
Dynamic Data Mixing Maximizes Instruction Tuning
for Mixture-of-Experts

Anonymous ACL submission

Abstract
Mixture-of-Experts (MoE) models have shown001
remarkable capability in instruction tuning,002
especially when the number of tasks scales.003
However, previous methods simply merge all004
training tasks (e.g. creative writing, coding,005
and mathematics) and apply fixed sampling006
weights, without considering the importance007
of different tasks as the model training state008
changes. In this way, the most helpful data009
cannot be effectively distinguished, leading to010
suboptimal model performance. To reduce the011
potential redundancies of datasets, we make the012
first attempt and propose a novel dynamic data013
mixture for MoE instruction tuning. Specif-014
ically, inspired by MoE’s token routing pref-015
erence, we build dataset-level representations016
and then capture the subtle differences among017
datasets. Finally, we propose to dynamically018
adjust the sampling weight of datasets by their019
inter-redundancies, thus maximizing global020
performance under a limited training budget.021
The experimental results on two MoE models022
demonstrate the effectiveness of our approach023
on both downstream knowledge & reasoning024
tasks and open-ended queries.025

1 Introduction026

Instruction tuning is a pivotal step for Large Lan-027

guage Model (LLM) alignment (OpenAI, 2022;028

Anthropic, 2023). To promote the alignment abil-029

ity, LLMs are typically fine-tuned on a collection030

of instruction datasets with multiple tasks (Zhou031

et al., 2023; Mukherjee et al., 2023; Ouyang et al.,032

2022). However, dense models may be constrained033

by their fixed model capacities when the number034

of tasks grows in instruction tuning (Chung et al.,035

2022). Instead, Mixture-of-Experts (MoE) natu-036

rally incorporates multiple experts, which expands037

the model capacity (Shazeer et al., 2017; Lepikhin038

et al., 2020), and assigns relevant tokens to specific039

experts (Fedus et al., 2022).040

To perform instruction tuning, multiple datasets041

are usually combined in practice (MosaicML,042
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Figure 1: Our proposed dynamic data sampling method
for instruction tuning. As the training progresses, the
model can dynamically adjust the proportion of data
sampling. For comparison, previous works concatenate
datasets directly and apply fixed sampling weights.

2023). In such a complex scenario, datasets from 043

diverse domains may exhibit redundancies, which 044

requires a prudent design in the dataset selection 045

and combination (Cao et al., 2023; Xie et al., 046

2023). Recently, MoE models have demonstrated 047

appealing quality on divergent tasks and reach sig- 048

nificantly better performance than dense models, 049

attributed to their excellent task scaling proper- 050

ties (Shen et al., 2023a). However, how to decide 051

appropriate sampling weights according to models’ 052

internal preferences is still under-explored. 053

Most previous studies (Shen et al., 2023a; 054

OpenBMB, 2024; Wang et al., 2023) directly con- 055

catenate multiple instruction datasets for super- 056

vised fine-tuning (SFT) without considering the 057

sampling weights and task redundancies. Jha 058

et al. (2023) and Chen et al. (2024) take sampling 059

weights as a hyper-parameter and find the best 060

combination by handcraft search, which is labo- 061

rious and costly to enumerate all the combinations. 062

Thus, it is vital to automatically adjust the sampling 063

weights during the training process with the lowest 064

cost and maximize the alignment abilities. 065
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To this end, we propose a dynamic sampling066

strategy for MoE models, as illustrated in Figure 1.067

Our method is based on the hypothesis that if one068

dataset is different from the others for the MoE069

model, there may be less redundancies and the sam-070

pling weight should be increased in the next round071

of training. Thus, the most important problem is072

how to identify the differences among datasets con-073

sidering the model’s training state. It is difficult074

to build such a meticulous dataset-level difference075

as the model is constantly changing. Inspired by076

the intrinsic properties of MoE models, we for-077

mulate the dataset-level representations resorting078

to specialized experts and token routing prefer-079

ences (Zoph et al., 2022). Specifically, we count the080

number of tokens routed to every expert for each081

dataset, which refers to the gate load. Afterward,082

we apply the gate loads as dataset representations083

and compute L2 distances among them. Since the084

distances are obtained from token routing prefer-085

ences, they could represent the model’s internal086

state. Finally, we propose a dynamic algorithm to087

update the sampling weights according to previous088

sampling weights and current distances.089

We experiment on two MoE models with a com-090

bination of four representative instruction datasets.091

Model performances are evaluated on eight evalua-092

tion datasets across knowledge testing, reasoning,093

and open-ended question answering tasks. The re-094

sults demonstrate the effectiveness of our dynamic095

method. To help understand the internal mech-096

anism of our method, we also provide thorough097

analyses of expert specialization and different data098

combinations. Our main contributions are summa-099

rized as follows:100

• To our best knowledge, this is the first work to101

systematically study different sampling meth-102

ods for MoE models in instruction tuning. In-103

spired by the inherent attributes of MoE, we104

introduce a novel dynamic data mixture for105

combining different instruction datasets.106

• To capture the differences among datasets con-107

sidering the model’s training state, we propose108

to utilize the routing preferences of MoE mod-109

els to formulate dataset-level representations.110

• We conduct extensive experiments on two111

MoE models and validate the effectiveness112

of our method on a wide range of downstream113

tasks and open-ended questions.114

2 Related Work 115

Mixture-of-Experts. The Mixture-of-Experts 116

(MoE) is a sparsely activated architecture in neu- 117

ral networks with great efficiency (Shazeer et al., 118

2017; Fedus et al., 2022; Lepikhin et al., 2020). 119

Attributed to its sparsity, MoE has attracted broad 120

attention in the realm of Large Language Models 121

(LLMs) (Fedus et al., 2022; Lepikhin et al., 2020). 122

Subsequent studies follow these model architec- 123

tures, showing the effectiveness of MoE in dealing 124

with reasoning (Jiang et al., 2024), cross-domain 125

(Li et al., 2023), and multi-modal (Mustafa et al., 126

2022) problems. 127

Instruction Tuning. The instruction tuning is 128

an important step for the alignment of pre-trained 129

Large Language Models (LLMs). Wang et al. 130

(2022) devise an automatic prompting method to 131

generate enormous instructions and responses with 132

LLMs. Based on this idea, Xu et al. (2023) and 133

Zhao et al. (2023) further utilize LLMs to gener- 134

ate diverse and complex instructions to enhance 135

the alignment. Different from the data augmenta- 136

tion methods, Tunstall et al. (2023) and Zhou et al. 137

(2023) find a small number of high quality instruc- 138

tion data can boost the alignment performance. Cao 139

et al. (2023) and Liu et al. (2023) further study data 140

patterns to filter out high quality data to help LLM 141

alignment. However, none of these approaches 142

consider using different sampling weights when 143

training on multiple instruction datasets. 144

Dynamic Data Mixing. Since there is no rele- 145

vant literature on dynamic sampling for instruction 146

tuning, we introduce the relevant methods in LLM 147

pre-training. Xie et al. (2023) propose DoReMi, a 148

dynamic sampling method for LLM pre-training 149

on multiple domains of data. However, they need 150

to train a proxy model for estimating reference 151

losses on target domains, which introduces addi- 152

tional training computations. Xia et al. (2023) 153

propose to use a series of language models and 154

estimate the reference loss by fitting scaling law 155

curves. They have to fine-tune the model on target 156

datasets to estimate the reference loss of instruction 157

tuning by scaling law curves, which still brings ad- 158

ditional training computation. Albalak et al. (2023) 159

introduce an online data mixing method for LLM 160

pre-training via the multi-armed bandit algorithm. 161

However, the exploration stage at the beginning of 162

training takes a huge amount of steps, which is not 163

applicable for instruction tuning. 164
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3 Preliminaries of Mixture-of-Experts165

In a typical MoE structure, the layer is composed of166

N expert networks {E1, E2, . . . , EN} and a gating167

network G. Different from common networks, the168

MoE manifests itself in the design of computational169

strategy, characterized by inherent sparsity. Given170

an input token x, the gating network computes a171

vector of routing scores G(x) ∈ RN , denoting the172

importance of each expert network to process the173

given input. The MoE layer then selectively aggre-174

gates the outputs from the top-K experts, which is175

represented as:176

y =
∑
i∈IK

G(x)i · Ei(x), (1)177

where IK is the set of indices with the highest178

K ≤ N scores in G(x), denoted as:179

IK =
{
i1, . . . , iK | G(x)i1 ≥ · · · ≥ G(x)iN

}
.
(2)180

To maintain a balanced computational load among181

experts, an auxiliary balance loss is typically in-182

corporated during the training process. Given the183

input datasetDi, a common practice (Shazeer et al.,184

2017) is to apply a constraint on the routing scores185

G(x) for each token x ∈ Di, which is defined as:186

Lbali = CV(Gi)2 +CV(Oi)
2, (3)187

where CV(·) is the function calculating the co-188

efficient of variation from a given vector, mea-189

suring the degree of imbalance upon activation.190

The CV score would be high if tokens dispatched191

to experts are off-balance. The aggregation of192

these two terms ensures a balanced dispatching193

among experts. The importance score vector194

Gi ∈ RN corresponds to the summation of rout-195

ing scores
∑

x∈Di
G(x). The gate load vector196

Oi =
∑

x∈Di
BinCount

(
I(x)K

)
,Oi ∈ RN is the197

count of tokens routed to each expert across the198

entire inputs Di. For all the datasets D, we could199

obtain the gate loads O ∈ R|D|×N , where |D| de-200

notes the number of datasets.201

4 Methodology202

In this section, we introduce our dynamic sampling203

strategy, which automatically adjusts the sampling204

weights of different instruction datasets. After ev-205

ery m steps of model training, we obtain the gate206

loadsO as dataset-level representations, then calcu-207

late the differences across datasets with O and up-208

date sampling weights accordingly. The dynamic209

sampling algorithm is presented in Alg 1.210

Algorithm 1 DYNAMICSAMPLING

Input: sampling weights of last round wt−1 ∈
R|D|, normalized gate loads Ô ∈ R|D|×N , up-
date step size η, smoothing value c, the number
of datasets |D|.

Output: updated sampling weights wt.
1: // Update L2 distances across datasets.
2: δij ← ||Ôi − Ôj ||, δ ∈ R|D|×|D|

3: // Get the average distance for each dataset.
4: ∆i ←

(∑
j δij

)/
|D|, ∆ ∈ R|D|

5: // Calculate the updated sampling weights.
6: α← softmax (logwt−1 + η∆)

7: w′
t ← (1− c)α+ c

/
|D|

8: // Normalize sampling weights.
9: wt ← w′

t

/∑
w′

t

10: return wt

4.1 Dataset Differences via Gate Load 211

As introduced in § 3, the gate load Oi ∈ RN is 212

a vector where each element represents the num- 213

ber of tokens routed to that specific expert. Since 214

experts in MoE models are well specialized, the to- 215

ken routing distribution can demonstrate the dataset 216

properties. As discussed in Team (2023) and Jiang 217

et al. (2024), deeper layers have better special- 218

izations. Therefore, we calculate the differences 219

among instruction datasets via gate loads in the last 220

layer for each model. 221

For each datasetDi, we record the routing tokens 222

and calculate the corresponding gate load Oi. To 223

alleviate the bias, we discard all padding tokens 224

which may overwhelm the differences across gate 225

loads. To align the scale of gate loads of different 226

datasets, we normalize Oi and obtain the final gate 227

load vector Ôi = Oi/
∑
O. 228

After obtaining the gate loads, we calculate the 229

L2 distance δij of each dataset pair Di and Dj . As 230

shown in Line 4 of Alg. 1, we further calculate 231

the averaged distance of one dataset Di to all the 232

datasets. Overall, we obtain ∆ ∈ R|D|, a vector 233

that denotes the averaged distance of each dataset. 234

We further adjust the sampling weights based on 235

the distance vector. 236

4.2 Dynamic Data Sampling 237

Based on our hypothesis, if one dataset Di is differ- 238

ent to the others, the sampling weight of Di should 239

be increased since it may contain less redundancies 240

with other datasets. 241
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As presented in Line 6 from Alg. 1, we calculate242

the updated sampling weights by adding η∆ to the243

logarithmic weights of the last time step logwt−1,244

where η is the update step size that could be re-245

garded as a term similar to the learning rate. We246

follow Xie et al. (2023) and add c/|D| to smooth247

and re-normalize the values as shown in Line 7-9248

in Alg. 1, where c is a hyper-parameter.249

Based on the above strategy, we update the sam-250

pling weights every m steps in the training phase.251

Following Xia et al. (2023) and Xie et al. (2023),252

the initial sampling weights w0 is uniformly dis-253

tributed to alleviate potential biases (Team, 2023).254

5 Experiments255

5.1 Instruction Tuning Datasets256

We use the following four types of instruction257

datasets for supervised fine-tuning. In each dataset,258

we sample 20K instances for training, and 1K in-259

stances for gate load evaluation in the sampling260

weight adjustment.261

ShareGPT.* Multi-turn dialogues with ChatGPT,262

containing a wide range of open-ended instructions.263

OpenOrca.† Flan (Longpre et al., 2023) instruc-264

tions with responses generated by GPT-4 & GPT-265

3.5 (Lian et al., 2023), containing multiple task-266

oriented instructions.267

Math-Instruct.‡ A collection of math instructions268

with step-by-step solutions (Yue et al., 2023).269

Code Instructions.§ LLM-generated responses270

with multiple languages to solve code problems.271

5.2 Evaluation Datasets272

We comprehensively evaluate the ability of mod-273

els from both Knowledge & Reasoning and Open-274

Ended instruction following aspects. For knowl-275

edge & reasoning, we evaluate the models on 5-276

shot MMLU, 3-shot BigBench-Hard (BBH), 8-shot277

GSM8K (Math), MBPP (Code), and 0-shot Ques-278

tion Answering (QA) tasks. Here, MMLU contains279

57 sub-tasks, BBH has 13 sub-tasks, and QA con-280

sists of 3 datasets (ARC-easy, ARC-challenge, and281

BoolQ). We report the macro-averaged score of282

*https://huggingface.co/datasets/
anon8231489123/ShareGPT_Vicuna_
unfiltered

†https://huggingface.co/datasets/
Open-Orca/OpenOrca

‡https://huggingface.co/datasets/
TIGER-Lab/MathInstruct

§https://huggingface.co/datasets/
iamtarun/code_instructions_120k_alpaca

these tasks for comparison. Besides, we also re- 283

port the open-ended instruction following results 284

on MT-Bench, which is automatically evaluated by 285

GPT-4. 286

5.3 Baselines 287

w/o SFT. The foundation model without fine- 288

tuning. 289

DataSize. Static sampling baseline. The sampling 290

weights are determined by the original data size. 291

Uniform. Static sampling baseline. The model 292

is fine-tuned with the uniformly distributed sam- 293

pling weights (all datasets have the same sampling 294

probability). 295

Random. A dynamic sampling baseline where 296

sampling weights are randomly assigned at each 297

round. 298

RefLoss. RefLoss is a variant of the dynamic sam- 299

pling method (Xie et al., 2023), where the dis- 300

tance of each dataset is replaced by the loss dif- 301

ferences between current loss and reference loss 302

∆i ← (Licurrent − Lireference). We use the loss eval- 303

uated by Uniform to estimate the reference loss 304

Lireference on each dataset Di. Therefore, RefLoss 305

consumes 2 times of training computation than the 306

proposed dynamic method. 307

5.4 Implementation Details 308

We test our method on two MoE models: MoLM 309

700M-4E (activating 4 experts with 700M parame- 310

ters) (Shen et al., 2023b) and LLaMA-MoE 3.5B- 311

2E (Team, 2023). We freeze the gate parameters 312

and train models with 2K steps under a global batch 313

size of 128. The optimizer is AdamW (Loshchilov 314

and Hutter, 2017) with a learning rate of 2e-5, 315

which is warmed up with 3% steps under cosine 316

scheduling. The maximum sequence length is 317

2,048 and the model is trained with gradient check- 318

pointing (Griewank and Walther, 2000), ZeRO- 319

1 (Rajbhandari et al., 2019), and FlashAttention- 320

v2 (Dao, 2023) accelerations. For our proposed 321

dynamic method in LLaMA-MoE, the evaluation 322

interval m = 100, η is 10.0 and c is 5e-2. In 323

MoLM, m = 200 and c = 8e − 1. Experiments 324

are conducted on 4×NVIDIA A100 (80G) GPUs. 325

5.5 Main Results 326

As shown in Table 1, supervised fine-tuning (SFT) 327

is beneficial for models to enhance their overall 328

abilities on downstream knowledge & reasoning 329

(K&R) tasks, no matter what the sampling strategy 330
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Knowledge & Reasoning Open-EndedModel MMLU BBH Math Code QA Average MT-Bench

MoLM 700M-4E
w/o SFT 24.73 27.89 1.14 5.76 47.52 21.41 -
DataSize 26.62 23.94 2.50 10.15 43.65 21.37 2.59
Uniform 25.76 26.08 1.21 9.60 45.01 21.53 2.63
Random 25.99 25.99 1.74 9.55 45.50 21.76 2.72
RefLoss 25.67 26.52 2.05 9.80 44.86 21.78 2.69
Dynamic 25.83 26.96 1.82 10.12 45.28 22.00 2.73

LLaMA-MoE 3.5B-2E
w/o SFT 27.98 29.67 4.63 5.12 57.45 24.97 -
DataSize 31.44 29.46 1.67 11.84 59.96 26.87 4.81
Uniform 32.48 29.18 5.91 14.52 60.85 28.59 5.07
Random 33.39 29.43 2.73 15.80 61.17 28.50 5.00
RefLoss 33.75 29.02 9.63 14.48 60.87 29.55 5.18
Dynamic 33.07 30.77 11.90 16.88 61.28 30.78 5.22

Table 1: Main results. Best and the second best results are denoted in bold and underlined, respectively.

is. For static sampling, the performances of Data-331

Size are lower than Uniform, both in knowledge332

& reasoning tasks and open-ended MT-Bench. Be-333

sides, the averaged K&R score in MoLM DataSize334

(21.37) is slightly lower than the foundation model335

(21.41), eliminating the advantage of MoE model’s336

capabilities.337

For dynamic sampling, the performances of Ran-338

dom are not stable. It achieves better scores than339

RefLoss in LLaMA-MoE, while it is worse in340

MoLM in the averaged K&R scores. RefLoss is a341

strong baseline compared to Uniform and boost the342

foundation models’ performances across the K&R343

tasks by 0.37 (MoLM) and 4.58 (LLaMA-MoE).344

However, it brings additional training compute due345

to the reference loss estimation. Our Dynamic346

shows great potential and surpasses RefLoss with-347

out the additional training cost, which leads to a348

better and faster convergence. Additionally, Dy-349

namic outperforms other baselines in the averaged350

K&R and MT-Bench scores, validating the effec-351

tiveness. Besides, Dynamic surpasses Random,352

showing the importance of considering the model’s353

internal state and the dataset properties.354

5.6 Analysis355

5.6.1 Data Combinations356

Q: How do datasets contribute to the final perfor-357

mance? We conduct experiments on subsets of the358

training datasets and present the results in Figure 2.359

Since math and code tasks have strong correlations360

with the instruction tuning dataset types, we report 361

the GSM8K (math) and MBPP (code) results here. 362

As shown in the figure, Math-Instruct and Code 363

Instructions are very task-related, and models 364

trained solely on these datasets could reach the best 365

GSM8K and MBPP performances, respectively. 366

Although the single ShareGPT or OpenOrca is less 367

powerful, it shows great performance when they are 368

combined with Math-Instruct or Code Instruction 369

datasets. Dynamic is more balanced comparing to 370

the Uniform baseline, where Dynamic strengthens 371

the MBPP performance on math-related combi- 372

nation (S+O+M), and improves the GSM8K per- 373

formance on code-related combination (S+O+C). 374

When all four types of datasets are combined for 375

SFT, Dynamic improves both GSM8K and MBPP 376

performances. 377

5.6.2 Expert Specialization 378

Q: Does such an gate-load-based dynamic data 379

sampling strategy hurt expert specialization? Our 380

method’s optimization objective is to make the gate 381

loads more similar across datasets. Although we 382

freeze the gate parameters during training, the mid- 383

dle activation states may still affect the expert spe- 384

cialization property. We report the gate load dif- 385

ferences and CV(Oi)
2 for each dataset to measure 386

the expert specialization variations. 387

As shown in Figure 3 (abde), we find instruc- 388

tion tuning indeed affects the expert specialization. 389

However, it is not determined by our gate-load- 390
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Figure 2: Results on different data combinations. LLaMA-MoE 3.5B-2E is fine-tuned for this experiment. S, O, M,
and C denote for ShareGPT, OpenOrca, Math Instruct, and Code Instructions, respectively.
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Figure 3: Gate load differences of LLaMA-MoE 3.5B-2E under different training settings. If the experts are less
specialized after training, the distances and the CV(Oi)

2 would go down. For Dynamic and Dynamic w/o balance
loss, the “Beginning” stands for the first round of evaluation for easier recording.

based distance calculation and dynamic sampling391

adjustment. Instead, it is due to the auxiliary bal-392

ance loss as demonstrated in Figure 3 (cf). If we393

remove the balance loss during training, it would394

lead to more specialized experts, but the perfor-395

mance would be lower according to Table 4.396

5.6.3 Evaluation Interval397

Q: How does the evaluation interval affect the per-398

formance? Our dynamic sampling weights strat-399

egy is applied every m training steps. Here we400

investigate the effect of the evaluation intervals by401

conducting experiments with different m values. 402

As shown in Figure 4, the evaluation interval is 403

crucial to the sampling weights update and may 404

vary a lot with different m values. When m = 200, 405

the sampling weights do not converge and mono- 406

tonically go up or down. However, when m = 20, 407

there are more sampling weights adjustments, lead- 408

ing to training instability as the differences in gate 409

loads may have reversals. Comparing to the con- 410

vergence status in Figure 4 and results in Table 2, 411

we take m = 100 as the best practice. 412
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Figure 4: Performances with different evaluation intervals. Experiments are conducted on LLaMA-MoE 3.5B-2E.

Evaluation Interval BBH Math

200 29.21 8.19
100 30.77 11.90
50 29.04 7.58
20 28.98 5.99

Table 2: Performance on downstream tasks with differ-
ent evaluation intervals. Experiments are conducted on
LLaMA-MoE 3.5B-2E.

5.6.4 Learning Efficiency413

Q: How does the number of training steps affect the414

results? We change the number of training steps415

and freeze the other hyper-parameters to observe416

the trend of performance variation.417

From Figure 5, both Uniform and Dynamic ben-418

efits from more training steps, and they consistently419

improve the performance on knowledge and reason-420

ing tasks. Even 500 steps can make the fine-tuned421

model outperforms the foundation model (Uniform422

26.67 & Dynamic 26.28 vs. w/o SFT 24.97). As423

the number of training steps grows, Uniform seems424

to reach its performance ceiling, and the gap be-425

tween these two methods further increases. As to426

the open-ended performance on MT-Bench, the Dy-427

namic method has more fluctuations, but it could428

outperforms the Uniform baseline as more training429

steps are applied.430

5.6.5 Other Sampling Weights431

Q: What if we use the final sampling weights ob-432

tained from the proposed Dynamic to train the433

model again? To find whether the final sampling434

weights of Dynamic provide a good data combina-435

tion for an MoE model, we conduct the experiments436

on LLaMA-MoE.437

As presented in Table 3, FinalStatic is better438

than Uniform and DataSize in both K&R tasks and439

25
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31

32
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Knowledge & Reasoning

Uniform Dynamic

4.2
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4.8

5
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500 1000 1500 2000

MT-Bench

Uniform Dynamic

Figure 5: Performances with different training steps.
Experiments are conducted on LLaMA-MoE 3.5B-2E.

MT-Bench. Surprisingly, compared to the results 440

in Table 1, FinalStatic (29.68) is even better than 441

RefLoss (29.55) in the averaged K&R score. This 442

indicates that our dynamic method could help find 443

better sampling weights than simple concatenation 444

even on static sampling. In addition, FinalStatic 445

is still worse than Dynamic, which verifies the 446

model’s internal state changing. Thus, dynamic 447

sampling could reach a better performance than 448

static sampling. 449

Q: Similar datasets are redundant, how does this 450

assumption hold? What if we use sentence embed- 451

ding to compute the dataset differences instead of 452

gate loads? The essence of the distance calculation 453

is to find similarities and differences between each 454

datasets, so why do we need to compute the dis- 455

tance scores from gate load vectors rather than di- 456

rect sentence embeddings? We conduct this experi- 457

ment by utilizing SentenceTransformers (Reimers 458

and Gurevych, 2019) to replace the input gate loads 459

O in Alg. 1 and compute L2 distances afterwards. 460

As shown in Table 3, SentEmb outperforms 461

Uniform across the tasks, which indicates the ef- 462

fectiveness of dataset re-weighting by their inter 463

similarities. The averaged GateLoad performance 464
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Knowledge & Reasoning Open-EndedModel MMLU BBH Math Code QA Average MT-Bench

w/o SFT 27.98 29.67 4.63 5.12 57.45 24.97 -

Static Sampling
DataSize 31.44 29.46 1.67 11.84 59.96 26.87 4.81
Uniform 32.48 29.18 5.91 14.52 60.85 28.59 5.07
FinalStatic 32.84 30.11 9.93 14.61 60.93 29.68 5.11

Static Distances
SentEmb 33.85 29.70 7.66 16.29 61.75 29.85 5.21
GateLoad 32.75 29.98 6.60 14.07 61.78 29.04 4.98

Initial Sampling Weights
DynamicSentEmb 33.46 29.02 8.95 15.68 61.03 29.63 5.16
DynamicUniform 33.07 30.77 11.90 16.88 61.28 30.78 5.22

Table 3: Other sampling weights. Experiments are conducted on LLaMA-MoE 3.5B-2E.

is lower than SentEmb in both the averaged knowl-465

edge & reasoning tasks and the open-ended MT-466

Bench. Nevertheless, SentEmb could not be eas-467

ily applied to make constant improvements in the468

whole training phase. Although GateLoad is worse469

than SentEmb, the model benefits from the itera-470

tive sampling weights adjustments, and Dynamic471

surpasses SentEmb in both K&R and open-ended472

performances.473

Q: What about other initial sampling weights474

rather than the uniform distribution? Since Sen-475

tEmb has better performance than Uniform and476

GateLoad, we wonder if it is better to apply its477

sampling weights as the initial ones rather than the478

uniform distribution.479

The results in Table 3 show that the uni-480

form initialized DynamicUniform outperforms481

DynamicSentEmb (30.78 vs. 29.63 in K&R, 5.22482

vs. 5.16 in MT-Bench), which is in line with the483

conclusions in Team (2023). We conjecture that the484

imbalanced initial weights would make the model485

hard to convergence.486

5.6.6 Ablation Study487

There are differences between sparse MoE mod-488

els and dense models during training due to their489

specific techniques. Here we investigate the ef-490

fectiveness of fronzen gate, balance loss, and gate491

noise for instruction tuning on MoE.492

The results are presented in Table 4. Similar493

to Shen et al. (2023a), we find the frozen gate,494

balance loss, and gate noise have all positive effects495

to the model performances. Frozen gate is to freeze496

Model Avg. K&R MT-Bench

LLaMA-MoE 30.78 5.22
w/o frozen gate 28.78 4.91
w/o balance loss 29.38 4.88
w/o gate noise 30.04 4.98

Table 4: Ablation study. Avg. K&R stands for the av-
eraged score of knowledge & reasoning tasks (MMLU,
BBH, Math, and Code).

the gate parameters when fine-tuning. This leads 497

to better performance as the gate is well trained 498

during the pre-training stage, and SFT may break 499

the specialized token routing property. Balance loss 500

and gate noise are beneficial to model training since 501

they are in line with the pre-training objectives. 502

6 Conclusion 503

To combine different datasets and maximize the 504

MoE model’s alignment ability, we assign differ- 505

ent sampling weights to corresponding datasets. 506

By incorporating the internal model state and the 507

dataset properties, we propose to use the gate load 508

from MoE models to obtain dataset representa- 509

tions. Based on the representations, we calculate 510

distances between each pair of datasets, indicat- 511

ing the inter-redundancies. We further devise an 512

automatic algorithm to dynamically update the sam- 513

pling weights. The proposed method outperforms 514

other baselines and demonstrate good performance 515

on knowledge & reasoning tasks and open-ended 516

question answering. 517
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Limitation518

More Models. Due to the limit computing re-519

sources, we only test the method’s effectiveness520

on two representative decoder-style MoE mod-521

els. Dynamic sampling on larger models like Mix-522

tral (Jiang et al., 2024) is currently not verified.523

Number of Datasets. For a combination of two524

datasets, there are no differences between the dis-525

tance vector ∆, so the dynamic sampling method526

does not take into effect and the sampling weights527

would stay unchanged.528

Final Static Weights on Other Models. Since529

the proposed dynamic sampling method is strongly530

combined with the MoE model’s internal state,531

each MoE model may result in different sampling532

weights. The obtained final static weights may be533

less useful to extrapolate to other models.534
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A Appendix 722

Here we provide the final sampling weights of the 723

proposed Dynamic method across MoE models 724

in Table 5. Table 6 shows the detailed multi-turn 725

results on MT-Bench. For better comparison the 726

Dynamic effect on different tasks, we provide the 727

detailed results on BBH subtasks in Table 7. 728
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Model ShareGPT OpenOrca Math-Instruct Code Instructions

MoLM 700M-4E 28.41 23.51 23.45 24.63
LLaMA-MoE 3.5B-2E 17.98 21.49 32.02 28.51

Table 5: Final sampling weights of Dynamic (%). The summation may not equal to exact 100% due to digit
rounding. We find the final static weights of different models have many variations. MoLM prefers to accept more
ShareGPT, while LLaMA-MoE samples more Math-Instruct.

Rounds MoLM LLaMA-MoE
DataSize Uniform Dynamic DataSize Uniform Dynamic

1st 2.81 2.98 3.10 5.52 5.78 5.96
2nd 2.36 2.28 2.36 4.10 4.36 4.48

Overall 2.59 2.63 2.73 4.81 5.07 5.22

Table 6: Detailed results on MT-Bench. Each question in MT-Bench has two turns of responses. Here we list the
results of each turn.

Rounds MoLM LLaMA-MoE
DataSize Uniform Dynamic DataSize Uniform Dynamic

Boolean Expressions 53.20 54.40 55.20 49.20 47.20 46.80
Causal Judgement 36.90 52.94 51.87 52.94 52.41 50.80

Date Understanding 20.80 18.40 19.20 24.40 29.60 36.80
Disambiguation Qa 38.00 38.80 38.80 30.80 31.60 28.00

Dyck Languages 9.20 13.60 15.20 18.40 10.80 15.60
Formal Fallacies 37.60 39.60 21.60 49.20 53.20 52.40

Geometric Shapes 12.00 9.60 10.40 9.60 9.60 22.40
Hyperbaton 48.40 48.40 48.40 51.60 45.60 43.60

Logical Deduction Five Objects 8.40 21.20 22.80 18.40 22.80 20.00
Logical Deduction Seven Objects 10.00 17.20 14.40 15.60 15.60 14.40
Logical Deduction Three Objects 34.00 33.60 34.40 39.20 36.40 38.00

Movie Recommendation 14.80 22.40 19.60 41.60 22.40 26.00
Multistep Arithmetic Two 0.00 0.00 0.00 0.80 1.20 1.20

Navigate 32.40 42.40 46.40 50.80 56.40 50.80
Object Counting 14.80 16.80 13.20 33.20 33.60 38.40

Penguins In A Table 10.27 10.27 22.60 20.55 21.23 26.03
Reasoning About Colored Objects 1.60 7.60 13.20 7.60 14.00 21.60

Ruin Names 20.80 11.60 10.80 21.20 18.00 20.00
Salient Translation Error Detection 20.80 11.60 18.00 22.40 22.40 22.40

Snarks 48.31 51.69 52.25 55.62 46.63 60.67
Sports Understanding 46.00 54.00 54.40 56.00 58.40 57.60
Temporal Sequences 27.60 21.20 25.20 11.60 10.80 12.80

Tracking Shuffled Objects Five Objects 6.80 8.40 18.40 13.60 20.00 16.40
Tracking Shuffled Objects Seven Objects 7.20 14.00 14.00 12.80 15.20 14.80
Tracking Shuffled Objects Three Objects 33.20 32.80 36.00 33.60 33.60 32.00

Web Of Lies 51.20 50.40 49.60 49.60 51.60 53.60
Word Sorting 2.00 1.20 2.00 5.20 7.60 7.60

Average 23.94 26.08 26.96 29.46 29.18 30.77

Table 7: Detailed results on different subtasks of BBH.
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