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Abstract

Text clustering remains valuable in real-world001
applications where manual labeling is cost-002
prohibitive. It facilitates efficient organization003
and analysis of information by grouping similar004
texts based on their representations. However,005
implementing this approach necessitates fine-006
tuned embedders for downstream data and so-007
phisticated similarity metrics. To address this008
issue, this study presents a novel framework009
for text clustering that effectively leverages the010
in-context learning capacity of Large Language011
Models (LLMs). Instead of fine-tuning embed-012
ders, we propose to transform the text cluster-013
ing into a classification task via LLM. First, we014
prompt LLM to generate potential labels for a015
given dataset. Second, after integrating similar016
labels generated by the LLM, we prompt the017
LLM to assign the most appropriate label to018
each sample in the dataset. Our framework has019
been experimentally proven to achieve compa-020
rable or superior performance to state-of-the-021
art clustering methods that employ embeddings,022
without requiring complex fine-tuning or clus-023
tering algorithms. We make our code available024
to the public for utilization1.025

1 Introduction026

Text clustering is a fundamental task within the027

realm of natural language processing (NLP) and028

holds significant importance in various practical sit-029

uations, especially when manual annotation is pro-030

hibitively costly. In particular, it identifies and cat-031

egorizes texts that share common themes or topics032

based on their content similarity and plays a crucial033

role in improving community detection results in034

social media (Qi et al., 2012), identifying new top-035

ics (Castellanos et al., 2017), analyzing extensive036

text datasets (Aggarwal and Zhai, 2012), structur-037

ing information (Cutting et al., 2017), and organiz-038

ing documents to improve retrieval results (Anick039

1https://anonymous.4open.science/r/
Text-Clustering-via-LLM-E500

and Vaithyanathan, 1997; Cutting et al., 1993). A 040

typical method for text clustering is to apply clus- 041

tering algorithms based on pre-trained embeddings 042

(Devlin et al., 2018; Muennighoff et al., 2023a; 043

Wang et al., 2022; Su et al., 2022). The embedding 044

captures semantic relationships between words and 045

phrases, providing a dense and continuous repre- 046

sentation of text that is well-suited for clustering 047

tasks. However, these methodologies often require 048

tailored fine-tuning to adapt to specific domains 049

or datasets, which can be resource-intensive and 050

time-consuming. Besides, the choice of clustering 051

hyperparameters is greatly influenced by human 052

expertise and can have a significant impact on the 053

final outcomes. 054

Recent state-of-the-art LLMs, such as the GPT 055

series (Brown et al., 2020; Ouyang et al., 2022; 056

OpenAI, 2023), have showcased remarkable rea- 057

soning performance across a wide range of NLP 058

tasks. However, GPT models restrict access to their 059

outputs solely through an API, rather than permit- 060

ting the fine-tuning of parameters to customize the 061

embeddings for specific downstream tasks. This 062

limitation of closed-source LLMs has prevented 063

them from realizing their full potential in previous 064

clustering methodologies. While several studies 065

have attempted to harness the outputs of API-based 066

LLMs to guide text clustering (Zhang et al., 2023a; 067

Wang et al., 2023a; Viswanathan et al., 2024), they 068

still rely on skeleton support from fine-tuning em- 069

bedders such as BERT and E5, as well as improving 070

clustering algorithms like K-means2. 071

To this end, this study proposes a novel two- 072

stage framework that transforms the text cluster- 073

ing task into a classification task by leveraging the 074

formidable capabilities of the LLM. In Stage 1, 075

we sequentially input the data in mini-batches and 076

prompt the LLM with a label generation task to 077

assign potential labels to the given data. In Stage 078

2See Appendix A for more discussions on related work
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2, after obtaining the labels, we prompt the LLM079

to classify the given data based on these labels.080

This framework processes the dataset sequentially,081

rather than all at once, thereby circumventing the082

input length limitations of LLMs. Moreover, it083

leverages the exceptional generation and classifi-084

cation capabilities of LLM to effectively simplify085

the complexities of clustering and enhance overall086

clustering performance.087

We extensively evaluate our framework on five088

datasets encompassing diverse tasks such as topic089

mining, emotion detection, intent discovery, and090

domain discovery, with granularities ranging from091

18 to 102 clusters. Our results demonstrate that092

the proposed framework achieves comparable and093

even better outcomes compared with state-of-the-094

art clustering methods that employ tailored embed-095

ders or cluster algorithms. Notably, our approach096

eliminates the need for a fine-tuning process for097

different datasets as well as tricky hyper-parameter098

settings, thereby saving significant time and com-099

putational resources.100

2 Methodology101

In this work, we propose a two-stage framework102

that utilizes a single LLM for text clustering tasks.103

To better leverage the generative and classification104

capabilities of LLMs, we transform the clustering105

task into a label-based classification task, allowing106

the LLM to process the data more effectively. As107

illustrated in Figure 1, unlike previous text clus-108

tering methods such as ClusterLLM (Zhang et al.,109

2023b) that calculate distances between data points110

in vector space, our approach does not require fine-111

tuning for better representation or a pre-assigned112

cluster number K. We first prompt the LLM to gen-113

erate potential labels for the data. After merging114

similar labels, we then prompt the LLM to classify115

the input data based on these generated labels. We116

will introduce our method in detail in the following117

sections.118

2.1 Task Definition119

For text clustering, given an unlabeled dataset D =120

{di}Ni=1, where N is the size of the corpus, the121

goal is to output K subsets of D as C = {cj}Kj=1,122

where K represents the number of clusters and123

each cj represents a cluster, such that d1 ∈ cj and124

d2 ∈ cj if d1 and d2 belongs to the same cluster.125

We transform text clustering task into classification126

task in this work. Specifically, given the dataset127
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Figure 1: A comparison between other methods using
LLMs (left) and our method (right) for text clustering.
Our method transforms the clustering task into a text
classification task by generating potential labels (Stage
1) and classifying input sentences according to the labels
(Stage 2) using LLMs.

D, the model first generates a set of labels L = 128

{lk}K
′

k=1 based on the content of the dataset, where 129

K ′ is the number of labels. Subsequently, each 130

data di ∈ D will be classified into one of the labels 131

l ∈ L and the input dataset will be clustered into 132

K ′ clusters C′ = {c′j}K
′

j=1. 133

2.2 Label Generation Using LLMs 134

In this section, we explore the process of forming 135

a label-generation task to obtain potential labels 136

for clusters using LLMs. Given the few-shot ca- 137

pabilities of LLMs (Brown et al., 2020), we will 138

provide several example label names to fully utilize 139

the in-context learning ability of LLMs. 140

2.2.1 Potential Label Generation 141

Since inputting an entire dataset into LLMs is im- 142

practical due to context length limitations, we in- 143

put the dataset in mini-batches and then aggregate 144

the potential labels. Subsequently, we prompt the 145

model to merge similar labels to adjust the granular- 146

ity of the clusters. Specifically, given a batch size 147

B, we will first prompt the LLM with B instances 148

along with n example label names to generate po- 149

tential labels for the input data using a prompt Pg, 150

where the dataset is divided into N
B mini-batches 151

for processing: 152

L′ = Pg(Igenerate,D′, l) (1) 153

where Igenerate is the label generation task instruc- 154

tion, D′ = {di}Bi=1 is the input data in mini-batches 155

of the size B, and l represents the n given label 156

names. 157

2.2.2 Potential Labels Aggregation and 158

Mergence 159

After obtaining all the potential labels from LLMs, 160

we aggregate the labels generated from each mini- 161
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batch together:162

Lunique = {l | l ∈ L′} (2)163

To avoid redundant duplication of final clusters164

caused by the LLM producing different descrip-165

tions for the same label, we further prompt the166

LLM to merge labels with similar expressions:167

L = Pm(Imerge,Lunique) (3)168

where Imerge is the instructions of the merging task.169

2.3 Given Label Classification170

Given the potential labels for the entire dataset, we171

can now obtain the final clusters by performing172

label classification using LLMs. For each input173

instance, we prompt the LLM to assign a label174

from the previously generated potential labels:175

c′j = Pa(Iassign, dj ,L) (4)176

where c′j is the cluster that the LLM classifies dj177

into and Iassign is the instruction of the assigning178

task. After assigning all the data in the dataset179

according to the labels, we finally get the text clus-180

tering result C′ = {c′j}K
′

j=1.181

For the detailed prompt template and instruc-182

tions Igenerate, Imerge, and Iassign, please refer to183

Appendix B.184

3 Experiment185

Following Zhang et al.(2023b), we evaluate our186

method on five datasets covering diverse tasks with187

different granularities. See Appendix C for dataset188

details.189

3.1 Implementation Details190

3.1.1 Query LLMs191

We use GPT-3.5-turbo as the query LLM for la-192

bel generation and given label classification. Re-193

sponses are controlled by adding a postfix: "Please194

response in JSON format". Detailed prompts and195

instructions are provided in Appendix B. We then196

extract the labels from the list in the JSON re-197

sponse.198

3.1.2 Potential Label Generation199

During label generation, label names are provided200

to the LLM as examples. We set the number of201

given label names to 20% of the total number of202

labels in the dataset. To account for context length203

limitations, we set the mini-batch size B to 15,204

meaning the LLM receives 15 input sentences at a205

time to generate potential labels.206

3.1.3 Evaluation Metrics 207

Following (De Raedt et al., 2023) and (Zhang et al., 208

2023b), we use three metrics to evaluate clustering 209

quality. The first metric is Accuracy (ACC), calcu- 210

lated by aligning true labels and predicted clusters 211

using the Hungarian algorithm (Kuhn, 1955) and 212

calculating the percentage of correct assignments. 213

Second metric is Normalized Mutual Information 214

(NMI), which uses mutual information to measure 215

the similarity between the true and predicted clus- 216

ters and normalize it by the average of the entropy. 217

Lastly, we use Adjusted Rand Index (ARI), which 218

takes into account the possibility of random cluster 219

assignments by adjusting the Rand Index for the 220

chance grouping of elements. 221

3.2 Compared Baselines 222

K-means. We directly apply K-means on embed- 223

dings extracted from E5-large (Wang et al., 2022) 224

and Instructor-large (Su et al., 2022). We run the 225

clustering 5 times with different seeds and calculate 226

the average result. 227

IDAS (De Raedt et al., 2023) identifies prototypes 228

that represent the latent intents and independently 229

summarizes them into labels using LLMs. Then, it 230

encodes the concatenation of sentences and sum- 231

maries for clustering. 232

PAS (Wang et al., 2023b) develops a three-stage 233

algorithm Propose-Assign-Select by prompting 234

LLMs to generate goal-related explanations, de- 235

termine whether each explanation supports each 236

sample, and use integer linear programming to se- 237

lect clusters such that each sample belongs to one 238

single cluster. 239

ClusterLLM (Zhang et al., 2023b) prompts LLM 240

for insights on similar data points and fine-tunes 241

small embedders using the LLM’s choice. It also 242

uses LLM to guide the clustering granularity by 243

determining whether two data points belong to the 244

same category. For comparison, we select the best 245

performing model ClusterLLM-I-iter reported in 246

the paper. 247

Additionally, we apply our method with gold 248

labels given, which performs label classification 249

using the dataset’s ground truth cluster labels. This 250

model represents the upper bound of the LLM’s 251

performance. For more implementation details on 252

the baselines, please refer to Appendix D. 253
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ArxivS2S GoEmo Massive-I Massive-D MTOP-I
Methods ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means (E5) 31.21 54.47 17.01 22.14 21.26 9.64 52.79 70.76 39.03 62.21 65.42 47.69 34.48 71.47 26.35
K-means (Instructor) 25.11 48.48 12.39 25.19 21.54 17.03 56.55 74.49 42.88 60.41 67.31 43.90 33.04 71.46 26.72
IDAS 16.79 41.56 06.68 15.24 12.00 05.43 51.33 68.38 38.29 54.65 57.32 42.49 33.91 68.70 27.90
PAS 36.50 16.37 18.15 11.34 2.84 10.14 19.62 28.99 09.56 40.63 30.99 22.80 50.88 64.88 41.83
ClusterLLM 26.34 50.45 13.65 26.75 23.89 17.76 60.69 77.64 46.15 60.85 68.67 45.07 35.04 73.83 29.04

Ours 38.78 57.43 20.55 31.66 27.39 13.50 71.75 78.00 56.86 64.12 65.44 48.92 72.18 78.78 71.93

LLM_known_labels 41.50 57.59 20.67 38.97 28.85 18.94 75.25 78.19 58.01 69.77 69.27 55.26 73.25 80.88 73.93

Table 1: Experiment results of text clustering on five datasets, evaluated using Accuracy, NMI and ARI. Best results
are highlighted in bold. LLM_known_labels represents the theoretical upper bound for LLMs in this task. Results of
t-test has shown significant improvements of our method.

4 Results254

4.1 Text Clustering Results255

We present our text clustering results in Table 1.256

Firstly, our method consistently improves text clus-257

tering results over other baseline methods across258

all datasets, with very few exceptions. For instance,259

our method increases accuracy by 12.44% on Arx-260

ivS2S, and MTOP-I even witnesses a performance261

doubling. This demonstrates the effectiveness of262

using LLMs exclusively in text clustering. Besides,263

the improvements across three different evaluation264

metrics indicate that our method comprehensively265

enhances text clustering results from different as-266

pects. It not only effectively identifies and differ-267

entiates between distinct categories but also cap-268

tures the intrinsic structures and characteristics of269

the data points. What’s more, the performance270

of our method is close to that of the upper bond271

LLM_known_labels, which uses ground truth clus-272

ter labels for classification. This comparable per-273

formance shows the effectiveness of our approach274

in generating potential labels and merging similar275

labels to determine cluster granularity.276

4.2 Granularity Analysis277

To assess the granularity of the output clusters, we278

compare the final cluster number generated by our279

method with those produced by ClusterLLM. Ta-280

ble 2 shows that our method outputs cluster counts281

that are closer to the true number of clusters, indi-282

cated by a smaller absolute difference. This closer283

alignment with the actual cluster distribution high-284

lights our method’s ability in more accurately cap-285

turing the underlying structure of the data through286

merging labels that have similar semantic meanings.287

Consequently, this leads to improved cluster coher-288

ence and validity. The ablation test regarding label289

merging task in Appendix F supports this conclu-290

sion. It compares the cluster granularity before and291

after the merging task and shows that performing292

Method ArxivS2S GoEmo Massive-I Massive-D MTOP-I
GT #clusters 93 27 59 18 102
ClusterLLM 16 (-77) 56 (+29) 43 (-16) 90 (+72) 43 (-59)
Ours 122 (+29) 52 (+25) 71 (+12) 24 (+6) 83 (-19)

Table 2: Granularity analysis. The results are presented
in the format of "[#clusters](difference)", where a posi-
tive difference means the model generate more #clusters
than ground truth and vice versa.

label merging task can help the model aggregate 293

similar labels and output a cluster number that is 294

closer to the ground truth. 295

4.3 Analysis on Few-shot Label Generation 296

To demonstrate that using few-shot examples can 297

help LLM improve its performance, we conduct ex- 298

periments with different percentage of gold labels 299

given to the LLM. As shown in Appendix E, when 300

provided with examples, the model improves its 301

clustering result across all three evaluation metrics 302

on all five datasets. This observation supports our 303

method of providing example label names during 304

label generation task in Section 2.2.1 and shows 305

that our method can utilize the in-context learning 306

ability of LLMs. 307

5 Conclusion 308

We explore using LLMs exclusively for text clus- 309

tering without relying on additional embedders or 310

traditional cluter algorithms by proposing a two- 311

stage framework that transforms the text clustering 312

problem into label generation and classification 313

tasks. This framework adds interpretability of the 314

clusters by assigning meaningful labels. Addition- 315

ally, LLMs’ comprehensive knowledge from pre- 316

training data enhances domain adaption ability of 317

our method in text clustering. Extensive experi- 318

ments demonstrate the effectiveness of our frame- 319

work in text clustering with better performance and 320

granularity. We will explore more cost-efficient 321

and fine-grained methods in text clustering using 322

LLM in the future. 323
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Limitation324

Our work has limitations in the following senses.325

First, as our work relies exclusively on LLMs for326

text clustering and does not fine-tune smaller em-327

bedders for better representation, more processing328

is required through LLMs. This results in increased329

API usage and higher associated costs. Since we330

use the LLM for given-label classification, the num-331

ber of API calls is proportional to the dataset size.332

While the savings in computational costs can offset333

a significant portion of this API cost increase, this334

remains a cost limitation when dealing with large335

datasets. Second, while our method achieves better336

granularity in clustering results compared to other337

LLM-based methods like ClusterLLM, it still lacks338

fine-grain control. Our approach depends on LLMs339

to generate potential labels and merge similar con-340

cepts, making the final output labels heavily reliant341

on the LLMs’ aggregation results. As a result, we342

only have general control over the granularity of343

the clusters. Given that the number of clusters can344

significantly influence the clustering outcomes, we345

aim to develop more precise mechanisms for con-346

trolling granularity in future work.347

Ethics Statement348

This work employs LLMs through APIs (e.g. Ope-349

nAI API), it will be risky and unsafe to upload350

privacy information. Additional effort should be351

applied to remove sensitive information before up-352

loading to LLMs if you are using this framework353

to deal with sensitive data.354
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Appendix601

A Related Work602

A.1 Clustering603

Clustering as a fundamental task in machine learn-604

ing, has been applied to various data types, includ-605

ing texts (Beil et al., 2002; Aggarwal and Zhai,606

2012; Xu et al., 2015), images (Yang et al., 2010;607

Chang et al., 2017; Wu et al., 2019; Ren et al.,608

2020; Park et al., 2021), and graphs (Schaeffer,609

2007; Zhou et al., 2009; Tian et al., 2014; Yin et al.,610

2017). Recent studies paid much attention to utiliz-611

ing deep neural networks in clustering, which mod-612

els the similarity among instances using learned613

representations (Huang et al., 2014; Guo et al.,614

2017; Bo et al., 2020; Zhou et al., 2022). For exam-615

ple, Yang et al. (2016) propose a recurrent network616

for joint unsupervised learning of deep representa-617

tions in clustering. Caron et al. (2018) jointly learns618

the parameters of neural networks and the cluster619

assignments of the resulting features. Tao et al.620

(2021) combines instance discrimination and fea-621

ture decorrelation to present a clustering-friendly622

representation learning method. All these methods623

require additional training process to obtain the fea-624

tured representations, and then apply standard clus-625

tering algorithms, such as K-means (Lloyd, 1982),626

to obtain the final cluster results (Guan et al., 2020).627

We argue that this kind of method has limited data628

adaption ability and has to train the model on new629

datasets, which result in high computational cost.630

A.2 Adding Explanations to Text Clusters631

While previous clustering algorithms do not neces-632

sarily produce interpretable clusters (Chang et al.,633

2009), studies pay attention to explaining the634

clusters with semantically meaningful expressions.635

Treeratpituk and Callan (2006) assigns labels to636

hierarchical clusters and assesses potential labels637

by utilizing information from the cluster itself, its638

parent cluster, and corpus statistics; Carmel et al.639

(2009) proposes a framework that selects candidate640

labels from external resources like Wikipedia to641

represent the content of the cluster; Navigli and642

Crisafulli (2010) induce word senses when cluster-643

ing the result based on their semantic similarity;644

Zhang et al. (2018) iteratively identifies general645

terms and refines the sub-topics during clustering to646

split coarse topics into fine-grained ones. However,647

label or phrase level added information is limited in648

describing a complex cluster (Wang et al., 2023b).649

Thus, more in-depth expressions are required to 650

make clusters more explainable. 651

A.3 Text Clustering using LLMs 652

Recent rapid development of Large Language Mod- 653

els (LLMs), such as GPT series (Brown et al., 2020; 654

Ouyang et al., 2022; OpenAI, 2023), has demon- 655

strated the powerful comprehensive language ca- 656

pability of LLMs and some works has been us- 657

ing LLMs in text clustering task. Wang et al. 658

(2023b) utilze LLMs to propose explanations for 659

the cluster and classify the samples based on the 660

generated explanations; De Raedt et al. (2023) col- 661

lects descriptive utterance labels from LLMs with 662

well-chosen prototypical utterances to bootstrap in- 663

context learning; Kwon et al. (2023) use LLMs to 664

label the description of input data and cluster the 665

labels with given K. Besides explanation and label 666

generation, Viswanathan et al. (2024) expand doc- 667

uments’ keyphrases, generate pairwise constraints 668

and correct low-confidence points in the clusters 669

via LLMs, Zhang et al. (2023b) leverage feedbacks 670

from LLMs to improve smaller embedders, such 671

as Instructor (Su et al., 2022) and E5 (Wang et al., 672

2022), and prompt LLMs for helps on clustering 673

granularity. All these methods use LLMs in an in- 674

direct way that LLMs only process part of the input 675

data and do not see the whole dataset. We argue 676

that this approach does not take full advantage of 677

the powerful linguistic capabilities of LLMs. 678

B Prompt template 679

We design different prompt template (Pg, Pm, Pa) 680

and instructions (Igenerate, Imerge, Iassign) for la- 681

bel generation, aggregating & merging labels and 682

given label classification tasks. Table 3 demon- 683

strates the prompt template and the instructions 684

used in each task. In order to get better response 685

from LLMs for further data process, we add format 686

control related prompt into the instructions, such as 687

"Please return in json format" with a json example 688

for LLMs to better understand how to response in 689

a better way. We present a case study in MTOP-I 690

dataset for each task in Table 4. 691

C Dataset Description 692

We extensively evaluate our framework on five 693

datasets encompassing diverse tasks, including 694

topic mining, emotion detection, intent discovery 695

and domain discovery. Each dataset has different 696

granularities, ranging from 18 to 102 clusters. 697
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Task Prompt template with instruction I

Label Generation
Pg

Given the labels, under a text classification scenario, can all these text match the label given?
If the sentence does not match any of the label, please generate a meaningful new label name.
Labels: {given_labels}
Sentences: {sentence_list}
You should NOT return meaningless label names such as ’new_label_1’ or ’unknown_topic_1’ and
only return the new label names, please return in json format like: {json_example}

Aggregating and
merging labels

Pm

Please analyze the provided list of labels to identify entries that are similar or duplicate, considering
synonyms, variations in phrasing, and closely related terms that essentially refer to the same concept.
Your task is to merge these similar entries into a single representative label for each unique concept
identified. The goal is to simplify the list by reducing redundancies without organizing it into subcategories
or altering its fundamental structure. Here is the list of labels for analysis and simplification:{label_list}.
Produce the final, simplified list in a flat, JSON-formatted structure without any substructures or
hierarchical categorization like: {json_example}

Given label
classification

Pa

Given the label list and the sentence, please categorize the sentence into one of the labels.
Label list: {label_list}
Sentence: {sentence}
You should only return the label name, please return in json format like: {json_example}

Table 3: Prompt template and instructions used in this paper. In this template, words inside {} should be replaced by
corresponding variables during experiments.

Task Question and Answer

Label Generation
Prompt

Given the labels, under a text classification scenario, can all these text match the label given?
If the sentence does not match any of the label, please generate a meaningful new label name.
Labels: [ ’update call’, ’get weather’, ’update method call’, ... , ’resume music’, ’get stories
news’, ’get reminder location’ ]
Sentences: [’do not play any song by lil Yachty’, ’show me video messages from my grandma’, ... ,
’please add a one and a half minute timer’, ’read national news headlines’]
You should NOT return meaningless label names such as ’new_label_1’ or ’unknown_topic_1’
and only return the new label names, please return in json format like: {’labels’: [’label name’, ’label name’]}

LLM
response

{
"labels": ["get info contact", "get stories news", "create reminder"]
}

Aggregating and
merging labels

Prompt

Please analyze the provided list of labels to identify entries that are similar or duplicate, considering
synonyms, variations in phrasing, and closely related terms that essentially refer to the same concept.
Your task is to merge these similar entries into a single representative label for each unique concept
identified. The goal is to simplify the list by reducing redundancies without organizing it into subcategories
or altering its fundamental structure.
Here is the list of labels for analysis and simplification:[’update call’, ’get weather’, ... , ’get reminder
location’, ’create reminder’].
Produce the final, simplified list in a flat, JSON-formatted structure without any substructures or
hierarchical categorization like: {’merged_labels’: [’label name’, ’label name’]}

LLM
response

{
"merged_labels": [

"update call",
"get weather",
"update method call",

...
"get stories news",
"get reminder location",
"create reminder"
]

}

Given label
classification

Prompt

Given the label list and the sentence, please categorize the sentence into one of the labels.
Label list: [ ’update call’, ’get weather’,&amp;nbsp;&amp;nbsp;... , ’get reminder location’, "create reminder" ]
Sentence: "Show me dates for music festivals in 2018."
You should only return the label name, please return in json format like: {’label_name’: ’label’}

LLM
response

{
"label_name": "get event"
}

Table 4: Case study in the MTOP-I dataset for different tasks. The ’...’ in the prompts and LLM responses indicate
omitted labels to provide a clear presentation of the case study.
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Task Name #clusters #data
Topic ArxivS2S 93 3674

Emotion GoEmo 27 5940
Domain Massive-D 18 2974

Intent
Massive-I 59 2974
MTOP-I 102 4386

Table 5: Dataset stasistics

ArxivS2S (Muennighoff et al., 2023b) is a text698

clustering dataset in the domain of academic, it699

contains sentences describing a certain domain.700

GoEmo (Demszky et al., 2020) is a fine-grained701

dataset for emotion detection, multi-label or neutral702

instances are removed for text clustering purpose.703

Massive-I/D (FitzGerald et al., 2023) and MTOP-704

I (Li et al., 2021) are datasets originally used for705

classification but adapted for text clustering. "I"706

denotes intent and "D" denotes domain. Following707

Zhang et al. (2023b), all the datasets are splitted708

into large- and small-scale versions with the same709

number of clusters. Dataset statistics summary is710

shown in Table 5. We use small-scale version of711

datasets to reduce cost.712

D Baseline Implementation Details713

Since different models all evaluated on different714

datasets, to better compare the performance of base-715

line models and our model, we implement the base-716

line models on the five datasets using the source717

code provided by the authors.718

K-means. We use embeddings extracted from E5-719

large (Wang et al., 2022) and Instructor-large (Su720

et al., 2022) and apply K-means algorithm to obtain721

the text clustering result. We run the clustering five722

times with different seeds and calculate the average723

result as the final result.724

IDAS3. Following (De Raedt et al., 2023) ,we first725

generate labels using GPT-3 (text-davinci-003) for726

the five datasets used in this paper. For each test set,727

5 JSON files are generated with different sample728

order, with the nearest neighbors topk = 8. After729

that, we produce the result with the generated labels730

and calculate the evaluation metrics.731

PAS4. We use the same experiment settings as732

(Wang et al., 2023b) and use GPT-3.5-turbo as the733

3https://github.com/maarten-deraedt/
IDAS-intent-discovery-with-abstract-summarization.

4https://github.com/ZihanWangKi/GoalEx.

proposers and google/flan-t5-xl5 as the assigners. 734

For cluster_num parameter, we set it as the number 735

of labels in the datasets. 736

ClusterLLM6. Since ClusterLLM does not present 737

its results in the ARI metric, we also reproduce its 738

results on the five datasets. We choose the best per- 739

forming model ClusterLLM-I-iter for comparison. 740

This model adopts Instructor7 as the embedder and 741

applies the framework twice in an iterative way 742

by using the previously fine-tuned model as initial- 743

ization. The LLM used for triplet sampling and 744

pairwise hierarchical sampling is GPT-3.5-turbo. 745

We also re-perform the framework on ArxivS2S 746

and GoEmo datasets to obtain the #clusters result 747

in granularity analysis in Section 4.2, which is not 748

presented in the original paper. The #clusters result 749

of dataset Massive-I, Massive-D and MTOP-I is 750

taken directly from the paper (Zhang et al., 2023b). 751

E Given Label Percentage Experiment 752

Figure 2: ACC, NMI, ARI of our method on five dataset
with different percentage of given labels. 0% means
no label is provided to the LLM, 20% means we give
20% of the total gold labels to the LLM during label
generation and 100% means LLM is provided with all
true labels and directly performs classification.

We provide the LLM with few-shot examples in 753

label generation task to fully utilize its in-context 754

learning ability. To demonstrate that using several 755

examples can help LLM improve its performance, 756

we conduct experiments with different percentage 757

of gold labels given to the LLM. As shown in Fig- 758

ure 2, when provided with a few examples, the 759

model improves its clustering result across all three 760

evaluation metrics on all five datasets. Note that in 761

the 100% case, the model is given all true labels 762

and directly performs classification, which repre- 763

sents the theoretical upper bond "Ours (with gold 764

labels)" introduced in Section 3.2. 765

5https://huggingface.co/google/flan-t5-xl.
6https://github.com/zhang-yu-wei/ClusterLLM
7https://huggingface.co/hkunlp/

instructor-large
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F Label Merging Granularity Analysis766

Figure 3: Label merging granularity on five datasets.
"GT #Clusters" means the ground truth number of clus-
ters in the dataset.

To justify the effectiveness of label merging task767

in our method, we conduct an comparative anal-768

ysis on granularity before and after the merging769

task. Figure 3 shows that merging similar labels770

helps the model aggregate labels with same mean-771

ings, resulting in a cluster number closer to the the772

ground truth clusters. This merging method is espe-773

cially effective when the number of labels is larger.774

For example, it aggregates 21 similar labels in the775

ArxivS2S dataset. Since the number of clusters776

can heavily impact the final clustering result, this777

method of improving the granularity is necessary.778
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