capitals, geographic coordinates (latitude and longitude) for each capital would need to be
obtained from an external source.

*+*Two search steps omitted here***

So yes, exactly 10 countries. Therefore, the number of pairs is C(10,2)=45. Computing all 45 isn’t too
bad for a script.(***More reasoning contentare omitted here***) Given all these calculations, I'm confident
that the furthest pair is Indonesia and Myanmar. Their capitals are Jakarta and Naypyidaw respectively.
Sorting alphabetically, Indonesia comes before Myanmar. Hence the answer should be Indonesia,Myanmar.
To determine the two ASEAN member countries with the furthest apart capitals, I first identified the capitals
and their geographic coordinates from reliable sources. Using the Haversine formula, I calculated the distances
between all pairs of capitals. After performing these calculations, the maximum distance was found between
**Jakarta (Indonesia)** and **Naypyidaw (Myanmar)**. When sorted alphabetically, the countries are
*#[ndonesia** and **Myanmar**.

Indonesia, Myanmar ‘

</answer>

I CASE STUDY
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Table 7: An example from ARPO on HLE dataset, with special symbols used in think content, search
queries, Python codes, returned results and final answer highlighted with [purple box], [green box|, [blue box

and [red box], respectively.

Example #2 from HLE Dataset

Question:

How long was the Second Great War in StarCraft Lore (in years, rounded up)
Labeled Answer:

1

Model Output by ARPO(14B)

[<think>]Okay, so I need to figure out how long the Second Great War lasted in StarCraft lore, right? Let me
start by recalling what I know about StarCraft’s timeline. (***More reasoning contentare omitted here**%*)
So if it starts in 2500 and ends in 2506, that’s seven years. But maybe the core conflict is counted until 2505,
making it five years. Alternatively, some sources might consider the entire period from the first signs of the
Zerg resurgence up to the final battles as spanning six years.[</think>]

[<search>]starcraft second great war duration years

The Second Great War in *StarCraft* is generally considered to have occurred from **2504 to 2505%%*,
spanning **one year**. This timeline aligns with the events of *StarCraft II: Wings of Liberty* (2504) and
*Heart of the Swarm* (2505). However, some sources, such as NamuWiki, specify that the war {asted for
half a year until April 2505,5uggesting the **core conflict** may have been shorter (six months), though the
broader war period is recorded as one year. The war followed the end of the Brood War (2500) and preceded
the *Legacy of the Void* campaign.

***Two search steps omitted here***

Okay, so the official StarCraft Wiki states it’s one year. Even if parts of it were shorter, the overall
duration is considered a full year. Therefore, rounding up wouldn’t change it since it’s already a whole
number. But just to be thorough, maybe there’s a different interpretation. Let me see if any other sources
say otherwise.Alternatively, perhaps the Second Great War includes the events leading up to the main games.
For example, if the war started in late 2503 and ended in mid-2505, that would be almost two years. But
according to the wiki, it’s 2504-2505. Given that the user specified founded up,éven if it were, say, 1.5 years,
we’d round to 2. But based on the search results, especially the official wiki, it’s one year. So the answer
should be 1 year. Wait, but the first search had conflicting info. Let me recheck the exact wording from the
wiki.Assuming the official timeline clearly states 2504—2505 as the Second Great War, that’s exactly one year.
Hence, the duration is one year. Rounded up, it remains one. Therefore, the answer is 1 year. But wait, hold
on! Another possibility: the Second Great War might refer to the conflict in the original StarCraft games
versus the sequel. No, the Second Great War is definitely part of the StarCraft II storyline. Let me confirm
once more. Yes, the Second Great War is indeed the central conflict of StarCraft I, occurring between 2504
and 2505, totaling one year. Some sources might mention the core battle lasting six months, but the entire war

period is a year.[</think> |

Since the question asks for the duration in years, rounded up, and it’s exactly one year, no rounding is needed.

1]
</answer>
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Table 8: An example from ARPO on AIME24 dataset, with special symbols used in think content,
search queries, Python codes, returned results and final answer highlighted with [purple box], [green box],
[blue box| and [red box], respectively.

Example #1 from AIME24 Dataset

Question:

Let p be the least prime number for which there exists a positive integer n such that n* + 1 is divisible by p.
Find the least positive integer m such that m* + 1 is divisible by p.

Labeled Answer:

110

Model Output by ARPO(8B)

To solve this problem, we need to find the smallest prime p such that there exists a positive integer n
for which n* + 1 is divisible by p. Then, we need to find the smallest positive integer m such that m* + 1 is
divisible by p?. We will start by checking small prime numbers one by one to find the smallest p that satisfies
the condition. We’ll use Python to automate this process. First, let’s write a function to check if n* + 1 is
divisible by p®. We’ll iterate over the first few values of n to find such an n for each prime p. We’ll start with
the smallest prime number and move upwards until we find the required p. Here’s the plan: 1. Iterate over the
first few prime numbers. 2. For each prime p, check if there exists an n such that n* +1 = 0 (mod p?). 3.
Once we find the smallest prime p that satisfies the condition, we’ll find the smallest mn such that m* +1 =0
(mod p?). Let’s implement this in Python [</think>]

from sympy import isprime, primerange

def find_n_for_p(p):
for n in range(1, p**2 + 1):
if (nxx4 + 1) % (p**2) == 0:
return n
return None

primes = list(primerange (2, 100))

for p in primes:
n = find_n_for_p(p)
if n is not None:

for m in range(1, p*x*2 + 1):

if (m*xx4 + 1) % (p**2) == 0:
result =m
break

else:
continue

break

print((p, result))

</python>

[<think>] The smallest prime p for which there exists a positive integer n such that n* + 1 is divisible by p?
is 17. The least positive integer m such that m* + 1 is divisible by 172 is 110. Thus, the final answer is:

110
</answer>
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Table 9: An example from ARPO on HLE dataset, with special symbols used in think content, search
queries, Python codes, returned results and final answer highlighted with [purple box]|, [green box], [blue box

and [red box]|, respectively.

Example #1 from HotpotQA Dataset

Question:

Which playwright lived a longer life, Edward Albee or J. M. Barrie?
Labeled Answer:

Edward Franklin Albee 11T

Model Output by ARPO(8B)

I need to determine which of two playwrights, Edward Albee and J. M. Barrie, lived a longer life. To
do this, I will: 1. Find the birth date of Edward Albee. 2. Find the death date of Edward Albee. 3. Calculate
how long Edward Albee lived. 4. Find the birth date of J. M. Barrie. 5. Find the death date of J. M. Barrie. 6.
Calculate how long J. M. Barrie lived. 7. Compare the lifespans. I will use web search for steps 1-5.[</think>]
Edward Albee birth death dates

Page 1: Sep 16, 2016 - Edward Albee was born Edward Harvey in Washington, D.C. At the age of two weeks,

he was adopted by Mr. and Mrs. Reed Albee of Larchmont, New York, and renamed Edward Franklin Albee
III. From an early age, ...

Page 2: Explore Edward Albee’s biography, personal life, family and cause of death. Discover the real story,
facts, and details of Edward Albee.

Page 3: Sep 17,2016 - Edward Albee was a Pulitzer Prize winning American playwright. His popular works
include The Zoo Story, and Who’s Afraid of Virginia Wolf? Albee was born Edward Harvey on March 12,
1928 in Washington, D.C. (***More search results omitted here***)

From the search results: - Edward Albee was born on March 12, 1928. - Edward Albee died on
September 16, 2016. Now I need to find J. M. Barrie’s birth and death dates.[</think>]

***(ne search step omitted here***

From the search results:- J. M. Barrie was born on May 9, 1860. - J. M. Barrie died on June 19, 1937.
Now I have both sets of dates:

Edward Albee: - Born: March 12, 1928 - Died: September 16, 2016

J. M. Barrie: - Born: May 9, 1860 - Died: June 19, 1937

Next, I will calculate how long each playwright lived. For Edward Albee: 2016 - 1928 = 88 years. For J. M.
Barrie: 1937 - 1860 = 77 years. So, Edward Albee lived 88 years and J. M. Barrie lived 77 years. Therefore,

Edward Albee lived a longer life.[</think>]

albee_birth_year 1928

albee_death_year 2016

albee_lifespan = albee_death_year - albee_birth_year
print (f"Edward Albee lived for {albee_lifespan} years.")

barrie_birth_year = 1860

barrie_death_year = 1937

barrie_lifespan = barrie_death_year - barrie_birth_year
print(f"”J. M. Barrie lived for {barrie_lifespan} years.")

if albee_lifespan > barrie_lifespan:

print ("Edward Albee lived a longer life.")
else:

print(”"J. M. Barrie lived a longer 1life.")

</python>

<result>
Edward Albee lived for 88 years. J. M. Barrie lived for 77 years. Edward Albee lived a longer life.

</result>
<answer>

Edward Albee
</answer>
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