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ABSTRACT

Reinforcement Learning (RL) algorithms are known to scale poorly to environ-
ments with many available actions, requiring numerous samples to learn an opti-
mal policy. The traditional approach of considering the same fixed action space
in every possible state implies that the agent must understand, while also learning
to maximize its reward, to ignore irrelevant actions such as inapplicable actions
(i.e. actions that have no effect on the environment when performed in a given
state). Knowing this information can help reduce the sample complexity of RL al-
gorithms by masking the inapplicable actions from the policy distribution to only
explore actions relevant to finding an optimal policy. This is typically done in an
ad-hoc manner with hand-crafted domain logic added to the RL algorithm. In this
paper, we propose a more systematic approach to introduce this knowledge into
the algorithm. We (i) standardize the way knowledge can be manually specified
to the agent; and (ii) present a new framework to autonomously learn these state-
dependent action constraints jointly with the policy. We show experimentally that
learning inapplicable actions greatly improves the sample efficiency of the algo-
rithm by providing a reliable signal to mask out irrelevant actions. Moreover, we
demonstrate that thanks to the transferability of the knowledge acquired, it can be
reused in other tasks to make the learning process more efficient.

1 INTRODUCTION

The field of Deep Reinforcement Learning (DRL), using neural networks as function approximators
in Reinforcement Learning (RL) algorithms, has seen many successes in recent years (Mnih et al.,
2015; Silver et al., 2016; Vinyals et al., 2017). Despite the impressive results this learning technique
has shown, DRL is often criticized for being data hungry and sample inefficient. These algorithms
are notorious to scale poorly to larger problems as they require a large amount of time and resources
to learn how to perform relatively simple tasks.

Incorporating domain knowledge has been shown to be a valid approach to increase the learning
effectiveness of DRL algorithms (Vinyals et al., 2017; Kool et al., 2018; Even-Dar et al., 2006;
Barreto et al., 2018; Fernández et al., 2010; Spooner et al., 2021). We focus our attention to a
specific type of knowledge in the form of inapplicable actions, i.e. actions that do not modify the
environment when performed in a particular state. While this knowledge is explicitly defined in
other types of planning systems, as preconditions of actions Ghallab et al. (2004), it is rarely used
within the RL community. This information that can be interpreted as the rules of the game, can
help reduce the sample complexity of RL algorithms by pruning irrelevant state-action pairs from
the search space the RL agent needs to explore. This action masking technique contributed to several
breakthroughs in the field (Vinyals et al., 2017; Kool et al., 2018). Unfortunately, a systematic way
to incorporate this type of knowledge into the RL algorithm seems to be lacking from the literature.

For cases where the applicability of an action in a given state is unknown, we propose to turn one
of RL algorithms’ weaknesses into an advantage and use the data collected by the RL agent through
exploration, to train a model able to identify whether an action is (in)applicable in a given state. As
the classifier learns to identify the features encoding the constraints of the environment, it provides
an increasingly accurate signal to the RL algorithm to mask out inapplicable actions, leading to a
more sample efficient algorithm.
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By learning the task-agnostic constraints, the classifier not only helps improving the agent’s learning
process, but it also encapsulates knowledge about the environment in a manner that is both inter-
pretable and transferable. The information acquired solving a particular task can be shared to new
tasks. Instead of solving the new problem from scratch, the RL algorithm makes use of the trained
classifier to reduce the amount of time spent exploring inapplicable actions.

In this work, we direct our efforts to improve the sample efficiency of Policy Gradient algorithms
that have been proven to converge when action masking is used (Huang & Ontañón, 2022). Our
main contributions are: (i) propose an extended MDP formulation, State Dependent Action Space
MDP (SDAS-MDP), that incorporates an explicit representation of actions constraints; (ii) show
how various levels of hand-coded knowledge about the environment can significantly decrease the
time required to learn a policy; (iii) provide an algorithm to jointly train a policy and an inapplicable
actions classifier and empirically show that our method is more sample efficient than standard Policy
Gradient algorithms; and (iv) present a new transfer learning technique for RL, where the knowledge
previously acquired about the constraints of the environment is shared across domains by reusing a
trained inapplicable actions classifier.

2 BACKGROUND

We consider the T -episodic Reinforcement Learning problem in a Markov Decision Process with
a discrete actions space, denoted as ⟨S,A, P (s, a, s′), R(s, a, s′), T, µ0, γ⟩. S is the state space,
A the discrete action space, P : S × A × S → [0, 1] the Markovian state transition probability,
R : S × A × S → [0, 1] the reward function, T the maximum episode length, µ0 the initial state
distribution, and γ the discount factor. A stochastic policy πθ : S × A → [0, 1] characterizes a
function, parametrized by θ, assigning a probability to an action given a state. The objective of an
RL agent is to learn the optimal policy πθ such that its expected discounted return is maximized.

J = E s0∼µ0

at∼πθ(·|st)
st+1∼P (·|st,at)

[ T−1∑
t=0

γtR(st, at, st+1)

]
= Eµ0,πθ

[ T−1∑
t=0

γtR(st, at, st+1)

]

Where st+1 is sampled from the state transition probability distribution P (·|st, at), at from the
policy πθ(·|st) and s0 from the initial state distribution µ0.

The family of Policy Gradient algorithms, initially introduced in Sutton et al. (1999), aims at finding
the optimal value for parameter θ such that the resulting policy generates the maximum expected
returns. The parameter θ is updated in a gradient ascent fashion θi+1 = θi+α∇θJi where the policy
gradient ∇θJ has been shown to take the form:

∇θJ = Eµ0,πθ

[
Aπθ

t ∇θ log πθ(at|st)
]
; with Aπθ

t = Qπθ (st, at)− V πθ (st) (1)

Qπθ (s, a) = Eπθ

[ T−1∑
k=0

γkR(st+k, at+k, st+k+1)
∣∣st = s, at = a

]

V πθ (s) = Eπθ

[ T−1∑
k=0

γkR(st+k, at+k, st+k+1)
∣∣st = s

]
V πθ (s) is the value function and represents the expected returns received starting in state s and
following the policy πθ. Similarly, Qπθ (s, a) is the action value function and indicates the expected
returns when action a is taken in state s and the policy πθ is followed thereafter.

3 MASKING INAPPLICABLE ACTIONS

In many real-world problems, the set of actions that an agent can perform varies depending on the
state of the environment: A(s). These variations can be explained by multiple factors such as expi-
ration of resources (an agent running out of inventory will no longer be able to sell its product), the
rules of the game (not being able to move its rook diagonally when playing chess), etc. Despite being
supported by the standard Markov Decision Process framework, the ability for each state s to have
its own set of feasible actions seems to have been mainly ignored by standard RL algorithms. Their

2



Under review as a conference paper at ICLR 2023

implementations typically assume a fixed set, concatenating all the possible actions that an agent
can execute throughout the episode. We focus our attention to inapplicable actions (Definition 3.1),
which are actions that have no effect on the environment when executed in a given state 1.

Definition 3.1 Inapplicable action

Given a T-episodic MDP defined as ⟨S,A, P (s, a, s′), R(s, a, s′), T, µ0, γ⟩ and a distance measure
between two states: d(s, s′), an action is said to be inapplicable in a given state if the distance
between the state of the environment before and after the action was taken is lower than a small
value ε. We use I(s) to denote the set of inapplicable actions in state s.

∀a ∈ I(s) ⊆ A ; P (d(st+1, s) ≤ ε|st = s, at = a) = 1 (2)

This formulation of inapplicable action assumes a certain level of observability of the environment.
While full observability is not necessary, the agent requires however to have visibility on the features
of the environment that the action a has effect on. Addressing this limitation could be the object of
future work.

Leveraging the definition of inapplicable actions, we consider a new class of augmented MDPs with
an additional component C(s, a), called the applicability function, returning the probability of an
action a to be applicable in state s. These new MDPs, referred to as State Dependent Action Space
MDP (SDAS-MDP), provide a direct signal to identify inapplicable actions that can be used to prune
the search space of the problem and therefore improve the sample efficiency of RL algorithms.

Definition 3.2 State Dependent Action Space MDP (SDAS-MDP)

Given a T-episodic MDP defined as ⟨S,A, P (s, a, s′), R(s, a, s′), T, µ0, γ⟩, and C : S×A → [0, 1]
the applicability function returning the probability that the action a is applicable in state s.

The State Dependent Action Space MDP takes the form:

⟨S,A, P (s, a, s′), R(s, a, s′), T, µ0, γ, C(s, a)⟩ (3)
with C(s, a) = P (a /∈ I(s))

The SDAS-MDP formulation makes the definition of an action masking function m : S → R|A|

straightforward in the discrete action space case by simply calling the applicability function C(·, ·)
for every element of the action space. As C returns the probability of being applicable, we evaluate
whether this value is below a certain cut-off threshold τ passed as parameter of the algorithm. This
threshold is typically set to 0.5 but can be adjusted depending on the problem, to make the identifi-
cation of inapplicable actions more specific or more sensitive. The mask generated is thus a vector
of 0 for inapplicable actions, and 1 for applicable actions that will be multiplied by the probabil-
ity distribution returned by the policy. The distribution is then re-normalized using the softmax
function. For most of the existing policy gradient algorithms however, the output of the policy is the
logit associated with each of the actions. In such case, the procedure consists of replacing the logit
of the inapplicable actions by a very large negative number.

πmask
θ (·|s, πθ,m(s)) = softmax(m(s) · πθ(·|s)) (4)

with mi(s) =

{
0 if C(s, ai) < τ

1 otherwise
∀i ∈ {1..|A|}

In the following sections, we look at how the applicability function can be formalized to be used by
Policy Gradient algorithms and how knowledge can be passed into the algorithm to help make the
learning process more efficient.

3.1 INAPPLICABLE ACTIONS MASKING VIA DOMAIN KNOWLEDGE

The knowledge about inapplicable actions is, in some cases, directly associated with the rules spec-
ified by the environment (e.g the rules of the game) or simply common sense (e.g trying to drop an

1These are different from forbidden or terminal actions typically implemented with reward shaping or by
interrupting the episode abruptly.
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object that we do not hold). While it seems trivial for a human to use implicit knowledge previously
acquired to explore only the relevant actions, RL algorithms do not have this information available
by default.

People have started using the concept of actions masking to improve the learning efficiency of RL
algorithm, but the rules are typically hand-coded in the algorithm itself (Vinyals et al., 2017; Kool
et al., 2018), introducing environment specific logic into the RL algorithm. Implementations such
as RLLib Parametric Action Spaces (Liang et al., 2017) takes one step towards abstracting away the
action masking logic from the RL policy and propose to include the mask in the observation space.
However, no consensus has been found on the best way to encode this information in a generic way.

Similarly to the concept of pre-condition defined in the STRIPS language (Fikes & Nilsson, 1971)
and used by the Automated Planning community, we argue that the applicability function C is do-
main specific and should therefore be part of the environment definition. We thus propose to extend
the OpenAI Gym environment interface (Brockman et al., 2016) to include a new standardized
method is applicable returning whether an action is applicable in the current state of the envi-
ronment. This method formalizing the applicability function C of the SDAS-MDP will be called by
the RL algorithm to create the actions mask to only sample applicable actions from the policy.

Algorithm 1 PseudoCode: Policy Gradient with inapplicable actions learning
Input: policy parameter: θ0, classifier parameter: ϕ0, classifier exploration threshold: ϵ0, training flag: train
Output: trained policy parameters θK , trained classifier parameters ϕK

1: D← {} ▷ instantiate the rollout buffer
2: for k = 1, 2, . . . ,K do
3: for worker = 1, 2, . . . , N do
4: COLLECTTRAJECTORIES(πθk , Cϕk , ϵk, D). ▷ with Cϕk the actions classifier
5: Compute returns R̂t and advantage estimates Ât using current value function Vk

6: end for
7: for epochs=1, 2, . . . ,M do
8: Sample data from the replay buffer D
9: Optimize LPolicy w.r.t θ via SGD with Adam optimizer

10: if train=TRUE then
11: Balance applicable and inapplicable samples ▷ balance dataset
12: Optimize LC w.r.t ϕ via SGD with Adam optimizer ▷ with LC the classifier loss
13: end if
14: end for
15: ϵk+1 = SCHEDULEFUNCTION(ϵk, k)
16: end for
17: Return θK , ϕK

18:

19: procedure COLLECTTRAJECTORIES(πθ , Cϕ, ϵ, D, τ = 0.5)
20: Receive initial observation s0

21: for t = 1, 2, ..., T do
22: mt ← 1
23: if RANDOM(0, 1) ≤ ϵ then
24: for a ∈ A do
25: mta ← Cϕ(a, st) ≥ τ ▷ compute the actions mask
26: end for
27: end if
28: Select action at ∼ SOFTMAX(mt · πθ(st)) ▷ apply the mask
29: Execute action at in the environment, observe reward rt and new state st+1

30: yt ← 1st+1 ̸=st ▷ evaluate whether at was applicable
31: D← D ∪ {⟨st, at, rt, st+1, yt,mt⟩}
32: end for
33: end procedure

3.2 LEARNING INAPPLICABLE ACTIONS

For well understood tasks and environments, such as games where the rules are explicit and unam-
biguous, the definition of the applicability function is simple and straightforward to encode. How-
ever, in cases where the logic driving the (in)applicability of actions is unknown, or even partially

4



Under review as a conference paper at ICLR 2023

understood, it becomes much more challenging to provide valid information to the RL algorithm to
mask inapplicable actions. To address this limitation, we propose to learn the applicability function
during training by leveraging the data collected by the agent to train the policy.

Decoupling the inapplicable actions learning from the policy training has the advantage of reducing
the problem complexity. While the optimality of an action with respect to the total return is observed
with a delay, it is possible to directly identify whether an action is applicable in a given state by
evaluating the state of the environment before and after it was performed. The reduced problem
of identifying the applicability of an action in a given state is thus easier to solve than finding the
optimal action. Learning inapplicable actions also offers a more interpretable way to understand the
policy learnt by the RL agent as we can now recognize that some actions are not only sub-optimal
in certain states but also inapplicable, providing more information about the learnt policy.

The task of learning the applicability function can in fact be reduced to learning a classifier Cϕ,
parameterized by ϕ, that returns the probability for an action a to be applicable in a given state s. It
is possible to train the classifier via supervised learning jointly with the policy and thus provide an
increasingly accurate mask of inapplicable actions to the RL algorithm.

We present in Algorithm 1 the steps of the algorithm training a classifier jointly with the policy and
we detail below the important modifications made to the original algorithm (Sutton et al., 1999).

Inapplicable Actions Masking: The procedure to collect trajectories is modified to generate the
mask using the classifier (l.24) and apply it to the policy output (l.28).

Exploration: To accommodate the fact that the classifier is learning and is therefore susceptible to
produce false negatives (i.e masking out applicable actions) that could be part of an optimal policy,
we include an exploration parameter ϵ driving the frequency at which the mask will be ignored
(l.23). This parameter both helps the classifier collect positive and negative examples to improve
its accuracy, but also drives how trusted the classifier can be. The value of ϵ can vary throughout the
training as the classifier improves at identifying applicable actions.

Rollout Buffer: The data buffer collecting the rollouts is extended to include whether or not the
action taken was applicable in the state the agent was in. This is computed by comparing the state
of the environment before and after the action was performed (l.30). This value will be used as
the output the classifier needs to predict. The mask used to select an action is also added to the data
buffer, and is used to evaluate the effect of choosing the selected action.

Classifier Training: The classifier Cϕ is trained via supervised learning jointly with the policy π
over multiple epochs, using the data from the rollout buffer. A key observation is that the policy
is learning to act optimally and therefore avoiding taking inapplicable actions, while the classifier
also helps filtering out invalid actions. This results in an imbalanced number of positive and nega-
tive examples of inapplicable actions in the buffer as the training progress and the agent converges
towards an optimal policy. Classifiers are known to perform poorly on imbalanced datasets (Sun
et al., 2009); to alleviate this issue we re-balance applicable and inapplicable actions samples l.11
using a Weighted Random Sampling approach with the weight inversely proportional to the number
of samples for each class.

3.3 TRANSFER LEARNING

While the search for an optimal policy relies on the reward signal associated with the task at hand,
the notion of inapplicable actions depends solely on the environment the agent evolves in. Decou-
pling the reward signal from the classifier offers the advantage of capturing knowledge about the
environment only, without introducing the bias associated with the task the agent is trying to solve.
This allows the classifier to be reused to solve different tasks in the same environment in a more
efficient manner. Additionally, two different domains with an overlapping action space, are likely
to share some properties that make an action inapplicable in a given state. Although, the classifier
may not be able to perfectly identify inapplicable actions in a new domain, it already provides some
valuable knowledge about the environment that can improve the learning efficiency. The knowledge
encapsulated by the classifier can therefore be transferred even across different domains.

Algorithm 1 requires little effort to make use of the knowledge previously acquired. By simply pass-
ing the parameters of a fitted classifier as input, the algorithm can directly leverage the knowledge
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acquired about inapplicable actions and mask them away from the policy distribution. To accommo-
date differences among tasks, Algorithm 1 keeps exploring the action space by ignoring the mask
generated with the classifier with a random probability. Furthermore, as the classifier continues to
be trained along with the policy, it adapts to the new environment and corrects itself to identify
inapplicable actions in the new environment.

4 EXPERIMENTS

We present in this section a range of experiments aiming to answer the following research questions.
Q1: Does the introduction of human knowledge to mask inapplicable actions help an RL algorithm,
such as PPO, to be more sample efficient? Q2: Instead of hand-coding this knowledge, can we learn
to identify inapplicable actions while training a policy and use the information acquired to improve
the sample efficiency of the RL algorithm? Q3: Can the domain knowledge fed into the algorithm
be completed with the knowledge acquired by the inapplicable actions classifier to further improve
the performance of the algorithm? Q4: Is it possible to share the knowledge acquired across tasks
to help improve the training efficiency of new policies?

The set of experiments presented are run on 3 different domains shown in Figure 1 where an agent
(in red) starting at a random position moves in a gridworld-like environment to reach a fixed goal
cell (in green). The domains are designed so that the agent will only be rewarded once it reaches the
goal, and the reward received will be inversely proportional to the number of steps taken, making
the agent learn how to reach the goal in the fewest possible steps. The agent receives the full image
of the environment to make a decision on the action to perform. In all the environments the agent
can go up, right, down, left. In the Key & Door environment, it can also decide to pickup a
key and open a door. The agent must pickup the key before opening the door. But, once the door is
open, it remains so and does not require to be opened again.

We present the average reward across 5 runs normalized by the maximum reward an agent can
receive, the number of inapplicable actions the agent took and the classifier loss. For this set of
experiments, the environment being deterministic, we use the identity function to compute the dis-
tance between two states (d(st+1, s) = 1 − 1st+1=s). While we use simple environment to focus
on the ability to transfer knowledge from one domain to another, we leave for future work the study
of more complicated environments involving stochasticity, for which the distance measure d could
be modified accordingly.

(a) Maze
environment

(b) X-Island
environment:

task 1

(c) X-Island
environment:

task 2

(d) Key &
Door

environment

Figure 1: Maze, X-Island and Key & Door environments

4.1 POLICY LEARNING WITH DOMAIN KNOWLEDGE

Setup: We encoded domain knowledge in the X-Island and Key & Door tasks depicted in Figures
1b 1d, respectively. Then, we ran experiments to compare the learning curves of an agent with full
versus zero knowledge of the inapplicable actions.

Objectives: These experiments aim at providing some evidence about the practical impact of the
approach of introducing inapplicable actions knowledge, as well as assessing its potential gains.

Results: The results of these experiments are shown in Figures 2a and 2b for the X-Island (1)
and Key & Door tasks, respectively. As expected, the agent converges faster in both tasks when
it has perfect knowledge about the inapplicable actions at each state (blue curves), since it does
not need to waste effort exploring useless state-action pairs. Although observed in both domains,
the performance gain is bigger in the Key & Door domain. In this case, the inapplicable action
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(a) Full vs Zero Knowledge in the
X-Island task.

(b) Full vs Zero Knowledge in the Key &
Door task.

Figure 2: Average reward per episode in different tasks with different
levels of inapplicable actions knowledge.

knowledge is able to prune 74% of all the possible state-action pairs, while it is just pruning 36% of
the pairs in the X-Island domain.

4.2 POLICY TRAINING WITH INAPPLICABLE ACTIONS LEARNING

Setup: To evaluate the impact of learning inapplicable actions during policy training, we run Algo-
rithm 1 in the 3 environments presented in Figure 1 with 5 different seeds and evaluate the sample
efficiency gain against the original PPO algorithm. We use an exploration parameter ϵ = 0.5, cor-
responding to a use of the mask generated by the classifier half of the time allowing the classifier to
be exposed to both positive and negative examples of applicability. The full architecture of the NN
used for the classifier is presented in Appendix B.

Objectives: These experiments consider the situation where no knowledge about inapplicable ac-
tions is available. We wish to evaluate if learning an estimate of the applicability function C while
training the policy is feasible, and whether it can be used directly by the RL algorithm to mask out
inapplicable actions from the policy distribution and avoid wasting resources.

(a) Average reward per episode (b) Average number of inapplicable
actions taken per episode

(c) Classifier loss

Figure 3: Learning the inappicable actions mask in the Maze environment.

Results: The classifier (orange curve) is able to rapidly learn to identify inapplicable actions as sug-
gested by the classifier loss curve (Figure 3c). As we can see in Figure 3b, the number of inapplicable
actions taken by the agent reduces faster than the PPO baseline throughout the training. Hence, the
agent avoids exploring inapplicable actions thanks to the classifier and the quality of the mask gener-
ated. As a result, this algorithm is more sample efficient than the PPO baseline (Figure 3a). Similar
results are observed for the X-Island and the Key & Door environments (Appendix D). The more
constrained the environment is, the bigger the performance improvement will be when we introduce
the inapplicable actions learning component. In the Maze environment, the agent has in most cases
only 50% of its action space applicable which explains the significant performance improvement.
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4.2.1 CLASSIFIER ANALYSIS

Setup: We analyze the trained classifier for each of the environments (see also Appendix E) and
we present in Figure 4 the predictions the classifier makes on the applicability of each of the actions
the agent can take in a given state. A red (respectively green) cell indicates that the classifier has
predicted that the action is inapplicable (respectively applicable) when the agent stands on that cell.

Objectives: Understand what the classifier has learnt and make sure that the knowledge it acquired
in the gridworld environment concurs with the common sense of treating actions that go into a wall
as inapplicable.

(a) Action up (b) Action
right

(c) Action
down

(d) Action
left

Figure 4: Classifier output learnt in the X-Island (1) environment

Results: We see that the classifier is able to perfectly learn inapplicable actions at each given state.
For instance, all the cells where the agent has a wall on its left are red in Figure 4d. This confirms
the hypothesis that the classifier provides valuable information about the environment to the RL
algorithm to mask out inapplicable actions.

4.2.2 INAPPLICABLE ACTIONS LEARNING WITH PARTIAL DOMAIN KNOWLEDGE

Figure 5: Different ways to acquire
inapplicable actions knowledge for the Key

& Door task.

Setup: We specify a subset of the applicability func-
tion C in the Key & Door and X-Island (1) environ-
ments. In Key & Door we only provide information
about the up, down, right and left actions. In
X-Island (1) we only provide information about up
and down.

Objectives: Show how the classifier can learn the
rest of the applicability function C when provided
with partial knowledge.

Results: The results of this experiment in the Key
& Door environment are shown in Figure 5 (see also
Appendix D.1) As we can see, jointly using partial
knowledge and the classifier speeds up the learning
both over learning the classifier from scratch and just
having partial knowledge.

4.3 KNOWLEDGE TRANSFER

Setup: We solve again the tasks presented in Fig-
ure 1, but this time we provide the algorithm with the trained classifiers obtained from the runs pre-
sented in Section 4.2. We reduce the exploration parameter ϵ to 0.25 as we have more confidence in
the trained classifier. We compare our technique with an implementation of Policy Reuse (Fernández
et al., 2010) using also an exploration parameter of 0.25 and a warm start technique initializing the
policy with the weights of a pre-trained policy.

Objectives: Check if the knowledge acquired in one domain and encapsulated in the inapplicable
actions classifier can be transferred across different tasks and domains to help improve the learning
efficiency of new policies.

Results: The results when the classifier was trained in the Maze Environment are presented in
Figure 6 (and in Appendix G. The transfer of the classifier yields better performance than learning
the classifier from scratch in almost all configurations. The gain obtained seems to be related to the
difference between the source and the destination environments. The classifier trained in the Maze
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environment even contributes to a small increase of performances in the Key & Door environment
having a different layout and action space. As opposed to Policy Reuse or naively reusing a pre-
trained policy, the transfer of the classifier is able to adapt to different environments thanks to the
task-agnostic knowledge acquired.

Figure 6: Average reward for different techniques of knowledge transfer reusing the knowledge
acquired in the Maze environment.

5 RELATED WORK

The use of actions masking has been used by the RL community to improve the sample effi-
ciency of RL algorithms and has contributed to some of the most impressive breakthroughs in the
field (Vinyals et al., 2017; Kool et al., 2018). Despite being used, the effect of action masking had
not been thoroughly analyzed until recently with Huang & Ontañón (2022), where the theoretical
soundness of the approach is shown when used with Policy Gradient algorithms.

Only a few papers tackle the problem of learning the masking function. Even-Dar et al. (2006) ap-
pears to be the first to look at actions eliminations in the context of RL by using the confidence inter-
val around the Q-function to avoid actions that are sub-optimal with high probability. Later, Zahavy
et al. (2018) present a new algorithm combining DQN and an Action Elimination Network (AEN)
learning to mask out sub-optimal actions. In both works the focus is put on sub-optimal actions
and is therefore biased by the task to solve. Our approach on the other hand focuses on learning
a particular feature of the environment only. This specificity allows us to transfer the knowledge
gained in one environment to another.

To reuse previously acquired knowledge, Barreto et al. (2018) associate the Successor Represen-
tations (SR) framework, decoupling the state features and the reward distribution to estimate the
value function, with the General Policy Improvement framework (GPI). This technique assumes,
however, that the tasks only differ by their reward distribution. Close to our approach, the Policy
Reuse algorithm (Fernández et al., 2010) uses expert policies previously trained to help orient the
learning agent towards an optimal policy.

Recent works from the automated planning research community try to learn the symbolic model
capturing the applicability of actions at each state from latent spaces (Asai & Fukunaga, 2018;
Bonet & Geffner, 2020) with the aim of limiting the domain knowledge required to solve problems.

6 CONCLUSION

In this work, we presented an approach to formally specify environment specific constraints (i.e.
inapplicable actions) that can be used by an RL algorithm to only explore the actions relevant to
finding an optimal policy. We also proposed a technique to learn these constraints when they are not
known a priori by training jointly with the policy a classifier predicting that an action is inapplicable
in a given state. The information captured by this new component can directly be used to mask
out inapplicable actions, leading to more sample efficient RL algorithms. The knowledge acquired
about the environment can be transferred to other tasks in similar environment providing an even
greater performance gain. The transferability is however subject to certain conditions including
the difference of the action spaces or the environment settings. A more detailed analysis of these
constraints would be an interesting topic for future research. While our approach was shown to
significantly improve the performance of Policy Gradient algorithms we leave as future work a
study of its usefulness to other RL algorithms.
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REPRODUCIBILITY STATEMENT

We describe in details the new algorithm in the text as well as with Algorithm 1. The experiments
configuration is detailed in Appendix A and we provide the code used to run them as supplementary
materials.
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A EXPERIMENTS CONFIGURATION

All the experiments were run on a r6i.8xlarge EC2 instance. The results presented are the mean
value over 5 different seeds using the standard error to construct the confidence interval. For all the
experiments presented, the policy was trained until convergence or stopped after 100, 000 steps. The
implementation of the PPO algorithm from (Raffin et al., 2021) was used as a baseline, and modified
to implement the Algorithm 1 introducing the inapplicable actions masking components.

The code for the Open AI Gym environments used and the RL algorithms including Algorithm 1 is
provided in the supplementary materials.

For the experiments learning inapplicable actions, the classifier is trained jointly with the policy, us-
ing the same batch size (64), the same number of epochs (10) per training iteration and with an Adam
optimizer using a learning rate of 3 · 10−4 for the Inapplicable Actions Learning experiments and
1 · 10−4 for the Knowledge Transfer experiments. The classifier used is a neural network composed
of three elements. The first element called the ObservationsExtractor is a Convolutional
Neural Network (CNN) in charge of extracting features from the image representing the current
state of the system. The second component, ActionsExtractor, simply one-hot encodes the
action that needs to be evaluated. Finally, the classifier is a binary classifier implemented with a
Multi-Layer Perceptron using ReLU and Dropout layers, that takes as an input the concatenation of
the vectors from the two extractor components and output the logit of the action being applicable in
the given state. The policy neural network uses a features extractor network generating features in a
latent space that will then be fed into the policy and the value networks of the PPO algorithm (Raffin
et al., 2021).

The full architecture details of the neural networks are provided in Appendix B.

B NEURAL NETWORK ARCHITECTURES

All the neural networks’ weights are initialized using the Xavier initialization, also known as Glorot
initialization, associated to the uniform distribution. We use the Pytorch framework (Paszke et al.,
2019) to implement all the neural network described in this paper.

Table 1: Neural Network architectures

Observations Extractor Classifier Policy Features Extractor
BatchNorm2d(N) BatchNorm1d(M) Conv2d(N, 32, kernel size=8, stride=4)
Conv2d(N, 32, kernel size=8, stride=4) Linear(M, 256) ReLU()
ReLU() ReLU() Conv2d(32, 64, kernel size=4, stride=2)
Conv2d(32, 64, kernel size=4, stride=2) Dropout(0.3) ReLU()
ReLU() BatchNorm1d(256) Conv2d(64, 64, kernel size=3, stride=1)
Conv2d(64, 64, kernel size=3, stride=1) Linear(256, 96) ReLU()
ReLU() ReLU() Flatten()
Flatten() Dropout(0.3)

BatchNorm1d(96)
Linear(96, 1)
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C DOMAIN KNOWLEDGE

C.1 DIFFERENT LEVELS OF DOMAIN KNOWLEDGE

Figure 7: Importance of the level of inapplicable actions knowledge provided to the algorithm

The performance gain provided by knowing actions (in)applicability not only depends on the task
but also on the specific actions we have information from. Consider the X-Island (1) task depicted in
Figure 1b. In this case, the optimal policy involves the agent taking a number of down and right ac-
tions. Therefore, having knowledge about when the agent cannot move up or left (actions that the
agent does not need to execute) should accelerate the learning more than having information about
the move down and right actions (actions that the agent will need to execute). This hypothesis is
confirmed by the results in Figure 7, where we can observe that the agent converges faster when it
has access to the up and left actions knowledge than when it has access to the down and right
knowledge.

D INAPPLICABLE ACTIONS LEARNING

(a) Average reward per episode (b) Average number of inapplicable
actions taken per episode

(c) Classifier loss

Figure 8: X-Island (1) environment

(a) Average reward per episode (b) Average number of inapplicable
actions taken per episode

(c) Classifier loss

Figure 9: X-Island (2) environment
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(a) Average reward per episode (b) Average number of inapplicable
actions taken per episode

(c) Classifier loss

Figure 10: Key & Door environment

Introducing the inapplicable actions learning classifier helps reduce the sample complexity of the
PPO algorithm in all the tasks Figures 8,9 and 10. The classifier is able to quickly learn to identify
the inapplicable actions, reducing the number of inapplicable actions explored.

D.1 INAPPLICABLE ACTIONS LEARNING WITH PARTIAL DOMAIN KNOWLEDGE

As we can see in Figure 11, in this case jointly using partial knowledge and the classifier to learn
the rest of the applicability function C perform similarly, both outperforming learning the classifier
from scratch. This is because learning the classifier takes a similar time than learning the optimal
policy in this particular task.

Figure 11: Average reward for different combinations of Classifier and Partial Knowledge.
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E CLASSIFIER ANALYSIS

(a) Action up (b) Action right (c) Action down (d) Action left

(e) Action up (f) Action right (g) Action down (h) Action left

(i) Action up (j) Action right (k) Action down (l) Action left

(m) Action right
when door is closed

(n) Action pickup (o) Action open
when door is open

Figure 12: Classifier output learnt in the Maze, X-Island (2) and Key & Door environments

Figure 12 presents the output of the classifier trained in the different environments. The classifier
is able to predict with high accuracy that an action is inapplicable in a given state in all the envi-
ronments. In the Key & Door environment, the applicability of the action right changes when
the door is open. We see in Figures 12m and 12j that the classifier is able to capture the change in
the state that makes an action applicable. The classifier struggles however with the open action for
states that were not visited often Figure 12o.
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F EXPLORATION PARAMETER ANALYSIS

We explore in this section the impact of the exploration parameter (ϵ) on the reward of the agent
learning to reach the goal in the Maze environment. We observe that a trade-off exists between
exploration and exploitation of the knowledge acquired about inapplicable actions. When the agent
explores too much (ϵ = 0.75) the agent needs more time to converge to the optimal policy. With
a lower epsilon, the agent is able to reduce the time to converge by leveraging the accuracy of the
classifier to mask inapplicable actions. However, when the agent relies too much on the classifier
(ϵ = 0.1) and does not explore enough, the agent is not able to explore valid actions because the
classifier incorrectly masks them making the reward diverge.

Figure 13: Reward for different exploration parameter values (ϵ) in the Maze Environment.
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G KNOWLEDGE TRANSFER

PPO Warm Start: PPO Warm Start reuses a pre-trained policy as a starting point to learn a new
task. The weights of the original policy are used to instantiate the current policy before the training
starts.

PPO Reuse: We implement the logic of Policy Reuse (Fernández et al., 2010) in the PPO algorithm,
where during the rollouts, a pre-trained expert policy is sampled with a probability ϵ and the current
policy is used the rest of the time.

As observed in Figure 14, the transfer of the trained classifier from one environment to another is
beneficial. The training efficiency is improved in almost all the configurations. The performance
improvement is more important when the training environment and the destination environment
are similar. A more constrained environment, such as the Maze environment with only 50% of
the action space being applicable in most of the states, seems to provide better knowledge transfer
results. Comparing the transfer of the classifier with other knowledge transfer techniques such as
Policy Reuse or a naive warm start approach, our approach is more versatile. It can be transferred
both across tasks and across environments. The warm start approach, clearly overfits while the
Policy Reuse learns something but struggles to find an optimal policy.

Figure 14: Average reward for different transfer learning configurations. The row represents the
trained classifier used while the columns are the environment it was transferred to.
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