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Abstract

The research on adversarial attacks against trackers pri-
marily concentrates on the RGB modality, whereas the
methodology for attacking RGB-T multi-modal trackers has
seldom been explored so far. This work represents an
innovative attempt to develop an adaptive cross attack
framework via multi-modal response decoupling, generat-
ing multi-modal adversarial patches to evade RGB-T track-
ers. Specifically, a modal-aware adaptive attack strategy is
introduced to weaken the modality with high common in-
formation contribution alternately and iteratively, achiev-
ing the modal decoupling attack. In order to perturb the
judgment of the modal balance mechanism in the tracker,
we design a modal disturbance loss to increase the dis-
tance of the response map of the single-modal adversarial
samples in the tracker. Besides, we also propose a novel
spatio-temporal joint attack loss to progressively deterio-
rate the tracker’s perception of the target. Moreover, the
design of the shared adversarial shape enables the gener-
ated multi-modal adversarial patches to be readily deployed
in real-world scenarios, effectively reducing the interfer-
ence of the patch posting process on the shape attack of the
infrared adversarial layer. Extensive digital and physical
domain experiments demonstrate the effectiveness of our
multi-modal adversarial patch attack. Our code is avail-
able at https://github.com/Xinyu-Xiang/ACAttack.

1. Introduction
The adversarial attack on visual object tracking (VOT) [1,
26] aims to mislead the prediction results of the tracker
through the generated adversarial disturbance, find the
model vulnerabilities, and then promote the security of
the tracking model in real-life. Single-modal tracking at-
tack methods have been extensively studied, but with the
wide application of multi-modal devices [19, 20, 24], multi-
modal trackers are widely used in safety-critical real-world
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Figure 1. Our attack strategy against RGB-T trackers. An adap-
tive attack strategy, sensitive to modality, is introduced to alter-
nately and iteratively suppress the modality with a high contribu-
tion of shared information. Additionally, a modal disturbance loss
is crafted to enlarge the response map distance for single-modal
adversarial samples within the tracker.

fields such as autonomous driving and urban security [16].
To address the urgent need to explore the security of

trackers, adversarial attack techniques for trackers have
emerged in rapid succession, including traditional gradient-
based attack approaches and deep-network-based attacks.
The former methods [10, 11] utilize hand-crafted parame-
ters and apply many times of gradient ascent to maximize
an adversarial loss function for misguiding deep networks.
Although it can achieve certain attack effects for specific
types of trackers, it is challenging to comprehensively ex-
plore and attack the potential vulnerabilities of the different
trackers due to the limitations of inflexible pattern design.
Nonetheless, the latter one [6] applies tremendous data to
train an adversarial patches-generator including flexible ar-
chitectures and optimization strategies to better automati-
cally search for model weaknesses and realize tracker at-
tacks. Therefore, in comparison with a traditional gradient-
based attack approach, deep-network-based paradigm can
more automatically and flexibly excavate the security issues
within the tracker.



Although prior efforts for adversarial attack methods are
effective in interference trackers, several challenges still
need to be addressed. Notably, existing adversarial at-
tack methods [5, 15, 25] on tracking are designed for RGB
modality, whereas the methodologies for attacking RGB-T
multi-modal trackers are less explored so far. Considering
the widespread deployment of multi-modal tracking tech-
nology [17, 27, 28] in several safety-critical areas, it is ur-
gent to explore and implement adversarial attacks of multi-
modal tracking to understand the potential vulnerabilities
of the trackers. However, as shown in Fig. 1, the unique
modal coupling and structural design of RGB-T trackers
make it a great challenge to successfully find model vulner-
abilities. Firstly, due to the modal equilibrium mechanism
and coupled multi-modal information, it is difficult to suc-
cessfully jam the RGB-T tracking model itself. Specifically,
the modal balancing strategy in the multi-modal tracker can
effectively prevent the attack of adversarial perturbation in
a single modal. Secondly, the coupling of multi-modal in-
formation can effectively weaken the attacks against the
consensus region of the target. Thirdly, the deployment of
patches in the physical world is also challenging because the
stacked placement of multi-modal patches has a probabil-
ity of compromising the expression of infrared adversarial
shapes, reducing their synergy performance.

Considering these challenges, we propose ACAttack, an
adaptive cross attack framework via multi-modal response
decoupling. It aims to generate multi-modal adversarial
patches to evade RGB-T trackers in both digital and phys-
ical domains. Specifically, this framework can gradually
and adaptively optimize, discover plenty of rough adver-
sarial samples, and then map them to the high-dimensional
adversarial space of different modalities according to the
modal response contribution factor, forming multi-modal
adversarial patches. Secondly, a modal-aware adaptive at-
tack strategy is introduced to weaken tracker’s deep seman-
tic attention to the modality with high common information
contribution according to the contribution degree of modal
response alternately and iteratively, achieving the modal de-
coupling attack. When the contributions of two modalities
are similar, we design a modal disturbance loss to search
the modal imbalance vulnerabilities of the tracker, expand
the distance of the response map of the single-modal ad-
versarial samples in the tracker, and perturb the judgment
of the balance modal in the tracker. We also design a
spatio-temporal joint attack loss to build progressively en-
larged pseudo-GT between consecutive frames, which pro-
gressively deteriorates the tracker’s perception of the target.
Thirdly, the design of the shared adversarial shape is de-
ployed to eliminate the interference of visible patches on the
expression of infrared adversarial shapes. After the shape is
shared, it can not only reduce the consumption of the ad-
versarial shape’s inter-modal attack ability but also realize

attacks other than texture in the visible modal.
In summary, we make the following contributions:

• We make an innovative attempt to propose an adaptive
cross attack framework via multi-modal response decou-
pling. It can generate multi-modal adversarial patches to
mislead RGB-T trackers effectively.

• We develop a novel modal attack flow, in which modal-
aware adaptive attack strategy and modal attack con-
straints alternately disturb the modes with high contribu-
tion to achieve modal decoupling and destroy modal bal-
ance mechanism of tracker, respectively.

• We design the shape-shared stack strategy to linkage the
visible and infrared adversarial shapes, reducing the at-
tack consumption of multi-modal patches mutual deploy-
ment in physical scenarios.

• Experimental results show that multi-modal patches can
efficiently fool RGB-T trackers in standard RGB-T track-
ing datasets and real scenes.

2. Related Work
2.1. Visual Object Tracking
Given the tracked object in the first frame, object track-
ing aims to recognize and locate the object in subsequent
frames. Many RGB tracking methods [2, 7, 14, 18, 21]
have been proposed and achieved commendable tracking
performance. However, RGB sensors struggle to capture
objects effectively under challenging conditions such as oc-
clusion and low light, limiting the performance of RGB
trackers. To address this, the RGB-T tracking paradigm is
introduced, which is not restricted to a single RGB modal-
ity but instead integrates the complementary information
from both RGB and thermal modalities. This fusion en-
ables more robust tracking capabilities. ViPT [29] intro-
duces a vision prompt tracking framework that leverages the
foundational model with strong representation capabilities,
enabling interaction between the thermal and RGB modali-
ties through a modality-complementing prompter. BAT [3]
proposes a universal bidirectional adapter, which enables
mutual prompt between the thermal and RGB modalities
and further improves tracking performance. SDSTrack [9]
designs a complementary masked patch distillation strat-
egy based on self-distillation learning, which enhances the
tracking robustness in extreme weather.

2.2. Adversarial Attacks
Currently, adversarial attacks in the tracking task primarily
target RGB trackers. For instance, APYVOT [4] proposes
an optimization objective function with a dual-attention
mechanism to generate perturbations, disrupting tracking
by interfering solely with the initial frame. MTD [8] in-
troduces a maximum textural discrepancy loss function that
misleads the visual trackers by decorrelating the template
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Figure 2. The overall framework of our ACAttack.

and search frame at hierarchical feature scales. These meth-
ods, however, fail to disrupt the significant feature enhance-
ment resulting from the interactions between RGB and
thermal modalities, which limits their effectiveness against
RGB-T trackers. Therefore, it is essential to develop the
attack strategy specifically designed for RGB-T tracking.

3. Methodology

3.1. Coarse-to-Fine Modality Attack Framework

With the help of the progressive modality information
integration strategy, the multi-modal trackers gradually
strengthen the common scene representation and target re-
sponse, thereby achieving a robust tracking performance su-
perior to that of the single-modal trackers. Consequently, a
coarse-to-fine architecture is designed to progressively de-
grade the modality integration capability of RGB-T mod-
els named ACAttack, which can be divided into two stages.
The overall architecture of our ACAttack is illustrated in
Fig. 2 and Algorithm 1. First, we employ projected gradi-
ent descent (PGD) in stage1 to identify a set of adversarial
examples {pi}ki=1 with sufficient aggressiveness, narrow-
ing the search space for refined attacks and increasing the
likelihood of discovering strong adversarial examples, for-
mulated as:

{pi}ki=1 = PGD(piniti ), (1)

where piniti is randomly initialized with noise patches. The
generated patches are subsequently loaded onto the visible
image Ivi to form a visible adversarial sample Iadvvi .This

process can be formulated as follows:

Iadvvi = pi ⊙M + Ivi ⊙ (1−M), (2)

where M is the binary mask for applying adversarial patch.
⊙ represents the element-wise Hadmard product. The ad-
versarial visible image Iadvvi concat with clean infrared im-
age Iir are sent to RGB-T tracker T (·) to predict final
bounding box Bboxpred of target, which is expressed as:

Bboxpred = T (Iadvvi , Iir). (3)

We optimize this process by minimizing the conven-
tional attack loss Latt relative to the center point, which
is defined as:

Latt = −∥(Cp(Bboxpred)− Cp(Bboxgt))∥22, (4)

where Cp denotes the operator to obtain the center point
of bounding box Bbox. Specifically, when the attack loss
Latt reaches a predefined threshold, the iteration is halted,
and a rough adversarial sample is generated. This process
is repeated k times to generate a set of k rough adversar-
ial samples. Considering the different imaging principles
of infrared and visible modalities, the multi-modal patches
will be specially designed according to their differences in
principles. Specifically, the visible modal mainly employs
the attack texture to interfere. For the infrared modal, it
is difficult to detect the texture, so the adversarial shape is
used to attack. Subsequently, the set of adversarial samples
generated in the coarse attack stage (stage1) is fed into the



subsequent fine attack process (stage2) for further refine-
ment, resulting in the generation of multi-modal adversar-
ial patches with strong attack performance. Finally, through
continuous iterative optimization, the multi-mode patch will
share the same attack shape, while the visible patch will also
possess adversarial texture to confuse the tracker. The fine-
grained attack phase targets the modality of the multi-modal
tracker and consists of modal decoupling attacks and modal
balance interference, which will be detailed in the subse-
quent sections.

3.2. Modal Decoupling Attack
The RGB-T tracker implicitly couples the contributions
of the two modalities, thereby enhancing tracking accu-
racy. Given the significant role of modal contribution in the
tracker, we propose a modal decoupling attack to adaptively
diminish the influence of advantageous modalities. Specifi-
cally, we use the coarse adversarial samples from the stage1
as input for the stage2, feeding them simultaneously into
the adversarial texture generation network GAdv

tex and the
adversarial shape generation network GAdv

shape. For attack-
ing the infrared modality, the rough adversarial sample set
from the first stage is encoded into r dimensions via contin-
uous downsampling and an MLP, controlling the adversarial
shape. The infrared patch pir generation process can be ex-
pressed as follows:

pir = GAdv
shape({pi}ki=1). (5)

The adversarial texture generation network generates ad-
versarial textures to attack the visible modality using resid-
ual connections and upsampling [23], which is defined as:

pvi = (1− pir)⊙GAdv
shape({pi}ki=1), (6)

where the visible patch with adversarial textures is pvi.
Subsequently, the modal contribution of the current net-

work input is calculated as the reciprocal of the differ-
ence between the response map obtained from single-modal
data and the response map from dual-modal input. A
larger reciprocal distance indicates that the response maps
from dual-modal and single-modal inputs are more simi-
lar, suggesting a greater contribution from the current single
modality to the tracker. The modal response contribution
can be expressed as follows:

cm =
1

dis(R(m,m), R(vi, ir))
, (7)

where cm represents the contribution value of m ∈ {vi, ir}
modal to the tracker. dis stands for the distance function
and is used to measure the Euclidean distance between re-
sponse maps. R(·, ·) shows the response map acquired by
the tracker under the current input.

To normalize the modal contribution, a softmax opera-
tion is applied to the reciprocal distance, yielding the final

Algorithm 1: The ACAttack Algorithm

Input: Random patches piniti , parameters k,
Mstage1, Mstage2, ξ, ζ

Output: Optimized multi-modal patches pvi, pir
1 Iteration:
2 Initialize a random patch piniti ;
3 i = i+ 1;
4 Iteration:
5 Generate pi through Eq. (1);
6 Use Eq. (2) to generate adversarial sample Iadvvi ;
7 Calculate Bboxpred using Eq. (3);
8 Optimize PGD(·) with Eq. (4);
9 Until: Latt < ξ or iter ≥ Mstage1

10 Until: i ≥ k

11 Determine {pi}ki=1 after optimazation in stage1;
12 Iteration:
13 iter = iter + 1;
14 Obtain pir, pvi via Eqs. (5) and (6);
15 Apply multi-modal patches pir, pvi on Iir, Ivi ;
16 Calculate cvi, cir using Eq. (7) ;
17 Send to Tracker T (·) to predict bounding box;
18 if |cvi − cir| < ζ;
19 Optimize GAdv

shape with Eq. (9);
20 elif cvi − cir > ζ;
21 Optimize GAdv

tex with Eqs. (4) and (10);
22 elif cir − cvi > ζ;
23 Optimize GAdv

shape with Eqs. (4) and (10);
24 Until: iter ≥ Mstage2

modal contribution score, formulated as:

cnorm = softmax(cvi, cir). (8)

Finally, an automatic discriminant attack is executed
based on the modal contribution score. As illustrated, when
the visible contribution is higher in the input data, only
the visible modal is attacked, specifically by optimizing the
generation of adversarial textures. When the infrared contri-
bution is higher in the input data, only the adversarial shape
is modified to attack the infrared modal, thereby reducing its
contribution to the tracker. Given that the tracker employs
a modal balance mechanism, the contributions of the two
modalities may be similar in certain scenarios, as detailed
in the subsequent section.

3.3. Modal Balance Interference
Previous work on tracking attacks has attempted to design
explicit attack losses to detect model vulnerabilities, but
this approach often fails to account for the inherent char-
acteristics of the model, making it challenging to execute
effective attacks. Inspired by the concept of implicit at-
tacks [25] and the multi-modal aggregation properties in



RGB-T tracker [22], we develop a loss function with modal-
balanced interference to target multi-modal trackers. In
cases where the contributions of infrared and visible modal
are similar (i.e., modal balance), the response map of single-
modal input closely resembles that of dual-modal input. To
disrupt this balance, we extract the response maps of the
two single-modal adversarial examples and increase the dis-
tance between them. The details are provided as follows:

Lmi = −∥R(viadv, viadv)−R(iradv, iradv)∥22. (9)

Notably, the infrared and visible patches in our method
share the same adversarial shape to achieve simultaneous
attacks on both modalities. Therefore, under conditions
of modal balance, only the adversarial shape is optimized.
Additionally, a spatio-temporal joint attack loss Lst is em-
ployed in conjunction with the modal jamming loss Lmi to
disrupt the tracker’s semantic perception. The specific de-
sign is presented in the following formula:

Lst=
∥∥∥ s∑

i=1

Bboxpred(w, h)− ri∗Bboxgt(w, h)
∥∥∥2
2
, (10)

where s denotes the consecutive s = 5 frames ex-
tracted from a video. ri represents the scaling factor
over time to construct the pseudo-GT, which is set as
[1.90, 1.95, 2.00, 2.05, 2.10].

3.4. Implementation Process in Real-world
After completing the digital domain optimization, the multi-
modal adversarial patches require deployment in the real
world. However, during real-world deployment, visible and
infrared patches are stacked, leading to inevitable interac-
tions between the two modalities, as illustrated in Fig. 3.
Specifically, the coverage of visible patches impacts the ad-
versarial shape expression of infrared patches, while the
presence of infrared patches hinders the rendering of the
adversarial texture in visible modality. To address these
challenges, we propose a shape-shared stacking strategy,
where both the visible and infrared patches adopt the same
attack shape. This design not only effectively mitigates in-
teractions between infrared and visible patches in the real
world but also enhances the attack shapes of visible patches,
thereby improving overall attack performance.

4. Experiments
4.1. Experimental Settings
4.1.1. Datasets and Evaluation Metrics
We conduct experiments on RGBT234 [12] and
LasHeR [13] datasets and assess the effectiveness of
our ACAttack by evaluating precision rate (PR) and
success rate (SR), both of which are commonly used
metrics in tracking tasks. Taking PR as an example, we
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Figure 3. Process of physical implementation.
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Figure 4. Visualization of generated patches.

calculate the Euclidean distance of the center between
the predicted bounding box and ground truth box in both
RGB and thermal modalities, using the smaller distance
to represent the precision RGBT234 provides 234 pairs
of RGB and thermal video, with a total frame of about
234K and a maximum of 8K per sequence. LasHeR is
comprised of 1224 visible and thermal video pairs, totaling
over 730K frame pairs. Since the tracking performance on
the background is not of interest, LasHeR performs strict
alignment of the object area, allowing the object to share
the same ground truth of the bounding box in both visible
and thermal modalities. Therefore, we use PR and SR as
evaluation metrics.

4.1.2. Victimized Trackers and Comparison Attackers
We select several state-of-the-art trackers as targets for our
attack, including ViPT [29], BAT [3], and SDSTrack [9].
To demonstrate the challenges in exploiting vulnerabilities
in RGB-T trackers, we use a patch composed of random
noise as a baseline for comparison, emphasizing the need
for meticulous exploration. Furthermore, we compare the
performance of our proposed ACAttack with the representa-
tive attack method MTD [8], which is specifically designed
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Figure 5. Quantitative comparison of tracking performance on the RGBT234 dataset. The tracking performance of ViPT, BAT, and
SDSTrack trackers is reported, including the original performance without attacks and the performance under attacks. Lower tracking
metrics PR and SR represent better attack. Please zoom in for a better view.

(a) tracking results on BAT (b) tracking results on SDS

(a) tracking results on ViPT (b) tracking results on BAT
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Figure 6. Qualitative comparison of tracking performance on the RGBT234 dataset.

for RGB trackers, highlighting the advantages of our ap-
proach in the multi-modal setting.

4.1.3. Implementation Details
The multi-spectral video in the physical domain is captured
by a DJI Mavic 3T UAV equipped with thermal and RGB
cameras, and the video frame rate is 30 fps. The hyper-
parameters in adaptive iteration ξ and ζ is 9 and 0.02. Train-
ing epoch in stage1 is set as Mstage1 = 180. Experiments
are conducted on the RTX 3090 GPU with PyTorch.

4.2. Comparisons in the Digital Domain
We first validate the attack effectiveness of our ACAttack in
the digital domain. It is important to note that we only train
on the RGBT234 dataset and generate multi-modal patches
{pvi, pir}. As shown in Fig. 4, the RGB patch exhibits
color and texture, while the thermal patch has an irregular
shape, which aligns with the imaging characteristics of each
modality. Subsequently, the patches {pvi, pir} generated on
RGBT234 are directly applied to the LasHeR dataset to ver-
ify their generalization.

4.2.1. Quantitative Evaluation
Fig. 5 illustrates a quantitative comparison of the RGBT234
dataset. The results clearly show that, under our attack, the
tracking performance of existing state-of-the-art trackers
suffers a significant degradation compared to clean track-
ing conditions. In contrast, random noise only leads to a
modest decline in PR and SR, emphasizing that exploiting
tracker vulnerabilities goes beyond the simplicity of ran-
dom noise—it requires a more sophisticated, optimized ap-

proach. Additionally, the performance drop observed with
MTD is smaller than that of our ACAttack, suggesting that
attack methods designed specifically for RGB trackers may
not effectively mitigate the feature enhancement resulting
from RGB-T coupling. On the other hand, our ACAttack
achieves substantial attack success. For instance, against
ViPT, ACAttack reduces PR from 0.835 to 0.621 and SR
from 0.617 to 0.417. Similarly, for SDSTrack, it lowers PR
from 0.848 to 0.616 and SR from 0.625 to 0.426. The sub-
stantial performance drops suggest that our ACAttack suc-
ceeds in keeping the predicted bounding box far away from
actual object, which will be further confirmed in subsequent
qualitative results.

4.2.2. Qualitative Evaluation
As shown in Fig. 6, we present the tracking results of
BAT and SDSTrack. The clean trackers perform exception-
ally well in maintaining precise tracking, while our attack
leads to a significant decline in tracking performance. This
degradation can be attributed to our progressive generation
framework, which iteratively weakens the tracker’s deep se-
mantic attention on modalities with high commonality by
decoupling multi-modal responses.

4.3. Generalization Evaluation
We conduct generalization experiments on the LasHeR
dataset, with quantitative and qualitative results shown in
Fig. 7 and Fig. 8, respectively. Compared to random noise
and MTD, our ACAttack leads to a significant drop in track-
ing performance across all trackers, even without training
on LasHeR. Additionally, we present the IoU plots for both
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Figure 7. Quantitative comparison of tracking performance on the LasHeR dataset. The tracking performance of ViPT, BAT, and SDSTrack
trackers is reported, including the original performance without attacks and the performance under attacks. Lower tracking metrics PR
and SR represent better attack. Please zoom in for a better view.
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Figure 8. Qualitative comparison of tracking performance on the LasHeR dataset.
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Figure 9. Qualitative comparison of tracking performance on the
LasHeR dataset. The blue and red lines represent the IoU variation
over frames of the predicted boxes under the clean trackers and the
victimized trackers, respectively.

clean and attacked tracking results, as shown in Fig. 9. It
is clear that our ACAttack can maintain a sustained attack
over extended periods. Due to the existence of our adaptive
attack strategy and the modal balance interference loss, the
response value of the tracker for the real target is reduced,
and then the tracker is easy to deviate from the original tar-
get and is attracted by similar targets.

4.4. Application in the Physical Domain
After having verified our adversarial patches in digital
scenes, we also extend experiments to demonstrate their ef-
ficacy in the physical domain. We directly apply the patches
trained in the digital domain to the real world and use aero-

gel and paper to make thermal and RGB patches for deploy-
ment on pedestrians, respectively. A dual-spectral camera
in DJI Mavic 3T is used for video capture. Thirty sets of
videos of different scenes are taken as test samples. The
orientation results of the test are shown in Fig. 10. It can be
seen that the tracking prediction bounding box is enlarged
and cannot be accurately positioned due to the interference
of the multi-modal adversarial patch. Specifically, the opti-
mization of spatio-temporal joint loss makes the patch learn
the effect of expanding the tracker’s prediction box. There-
fore, in the physical world, the tracker will not be able to
accurately locate the target after being affected by the ad-
versarial patch.

4.5. Ablation Studies

We conduct ablation studies to assess the effectiveness of
our unique design and parameter configuration, including:
(I) loss function, (II) parameter K, (III) iteration mode, and
(IV) applied modal. The ablation studies are performed on
the RGBT234 dataset against ViPT, with quantitative results
presented in Table 1.

4.5.1. Loss Function
The loss Lst interferes with the tracker from both tempo-
ral and spatial dimensions, while Lmi is used to disrupt the
tracker’s semantic perception. To demonstrate their effec-
tiveness, we remove each of them individually, with the
results shown in Table 1. In the absence of Lst or Lmi,
the attack performance weakens, demonstrating their role
in diminishing the enhanced target localization accuracy
achieved through multi-modal interaction.



Figure 10. Practical application in the physical domain.

Metric ViPT Config. I: loss function Config. II: parameter K Config. III: iteration mode Config. IV: applied modal Ours
w/o Lst w/o Lmi K = 0 K = 9 cross combine Only RGB Only TIR

PR 0.835 0.709 0.735 0.672 0.651 0.645 0.703 0.691 0.669 0.621
SR 0.617 0.486 0.505 0.450 0.425 0.428 0.482 0.482 0.462 0.417

Table 1. Quantitative comparison of ablation studies, which is performed on the RGBT234 dataset against the ViPT tracker.

4.5.2. Parameter K
In our progressive attack framework, we first employ pro-
jected gradient descent to identify K sets of coarse adver-
sarial examples with effective attack performance. In order
to verify its effectiveness, we set the number of coarse ad-
versarial samples K growth from 0 to 9 and 18. As shown in
the Table 1, as K increases from 0 to 9 and 18, the tracker’s
PR and SR consistently decrease. This indicates that such
coarse-grained adversarial examples can effectively narrow
the search space for refined attacks, thus facilitating a more
effective attack. Specifically, this progressive method for
finding adversarial examples prioritizes identifying multi-
ple sets of coarse adversarial representations from a broad
spectrum of noise. Subsequently, multi-modal patch gen-
eration refines the adversarial details to produce the final
adversarial patch, leveraging numerous samples that con-
tain adversarial information. Consequently, this approach
results in an enhancement in performance.

4.5.3. Iteration Mode
One of the key contributions of this paper is the adaptive it-
erative strategy for attacking the RGB-T tracker. To demon-
strate the effectiveness of the adaptive strategy, we conduct
ablation experiments using the iterative strategy. The alter-
nating iteration strategy and the joint optimization strategy
are selected for the comparison test. The former alternately
optimizes the adversarial texture network and the adversar-
ial shape network, while the latter simultaneously propa-
gates the gradient flow to both networks. As shown in Ta-
ble 1, our adaptive iteration approach can more effectively
identify model vulnerabilities and generate more aggressive
adversarial patches. Specifically, according to the contribu-
tion degree, our strategy can weaken deep semantic atten-
tion and break the balance of modality in tracker.

4.5.4. Applied Modal
In order to verify the multi-modal patch joint and single-
modal patch attack performance, we try to conduct patch
apply modal ablation experiment. Multi-modal patches
{pvi, pir} are generated to simultaneously disrupt both
RGB and thermal modalities. As shown in the Table 1, we
use only one of these patches in an ablation setup. The ad-
versarial patch of a single modal produces a certain attack
effect and makes the tracker confused. Evidently, our multi-
modal patch achieves the best attack performance, under-
scoring the necessity of designing joint multi-modal attacks
for RGB-T trackers.

5. Conclusion
In this work, we present a pioneering framework for ad-
versarial attacks on RGB-T multi-modal trackers by intro-
ducing an adaptive cross-attack mechanism through multi-
modal response decoupling. Our approach leverages a
modal-aware adaptive attack strategy and introduces novel
modal disturbance loss and spatio-temporal joint attack loss
to progressively impair the tracker’s capability to perceive
the target. The shared adversarial shape design also en-
hances our method’s practicality, allowing seamless deploy-
ment of multi-modal patches in the real world. Experi-
ments across digital and physical domains confirm the ro-
bustness and effectiveness of our approach in evading RGB-
T trackers, highlighting the potential and significance of
adaptive, multi-modal adversarial attacks in advancing the
understanding of tracker vulnerabilities.
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