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Abstract

Distributionally robust policy learning aims to
find a policy that performs well under the worst-
case distributional shift, and yet most existing
methods for robust policy learning consider the
worst-case joint distribution of the covariate and
the outcome. The joint-modeling strategy can be
unnecessarily conservative when we have more
information on the source of distributional shifts.
This paper studies a more nuanced problem — ro-
bust policy learning under the concept drift, when
only the conditional relationship between the out-
come and the covariate changes. To this end, we
first provide a doubly-robust estimator for eval-
uating the worst-case average reward of a given
policy under a set of perturbed conditional distri-
butions. We show that the policy value estimator
enjoys asymptotic normality even if the nuisance
parameters are estimated with a slower-than-root-
n rate. We then propose a learning algorithm
that outputs the policy maximizing the estimated
policy value within a given policy class Π, and
show that the sub-optimality gap of the proposed
algorithm is of the order κ(Π)n−1/2, where κ(Π)
is the entropy integral of Π under the Hamming
distance and n is the sample size. A matching
lower bound is provided to show the optimality of
the rate. The proposed methods are implemented
and evaluated in numerical studies, demonstrating
substantial improvement compared with existing
benchmarks.
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1. Introduction
In a wide range of fields, the abundance of user-specific
historical data provides opportunities for learning efficient
individualized policies. Examples include learning the op-
timal personalized treatment from electronic health record
data (Murphy, 2003; Kim et al., 2011; Chan et al., 2012), or
obtaining an individualized advertising strategy using past
customer behavior data (Bottou et al., 2013; Kallus & Udell,
2016). Driven by such a practical need, a line of works
have been devoted to developing efficient policy learning
algorithms using historical data — a task often known as of-
fline policy learning (Dudík et al., 2011; Zhang et al., 2012;
Swaminathan & Joachims, 2015a;b;c; Kitagawa & Tetenov,
2018; Athey & Wager, 2021; Zhou et al., 2023; Zhan et al.,
2023; Bibaut et al., 2021; Jin et al., 2021; 2022a).

Most existing methods for offline policy learning deliver
performance guarantees under the premise that the target en-
vironment remains the same as that from which the historical
data is collected. It has been widely observed, however, that
such a condition is hardly met in practice (see e.g., Recht
et al. (2019); Namkoong et al. (2023); Liu et al. (2023); Jin
et al. (2023) and the references therein). Under distribu-
tion shift, a policy learned in one environment often shows
degraded performance when deployed in another environ-
ment. To address this issue, there is an emerging body of
research on robust policy learning, which aims at finding
a policy that still performs well when the target distribu-
tion is perturbed. Pioneering works in this area consider
the case where the joint distribution of the covariates and
the outcome is shifted from the training distribution, and
researchers devise algorithms that output a policy achieving
reliable worst-case performance under the aforementioned
shifts (Si et al., 2023; Kallus et al., 2022). The joint mod-
eling approach, however, ignores the type of distributional
shifts, and the resulting worst-case value can be unnecessar-
ily conservative in practice.

Indeed, distributional shifts can be categorized into two
classes by their sources: (1) the shift in the covariate X ,
and/or (2) the shift in the conditional relationship between
the outcome Y and the covariate X . The two types of
distributional shifts are different in nature, have different
implications on the objectives, and call for distinct treat-
ment (Namkoong et al., 2023; Liu et al., 2023; Jin et al.,
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Distribution shift Unknown π0 General X Upper bound Lower bound

Athey & Wager (2021) ✗ ✓ ✓ — —
Zhou et al. (2023) ✗ ✓ ✓ — —

Si et al. (2023) Joint ✗ ✓ — —
Kallus et al. (2022) Joint ✓ ✓ — —

Mu et al. (2022) Separate ✓ ✗ O
(√ logn log(|X ||A|)

n

)
✗

This work Separate ✓ ✓ O
(κ(Π)√

n

)
Ω
(√Ndim(Π)

n

)
Table 1. Comparison of results in the offline policy learning literature. “Unknown π0” refers to whether an algorithm assumes knowledge
of the behavior policy π0. “General X ” refers to whether an algorithm allows for general types of covariates. Athey & Wager (2021);
Zhou et al. (2023); Si et al. (2023); Kallus et al. (2022) have the regret upper and lower bounds for the specific problems they consider
that are not directly comparable to ours, so we do not include them in the table. |X | refers to the cardinality of the covariate support (if
finite) and |A| to that of the action set. κ(Π) and Ndim(Π) are the entropy integral under Hamming distance and the Natarajan dimension
of a policy class Π, with the relation κ(Π) = O(log(d)Ndim(Π)), where d is the dimension of the covariate space.

2023; Ai & Ren, 2024). To be concrete, imagine that the dis-
tribution of covariates changes while that of Y |X remains
invariant — in this case, the distribution shift is identifi-
able/estimable since the covariates are often accessible in
the target environment. As a result, it is often unneces-
sary to account for the worst-case covariate shift rather than
directly correcting for it. Alternatively, when the Y |X dis-
tribution changes but the X distribution remains invariant,
the distribution shift is no longer identifiable, where we can
instead apply the worst-case consideration to guarantee per-
formance. This latter setting, known as concept drift, occurs
due to sudden external shocks (Widmer & Kubat, 1996; Lu
et al., 2018; Gama et al., 2014). For example, in adver-
tising, the customer behavior can evolve over time as the
environment changes, while the population remains largely
the same. In personalized product recommendation, similar
population segments in developed and emerging markets
may prefer different product features. In these applications,
with the one extra bit of information that the shift is only in
the conditional reward distribution, can we obtain a more
efficient policy learning algorithm?

Motivated by the above situations, we study robust policy
learning under concept drift. Most existing methods for
robust policy learning (Si et al., 2023; Kallus et al., 2022)
model the distributional shift jointly without distinguishing
the sources, and the corresponding algorithms turn out to
be suboptimal. The reason behind their suboptimality is
that the worst-case distributions under the two models —
the joint-shift model and the concept-drift model — can be
substantially different, so it would be a “waste” of our bud-
get to consider adversarial distributions that are not feasible
under concept drift. It is worth mentioning that a recent
paper by Mu et al. (2022) accounts for the sources of distri-
butional shifts in policy learning; their approach, however,
applies only when the covariates take a finite number of
values, and therefore is limited in its applicability. When

the covariate space is infinite, it remains unclear how to
efficiently learn a robust policy under concept drift. The
current work aims to fill in the gap by answering the ques-
tion:How can we efficiently learn a policy with optimal
worst-case average performance under concept drift with
minimal assumptions? We provide a rigorous answer to
the above question. Specifically, we assume the covariate
distribution remains the same in the training and target en-
vironments,1 while the Y |X distribution shift is bounded
in KL-divergence by a pre-specified constant δ. Our goal
is to find a policy that maximizes the worst-case averaged
outcome over all possible target distributions satisfying the
previous condition.

1.1. Our Contributions

Towards robust policy learning under concept drift, we make
the following contributions.

Policy Evaluation. Given a policy, we present a doubly-
robust estimator for the worst-case policy value under con-
cept drift. We prove that the estimator is asymptotic normal
under mild conditions on the estimation rate of the nuisance
parameter. Our approach involves solving the dual form
of a distributionally robust optimization problem and tak-
ing a de-biased step to deal with the slow convergence of
the optimizer, thereby obtaining an estimator with root-n
convergence rate.

Policy Learning. We propose a robust policy learning al-
gorithm that outputs a policy maximizing the estimated
policy value over a policy class Π. Compared with the or-
acle optimal policy, the policy provided by our algorithm
with high probability has a regret/suboptimality gap of the
order κ(Π)/

√
n, where κ(Π) is a measure quantifying the

1Otherwise, the covariate shift can be easily adjusted by covari-
ate matching discussed earlier.
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policy class complexity (to be formalized shortly) and n is
the number of samples. Compared with Mu et al. (2022),
our algorithm and theory apply to general covariate spaces
and potentially infinite policy classes, while their method
is restricted to finite covariate space and policy class. We
complement the upper bound with a matching lower bound,
thus establishing the minimax optimality of our proposed al-
gorithm. We summarize the comparison between our result
and prior work in Table 1 for better demonstration.

Implementation and Empirics. We provide efficient im-
plementation of our robust policy learning algorithm, and
compare its empirical performance with existing bench-
marks in numerical studies. Our proposed method exhibits
substantial improvement.

1.2. Related Works

Offline Policy Learning. There is a long list of works
devoted to offline policy learning. Most of them assume
no distributional shifts (e.g., Dudík et al. (2011); Zhang
et al. (2012); Swaminathan & Joachims (2015a;b;c); Kita-
gawa & Tetenov (2018); Athey & Wager (2021); Zhou et al.
(2023)). Zhan et al. (2023); Jin et al. (2021; 2022a) allow
the data to be adaptively collected, but the distribution over
the covariate and the (potential) outcomes remain invariant
in the training and target environment.

As mentioned earlier, Si et al. (2023); Kallus et al. (2022)
study robust policy learning when the joint distribution of
(X,Y ) ranges in the neighborhood of the training distribu-
tion; Mu et al. (2022) consider the case when the covariate
shift and Y |X shift are specified separately; their method,
however, is restricted to finite covariate space, and their sub-
optimality gap is logarithmic factors slower than parametric
rates. More recently, Guo et al. (2024) considers a pure
covariate shift with a focus on policy evaluation, where the
setup and the goal are different from ours.

Distributionally Robust Optimization. More broadly, our
work is closely related to DRO, where the goal is to learn a
model that has good performance under the worst-case distri-
bution (e.g., Bertsimas & Sim (2004); Delage & Ye (2010);
Hu & Hong (2013); Duchi et al. (2019); Dudík et al. (2011);
Zhang et al. (2023)). The major focus of the aforemen-
tioned works involves parameter estimation and prediction
in supervised settings; we however take a decision-making
perspective and aim at learning an individualized policy
with optimal worst-case performance guarantees.

2. Preliminaries
Consider a set of M actions denoted by [M ] and letX ⊆ Rd.
Throughout the paper, we follow the potential outcome
framework (Imbens & Rubin, 2015), where Y (a) ∈ Ya ⊆
R denotes the potential outcome had action a been taken

for any a ∈ [M ]. We posit the underlying data-generating
distribution P on the joint covariate-outcome random vector
(X,Y (1), · · · , Y (M)) ∈ X ×

∏M
a=1 Ya. Consider a data

set D = {(Xi, Ai, Yi)}i∈[n] consisting of n i.i.d. draws of
(X,A, Y ), where Xi ∈ X is the observed contextual vector,
Ai ∈ [M ] the action, and Yi = Y (Ai) the realized reward.
The actions are selected by the behavior policy π0, where
π0(a |x) := P(Ai = a |X = x) is the propensity score, for
any a ∈ [M ], x ∈ X . We make the following assumptions
for π0 and P .

Assumption 2.1. The behavior policy π0 and the joint dis-
tribution P satisfy the following. (1) Unconfoundedness:
(Y (1), · · · , Y (M)) |= A |X . (2) Overlap: for some ε > 0,
π0(a |x) ≥ ε, for all (a, x) ∈ [M ] × X . (3) Bounded re-
ward support: there exists ȳ > 0, such that 0 ≤ Y (a) ≤ ȳ
for all a ∈ [M ].

The above assumptions are standard in the literature (see
e.g., Athey & Wager, 2021; Zhou et al., 2023; Si et al., 2023;
Kallus et al., 2022). In particular, the unconfoundedness
assumption guarantees identifiability, and the overlap as-
sumption ensures sufficient exploration when collecting the
training dataset. The bounded reward support is assumed
for the ease of exposition, and can be relaxed to the sub-
Gaussian reward straightforwardly.

2.1. The KL-distributionally Robust Formulation

Given the training set D = {(Xi, Ai, Yi)}i∈[n] and a policy
class Π, we aim to learn a policy π ∈ Π that achieves high
expected reward in a target environment that may deviate
from the data-collection environment where D is collected.
While distribution shift can take place in various forms, we
focus primarily on the concept drift, where only the con-
ditional reward distribution Y (a) |X differs in the training
and target environments. The distance between distributions
is quantified by the KL divergence.

Definition 2.2 (KL divergence). The KL divergence
between two distributions Q and P is defined as
DKL(Q ∥P ) = EQ[log

dQ
dP ], where dQ

dP is the Radon-
Nikodym derivative of Q with respect to P .

We define an uncertainty set of neighboring distribu-
tions around P , whose conditional outcome distribution
is bounded in KL divergence from P . Given a radius δ > 0,
the uncertainty set of the conditional distribution is defined
as P(PY |X , δ) :=

{
QY |X : DKL(QY |X ∥PY |X) ≤

δ
}

, where PY |X and QY |X refers to the distribution of
(Y (1), . . . , Y (M)) |X under P and Q respectively. The
distributionally robust policy value for any policy π at level
δ is defined as

Vδ(π) := EPX

[
inf

QY |X∈P(PY |X ,δ)
EQY |X

[
Y
(
π(X)

) ∣∣∣X]].
(1)
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The optimal policy in Π is the one that maximizes Vδ(π),
i.e. π∗

δ := argmaxπ∈Π Vδ(π).2

Under this formulation, our goal is to learn a “robust” policy
with a high value of Vδ(π) using a dataset drawn from P .
The task here is two-fold: we need to (i) estimate the policy
value Vδ(π) for a given policy π, and (ii) find a near-optimal
robust policy π̂ ∈ Π whose policy value is close to the
optimal policy π∗

δ . Here, the performance of a learned
policy π̂ is measured by the sub-optimality gap (regret):

Rδ(π̂) := Vδ(π∗
δ )− Vδ(π̂). (2)

In the following sections, we tackle each task sequentially.

2.2. Strong Duality

In order to estimate Vδ(π), we first rewrite the inner op-
timization problem in Equation (1) in its dual form using
standard results in convex optimization (see e.g., Luenberger
(1997)). The transformation is formalized in the following
lemma, with its proof provided in Appendix D.1.

Lemma 2.3 (Strong Duality). Given any π ∈ Π and any
x ∈ X , the optimal value of inner optimization problem in
Equation (1) equals to

− min
α≥0,η∈R

EP

[
Vδ(α, η;π)

∣∣∣X = x

]
. (3)

where Vδ(α, η;π) = α exp(−Y (π(X))+η
α − 1) + η + αδ.

We note that the optimization problem in (3) depends
on x and π — to manifest this dependence, we use
(α∗

π(x),η
∗
π(x)) to denote its optimizer, i.e., α∗

π and η∗
π

are functions of x and(
α∗

π(x),η
∗
π(x)

)
∈ argmin

α≥0,η∈R
EP

[
Vδ(α, η;π)

∣∣∣X = x

]
.

With this notation and Lemma 2.3, the robust policy value

Vδ(π) = −EP

[
Vδ(α

∗
π(X),η∗

π(X);π)

]
. (4)

The above formulation has thus translated the original dis-
tributionally robust optimization problem into an empirical
risk minimization (ERM) problem. We note that, unlike the
well-studied joint distributional shift formulation, the above
representation admits an optimizer pair (α∗

π(x),η
∗
π(x)) that

is dependent on the context x (i.e. α∗
π,η

∗
π are functions of

x) and the policy π. As we shall see shortly, our proposed
policy value estimation procedure employs ERM tools to

2When the supremum cannot be attained, we can always con-
struct a sequence of policies whose policy values converge to
the supremum, and all the arguments go through with a limiting
argument.

estimate (α∗
π,η

∗
π), and then compute an estimate of Vδ(π)

by plugging (α∗
π,η

∗
π) into Equation (4).

The remaining challenge in this proposal is the slow esti-
mation rate of the optimizers — if we naïvely plug in the
optimizers, the resulting policy value estimator typically
has a convergence rate slower than root-n. To overcome
this, we incorporate a novel adjustment method to debias
the estimator, which allows us to obtain a doubly-robust
estimator that achieves root-n convergence rate even when
then nuisance parameters (e.g., (α∗

π,η
∗
π)) are converging

slower than the root-n rate.

We end this section by providing a sufficient condition to
ensure α∗

π(x) > 0, which we make throughout the paper.

Assumption 2.4. For a ∈ [M ] and x ∈ X , define
y(x; a) = sup{t : P(Y (a) < t | X = x,A = a) = 0} and
p̃(x; a) = P(Y (a) = y(x; a) | X = x,A = a). It holds
that log(1/p̃(x; a)) > δ for PX|A=a-almost all x.

The above assumption is mild and can be satisfied by many
commonly used distributions, e.g., all the continuous dis-
tributions; it requires that PY |X,A does not posit a large
point mass at its essential infimum. The following result
from Jin et al. (2022b, Proposition 4), shows that α∗ > 0
when Assumption 2.4 holds, ensuring that the gradient of
the risk function in ERM has a zero mean.

Proposition 2.5 (Jin et al. (2022b)). Under Assumption 2.4,
the optimizer α∗ of (3) satisfies α∗ > 0.

3. Policy Value Estimation under Concept
Drift

3.1. The Estimation Procedure

Fixing a policy π, we aim to estimate the policy value Vδ(π)
using the training dataset D. We first split D into K equally
sized disjoint folds: D(k) for k ∈ [K],3 where we slightly
abuse the notation and use D(k) to denote the data points or
the corresponding indices interchangeably.

For each k ∈ [K], we first use data points in D(k+1) to ob-
tain the propensity score estimator π̂(k)

0 and the optimizers
(α̂

(k)
π , η̂

(k)
π ).4 We then define

Ĝ(k)
π (x, y) :=α̂(k)

π (x) · e
− y+η̂

(k)
π (x)

α̂
(k)
π (x)

−1
+ η̂(k)

π (x) + α̂(k)
π (x) · δ,

ḡ(k)π (x) :=EP

[
Ĝ(k)

π

(
X,Y (π(X))

) ∣∣X = x
]
.

We next use D(k+2) to obtain ĝ
(k)
π as an estimator of ḡ(k)π .

3We assume without loss of generality that n is divisible by K.
In practice, we only need a minimum of K = 3 folds.

4We use the convention that D(k) = D(k mod K) for any k.
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Algorithm 1 Policy estimation under concept drift
Input: Dataset D; policy π; uncertainty set parameter δ;
propensity score estimation algorithm C; ERM algorithm
E for obtaining (α∗

π,η
∗
π); regression algorithm R for

estimating ḡπ .
Randomly split D into K non-overlapping equally-sized
folds D(k), k ∈ [K];
for k = 1, · · · ,K do
π̂
(k)
0 ← C(D(k+1)), (α̂(k)

π , η̂
(k)
π )← E(D(k+1));

ĝ
(k)
π ← R

(
{Xi, Ai, Ĝ

(k)
π (Xi, Yi); i ∈ D(k+2)}

)
;

Compute V̂(k)
δ (π) according to Equation (5);

end for
Return: V̂δ(π)← − 1

K

∑K
k=1 V̂

(k)
δ (π).

The policy value estimator V̂(k)
δ (π) for the k-th fold is

V̂(k)
δ (π) =

1

|D(k)|
∑

i∈D(k)

1{π(Xi) = Ai}
π̂
(k)
0 (Ai |Xi)

·
(
Ĝ(k)

π (Xi, Yi)− ĝ(k)π (Xi)
)
+ ĝ(k)π (Xi). (5)

The policy value estimator is V̂δ(π) := − 1
K

∑K
k=1 V̂

(k)
δ (π).

The complete procedure is summarized in Algorithm 1.
Remark 3.1. The estimation procedure involves three model-
fitting steps corresponding to π0, (α∗

π,η
∗
π), and ḡπ , respec-

tively. The propensity score function π0 can be estimated
with off-the-shelf algorithms (e.g., logistic regression, ran-
dom forest); the conditional mean ḡ

(k)
π can be obtained by

regressing Ĝ
(k)
π (Xi, Yi) onto Xi for the points such that

Ai = π(Xi) with standard regression algorithms, e.g., ker-
nel regression (Nadaraya, 1964; Watson, 1964), local poly-
nomial regression (Cleveland, 1979; Cleveland & Devlin,
1988), smoothing spline (Green & Silverman, 1993), regres-
sion trees (Loh, 2011) and random forests (Ho et al., 1995).
The ERM step is more complex, and will be discussed in
details shortly.
Remark 3.2. The construction of the estimator V̂δ(π) em-
ploys two major techniques: cross-fitting and de-biasing.
The cross-fitting technique splits the training dataset D into
K folds equally and fits the nuisance parameters on the off-
fold data. This crucially provides the convenient property
of independence between the fitted nuisance parameters and
policy value estimators. In contrast to the naïve plug-in esti-
mator whose convergence rate is largely affected by the slow
estimation rate of the nuisance parameters, the de-biasing
technique addresses this limitation, thereby leading to the
doubly-robust property of the proposed estimator.

The ERM Step. For notational simplicity, we denote θ =
(α, η) and write the loss function from Lemma 2.3 as

ℓ(x, y; θ) = α exp
(
− y + η

α
− 1
)
+ η + αδ. (6)

By the notation, θ∗
π(x) = (α∗

π(x),η
∗
π(x)) is the opti-

mizer of EP [ℓ(x, Y (π(x)); θ) |X = x] with respect to θ.
Throughout, we make the following assumption on θ∗π .

Assumption 3.3. For any policy π, ∃α, ᾱ, η̄ such that 0 <
α ≤ α∗

π(x) ≤ ᾱ,
∣∣η∗

π(x)
∣∣ ≤ η̄, ∀x ∈ X .

The above assumption is mild and can be achieved, for
example, when θ∗

π(x) is continuous in x and when X is
compact. We refer the readers to (Jin et al., 2022b) for a
more detailed discussion.

Under the unconfoundedness assumption, θ∗
π is also a mini-

mizer of EP

[
ℓ(X,Y ;θ(X))1{A = π(X)}

]
. We can thus

estimate θ∗
π by minimizing the empirical risk:

θ̂(k)
π ∈ argmin

θ∈Θ

{
ÊD(k+1) [ℓ(X,Y ;θ(X))1{A = π(X)}]

}
,

(7)

where Θ ⊆ {(α,η) | α : X 7→ R≥0, η : X 7→ R} is to be
determined. In our implementation, we follow Yadlowsky
et al. (2022); Jin et al. (2022b); Sahoo et al. (2022), and
adopt the method of sieves (Geman & Hwang, 1982) to
solve (7). Specifically, we consider an increasing sequence
Θ1 ⊂ Θ2 ⊂ · · · of spaces of smooth functions, and let
Θ = Θn in Equation (7). For example, Θn can be a class of
polynomials, splines, or wavelets. It has been shown in Jin
et al. (2022b, Section 3.4) that under mild regularity con-
ditions, θ̂(k)

π converges to θ∗
π at a reasonably fast rate. For

example, if X =
∏d

j=1 Xj ⊆ Rd for some compact inter-
vals Xj and that θ∗

π belongs to the Hölder class of p-smooth
functions — with some other mild regularity conditions —
then ∥θ̂(k)

π − θ∗
π∥L2(PX |A=π(X)) = OP ((

logn
n )−p/(2p+d))

and ∥θ̂(k)
π − θ∗

π∥L∞ = OP ((
logn
n )−2p2/(2p+d)2). The solu-

tion details are given in Appendix B, and we also refer the
readers to Yadlowsky et al. (2018) and Jin et al. (2022b).

3.2. Theoretical Guarantees

We are now ready to present the theoretical guarantees for
the policy value estimator V̂δ(π). To start, we assume the
following for the convergence rates of the nuisance parame-
ter estimators.

Assumption 3.4 (Asymptotic estimation rate). For any pol-
icy π, assume that for each k ∈ [K], the estimators π̂

(k)
0 ,

ĝ
(k)
π and the empirical risk optimizer θ̂(k)

π satisfy

∥π̂(k)
0 − π0∥L2(PX |A=π(X)) = oP (n

−γ1),

∥ĝ(k)π − ḡ(k)π ∥L2(PX |A=π(X)) = oP (n
−γ2),

∥θ̂(k)
π − θ∗

π∥L2(PX |A=π(X)) = oP (n
− 1

4 ),

∥θ̂(k)
π − θ∗

π∥L∞ = oP (1),

for some γ1, γ2 ≥ 0 and γ1 + γ2 ≥ 1
2 .
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Assumption 3.4 (1) requires either the propensity score π0

or the conditional mean of Ĝ(k)
π (X,Y ) is well estimated.

This is a standard assumption in the double machine learning
literature (Chernozhukov et al., 2018; Athey & Wager, 2021;
Zhou et al., 2023; Kallus et al., 2019; 2022; Jin et al., 2022b)
and can be achieved by various commonly-used machine
learning methods discussed in Section 3.1. Assumption 3.4
(2) requires the optimizer θ̂

(k)
π to be estimated at a rate

faster than n−1/4, and can be achieved by, for example, the
estimators discussed in Section 3.1 under mild conditions.
The empirical sensitivity analysis in Jin et al. (2022b) also
provides some justification for Assumption 3.4.

The following theorem states that our estimated policy value
V̂δ(π) is consistent for estimating Vδ and is asymptotically
normal. Its proof is provided in Appendix D.2.

Theorem 3.5 (Asymptotic normality). Suppose Assump-
tions 2.1, 2.4, 3.3, and 3.4 hold. For any policy π : X 7→
[M ], we have

√
n ·
(
V̂δ(π)− Vδ(π)

) d→ N(0, σ2
π), where

σ2
π = Var

(
1{A = π(X)}
π0(A |X)

·
(
G(X,Y )− g(X)

)
+ g(X)

)
;

Gπ(x, y) = ℓ(x, y; θ∗π);

gπ(x) := E
[
Gπ(X,Y (π(X))) |X = x

]
.

4. Policy Learning under Concept Drift
Building on the results and methodology in Section 3, we
turn to the problem of policy learning under concept drift.
Given a policy class Π and an estimated policy value V̂δ(π)
for each π ∈ Π, it is natural to consider optimizing the
estimated policy value over Π to find the best policy. The
biggest challenge here is that the nuisance parameter θ̂(k)

π

in defining V̂δ(π) is not only a function of x ∈ X , but also
a function of π ∈ Π. The above strategy requires carrying
out the ERM step in Section 3.1, for all possible policies
π ∈ Π, posing major computational difficulties.

Instead of solving θ̂
(k)
π for each π ∈ Π, we propose a com-

putational shortcut that solves a similar ERM problem for
each action a ∈ [M ]. To see why this is sufficient, note that
for any π ∈ Π,

E
[
ℓ(X,Y (π(X)); θ) |X = x

]
=

M∑
a=1

1{π(X) = a} · E[ℓ(x, Y (a); θ) |X = x]. (8)

Letting θ∗
a(x) ∈ argmin

θ

{
E[ℓ(x, Y (a); θ) |X = x]

}
, we

can see that θ∗
π(x)(x) is a minimizer of (8). Then, the policy

learning problem reduces to finding π ∈ Π that maximizes

−E
[
ℓ(X,Y (π(X));θ∗

π(X)(X))

]
.

Remark 4.1 (Computational efficiency of the proposed short-
cut). Constructing θ̂π(x) with θ̂π(x)(x) substantially re-
duces the computational complexity of the policy learning
task. It is virtually infeasible to estimate θ̂π(x) for each
π in a policy class Π with infinite number of policies. Al-
ternatively, solving for θ̂π(x)(x) transforms the infeasible
task of computing a class of infinite nuisance parameters
{θπ(x) : π ∈ Π} to the feasible task of computing a finite
one {θa(x) : a ∈ [M ]}. It remains an interesting future
direction to extend this trick to continuous action spaces.

4.1. The Learning Algorithm

The policy learning algorithm consists of two main steps:
(1) solving for θ∗

a for each a ∈ [M ] and constructing the
policy value estimator V̂δ(π); (2) learning the optimal policy
π∗
δ by minimizing V̂δ(π).

As before, we randomly split the original data set D into
K folds. For each fold k ∈ [K], we use samples in the
(k+1)-th data foldD(k+1) to obtain the propensity estimator
π̂
(k)
0 (a | ·) (by regression) and the optimizer θ∗

a (by ERM)
for each a ∈ [M ]. Next, for each a ∈ [M ], define

Ga(x, y) := ℓ(x, y;θ∗
a(x)), Ĝ

(k)
a (x, y) := ℓ(x, y; θ̂(k)

a (x)),

ḡ(k)a (x) := E
[
Ĝ(k)

a (X,Y (a)) |X = x
]
.

We then obtain an estimator ĝ
(k)
a for ḡ

(k)
a by regressing

Ĝ
(k)
a (Xi, Yi) onto Xi with i ∈ D(k+2). Finally, we obtain

the learned policy by maximizing the estimated policy value:

π̂LN = argmax
π∈Π

V̂LN
δ (π) := − 1

K

K∑
k=1

V̂LN,(k)
δ (π); (9)

V̂LN,(k)
δ (π) =

1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

·
(
Ĝ

(k)
π(Xi)

(Xi, Yi)− ĝ
(k)
π(Xi)

(Xi)
)
+ ĝ

(k)
π(Xi)

(Xi).

The above optimization problem can be solved efficiently
by first-order optimization methods or policy tree search as
in Zhou et al. (2023); we shall elaborate on the implementa-
tion in Section 5. The complete policy learning procedure
is summarized in Algorithm 2.

4.2. Regret Upper Bound

In this section, we present the regret analysis of π̂LN ob-
tained by Algorithm 2 (recall the definition of regret given
in Equation (2)). Before we embark on the formal analysis,
we introduce the Hamming entropy integral κ(Π), which
measures the complexity of Π.

Definition 4.2 (Hamming entropy integral). Given a policy
class Π and n data points {x1, . . . , xn} ⊆ X ,

6
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Algorithm 2 Policy learning under concept drift
Input: Dataset D; policy class Π; uncertainty set param-
eter δ; propensity score estimation algorithm C; ERM
algorithm E(·) for obtaining θ∗

a; regression algorithmR
for estimating ḡa.
Randomly split D into K equal-sized folds;
for k = 1, . . . ,K do

π̂
(k)
0 ← C(D(k+1)),

for a = 1, · · · ,M do
θ̂
(k)
a ← E(D(k+1));

ĝ
(k)
a ← R(Xi, Ai, Ĝ

(k)
a (Xi, Yi); i ∈ D(k+2));

end for
end for
Return: π̂LN that maximizes V̂LN

δ (π) as in Equation (9).

(1) The Hamming distance between two policies π, π′ ∈ Π
is dH(π, π′) := 1

n

∑n
i=1 1{π(xi) ̸= π′(xi)}.

(2) The ε-covering number of {x1, . . . , xn}, denoted as
C(ϵ,Π; {x1, . . . , xn}), is the smallest number L of
policies {π1, . . . , πL} in Π, such that ∀ π ∈ Π, ∃
π′
ℓ such that dH(π, πℓ) ≤ ϵ.

(3) The Hamming entropy integral of Π is defined as
κ(Π) :=

∫ 1

0

√
logNH(ϵ2,Π) dϵ, where NH(ϵ,Π) :=

supn≥1 supx1,...,xn
C(ϵ,Π; {x1, . . . , xn}).

The following theorem provides a regret upper bound for
the policy learned by Algorithm 2.

Theorem 4.3. Suppose Assumptions 2.1, 2.4, 3.3, 3.4 hold.
For any β ∈ (0, 1), there exists N ∈ N+ such that when
n ≥ N , we have with probability at least 1− β that

Rδ(π̂LN) ≤
C0(ᾱ, α, η̄, δ, ε)√

n

(
65 + 8κ(Π) +

√
log(1/β)

)
,

where C0(ᾱ, α, η̄, δ, ε) := 6(ᾱ · exp(η̄/α−1)+ η̄+ ᾱδ)/ε.

The proof of Theorem 4.3 is deferred to Appendix D. At
a high level, we decompose the regret and upper bound it
with the supremum of the estimation error of policy values:

Rδ(π̂LN) =Vδ(π∗)− Vδ(π̂LN) ≤ Vδ(π∗)− V̂LN
δ (π∗)

+ V̂LN
δ (π∗)− V̂LN

δ (π̂LN) + V̂LN
δ (π̂LN)− Vδ(π̂LN)

≤2 sup
π∈Π
|V̂LN

δ (π)− Vδ(π)|,

where the last step uses the choice of π̂LN. We bound the
above quantity by establishing uniform convergence results
for the policy value estimators. Through a careful chain-
ing argument, we show that the dependence of R(π̂LN)

on n is of the order O(n− 1
2 ), which is sharper than the

O(n− 1
2 log n) dependence for that of Mu et al. (2022) by

a logarithmic factor. We also note that both regrets are
asymptotic in n and hold for sufficiently large n.

4.3. Regret Lower Bound

In this section, we complement the regret upper bound in
Theorem 4.3 with a minimax lower bound that characterizes
the fundamental difficulty of policy learning under concept
drift. Our lower bound is stated in terms of the Natarajan
dimension (Natarajan, 1989), defined as follows.

Definition 4.4 (Natarajan dimension). Given an M -action
policy class Π, we say a set of m points {x1, . . . , xm}
is shattered by Π if there exist two functions f−1, f1 :
{x1, . . . , xm} 7→ [M ] such that f−1(xj) ̸= f1(xj) for all
j ∈ [m] and for any σ ∈ {±1}m, there exists a policy
π ∈ Π such that for any j ∈ [m], π(xj) = fσj

(xj). The
Natarajan dimension Ndim(Π) of Π is the size of the largest
set shattered by Π.

Remark 4.5 (Connection to other complexity measures). As
can be seen from the definition, the Natarajan dimension
generalizes the Vapnik-Chervonenkis (VC) dimension (Vap-
nik & Chervonenkis, 2015) to the multi-class classification
setting. The Natarajan dimension is also closely related to
the Hamming entropy integral κ(Π) in our upper bound, as
κ(Π) = O(

√
log(d)Ndim(Π)) (Cai et al., 2020).

Theorem 4.6 (Regret lower bound). Let P denote the set of
all distributions of (X,A, Y (1), . . . , Y (M)) that satisfy As-
sumption 2.1, 2.4, 3.3, and 3.4.5 Suppose that δ ≤ 0.2, n ≥
Ndim(Π)2, and Ndim(Π) ≥ 4/(9ε). For any policy leaning
algorithm that outputs π̂ as a function of {(Xi, Ai, Yi)}ni=1,

there is supP∈P EPn [R(π̂)] ≥ 1
120

√
Ndim(Π)

nε .

The proof of Theorem 4.6 is provided in Appendix D.4.
Theorem 4.6 implies that for any learning algorithm, there
exists a problem instance such that the regret scales as
Ω(
√

Ndim(Π)/n).
Remark 4.7 (Optimality of Algorithm 2). Recalling the rela-
tionship between the Natarajan dimension and the Hamming
entropy integral in the remark above, we see that our pro-
posed algorithm achieves the minimax rate in the sample
size and the policy class complexity.

5. Numerical Results
We evaluated our learning algorithm in two settings: a simu-
lated and a real-world dataset, against the benchmark algo-
rithm SNLN in Si et al. (2023, Algorithm 2).

Simulated Dataset. Our data generating process follows
that of the linear boundary example in Si et al. (2023). We
let the context set X to be the closed unit ball of R5 and
let the action set to be {1, 2, 3}; the rewards Y (a)’s are
mutually independent conditioned on X with Y (a) | X

5When we say a distribution P satisfies Assumption 3.4, we
mean that under P there exist θ̂, π̂0, and ĝ that satisfy the conver-
gence rates in Assumption 3.4.
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METRIC δ POLICY n =7500 n =13500 n =16500 n =19500

V̄δ

0.05 π̂LN 0.2272±0.002 0.2299±0.001 0.2303±0.001 0.2310±0.001
π̂SNLN 0.0554±0.005 0.0589±0.004 0.0617±0.004 0.0664±0.003

0.1 π̂LN 0.1579±0.007 0.1662±0.002 0.1663±0.002 0.1678±0.002
π̂SNLN 0.0548±0.004 0.0580±0.004 0.0583±0.003 0.0616±0.004

0.2 π̂LN 0.0781±0.003 0.0802±0.002 0.0804±0.002 0.0831±0.002
π̂SNLN 0.0182±0.003 0.0183±0.003 0.0200±0.003 0.0219±0.003

Table 2. Empirical robust policy value V̄δ of policies π̂LN, π̂SNLN on the simulated dataset and the corresponding, over 50 seeds.

Figure 1. Empirical robust policy value V̄δ of policies π̂LN, π̂SNLN on the real-world dataset, over 50 seeds. Shading corresponds to 95%
confidence intervals.

being Gaussian, for a ∈ [3]. The training datasets Dtrain are
generated with an unknown given behavior policy π0 over
50 random seeds. We similarly generate 100 testing datasets
Dtest of size 10,000. The details are given in Appendix C.

Real-world Dataset. We consider the dataset of a large-
scale randomized experiment comparing assistance pro-
grams offered to French unemployed individuals provided
in Behaghel et al. (2014). The decision maker is trying to
learn a personalized policy that decides whether to provide:
(i) an intensive counseling program run by a public agency
(A = 0); or (ii) a similar program run by private agencies
(A = 1), to an unemployed individual. The reward Y is
binary and indicates reemployment within six months. The
processed dataset is provided in Kallus (2023).

Implementation. In our implementation, the number of
splits is taken to be K = 3. We use the Random Forest
regressor from the scikit-learn Python library to es-
timate π̂0 and ĝ. For estimating θ∗, we adopt the cubic
spline method and employ the Nelder-Mead optimization
method in SciPy Python library (Virtanen et al., 2020) to
optimize the coefficients in the spline approximation, where
the obtained estimator has threshold at 0.001 to guarantee

Proposition 2.5. Finally, we optimize and find π̂LN with
policytree (Sverdrup et al., 2020).6

The benchmark algorithm SNLN is adapted from Si et al.
(2023, Algorithm 2) as in Kallus et al. (2022).7 Since Si
et al. (2023, Algorithm 2) is designed for joint distribution
shift formulation, we revised the original algorithm to fit
our concept drift setting. The well-known KL-divergence
chain rule (Cover, 1999) gives

DKL(QX,Y ∥PX,Y )

= DKL(QX ∥PX) +DKL(QY |X ∥PY |X). (10)

Therefore, given any uncertainty set radius δ and known
covariate shift (in this experiment, we assume no covariate
shift), Si et al. (2023, Algorithm 2) can be used to imple-
ment policy learning under concept drift. Note that SNLN
admits known propensity scores. As we only consider the
case where the propensity scores are unknown, we comple-
ment Si et al. (2023, Algorithm 2) with estimated propensity
scores from Random Forest Regressor in scikit-learn,

6A working example on the real-world dataset is given in https:
//github.com/off-policy-learning/concept-drift-robust-learning.

7The implemented code of SNLN benchmark is provided by
Kallus et al. (2022).
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METRIC POLICY n =7500 n =13500 n =16500 n =19500

Ṽmin
0.1

π̂LN 0.2075±0.015 0.2139±0.005 0.2149±0.007 0.2167±0.003
π̂SNLN 0.1884±0.007 0.2009±0.008 0.2017±0.006 0.2020±0.004

Table 3. Empirical worst case policy reward on the KL-sphere Ṽmin
δ of policies π̂LN, π̂SNLN, over 20 seeds.

the same way as in the implementation of Algorithm 2.

Evaluation. For a learned policy π̂, we evaluate its perfor-
mance by the following performance metrics. (i) We use
the testing dataset Dtest to estimate the robust policy value
V∗
δ (π̂) by the empirical robust policy value

V̄δ(π̂) = −
1

|Dtest|
∑

i∈Dtest

ℓ(Xi, Yi(π(X1));θπ̂(Xi)),

where the nuisance parameters θπ̂(X) are found via cu-
bic spline method and employ the Nelder-Mead optimiza-
tion method using the testing dataset according to pol-
icy π̂: Dtest,π̂ = {(Xi, Yi(π̂(Xi)))}. (ii) We also per-
turb the simulated dataset to mimic possible real-world
distributional shift. For each testing dataset j contain-
ing 10000 data points of the total 100 testing datasets,
we generate a new testing dataset, with each reward dis-
tribution (Ỹ

(j)
i (1), Ỹ

(j)
i (2), Ỹ

(j)
i (3)) randomly sampled

on the KL-sphere centered at the reward distribution
(Y

(j)
i (1), Y

(j)
i (2), Y

(j)
i (3)) of the testing data point with

a radius δ. Then we evaluate π̂ using

Ṽmin
δ (π̂) := min

j∈[100]

{
1

10000

10000∑
i=1

Ỹ
(j)
i

(
π̂(X

(j)
i )
)}

.

This simulates a more realistic scenario where the policy
performance is measured by test datasets with concept drifts.

Results. Table 2 and 1 reports the values V̄δ of the learned
policies π̂LN and π̂SNLN on the simulated and the real-wrold
dataset, respectively. Table 3 provides the result of Ṽmin

δ .
All results are reported with 95% confidence intervals. Ta-
ble 2 shows that π̂LN outperforms the benchmark π̂SNLN
consistently, with higher policy values and similar 95% con-
fidence intervals. In Figure 1, π̂LN continues to show this
advantage over π̂SNLN on the real-world dataset. With a
higher δ, the policy values of π̂LN, π̂SNLN are smaller, due to
a bigger uncertainty set. Table 3 shows that π̂LN achieves
higher worst-case rewards than π̂SNLN does, in a more re-
alistic setting with concept drift testing datasets. Together,
we see that π̂LN succeeds in finding a better policy under
concept drift; while the performance of π̂SNLN is comprised
by its conservative policy learning process, in which it con-
siders joint distributional shifts even though it is given the
information that no covariate shifts took place.

The results align with the intuition that Algorithm 2 ad-
mits a subset of the uncertainty set that SNLN considers,

as explained in Equation (10). Consequently, Vδ(π̂SNLN) is
a lower bound of Vδ(π̂LN) in theory, and by the results in
Table 2, in practice. In real-world applications, knowing the
source of the distribution shift effectively shrinks the uncer-
tainty set, thereby yielding less conservative results. Since
it is fairly easy to identify covariate shifts (comparing to
detecting concept drift), when the decision maker observes
none or little covariate shifts and would like to hedge against
the risk of concept drift, it is suitable to apply our method
which outperforms existing method designed for learning
under joint distributional shifts.

One limitation of our methodology (as well as in other
DRO works) is the choice of δ. The parameter δ controls
the size of the uncertainty set considered and thus controls
the degree of robustness in our model — the larger δ, the
more robust the output. The empirical performance of the
algorithm substantially depends on the selection of δ. A
small δ leads to negligible robustification effect and the
algorithm would learn an over-aggressive policy; a large δ
tends to yield more conservative results. A more detailed
discussion can be found in Si et al. (2023).

In Appendix C, we also provide simulation results of Algo-
rithm 1 for a fixed target policy, which show that Algorithm 1
can estimate the distributionally robust policy value under
concept drift efficiently.

6. Discussion
In this paper, we study the policy learning problem under
concept drift, where we propose a doubly-robust policy
value estimator that is consistent and asymptotically nor-
mal, and then develop a minimax optimal policy learning
algorithm, whose regret is Op(κ(Π)n−1/2) with a match-
ing lower bound. Numerical results show that our learning
algorithm outperforms the benchmark algorithm under con-
cept drift. We also note that our results on pure concept
drift could be extended to a more general setting where the
concept drift adopts the same form as ours, but there is in
addition an identifiable covariate shift as in Jin et al. (2022b).
The details can be found in Appendix E.
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A. Notation
We use [n] to denote the discrete set {1, 2, · · · , n} for any n ∈ Z. We use argmin and argmax to denote the minimizers
and maximizers; if the minimizer or the maximizer cannot be attained, we project it back to the feasible set. We denote
the usual p-norm as ∥ · ∥p. Denote P to be any probability measure defined on the probability space (Ω, σ(Ω), P )

and P̂ to be the empirical distribution of P . For any function f , we denote the L2(P )-norm of f conventionally as
∥f∥L2(P ) = (

∫
|f(x)|2 dP (x))1/2 and ∥f∥L∞ = supx∈X |f(x)|. For any random variables X,Y , we use X |= Y to

denote that X is independent of Y . For a random variable/vector X , we use EX [·] to indicate the expectation taken over the
distribution of X .

B. The ERM Solution
To solve the ERM problem, we follow Geman & Hwang (1982); Yadlowsky et al. (2022); Jin et al. (2022b) and adopt the
method of sieves: consider an increasing sequence Θ1 ⊂ Θ2 ⊂ · · · of spaces of smooth functions, and let (α̂(k)

π , η̂
(k)
π ) =

argmin
θ∈Θn

En[ℓ(X,Y (π(X)); θ)]. In our case, we consider the following classes of sufficiently smooth functions. For

q1 = ⌈q⌉ − 1 and q2 = q − q1 (where q is the smoothness parameter), define the following function class for η∗:

Θq
c(X ) =

{
h ∈ Cq1(X ) : sup

x∈X∑p
l=1 γl<q1

|Dγh(x)|+ sup
x ̸=x′∈X∑p
l=1 βl=q1

|Dβh(x)−Dβh(x′)|
∥x− x′∥q2

≤ c

}
,

where we denote the derivative Dd =
∑p

l=1
∂dlD
∂xl

. To ensure the non-negativeness of α∗
π in Proposition 2.5, we define the

truncated function class Θq
c(X , ϵ) := {x 7→ max{h(x), ϵ} : h ∈ Θq

c(X )} for the search of απ . Consequently, the function
class we consider is Θ = Θq

c(X )×Θq
c(X , ϵ).

optimizers well, we need the true optimizer (α∗
π, η

∗
π) to be sufficiently smooth in x. Convexity and stability are also desirable

property of the loss function for learning the optimizers. In the next assumption, we present the regularity condition on the
conditional distribution PY |X to ensure smoothness of optimizers.

Assumption B.1 (Smooth conditional reward distribution). The conditional reward distribution PY (a) |X=x is smooth in x,
i.e. for some h ∈ X , PY (a) |X=x+th = PY (a) |X=x + t · Ph for some measure Ph on Y .

Taking practical terms into consideration, Assumption B.1 is reasonable as we assume the conditional distributions of Y (a)
are close for similar covariates, for any action a ∈ A. Jin et al. (2022b, Appendix B.2) presents detailed discussion to justify
smoothness of the optimizers under Assumption B.1.

Next, we would like to discuss the regularity conditions of the loss function ℓ in Equation (6) and its conditional expectation
E[ℓ(x, Y ; θ) |X = x,A = π(x)]. In particular, we require stability of the loss function and its conditional expectation so
that plugging in estimators of the optimizers will not cause large errors, which is a mild condition that can be satisfied under
the first-order Taylor expansion condition. Readers can refer to (Van der Vaart, 2000; Jin et al., 2022b) for a more detailed
discussion. Later, Lemma D.1 summarises the regularity conditions in formal terms and indicates that in our case, with
KL-divergence and the loss function defined as in Equation (6), all the above regularity conditions are satisfied.

C. Experiment Details
We let the context set X = {x ∈ R5 : ∥x∥2 ≤ 1} to be the closed unit ball of R5 and let the action set to be [3]; the rewards
Y (a)’s are mutually independent conditioned on X with Y (a) | X ∼ N(β⊤

a X,σ2
a), for a ∈ [3]. We choose β’s and σ’s to

be

β1 = (1, 0, 0, 0, 0), β2 = (−1/2,
√
3/2, 0, 0, 0), β3 = (−1/2,−

√
3/2, 0, 0, 0); σ = (0.2, 0.5, 0.8).
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The training dataset Dtrain = {(Xi, π0(Xi), Yi(π0(Xi)))}ni=1 is generated with a given behavior policy π0 (unknown to
policy learning algorithms), which chooses actions conditioned on context x according to the following rules:

(π0(1 |x), π0(2 |x), π0(3 |x)) =


(0.5, 0.25, 0.25), if argmax

i=1,2,3
{β⊤

i x} = 1,

(0.25, 0.5, 0.25), if argmax
i=1,2,3

{β⊤
i x} = 2,

(0.25, 0.25, 0.5), if argmax
i=1,2,3

{β⊤
i x} = 3.

We also generate 100 testing datasets, each with sample size 10,000. Each testing dataset Dtest consists of i.i.d. draws of data
tuple {(Xi, Yi(1), Yi(2), Yi(3))}ni=1, and is generated similarly to the procedure described above.

We present the result of the policy estimation experiments in Figure 2, using Algorithm 1 with inputs of the training datasets
and the target policy π

π(x) =


1, if ∥x∥2 ∈ [0, 1/3],

2, if ∥x∥2 ∈ [1/3, 2/3],

3, if ∥x∥2 ∈ [2/3, 1].

The underlying true policy value is obtained by the testing dataset Dtest. Similar to the learning experiment, we repeat
the estimation experiment over 50 seeds. Figure 2 shows that as the sample size increases, the estimated policy value by
Algorithm 1 is more accurate and stable.

Figure 2. The Mean Square Error (MSE) of the estimated policy value by Algorithm 1. The x-axis is the number of samples used by
Algorithm 1, and the y-axis is the mean squared error (MSE) of the policy value estimator.

Computation Details. The experiments were run on the following cloud servers: (i) an Intel Xeon Platinum 8160 @ 2.1
GHz with 766GB RAM and 96 CPU x 2.1 GHz; (ii) an Intel Xeon Platinum 8160 @ 2.1 GHz with 1.5TB RAM and 96
CPU x 2.1 GHz; (iii) an Intel Xeon Gold 6132 @ 2.59 GHz with 768GB RAM and 56 CPU x 2.59 GHz and (iv) an Intel
Xeon GPU E5-2697A v4 @ 2.59 GHz with 384GB RAM and 64 CPU x 2.59 GHz.

D. Deferred Proofs of the Main Results
D.1. Proof of Lemma 2.3

Fix π ∈ Π and x ∈ X . Letting L =
dQY |X=x

dPY |X=x
, we can rewrite the inner minimization in Equation (1) as

inf
L measurable

EPY |X [Y (π(x))L |X = x]

s.t. EPY |X [L |X = x] = 1, (11)

EPY |X [fKL(L) |X = x] ≤ δ,
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where the function fKL(x) = x log x represents the KL divergence function. In (11), the first constraint reflects that L is an
likelihood ratio, and the second constraint corresponds to the KL divergence bound.

For notational simplicity, let Ex be the shorthand of EPY |X [· |X = x]. By Theorem 8.6.1 of (Luenberger, 1997), the
Slater’s condition is satisfied and strong duality holds:

inf
Ex[L]=1,

Ex[fKL(L)]≤δ

Ex

[
Y (π(x))L

]
= max

α≥0,η∈R
φ(α, η, x), (12)

where

φ(α, η, x) = inf
L≥0
L(α, η, L, x),

L(α, η, L, x) =Ex[Y (π(x))L] + η ·
(
Ex[L]− 1

)
+ α ·

(
Ex[fKL(L)]− δ

)
=Ex

[
Y (π(x))L+ η(L− 1) + α(fKL(L)− δ)

]
.

We can explicitly work out the minimum of L(α, η, L, x), and we have

φ(α, η, x) = Ex

[
− αf∗

KL

(
− Y (π(x)) + η

α

)
− η − αδ

]
,

where f∗
KL(y) = exp(y − 1) is the conjugate function of fKL. Using Equation (12), we arrive at

inf
Ex[L]=1,

Ex[fKL(L)]≤δ

Ex

[
Y (π(x))L

]
= − min

α≥0,η∈R
Ex

[
α exp

(
− Y (π(x)) + η

α
− 1

)
+ η + αδ

]
.

The proof is thus completed.

D.2. Proof of Theorem 3.5

For notational simplicity, we drop the dependence on P in EP when the context is clear. The proof of Theorem 3.5 makes
use of the following lemma, which establishes some useful properties of the optimizer θ∗

π . The proof of Lemma D.1 can be
found in Appendix F.1.

Lemma D.1. For any policy π, assume that Assumption 3.3 holds. We have the following properties of the optimizer θ∗
π .

(1) E
[
∇θ ℓ(x, Y (π(x)); θ) |X = x

]
= 0 at θ = θ∗

π(x) for any x ∈ X .

(2) There exists a constant ξ > 0 such that for any x and θ satisfying ∥θ − θ∗
π(x)∥2 ≤ ξ,∣∣∣ℓ(x, y; θ)− ℓ(x, y;θ∗

π(x))−∇θℓ(x, y;θ
∗
π(x))

⊤(θ − θ∗
π(x))

∣∣ ≤ ℓ̄(x, y) ·
∥∥θ − θ∗

π(x)
∥∥2
2
,

for some function ℓ̄(x, y) such that supx∈X E[ℓ̄(x, Y (π(x))) |X = x] < L for some L > 0.

(3) There exists a constant ξ1 > 0 such that for any θ satisfying ∥θ − θ∗
π∥L∞ ≤ ξ1.∥∥ℓ(X,Y (π(X));θ(X))− ℓ(X,Y (π(X));θ∗

π(X))
∥∥
L2(PX,Y (π(X)) |A=π(X))

≤ Cℓ∥θ − θ∗
π∥L2(PX |A=π(X)),

for some constant Cℓ > 0.

We proceed to show the asymptotic normality of V̂δ(π). For each k ∈ [K], we first define the following oracle quantity:

V∗(k)
δ (π) =

1

|D(k)|
∑

i∈D(k)

1{π(Xi) = Ai}
π0(Ai |Xi)

·
(
Gπ(Xi, Yi)− gπ(Xi)

)
+ gπ(Xi).
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In the sequel, we shall show that V̂(k)
δ (π) = V∗(k)

δ (π) + op(n
− 1

2 ). We begin by decomposing the difference between
V̂(k)
δ (π) and V∗(k)

δ :

V̂(k)
δ (π)− V∗(k)

δ (π)

=
1

|D(k)|
∑

i∈D(k)

[
1{π(Xi) = Ai}
π̂
(k)
0 (Ai |Xi)

·
(
Ĝ(k)

π (Xi, Yi)− ĝ(k)π (Xi)
)
− 1{π(Xi) = Ai}

π0(Ai |Xi)
·
(
Gπ(Xi, Yi)− gπ(Xi)

)]

+
1

|D(k)|
∑

i∈D(k)

(
ĝ(k)π (Xi)− gπ(Xi)

)
=

1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Ĝ(k)

π (Xi, Yi)−Gπ(Xi, Yi)
)

︸ ︷︷ ︸
(I)

− 1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)
·
(
ĝ(k)π (Xi)− ḡ(k)π (Xi)

)
︸ ︷︷ ︸

(II)

+
1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)
·
(
Ĝ(k)

π (Xi, Yi)− ḡ(k)π (Xi)
)

︸ ︷︷ ︸
(III)

− 1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
ĝ(k)π (Xi)− gπ(Xi)

)
+

1

|D(k)|
∑

i∈D(k)

(ĝ(k)π (Xi)− gπ(Xi))︸ ︷︷ ︸
(IV)

.

Bounding Term (I). Recall that θ∗
π(x) is the minimizer of

E
[
ℓ
(
x, Y (π(x)); θ

) ∣∣X = x
]
.

By the first-order condition established in part (1) of Lemma D.1, we have

E
[
∇θℓ

(
x, Y (π(x));θ(x)

) ∣∣X = x
]
= 0. (13)

For any i ∈ D(k), by the unconfoundedness condition in Assumption 2.1, we have

E

[
1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Ĝ(k)

π

(
Xi, Yi

)
−Gπ

(
Xi, Yi

)) ∣∣∣∣D(−k)

]

=E

[
1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Ĝ(k)

π

(
Xi, Yi(π(Xi))

)
−Gπ

(
Xi, Yi(π(Xi))

)) ∣∣∣∣D(−k)

]
=E

[
Ĝ(k)

π

(
Xi, Yi(π(Xi))

)
−Gπ

(
Xi, Yi(π(Xi))

) ∣∣D(−k)
]

=E
[
ℓ
(
Xi, Yi(π(Xi)); θ̂

(k)
π (Xi)

)
− ℓ
(
Xi, Yi(π(Xi));θ

∗
π(Xi)

)
−∇θℓ

(
Xi, Y (π(Xi));θ

∗
π(Xi))

∣∣D(−k)
]
,

where the last step is due to Equation (13). By Assumption 3.4, ∥θ̂(k)
π −θ∗

π∥L∞ = oP (1). Therefore, for any β ∈ (0, 1), there
exists N ∈ N+ such that for n ≥ N , ∥θ̂(k)π − θ∗π∥L∞ ≤ min(ξ, ξ1). On the event that ∥θ̂(k)π (x)− θ∗π(x)∥L∞ ≤ min(ξ, ξ1)
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by part (2) of Lemma D.1 and Jensen’s inequality, we have∣∣∣∣∣E
[
1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Ĝ(k)

π

(
Xi, Yi

)
−Gπ

(
Xi, Yi

))] ∣∣∣∣D(−k)

∣∣∣∣∣
≤E

[∣∣∣ℓ(Xi, Yi(π(Xi)); θ̂
(k)
π (Xi))− ℓ(Xi, Yi(π(Xi));θ

∗
π(Xi))−∇θℓ

(
Xi, Y (π(Xi));θ

∗
π(Xi)

)∣∣∣ ∣∣∣D(−k)

]
≤E

[
ℓ̄(Xi, Yi) ·

∥∥θ̂(k)
π (Xi)− θ∗

π(Xi)
∥∥2
2

]
≤ LE

[∥∥θ̂(k)
π (Xi)− θ∗

π(Xi)
∥∥2
2

∣∣D(−k)
]
= L∥θ̂(k)

π − θ∗
π∥2L2(PX).

By Chebyshev’s inequality, we have for any t > 0 that

P

(∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Ĝ(k)

π (Xi, Yi)−Gπ(Xi, Yi)
)

− E
[
1{A = π(X)}
π0(A |X)

·
(
Ĝ(k)

π (X,Y )−Gπ(X,Y )
) ∣∣∣D(−k)

]∣∣∣∣ ≥ t

∣∣∣∣D(−k)

)

≤ 1

|D(k)|t2
Var
(
1{A = π(X)}
π0(A |X)

·
[
Ĝ(k)

π (X,Y )−Gπ(X,Y )
])

≤

∥∥Ĝ(k)
π −Gπ

∥∥2
L2(PX,Y |A=π(X))

ε2|D(k)|t2

≤
Cℓ

(∥∥θ̂(k)π − θ∗π
∥∥2
L2(PX |A=π(X))

)
ε2|D(k)|t2

,

where the last step is due to part (3) of Lemma D.1. Combining the above results, we have that

term (I) = OP

(
n−1/2 · ∥θ̂(k)

π − θ∗
π∥L2(PX) + ∥θ̂(k)

π − θ∗
π∥2L2(PX)

)
= oP (n

−1/2),

where the last step is due to Assumption 3.4.

Bounding Term (II). Applying the Cauchy-Schwarz inequality to term (II), we have∣∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)
·
(
ĝ(k)π (Xi)− ḡ(k)π (Xi)

)∣∣∣∣∣
≤

√√√√ 1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)} ·
(

1

π̂
(k)
0 (Ai |Xi)

− 1

π0(Ai |Xi)

)2

×
√

1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)} ·
(
ĝ
(k)
π (Xi)− ḡ

(k)
π (Xi)

)2
=OP

(
ϵ−2
∥∥π̂(k)

0 − π0

∥∥
L2(PX |A=π(X))

·
∥∥ĝ(k)π − ḡ(k)π

∥∥
L2(PX |A=π(X))

)
= oP (n

−1/2),

where the next-to-last inequality is due to the lower bound on π0 and π̂(k); the last equality is due to the given convergence
rate of the product estimation error in Assumption 3.4.

Bounding Term (III). By Assumption 3.4, for any β ∈ (0, 1), there exists N1 ∈ N+ such that for n ≥ N1,

P
(
∥θ̂(k)

π − θ∗∥L∞ ≤ min(α, η̄)/2
)
≥ 1− β.

On the event ∥θ̂(k)
π − θ∗∥L∞ ≤ min(α, η̄)/2,∣∣Ĝ(k)

π (x, y)
∣∣ = ∣∣ℓ(x, y; θ̂(k)

π )
∣∣ ≤ ᾱ exp

( ȳ + η̄

α
− 1
)
+ η̄ + ᾱδ =: Lg.
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Next, for any i ∈ D(k),

E

[(
1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)
·
(
Ĝ(k)

π (Xi, Yi)− ḡ(k)π (Xi)
) ∣∣∣∣D(−k)

]

=E

[
E
[
1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

∣∣∣Xi,D(−k)

]

× E
[
Ĝ(k)

π (Xi, Y (π(Xi)))− ḡ(k)π (Xi)
∣∣Xi,D(−k)

] ∣∣∣∣D(−k)

]
= 0,

where the first step is by the unconfoundedness assumption and the second step is due to the fact that ḡ(k)π is the conditional
expectation of Ĝ(k)

π .

On the event {∥θ̂(k)
π − θ∗

π∥L∞ ≤ min(α, η̄)}. By Chebyshev’s inequality, for any t > 0,

P

(∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)
·
(
Ĝ(k)

π (Xi, Yi)− ḡ(k)π (Xi)
)∣∣∣∣ ≥ t

∣∣∣∣D(−k)

)

≤ 1

|D(k)|t2
Var

([
1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

]
·
(
Ĝ(k)

π (Xi, Yi)− ḡ(k)π (Xi)
) ∣∣∣∣D(−k)

)

≤ 1

|D(k)|t2
E

[[
1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

]2
·
(
Ĝ(k)

π (Xi, Yi)− ḡ(k)π (Xi)
)2 ∣∣∣∣D(−k)

]

≤
4L2

g

|D(k)|ε4t2
∥π̂(k)

0 − π0∥2L2(PX |T=π(X))
.

The above inequality along with a union bound implies that

term (III) = OP

(
∥π̂(k)

0 − π0∥L2(PX |A=π(X))/
√
|D(k)|

)
= oP (n

−1/2),

where the last step is by the consistency of π̂(k)
0 assumed in Assumption 3.4.

Bounding Term (IV). We first show that term (IV) is of zero-mean:

E

[
− 1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
ĝ(k)π (Xi)− gπ(Xi)

)
+

1

|D(k)|
∑

i∈D(k)

(ĝ(k)π (Xi)− gπ(Xi))

∣∣∣∣D(−k)

]

= − E

[
1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
ĝ(k)π (Xi)− gπ(Xi)

) ∣∣∣∣D(−k)

]
+ E

[
ĝ(k)π (Xi)− gπ(Xi)

∣∣D(−k)
]
= 0.

By Chebyshev’s inequality, for any t > 0,

P

(∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

1{π(Xi) = Ai}
π0(Ai |Xi)

· (ĝ(k)π (Xi)− gπ(Xi))−
1

|D(k)|
∑

i∈D(k)

(
ĝ(k)π (Xi)− gπ(Xi)

)∣∣∣∣ ≥ t

∣∣∣∣D(−k)

)

≤ 1

|D(k)|t2
Var

(
1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
ĝ(k)π (Xi)− gπ(Xi)

)
−
(
ĝ(k)π (Xi)− gπ(Xi)

) ∣∣∣∣D(−k)

)

=
1

|D(k)|t2
E
[
1− π0(π(Xi) |Xi)

π0(π(Xi) |Xi)
·
(
ĝ(k)π (Xi)− gπ(Xi)

)2 ∣∣∣D(−k)

]
.

As a result, term (IV) = OP

(
∥ĝ(k)π − gπ∥L2(PX)/

√
n
)
. Note that

∥ĝ(k)π − gπ∥L2(PX) = O(∥ĝ(k)π − gπ∥L2(PX |A=π(X)))

≤ O
(
∥ĝ(k)π − ḡπ∥L2(PX |A=π(X)) + ∥ḡ

(k)
π − gπ∥L2(PX |A=π(X))

)
,
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where the first inequality follows from the overlap condition. By Assumption 3.4, ∥ĝ(k)π − ḡπ∥L∞ = oP (1). Meanwhile,

∥ḡ(k)π − gπ∥2L2(PX |A=π(X))

=E
[
(ḡ(X)− g(X))2 |A = π(X),D−k

]
=E

[(
E
[
ℓ(X,Y (π(X)); θ̂(k)

π (X))− ℓ(X,Y (π(X));θ∗
π(X)) |X

])2 ∣∣∣A = π(X),D(−k)

]
(i)
≤E

[(
ℓ(X,Y (π(X)); θ̂(k)

π )− ℓ(X,Y (π(X));θ∗
π)
)2 ∣∣∣A = π(X),D(−k)

]
(ii)
=O

(
∥θ̂(k)

π − θ∗
π∥2L2(PX |A=π(X))

)
= oP (1).

Above, step (i) follows from Jensen’s inequality and step (ii) from part (3) of Lemma D.1. Combining everything, we have
that term (IV) is of rate oP (n

−1/2).

Putting Everything Together. So far we have shown that for each fold k ∈ [K], there is

V̂(k)
δ (π)− V∗(k)

δ (π) = oP (n
−1/2).

Averaging over all k folds, we have
√
n ·
(
V̂δ(π)− Vδ(π)

)
=

1√
n

n∑
i=1

{
− 1{Ai = π(Xi)}

π0(Ai |Xi)
·
(
Gπ(Xi, Yi)− gπ(Xi)

)
− gπ(Xi)− Vδ(π)

}
+ oP (1),

By the central limit theorem and Slutsky’s theorem.
√
n ·
(
V̂δ(π)− Vδ(π)

) d.→ N (0, σ2),

where

σ2 = Var
(
1{A = π(X)}
π0(A |X)

·
(
Gπ(X,Y )− gπ(X)

)
+ gπ(X)

)
.

D.3. Proof of Theorem 4.3

By Assumption 3.3, taking π(x) ≡ a for any a ∈ [M ], there exist constants ᾱa, αa, η̄a such that

0 < αa ≤ α∗
a(x) ≤ ᾱa, |ηa(x)| ≤ η̄a, ∀x ∈ X .

Letting α = mina∈[M ] αa, ᾱ = maxa∈[M ] ᾱa, η̄ = maxa∈[M ] η̄a, it follows that

0 < α ≤ α∗
a(x) ≤ ᾱ, |ηa(x)| ≤ η̄, ∀x ∈ X ,∀a ∈ [M ]. (14)

For any a ∈ [M ], if we take π(x) ≡ a, then by (1) of Lemma D.1,

E
[
∇θℓ(x, Y (a);θ∗

a(x)) |X = x
]
= 0.

By (2) of Lemma D.1, for any a ∈ [M ], there exists a constant ξa > 0 such that for any ∥θ − θ∗
a(x)∥2 ≤ ξa

|ℓ(x, y; θ)− ℓ(x, y;θ∗
a(x))−∇θℓ(x, y;θ

∗
a(x))

⊤(θ − θ∗
a(x))| ≤ ℓ̄a(x, y)∥θ − θ∗

a(x)∥22,

for some function ℓ̄a(x, y) ≤ La for some constant La. Similarly, we shall take ξ = mina∈[M ] ξa, ℓ̄(x, y) = maxa ℓ̄a(x, y),
and L =

∑
a∈[M ] La.

By (3) of Lemma D.1, for any a ∈ [M ], there exists a constant ξ1,a > 0 such that for any ∥θ − θ∗
a∥L∞ ≤ ξ1,a,∥∥ℓ(X,Y (a);θ(X))− ℓ(X,Y (a);θ∗

a(X))
∥∥
L2(PX,Y (a) |A=a)

≤ Cℓ,a∥θ − θ∗
a∥L2(PX |A=a).

Taking ξ1 = mina∈[M ] ξ1,a and Cℓ =
∑

a∈[M ] Cℓ,a, the above inequality holds for any a ∈ [M ] and any ∥θ− θ∗
a∥L∞ ≤ ξ1.
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D.3.1. REGRET DECOMPOSITION

The regret bound of Algorithm 2 builds on the following regret decomposition:

Rδ(π̂LN) =Vδ(π∗)− Vδ(π̂LN)

=Vδ(π∗)− V̂LN
δ (π∗) + V̂LN

δ (π∗)− V̂LN
δ (π̂LN) + V̂LN

δ (π̂LN)− Vδ(π̂LN)

≤Vδ(π∗)− V̂LN
δ (π∗) + V̂LN

δ (π̂LN)− Vδ(π̂LN)

≤ 2 sup
π∈Π

∣∣V̂LN
δ (π)− Vδ(π)

∣∣, (15)

where the second-to-last step is by the choice of π̂LN. For any π ∈ Π and any fold k ∈ [K], we define an intermediate
quantity

Ṽ(k)
δ :=

1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Gπ(Xi)(Xi, Yi)− gπ(Xi)(Xi)

)
+ gπ(Xi)(Xi).

Letting Ṽδ = − 1
K

∑K
k=1 Ṽ

(k)
δ , we have

∣∣V̂LN
δ (π)− Vδ(π)

∣∣ = ∣∣∣∣− 1

K

K∑
k=1

V̂LN,(k)
δ (π)− Vδ(π)

∣∣∣∣
≤
∣∣∣∣ 1K

K∑
k=1

V̂LN,(k)
δ (π)− Ṽδ(π)

∣∣∣∣+ ∣∣∣∣Ṽδ(π)− Vδ(π)∣∣∣∣
≤ sup

π∈Π

1

K

K∑
k=1

∣∣∣∣V̂LN,(k)
δ (π)− Ṽ(k)

δ (π)

∣∣∣∣+ sup
π∈Π

∣∣∣∣− Ṽδ(π)− Vδ(π)∣∣∣∣.
Taking the supremum over all π ∈ Π, we have that

sup
π∈Π

∣∣V̂LN
δ (π)− Vδ(π)

∣∣ ≤ sup
π∈Π

∣∣∣∣− Ṽδ(π)− Vδ(π)∣∣∣∣+ sup
π∈Π

1

K

K∑
k=1

∣∣∣∣V̂LN,(k)
δ (π)− Ṽ(k)

δ (π)

∣∣∣∣.
We shall show that the first term above is OP (n

−1/2) and the second term is oP (n−1/2). In the following, we refer to the
two terms as the effective term and the negligible term, respectively. The following lemma is essential for establishing the
uniform convergence results.

Lemma D.2. Suppose h is a function of (x, a, y, π(x)). Given a set of data {zi = (xi, ai, yi)}ni=1, suppose that
|h(zi, π(xi))| ≤ ci(zi). Then the Rademacher complexity

Eϵ

[
sup
π∈Π

∣∣∣ 1
n

n∑
i=1

ϵih
(
xi, ai, yi, π(xi)

)∣∣∣] ≤ √∑n
i=1 ci(zi)

2

n
·
(
32 + 4κ(Π)

)
,

where ϵi
i.i.d.∼ Unif{±1} are i.i.d. Rademacher random variables and Eϵ means the expectation over ϵ.

D.3.2. THE EFFECTIVE TERM

Denote Zi = (Xi, Ai, Yi) and take

h(Zi, π(Xi)) = −
1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Gπ(Xi)(Xi, Yi)− gπ(Xi)(Xi)

)
− gπ(Xi)(Xi)− Vδ(π).

Under the unconfoundedness assumption in Assumption 2.1, E[h(Zi, π(Xi))] = 0. By Equation (14), we have

|h(Zi, π(Xi))| ≤
6

ε
·
(
ᾱ · exp

( η̄
α
− 1
)
+ η̄ + ᾱδ

)
=: C0(ᾱ, α, η̄, δ, ε).
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Meanwhile, we have write

sup
π∈Π

∣∣∣∣ 1K
K∑

k=1

−Ṽ(k)
δ (π)− Vδ(π)

∣∣∣∣ = sup
π∈Π

∣∣∣∣ 1K
K∑

k=1

1

|D(k)|
∑

i∈D(k)

h
(
Zi;π(Xi)

)∣∣∣∣ = sup
π∈Π

∣∣∣∣ 1n
n∑

i=1

h
(
Zi;π(Xi)

)∣∣∣∣.
Next, we define

f(z1, . . . , zn;π) =
1

n

n∑
i=1

h(zi, π(xi)).

Consider two arbitrary data sets {zi}ni=1 and {z′i}ni=1. We can check that for any π ∈ Π and any j ∈ [n],∣∣f(z1, . . . , zj , . . . , zn;π)∣∣− sup
π′∈Π

∣∣f(z1, . . . , z′j , . . . , zn;π′)
∣∣

≤
∣∣f(z1, . . . , zj , . . . , zn;π)∣∣− ∣∣f(z1, . . . , z′j , . . . , zn;π)∣∣
≤ sup

π∈Π

∣∣f(z1, . . . , zj , . . . , zn;π)− f(z1, . . . , z
′
j , . . . , zn;π)

∣∣
= sup

π∈Π

1

n

∣∣h(zj ;π)− h(z′j ;π)
∣∣ ≤ C0(ᾱ, α, η̄, δ, ε)/n. (16)

Above, the first inequality is because of the definition of sup and the second is due to the triangle inequality; the last step is
due to the boundedness of h. Taking the supremum over all π ∈ Π in (16), we have that

sup
π∈Π

∣∣f(z1, . . . , zj , . . . , zn;π)∣∣− sup
π∈Π

∣∣f(z1, . . . , z′j , . . . , zn;π)∣∣ ≤ C0(ᾱ, α, η̄, δ, ε)/n.

By the bounded difference inequality (Wainwright, 2019, Corollary 2.21), for any t > 0,

P

(
sup
π∈Π

∣∣∣ 1
n
h
(
Zi, π(Xi)

)∣∣∣− E
[
sup
π∈Π

∣∣∣ 1
n
h
(
Zi, π(Xi)

)∣∣∣] ≥ t

)

=P

(
sup
π∈Π

∣∣f({Zi}i∈[n];π
)∣∣− E

[
sup
π∈Π

∣∣f({Zi}i∈[n];π
)∣∣] ≥ t

)
≤ e

− 2nt2

C0(ᾱ,α,η̄,δ,ε)2 .

Take t = C0(ᾱ, α, η̄, δ, ε)
√

1
2n log

(
1
β

)
. Then with probability at least 1− β,

sup
π∈Π

∣∣∣ 1
n
h
(
Zi, π(Xi)

)∣∣∣ < E
[
sup
π∈Π

∣∣∣ 1
n
h
(
Zi, π(Xi)

)∣∣∣]+ C0(ᾱ, α, η̄, δ, ε)

√
1

2n
log
( 1
β

)
.

It remains to bound the expectation term. Let Z ′
1, . . . , Z

′
n be an i.i.d. copy of Z1, . . . , Zn, and let ϵi

i.i.d.∼ Unif({±1}). Then

E

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

h(Zi, π(Xi))− E
[
h(Zi, π(Xi))

]∣∣∣∣
]

=E

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

h(Zi, π(Xi))− EZ′

[ 1
n

∑
i∈[n]

h(Z ′
i, π(X

′
i))
]∣∣∣∣
]

(i)
≤E

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

h(Zi, π(Xi))−
1

n

∑
i∈[n]

h(Z ′
i, π(X

′
i))

∣∣∣∣
]

(ii)
= E

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵi
(
h(Zi, π(Xi))− h(Z ′

i, π(X
′
i))
)∣∣∣∣
]
,

≤ 2E

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵih(Zi, π(Xi))

∣∣∣∣
]

=2E

[
Eϵ

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵih(Zi, π(Xi))

∣∣∣∣ ]
]
, (17)
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step (i) is by Jensen’s inequality and step (ii) is because of the symmetry of (Zi, Z
′
i).

Applying Lemma D.2,

Eϵ

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵih(Zi, π(Xi))

∣∣∣∣ ] ≤ 2C0(ᾱ, α, η̄, δ, ε)√
n

(32 + 4κ(Π)).

Combining the above, for any β ∈ (0, 1), we have with probability at least 1− β,

sup
π∈Π

∣∣Ṽδ(π)− Vδ(π)∣∣ ≤ C0(ᾱ, α, η̄, δ, ε)√
n

(
64 + 8κ(Π) +

√
log(1/β)

)
. (18)

D.3.3. BOUNDING THE NEGLIGIBLE TERM

We now proceed to the negligible term. For any π ∈ Π and any k ∈ [K], consider the following decomposition:

V̂LN,(k)
δ (π)− Ṽ(k)

δ (π)

=
1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π̂0(Ai |Xi)

(
Ĝ

(k)
π(Xi)

(Xi, Yi)− ĝ
(k)
π(Xi)

(Xi)
)
+ ĝ

(k)
π(Xi)

(Xi)

− 1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

(
Gπ(Xi)(Xi, Yi)− gπ(Xi)(Xi)

)
− gπ(Xi)(Xi)

=
1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂0(Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)(
Ĝ

(k)
π(Xi)

(Xi, Yi)− ḡ
(k)
π(Xi)

(Xi)
)

+
1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂0(Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)(
ḡ
(k)
π(Xi)

(Xi)− ĝ
(k)
π(Xi)

(Xi)
)

+
1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

(
Ĝ

(k)
π(Xi)

(Xi, Yi)−Gπ(Xi)(Xi, Yi)
)

− 1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

(
ĝ
(k)
π(Xi)

(Xi)− gπ(Xi)(Xi)
)
+

1

|D(k)|
∑

i∈D(k)

(
ĝ
(k)
π(Xi)

(Xi)− gπ(Xi)(Xi)
)
.

For notational simplicity, we denote

K1(π) :=
1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂0(Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)(
Ĝ

(k)
π(Xi)

(Xi, Yi)− ḡ
(k)
π(Xi)

(Xi)
)
,

K2(π) :=
1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂0(Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)(
ḡ
(k)
π(Xi)

(Xi)− ĝ
(k)
π(Xi)

(Xi)
)
,

K3(π) :=
1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

(
Ĝ

(k)
π(Xi)

(Xi, Yi)−Gπ(Xi)(Xi, Yi)
)
,

K4(π) := −
1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

(
ĝ
(k)
π(Xi)

(Xi)− gπ(Xi)(Xi)
)
+

1

|D(k)|
∑

i∈D(k)

(
ĝ
(k)
π(Xi)

(Xi)− gπ(Xi)(Xi)
)
.

We proceed to bound each term separately. To ease the presentation, we shall write Ek and Pk as the expectation and
probability conditioned on D(−k), respectively.

Bounding K1(π). Here, we take

h1(Zi;π(Xi)) :=

(
1{Ai = π(Xi)}
π̂0(Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)(
Ĝ

(k)
π(Xi)

(Xi, Yi)− ḡ
(k)
π(Xi)

(Xi)
)
.
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Since ḡ
(k)
a (X) is the conditional expectation of Ĝ(k)

a (X,Y (a)), we have

Ek

[
h1(Zi, π(Xi)) |Xi

]
= Ek

[(
1{Ai = π(Xi)}
π̂0(Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)(
Ĝ

(k)
Ai

(Xi, Yi)− ḡ
(k)
Ai

(Xi)
) ∣∣∣∣Xi

]

=

(
π0(π(Xi))

π̂0(π(Xi) |Xi)
− 1

)
Ek

[
Ĝ

(k)
π(Xi)

(Xi, Yi)− ḡ
(k)
π(Xi)

(Xi)
∣∣Xi

]
= 0.

By Assumption 3.4, there exists N1 ∈ N+, such that when n ≥ N1, w. p. at least 1− β,

max
a∈[M ]

∥θ̂(k)
a − θ∗

a∥L∞ ≤ max(ᾱ, α, η̄)/2.

On the event {maxa∈[M ] ∥θ̂
(k)
a − θ∗

a∥L∞ ≤ max(ᾱ, α, η̄)/2}, we have for any a ∈ [M ]

|ℓ(x, y, ; θ̂a(x))| ≤ 2ᾱ exp
(2ȳ + 4η̄

α
− 1
)
+ 2η̄ + 2ᾱδ.

Letting C1(ᾱ, α, η̄, δ, ε) = 4ᾱ exp
(

2ȳ+4η̄
α − 1

)
+ 4η̄ + 4ᾱδ)/ε2, We can then check that

|h1(Zi;π(Xi))| ≤ 2C1(ᾱ, α, η̄, δ, ε) ·
∣∣π̂0(π(Xi) |Xi)− π0(π(Xi) |Xi)

∣∣
≤ 2C1(ᾱ, α, η̄, δ, ε) · max

a∈[M ]

∣∣π̂0(a |Xi)− π0(a |Xi)
∣∣ =: c1(Xi).

The upper bound is a constant conditional on Xi’s and D(−k). We now apply the bounded difference inequality conditional
on X = {Xi}i∈[n]:

Pk

(
sup
π∈Π

∣∣∣ 1

|D(−k)|
∑

i∈D(k)

h1(Zi, π(Xi))
∣∣∣− Ek

[
sup
π∈Π

∣∣∣ 1

|D(k)|
∑

i∈D(k)

h1(Zi, π(Xi))
∣∣∣ ∣∣∣X] ≥ t

∣∣∣∣X
)

≤ exp

(
− 2|D(k)|2t2∑

i∈D(k) c1(Xi)2

)
.

Taking t =
√∑

i∈D(k) c1(Xi)2 log(1/β)/|D(k)|, we have with probability at least 1− β,

sup
π∈Π

∣∣∣ 1

|D(−k)|
∑

i∈D(k)

h1(Zi, π(Xi))
∣∣∣ ≤ Ek

[
sup
π∈Π

∣∣∣ 1

|D(k)|
∑

i∈D(k)

h1(Zi, π(Xi))
∣∣∣ ∣∣∣X]

+

√∑
i∈D(k) c1(Xi)2

|D(k)|
√
log(1/β).

For each i ∈ D(k), we take A′
i and Y ′

i as i.i.d. copies of Ai and Yi conditional on Xi, respectively. By a similar
symmetrization argument as in the proof for the effective term, we have

Ek

[
sup
π∈Π

∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

h1

(
Zi, π(Xi)

)∣∣∣∣ ∣∣∣X
]

=Ek

[
sup
π∈Π

∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

h1

(
Xi, Ai, Yi, π(Xi)

)
− EA′,Z′

[ 1

|D(k)|
∑

i∈D(k)

h
(
Xi, A

′
i, Y

′
i , π(Xi)

)]∣∣∣∣ ∣∣∣X
]

≤Ek

[
sup
π∈Π

∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

h1(Xi, Ai, Yi, π(Xi))−
1

|D(−k)|
∑

i∈D(k)

h(Xi, A
′
i, Y

′
i , π(Xi))

∣∣∣∣ ∣∣∣∣X
]

≤Ek

[
sup
π∈Π

∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

ϵi

(
h1(Xi, Ai, Yi, π(Xi))− h(Xi, A

′
i, Y

′
i , π(Xi))

)∣∣∣∣ ∣∣∣∣X
]

≤ 2Ek

[
sup
π∈Π

∣∣∣ 1

|D(k)|
∑

i∈D(k)

ϵih1(Xi, Ai, Yi, π(Xi))
∣∣∣ ∣∣∣X].
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Applying Lemma D.2 with ci = c1(Xi), we have that

Eϵ

[
sup
π∈Π

∣∣∣ 1

|D(k)|
∑

i∈D(k)

ϵih1(Xi, Ai, Yi, π(Xi))
∣∣∣ ∣∣∣X] ≤ 2

√∑
i∈D(k) c1(Xi)2

|D(k)|
(32 + 4κ(Π)).

Combining the above, on the event {maxa∈[M ] ∥θ̂
(k)
a − θ∗

a∥L∞ ≤ max(ᾱ, α, η̄)/2},

Pk

(
sup
π∈Π

∣∣K1(π)
∣∣ ≥ √∑i∈D(k) c1(Xi)2

|D(k)|
(
64 + 8κ(Π) +

√
log(1/β)

) ∣∣∣X) ≤ β.

Since
∣∣π̂0(a |X)− π0(a |X)

∣∣2 ≤ 1,

Pk

(
1

|D(k)|
∑

i∈D(k)

max
a∈[M ]

(
π̂0(a |X)− π0(a |X)

)2 − ∑
a∈[M ]

E
[
(π̂0(a |X)− π0(a |X))2

]
≥ t

)

≤Pk

(
1

|D(k)|
∑

i∈D(k)

∑
a∈[M ]

(
π̂0(a |X)− π0(a |X)

)2 − ∑
a∈[M ]

E
[
(π̂0(a |X)− π0(a |X))2

]
≥ t

)

≤
∑

a∈[M ]

Pk

(
1

|D(k)|
∑

i∈D(k)

(
π̂0(a |X)− π0(a |X)

)2 − E
[
(π̂0(a |X)− π0(a |X))2

]
≥ t

)
≤M exp

(
− 2|D(k)|t2

)
.

Taking a union bound, with probability at least 1− 3β, we have that

sup
π∈Π

∣∣K1(π)
∣∣ ≤ 2C1(ᾱ, α, η̄, δ, ε)√

|D(k)|

(
20 + 4κ(Π) +

√
2 log(1/β)

)
×
( ∑

a∈[M ]

∥π̂0 − π0∥L2(PX |A=a) +
( 1

2n
log(M/β)

)1/4)
.

Since
∑

a∈[M ] ∥π̂0 − π0∥L2(PX |A=a) = oP (1), there exists N ′
1 ≥ N1 such that when n ≥ N ′

1, with probability at least
1− β/(4K),

sup
π∈Π

∣∣K1(π)
∣∣ ≤ C0(ᾱ, α, η̄, δ, ε)

4
√
n

. (19)

Bounding K2(π). We first note that by Cauchy-Schwarz inequality,∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂0(Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)(
ḡ
(k)
Ai

(Xi)− ĝ
(k)
Ai

(Xi)
)∣∣∣∣

≤ 1

|D(k)|ε2

√ ∑
i∈D(k)

(
π̂
(k)
0 (π(Xi) |Xi)− π0(π(Xi) |Xi)

)2√ ∑
i∈D(k)

(
ḡ
(k)
π(Xi)

(Xi)− ĝ
(k)
π(Xi)

(Xi)
)2

≤ 1

|D(k)|ε2

√√√√ ∑
i∈D(k)

M∑
a=1

(
π̂
(k)
0 (a |Xi)− π0(a |Xi)

)2√√√√ ∑
i∈D(k)

M∑
a=1

(
ḡ
(k)
a (Xi)− ĝ

(k)
a (Xi)

)2
.

Then for any t > 0, let

s =
M

tε2
max
a∈[M ]

{
∥π̂(k)

a − π
(k)
0,a∥L2(PX)

}
max
a∈[M ]

{
∥ḡ(k)a − ĝ(k)a ∥L2(PX)

}
.
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Then

Pk

(
max
π∈Π

∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂0(Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)(
ĝ
(k)
Ai

(Xi)− ḡ
(k)
Ai

(Xi)
)∣∣∣∣ ≥ s

)

≤Pk

(
1

|D(k)|ε2

√√√√ ∑
i∈D(k)

M∑
a=1

(
π̂
(k)
0 (a |Xi)− π0(a |Xi)

)2√√√√ ∑
i∈D(k)

M∑
a=1

(
ĝ
(k)
a (Xi)− ḡ

(k)
a (Xi)

)2 ≥ s

)

≤Pk

(
1

ε

√√√√ 1

|D(k)|
∑

i∈D(k)

M∑
a=1

(
π̂
(k)
0 (a |Xi)− π0(a |Xi)

)2 ≥ √M√
tε

max
a∈[M ]

{
∥π̂(k)

a − π
(k)
0,a∥L2(PX)

})

+ P

(
1

ε

√√√√ 1

|D(k)|
∑

i∈D(k)

M∑
a=1

(
ĝ
(k)
a (Xi)− ḡ

(k)
a (Xi)

)2 ≥ √M√
tε

max
a∈[M ]

{
∥ĝ(k)a − ĝ(k)a ∥L2(PX)

})
≤ 2t,

where the last inequality is due to Chebyshev’s inequality. Marginalizing over the randomness of D(−k), for any β ∈ (0, 1),
we have with probability at least 1− β that

max
π∈Π
|K2(π)| <

2M

βε2
max
a∈[M ]

{
∥π̂(k)

a − π
(k)
0,a∥L2(PX)

}
max
a∈[M ]

{
∥ĝ(k)a − ḡ(k)a ∥L2(PX)

}
.

By Assumption 3.4, there exists N ′
2 ∈ N+ such that when n ≥ N ′

2, with probability at least 1− β/(4K),

sup
π∈Π
|K2(π)| ≤

C0(ᾱ, α, η̄, δ, ε)

4
√
n

. (20)

Bounding K3(π). We start by taking

h3(Zi, π(Xi)) =
1{Ai = π(Xi)}
π0(Ai |Xi)

·
[
Ĝ

(k)
π(Xi)

(
Xi, Yi(π(Xi))

)
−Gπ(Xi)

(
Xi, Yi(π(Xi))

)]
.

For any π ∈ Π,

Ek

[
h3(Zi, π(Xi)) |Xi

]
=Ek

[
1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Ĝ

(k)
Ai

(Xi, Yi(π(Xi)))−GAi
(Xi, Yi(π(Xi)))

) ∣∣Xi

]
=Ek

[
Ĝ

(k)
π(Xi)

(Xi, Yi(π(Xi)))−Gπ(Xi)(Xi, Yi(π(Xi))) |Xi

]
=Ek

[
ℓ
(
Xi, Yi(π(Xi));θ

(k)
π(Xi)

(Xi)
)
− ℓ(Xi, Yi;θ

∗
π(Xi)

(Xi))

−∇ℓ(Xi, Yi(π(Xi));θ
∗
π(Xi)

(Xi))
⊤(θ̂(k)

π(Xi)
(Xi)− θ∗

π(Xi)
(Xi)

) ∣∣Xi

]
,

where the last step follows from part (1) of Lemma D.1. By Assumption 3.4, for any β ∈ (0, 1), there exists N3 ∈ N+ such
that when n ≥ N3,

P
(

max
a∈[M ]

∥θ̂(k)
a − θ∗

a∥L∞ > min
(
ξ, ᾱ, α, η̄

)
/2

)
≤ β.

On the event
{
maxa∈[M ] ∥θ̂

(k)
a − θ∗

a∥L∞ ≤ min(ξ, ᾱ, α, η̄)/2
}

, we have∣∣∣ℓ(Xi, Yi;θ
(k)
π(Xi)

(Xi)
)
− ℓ(Xi, Yi;θ

∗
π(Xi)

(Xi))−∇ℓ(Xi, Yi;θ
∗
π(Xi)

(Xi))
⊤(θ̂(k)

π(Xi)
− θ∗

π(Xi)

)∣∣∣
≤ ℓ̄(Xi, Yi) ·

∑
a∈[M ]

∥∥θ̂a(Xi)− θ∗
a(Xi)

∥∥2
2
,
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As a result,

sup
π∈Π

∣∣Ek[K3(π) |X]
∣∣ ≤ sup

π∈Π

1

|D(k)|
∑

i∈D(k)

Ek

[
h3(Zi, π(Xi)) |Xi

]
≤ L

|D(k)|
∑

i∈D(k)

∑
a∈[M ]

∥∥θ̂a(Xi)− θ∗
a(Xi)

∥∥2
2
.

On the same event,

∣∣h3(Zi, π(Xi))
∣∣ = ∣∣∣∣1{Ai = π(Xi)}

π0(Ai |Xi)
·
{
ℓ
(
Xi, Yi(π(Xi));θ

(k)
π(Xi)

(Xi)
)
− ℓ(Xi, Yi;θ

∗
π(Xi)

(Xi))
}∣∣∣∣

≤ 1

ε

∣∣∣∇ℓ(Xi, Yi(π(Xi)); θ̃π(Xi)(Xi)
)⊤

(θ
(k)
π(Xi)

(Xi)− θ∗
π(Xi)

(Xi))
∣∣∣

≤ 1

ε

∥∥∇ℓ(Xi, Yi(π(Xi)); θ̃π(Xi)(Xi)
)∥∥

2

∥∥θ̂(k)
π(Xi)

(Xi)− θ∗
π(Xi)

(Xi)
∥∥
2

≤ C2(ᾱ, α, η̄, δ, ε) max
a∈[M ]

∥∥θ̂(k)
a (Xi)− θ∗

a(Xi)
∥∥
2
,

where C2(ᾱ, α, η̄, δ, ε) = (1 + (ȳ + η̄)/α)e(ȳ+η̄)/α−1 + δ + 1 is a constant. Let h̄3(Zi, π(Xi)) = h3(Zi, π(Xi)) −
Ek[h3(Zi, π(Xi)) |Xi], and we have that

|h̄3(Zi, π(Xi))| ≤ 2C2(ᾱ, α, η̄, δ, ε) max
a∈[M ]

∥∥θ̂(k)
a (Xi)− θ∗

a(Xi)
∥∥
2
.

Next, we apply the bounded difference theorem conditional on Xi’s:

Pk

(
sup
π∈Π

∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

h̄3(Zi, π(Xi))

∣∣∣∣− Ek

[
sup
π∈Π

∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

h̄3(Zi, π(Xi))

∣∣∣∣ ∣∣∣∣X] ≥ t

∣∣∣∣X
)

≤ exp

(
− |D(k)|2t2

2C2(ᾱ, α, η̄, δ, ε)2
∑

i∈D(k) maxa∈[M ]

∥∥θ̂(k)
a (Xi)− θ∗

a(Xi)
∥∥2
2

)
,

for any t > 0. Taking t = C2(ᾱ, α, η̄, δ, ε)
√
2
∑

i∈D(k) maxa∈[M ]

∥∥θ̂(k)
a (Xi)− θ∗

a(Xi)
∥∥2
2
/|D(k)|, we have with probability

at least 1− β that

sup
π∈Π

∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

h̄3(Zi, π(Xi))

∣∣∣∣ ≤ Ek

[
sup
π∈Π

∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

h̄3(Zi, π(Xi))

∣∣∣∣ ∣∣∣X]

+
C2(ᾱ, α, η̄, δ, ε)

|D(k)|

√
2
∑

i∈D(k)

∑
a∈[M ]

∥∥θ̂(k)
a (Xi)− θ∗

a(Xi)
∥∥2
2
.

For the expectation term,the same symmetrization argument as in the proof for K1(π) leads to

Ek

[
sup
π∈Π

∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

h̄3(Zi, π(Xi))

∣∣∣∣ ∣∣∣X] ≤ 2E
[
sup
π∈Π
| 1

|D(k)|
∑

i∈D(k)

∣∣∣ϵih̄3(Zi, π(Xi))
∣∣∣ ∣∣∣X].

Then by Lemma D.2, we have

Eϵ

[
sup
π∈Π

∣∣∣ 1

|D(k)|
∑

i∈D(k)

∣∣∣ϵih̄3(Zi, π(Xi))
∣∣∣]

≤ 2C2(ᾱ, α, η̄, δ, ε)

|D(k)|
(32 + κ(Π))

√ ∑
i∈D(k)

∑
a∈[M ]

∥θ̂(k)
a (Xi)− θ∗

a(Xi)∥22.

26



Distributionally Robust Policy Learning under Concept Drifts

By Hoeffding’s inequality, we have that

Pk

(
1

|D(k)|
∑

i∈D(k)

∥θ̂(k)
a (Xi)− θ∗

a(Xi)∥22 − ∥θ(k)
a − θa∥2L2(PX) ≥ ∥θ

(k)
a − θa∥2L∞

√
1

2n
log
( 1
β

))
≤ β.

Taking a union bound, with probability at least 1− 3β, we have that

sup
π∈Π

∣∣K3(π)
∣∣

≤ C2(ᾱ, α, η̄, δ, ε)(130 + 4κ(Π))√
|D(k)|

( ∑
a∈[M ]

∥θ̂(k)
a − θa∥L2(PX) +

√
M(ᾱ+ η̄)

( 1

|D(k)|
log
(M
β

))1/4)

+ L
( ∑

a∈[M ]

∥θ̂(k)
a − θa∥2L2(PX) +

M∥θ̂a − θa∥L∞

√
log(M/β)√

|D(k)|

)
.

By Assumption 3.4, ∥θ̂(k)
a − θa∥L2(PX) = oP (n

−1/4) and ∥θ̂(k)
a − θa∥L∞ = oP (1), so there exists N ′

3 ≥ N3 such that
when n ≥ N ′

3, with probability at least 1− β/(4K),

sup
π∈Π

∣∣K3(π)
∣∣ ≤ C0(ᾱ, α, η̄, δ, ε)

4
√
n

. (21)

Bounding K4(π). For K4(π), we take

h4(Zi, π(Xi)) = −
1{Ai = π(Xi)}
π0(Ai |Xi)

(
ĝ
(k)
π(Xi)

(Xi)− gπ(Xi)(Xi)
)
+
(
ĝ
(k)
π(Xi)

(Xi)− gπ(Xi)(Xi)
)
.

and therefore K4(π) =
1

|D|
∑

i∈D(k) h4(Zi, π(Xi)). Again by the unconfoundedness assumption,

Ek

[
h4(Zi, π(Xi))

]
= 0.

Due to the overlap condition, we further have that

|h4(Zi, π(Xi))| ≤
2

ε

∣∣ĝ(k)π(Xi)
(Xi)− gπ(Xi)(Xi)

∣∣ ≤ 2

ε
max
a∈[M ]

∣∣ĝ(k)a (Xi)− ga(Xi)
∣∣.

As before, we apply the bounded difference theorem conditional on Xi’s and the symmetrization argument to obtain

P
(
sup
π∈Π

∣∣K4(π)
∣∣− 2Ek

[
sup
π∈Π

∣∣∣ 1

|D(k)|
∑

i∈D(k)

ϵih4(Zi, π(Xi))
∣∣∣ ∣∣∣X] ≥ t

∣∣∣X)

≤P
(
sup
π∈Π

∣∣K4(π)
∣∣− Ek

[
sup
π∈Π

∣∣K4(π)
∣∣ ∣∣X] ≥ t |X)

≤ exp

(
− ε2|D(k)|2t2

2
∑

i∈D(k) maxa∈[M ](ĝ
(k)
a (Xi)− ga(Xi))2

)
.

We now apply Lemma D.2:

Eϵ

[
sup
π∈Π

∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

ϵih4(Zi, π(Xi))

∣∣∣∣ ∣∣∣∣X
]
≤

√∑
i∈D(k) maxa∈[M ]

(
ĝa(Xi)− ga(Xi)

)2
|D(k)|ε

(64 + 8κ(Π)).

By Assumption 3.4, there exists N4 ∈ N+, such that when n ≥ N4, with probability at least 1− β,

max
a∈[M ]

∥θ̂(k)
a − θ∗

a∥L∞ ≤ max(ξ, ᾱ, α, η̄)/2.
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On the event {maxa∈[M ] ∥θ̂
(k)
a − θ∗

a∥L∞ ≤ max(ξ, ᾱ, α, η̄)/2}, we have for any a ∈ [M ] that∣∣ℓ(x, y; θ̂a(x))∣∣ ≤ 2C1(ᾱ, α, η̄, δ, ε).

On the same event, by Hoeffding’s inequality, we have that

Pk

(
1

|D(k)|
∑

i∈D(k)

(ĝa(Xi)− ga(Xi))
2 − ∥ĝ(k)a − ga∥2L2(PX) ≥ t

)
≤ exp

(
− t2|D(k)|

8C1(ᾱ, α, η̄, δ, ε)2

)
.

Taking a union bound, we have with probability at least 1− 2β that

max
π∈Π

∣∣K4(π)
∣∣ ≤ 1

ε
√
|D(k)|

(
128 + 16κ(Π) +

√
2 log(1/β)

)
×
( ∑

a∈[M ]

∥ĝ(k)a − g∗a∥L2(PX) + 2M
√
C1(ᾱ, α, η̄, δ, ε)(log(M/β)/n)1/4

)
.

By Assumption 3.4,
∑

a∈[M ] ∥ĝ
(k)
a −g∗a∥L2(PX) = oP (1), so there exists N ′

4 ≥ N4 such that when n ≥ N ′
4, with probability

at least 1− β/(4K),

sup
π∈Π

∣∣K4(π)
∣∣ ≤ C0(ᾱ, α, η̄, δ, ε)

4
√
n

. (22)

Combining (18)-(22) and taking a union bound over k ∈ [K], when n ≥ max(N1, N2, N3, N4) we have that with probability
at least 1− β,

sup
π∈Π

∣∣V̂LN
δ (π)− Ṽδ(π)

∣∣ ≤ C0(ᾱ, α, η̄, δ, ε)√
n

.

We have thus completed the proof of Theorem 4.3.

D.4. Proof of Theorem 4.6

We first state somes results from (Si et al., 2023) that will be used in the proof. For any p, q ∈ [0, 1], define

D(p ∥ q) = p log
(p
q

)
+ (1− p) log

(1− p

1− q

)
, and gδ(q) = inf

p:DKL(p ∥ q)≤δ
p,

Lemma D.3 (Adapted from Lemma A17 of Si et al. (2023)). For δ ≤ 0.2, gδ(q) is differentiable and g′δ(q) ≥ 1/2 for
q ∈ [0.4, 0.6].

Note that our definition of gδ(q) is slightly different from that in (Si et al., 2023), so we include the proof of Lemma D.3 in
Appendix F.4 for completeness.

For notational simplicity, we use d to denote the Natarajan dimension of the policy class Π. By the definition of Natarajan
dimension, there exists a set of d data points {x1, . . . , xd} ⊆ X shattered by Π: there exist two functions f−1, f1 :
{x1, . . . , xd} 7→ [M ] such that f−1(xj) ̸= f1(xj) for any j ∈ [d] and for any σ ∈ {−1.1}d, there exists π ∈ Π, such that
π(xj) = fσj

(xj) for all j ∈ [d].

Next, we construct a class of distributions indexed by σ ∈ {±1}d that are “hard instances” for the learning problem. Fix any
σ ∈ {±1}d, we construct distribution Pσ as follows. First, the covariate are drawn uniformly from {x1, . . . , xd}, i.e.,

Xi
i.i.d.∼ Unif

(
{x1, . . . , xd}

)
.

Given Xi, the action Ai is chosen according to the behavior policy π0, where for any j ∈ [d],

π0(f1(xj) |xj) = π0(f−1(xj) |xj) =
ε

2
, and π0(a |xj) =

1− ε

K − 2
for all a ̸= f1(xj), f−1(xj).
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The potential outcomes are generated as follows:

Yi(f1(xj)) |Xi = xj ∼ ȳ · Bern
(1 + σj∆

2

)
, Yi(f−1(xj)) |Xi = xj ∼ ȳ · Bern

(1− σj∆

2

)
,

and Yi(a) = ȳ · Bern(1/4) for all a ̸= f1(xj), f−1(xj),

where ∆ ∈ (0, 0.1) is some constant to be determined later. Note that the distribution of (Xi, Ai) does not depend on σ. By
construction, it is clear that the data-generating process satisfies Assumption 2.1. For any p ∈ {(1+∆)/2, (1−∆)/2, 1/4},
log(1/(1− p)) > δ. Therefore, the data-generating process also satisfies Assumption 2.4. As for Assumption 3.3, it suffices
to check the Bernoulli distributions with parameters (1 + ∆)/2, (1−∆)/2, 1/4, and can be verified. Since n ≥ d2, we can
obtain θ̂, ĝ, and π̂0 that converges at rate OP (n

−1/4) (by stratifying on X), thereby satisfying Assumption 3.4.

We now proceed to establish the lower bound. For any policy learning algorithm that returns π̂, the worst-case regret is
lower bounded by the average regret over the class of hard instances we have constructed above:

sup
P∈P

EPn [R(π̂)] ≥ 1

2d

∑
σ∈{±1}d

EPn
σ
[Rδ(π̂)].

We now focus on the right-hand side above. Fix σ ∈ {±1}d. Recall thatRδ(π̂) = Vδ(π∗)− Vδ(π̂). For the optimal policy
value, there is

Vδ(π∗) = max
π∈Π

EPσ,X

[
inf

QY |X∈P(Pσ,Y |X ,δ)
EQY |X

[
Y (π(X)) |X

]]
(i)
= max

π∈Π
max
α,η

EPσ

[
−α(X) exp

(
− Y (π(X)) + η(X)

α(X)
− 1
)
− η(X)−α(X)δ

]
= max

α,η
max
π∈Π

EPσ

[
−α(X) exp

(
− Y (π(X)) + η(X)

α(X)
− 1
)
− η(X)−α(X)δ

]
, (23)

where the step (i) follows from the duality result in Proposition 2.3. We now take a closer look at the expectation above: by
the construction of Pσ ,

EPσ

[
−α(X) exp

(
− Y (π(X)) + η(X)

α(X)
− 1
)
− η(X)−α(X)δ

]
=

1

d

d∑
j=1

EPσ

[
−α(xj) exp

(
− Y (π(xj)) + η(xj)

α(xj)
− 1
)
− η(xj)−α(xj)δ

∣∣∣X = xj

]

=
1

d

d∑
j=1

−α(xj) exp
(
− η(xj)

α(xj)
− 1
)
· EP

[
exp

(
− Y (π(xj))

α(xj)

) ∣∣∣X = xj

]
− η(xj)−α(xj)δ.

Letting pj = P(Y (π(xj)) = 1 |X = xj), we have

EP

[
exp

(
− Y (π(xj))

α(xj)

) ∣∣∣X = xj

]
= pj exp(−1/α(xj)) + 1− pj ,

which is decreasing in pj and is minimized when π(xj) = fσj (xj). By construction, such a policy π is in Π. As a result,

(23) = max
α,η

1

d

d∑
j=1

EPσ

[
−α(xj) exp

(
−

Y (fσj
(xj)) + η(xj)

α(xj)
− 1
)
− η(xj)−α(xj)δ

∣∣∣X = xj

]

=
1

d

d∑
j=1

max
α,η

EPσ

[
− α exp

(
−

Y (fσj (xj)) + η

α
− 1
)
− η − αδ

∣∣∣X = xj

]

=
1

d

d∑
j=1

inf
QY |X∈P(Pσ,Y |X=xj

,δ)
EQY |X

[
Y (fσj

(xj)) |X = xj

]
= g
(1 + ∆

2

)
.
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The last step is because Y (fσj
(xj)) |X = xj ∼ Bern((1 + ∆)/2). Similarly, for V(π̂), we have

Vδ(π̂) = EPσ,X

[
inf

QY |X∈P(Pσ,Y |X ,δ)
EQY |X

[
Y
(
π̂(X)

)
|X
]]

=
1

d

d∑
j=1

inf
QY |X∈P(Pσ,Y |X=xj

,δ)
EQY |X

[
Y (π̂(xj)) |X = xj

]
=

1

d

d∑
j=1

1
{
π̂(xj) = fσj

(xj)
}
g
(1 + ∆

2

)
+ 1

{
π̂(xj) = f−σj

(xj)
}
g
(1−∆

2

)
+ 1

{
π̂(xj) ̸= fσj

(xj), f−σj
(xj)

}
g(1/4).

Combining the calculation above, we have

R(π̂) = 1

d

d∑
j=1

1{π̂(xj) = f−σj (xj)} ·
{
g
(1 + ∆

2

)
− g
(1−∆

2

)}

+ 1{π̂(xj) ̸= fσj
(xj), f−σj

(xj)} ·
{
g
(1 + ∆

2

)
− g(1/4)

}
(i)
≥ 1

d

d∑
j=1

+1{π̂(xj) ̸= fσj (xj)} ·
{
g
(1 + ∆

2

)
− g(1/4)

}
(ii)
≥ 1

d

d∑
j=1

1{π̂(xj) ̸= fσj
(xj)} · g′(ξ)∆

(iii)
≥ ∆

2d

d∑
j=1

1{π̂(xj) ̸= fσj
(xj)},

where step (i) uses that g is non-decreasing (c.f. Cauchois et al. (2024, Proposition 1)); in step (ii), ξ ∈ ((1−∆)/2, (1+∆)/2),
and step (iii) follows from Lemma D.3.

Next, we denote σ[j] to be the vector σ with the j-th element flipped. Then, we have

1

2d

∑
σ∈{±1}d

EPn
σ
[R(π̂)] ≥ 1

2d

∑
σ∈{±1}d

EPn
σ

[
∆

2d

d∑
j=1

1{π̂(xj) ̸= fσj
(xj)}

]

=
∆

d2d+1

d∑
j=1

∑
σ:σj=1

{
PPn

σ

(
π̂(xj) ̸= f1(xj)

)
+ PPn

σ[j]

(
π̂(xj) ̸= f−1(xj)

)}

≥ ∆

d2d+1

d∑
j=1

∑
σ:σj=1

PPn
σ

(
π̂(xj) ̸= f1(xj)

)
+ PPn

σ[j]

(
π̂(xj) = f1(xj)

)
≥ ∆

d2d+1

d∑
j=1

∑
σ:σj=1

(
1−DTV(P

n
σ , P

n
σ[j])

)
, (24)

where the last step follows from the definition of the TV distance. By Pinsker’s inequality, there is

D2
TV

(
Pn
σ , P

n
σ[j]

)
≤ 1

2
DKL

(
Pn
σ ∥Pn

σ[j]

)
=

1

2

n∑
i=1

EPσ

[
log
( dPσ

dPσ[j]
(Xi, Ai, Yi)

)]

=
1

2

n∑
i=1

EPσ

[
1
{
Xi = xj , Ai = f±1(xj)

}
·∆ log

(1 + ∆

1−∆

)]
≤ 3nε

2d
∆2,
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where the last step follows from x log( 1+x
1−x ) ≤ 3x2, for x ∈ (0, 1/3). Take ∆ = 1

15

√
d
nε — this is possible since n ≥ d2

and d ≥ 4/(9ε) and then

(24) ≥
√

d

n

d2d−1

15d2d+2
=

1

120
×
√

d

nε
.

E. Generalization to Identifiable Covariate Distribution Shift
We now extend our methodology to handle situations where shift in X and Y |X distributions are both present. We note
that, in most practical cases, the decision maker has access to the covariates in the target environment, making the shift
covariate distribution identifiable and estimable — it is therefore unnecessary to guard against the worst-case shift.

Method. Formally, suppose we have access to a training dataset D collected in an environment P , and aims at learning a
policy that behaves well in the environment Q. Here, we assume that QY |X ∈ P(PY |X , δ) for some given radius δ > 0
but do not impose any constraints on X distribution shift except that QX is absolutely continuous with respect to PX and
that the likelihood ratio is bounded. Letting r(x) = dQX

dPX
(x), we can estimate r with X from P and Q using standard tools

(by directly estimating the density ratio or by means of classification algorithms). For any policy π, the distributional robust
policy value can be written as

Vδ(π) := EQX

[
inf

QY |X∈P(PY |X ,δ)
EQY |X

[
Y (π(X)) |X

]]
. (25)

Note that the inner expectation of (25) is the same as in (1). By Lemma 2.3, there is

(25) = EQX×PY |X

[
α∗

π(X) exp
(
− Y (π(X)) + η∗

π(X)

α∗
π(X)

)
+ η∗

π(X) +α∗
π(X)δ

]

= EQX×PY |X

[
1{A = π(X)}
π0(A |X)

(
α∗

π(X) exp
(
− Y (A) + η∗

π(X)

α∗
π(X)

)
+ η∗

π(X) +α∗
π(X)δ

)]

= EP

[
r(X)

1{A = π(X)}
π0(A |X)

(
α∗

π(X) exp
(
− Y (A) + η∗

π(X)

α∗
π(X)

)
+ η∗

π(X) +α∗
π(X)δ

)]
.

The above expression ensures that the robust policy value is identifiable with the data accessible to the decision maker. With
this representation, subsequent policy evaluation and learning are similar to the pure concept drift case, and we provide the
adaptation below.

In addition to D, we let D̃ = {Xi}mi=1 denote the covariates from environment Q, i.e., Xi
i.i.d.∼ QX . Assume that

limm,n→∞ m/n = γ. As before, we adopt a K-fold cross-fitting scheme, where we split both D and D̃ into K non-
overlapping equally-sized folds. For k ∈ [K], we use D(k+1) and D̃(k+1) to obtain π̂

(k)
0 , r̂(k), and (α̂

(k)
π , η̂

(k)
π ) as estimates

of π0, r, and (α∗
π,η

∗
π), respectively; we then use D(k+2) and D̃(k+2) to obtain ĝ

(k)
π as an estimate for ḡ(k)π . The estimator of

the k-th fold is

V̂(k)
δ (π) =

1

D(k)

∑
i∈D(k)

r̂(k)(Xi)1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

·
(
Ĝ(k)

π (Xi, Yi)− ĝ(k)π (Xi)
)
+

1

|D̃(k)|

∑
i∈D̃(k)

ĝ(k)π (Xi),

and the final robust policy value estimator is V̂δ(π) = − 1
K

∑K
k=1 V̂

(k)
δ (π). We then obtain the learned policy via

π̂LN = argmax
π∈Π

V̂(π),

where we apply the same computational trick as in the pure concept shift case.

Theoretical Guarantees. We now extend the theoretical guarantees to the general case. Since the proof is similar to the
pure concept drift case, the proof sketch is provided. As a prerequisite, we modify Assumption 3.4 to be:
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Assumption E.1. For any policy π, assume that for each k ∈ [K], the estimators π̂(k)
0 , r̂(k), ĝ(k)π , and the empirical risk

optimizer θ̂(k)
π satisfy

∥r̂(k)/π̂(k)
0 − r/π0∥L2(PX |A=π(X)) = oP (n

−γ1), ∥ĝ(k)π − ḡ(k)π ∥L2(PX |A=π(X)) = oP (n
−γ2),

∥θ̂(k)
π − θ∗

π∥L2(PX |A=π(X)) = oP (n
− 1

4 ), ∥θ̂(k)
π − θ∗

π∥L∞ = oP (1),

for some γ1, γ2 ≥ 0 and γ1 + γ2 ≥ 1
2 .

Theorems E.2 and E.3 establish the asymptotic normality of the policy value estimator and the regret upper bound.
Theorem E.2. Suppose Assumptions 2.1, 2.4, 3.3, and E.1 hold. Additionally assume that dQX/dPX ≤ C, a.s., for some
constants C > 0, and that limm,n→∞ m/n = γ. For any policy π : X 7→ [M ], we have

√
n ·
(
V̂δ(π)−Vδ(π)

) d→ N(0, σ2
π),

where

σ2
π = Var

(
r(X)1{A = π(X)}

π0(A |X)
·
(
Gπ(X,Y )− gπ(X)

))
+ γ · Var(gπ(X)).

Theorem E.3. Suppose Assumptions 2.1, 2.4, 3.3, E.1 hold. Additionally assume that dQX/dPX ≤ C, a.s., for some
constants C > 0, and that limm,n→∞ m/n = γ. For any β ∈ (0, 1), there exists N ∈ N+ such that when n ≥ N , we have
with probability at least 1− β that

Rδ(π̂LN) ≤
C(κ(Π) +

√
log(1/β)),√
n

where C > 0 is a constant independent of n and Π.

Proof Sketch. Recall that

Gπ(x, y) = α∗
π(x) exp

(
− y + η∗

π(x)

α∗
π(x)

)
+ η∗

π(x) +α∗
π(x)δ and gπ(x) = E

[
Gπ(X,Y (π(X))) |X = x

]
It can be checked that

(25) = EP

[r(X)1{A = π(X)}
π0(A |X)

Gπ(X,Y )
]

= EP

[r(X)1{A = π(X)}
π0(A |X)

·
(
Gπ(X,Y )− gπ(X)

)]
+ EQX

[
gπ(X)

]
.

So if we define V̄δ(π) = − 1
K

∑K
k=1 V̄

(k)
δ (π), with

V̄(k)
δ (π) =

1

|D(k)|
∑

i∈D(k)

r(Xi)1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Gπ(Xi, Yi)− gπ(Xi)

)
+

1

|D̃(k)|

∑
i∈D̃(k)

gπ(Xi),

we have by the central limit theorem that
√
n
(
V̄δ(π)− Vδ(π)

)
d→ N(0, σ2

π).

As in the proof of Theorem 3.5, we can decompose the difference between V̄(k)
δ (π) and V̂(k)

δ (π) as follows:

V̂(k)
δ (π)− V̄(k)

δ (π) =
1

|D(k)|
∑

i∈D(k)

r(Xi)1{Ai = π(Xi)}
π0(Xi)

(
Ĝ(k)

π (Xi, Yi)−Gπ(Xi, Yi)
)

+
1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
( r̂(Xi)

π̂0(Xi)
− r(Xi)

π0(Xi)

)(
Ĝ(k)

π (Xi, Yi)− ḡ(k)π (Xi)
)

+
1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
( r̂(Xi)

π̂0(Xi)
− r(Xi)

π0(Xi)

)(
ḡ(k)π (Xi)− ĝπ(Xi)

)
− 1

|D(k)|
∑

i∈D(k)

r(Xi)1{Ai = π(Xi)}
π0(Xi)

(ĝ(k)π (Xi)− gπ(Xi)) +
1

|D̃(k)|

∑
i∈D̃(k)

(ĝ(k)π (Xi)− gπ(Xi)).

(26)
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Following almost the same steps in the proof of Theorem 3.5, we can show that

(26) =OP

(
∥θ̂(k)

π − θ∗
π∥2L2(PX |A=π(X))

)
+OP

(∥∥∥ r̂(k)
π̂(k)

− r

π

∥∥∥
L2(PX |A=π(X))

· n−1/2

)
+OP

(∥∥∥ r̂(k)
π̂
(k)
0

− r

π

∥∥∥
L2(PX |A=π(X))

· ∥ĝ(k)π − gπ∥L2(PX |A=π(X))

)
+OP

(
∥ĝ(k)π − gπ∥L2(PX |A=π(X)) · n

−1/2
)

=oP (n
−1/2).

Taking a union bound over k ∈ [K], we can conclude V̂δ(π) = V̄δ(π) + oP (n
−1/2), and therefore V̂δ(π) is asymptotically

normal. The proof of Theorem E.3 follows similarly.

F. Proof of technical lemmas
F.1. Proof of Lemma D.1

Proof of (1). Given θ, recall that our loss function is

ℓ(x, y; θ) = α exp
(
− y + η

α
− 1
)
+ η + αδ.

By the strong duality, E[ℓ(X,Y (π(X)); θ) |X] is convex in θ; by Proposition 2.5, the first-order condition of convex
optimization problem implies

∇θE
[
ℓ
(
x, Y (π(x));θ∗

π(x)
) ∣∣X = x

]
= 0.

Meanwhile, we can compute the gradient of ℓ(x, y; θ) as

∂

∂α
ℓ(x, y; θ) =

(
1 +

y + η

α

)
· exp

(
− y + η

α
− 1
)
+ δ,

∂

∂η
ℓ(x, y; θ) = 1− exp

(
− y + η

α
− 1
)
. (27)

For any a such that |a−α∗
π(x)| ≤ α∗

π(x), we have∣∣∣∣ ∂∂αℓ(x, y; (a,η∗
π(x)))

∣∣∣∣ ≤ (1 + 2(ȳ + η̄)

α

)
· exp

(2(ȳ + η̄)

α
− 1
)
+ δ <∞.

By the mean value theorem and the dominated convergence theorem, we can change the order of expectation and taking
limits and therefore

E
[
∂

∂α
ℓ
(
x, Y (π(x));θ∗

π(x)
) ∣∣X = x

]
=

∂

∂α
E
[
ℓ
(
x, Y (π(x));θ∗

π(x)
) ∣∣X = x

]
= 0.

Similarly, since ∂
∂η
ℓ(x, y; (α∗

π(x), η)) is non-decreasing in η, for |η − η∗
π(x)| ≤ 1,

∣∣∣∣ ∂∂η ℓ(x, y; (α∗
π(x), η))

∣∣∣∣ ≤ max

{∣∣∣∣ ∂∂η ℓ(x, y; (α∗
π(x),η

∗
π(x) + 1))

∣∣∣, ∣∣∣ ∂
∂η

ℓ(x, y; (α∗
π(x),η

∗
π(x)− 1))

∣∣∣∣
}
,

with the right-hand side being integrable under PY |X . Agian by the mean-value theorem and the dominated convergence
theorem,

E
[
∂

∂η
ℓ(x, Y (π(x));θ∗

π(x))
∣∣∣X = x

]
=

∂

∂η
E
[
ℓ(x, Y (π(x));θ∗

π(x))
∣∣∣X = x

]
= 0.

We have thus completed the proof part (1) of Lemma D.1.
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Proof of (2). We now compute the Hessian of ℓ(x, y; θ):

∂2

∂α2
ℓ(x, y; θ) =

(y + η)2

α3
exp

(
− y + η

α
− 1
)
,

∂2

∂α∂η
ℓ(x, y; θ) = −y + η

α2
exp

(
− y + η

α
− 1
)
,

∂2

∂η2
ℓ(x, y; θ) =

1

α
exp

(
− y + η

α
− 1
)
.

By the Taylor expansion,

ℓ(x, y; θ)− ℓ(x, y;θ∗
π(x)) = ∇ℓ(x, y;θ∗

π(x))
⊤(θ − θ∗π(x)) +

1

2
(θ − θ∗

π(x))
⊤∇2ℓ(x, y; θ̃)(θ − θ∗

π(x)),

⇒
∣∣ℓ(x, y; θ)− ℓ(x, y;θ∗

π(x))−∇ℓ(x, y;θ∗
π(x))

⊤(θ − θ∗
π(x))

∣∣
≤ 1

2

( (y + η̃)2

α̃3
+

1

α̃

)
exp

(
− y + η̃

α̃
− 1
)
∥θ − θ∗

π(x)∥22,

where θ̃ = tθ + (1− t)θ∗
π(x) for some t ∈ [0, 1] and the last step is because∥∥∇2ℓ(x, y; θ̃)

∥∥
op ≤

( (y + η̃)2

α̃3
+

1

α̃

)
exp

(
− y + η̃

α̃
− 1
)

Let ξ = min(α, η̄)/2. For any θ such that ∥θ − θ∗
π(x)∥2 ≤ ξ, we also have |α̃−α∗

π(x)| ≤ ξ and |η̃ − η∗
π(x)| ≤ ξ. Then

1

2

( (y + η̃)2

α̃3
+

1

α̃

)
exp

(
− y + η̃

α̃
− 1
)
≤
(8ȳ2 + 8η̄2

α3
+

2

α

)
· exp

(2ȳ + 4η̄

α
− 1
)
.

Letting the right-hand side be ℓ̄(x, y), we have thus completed the proof of (2).

Proof of (3). By the Taylor expansion,

ℓ(x, y; θ)− ℓ(x, y;θ∗
π(x)) = ∇ℓ(x, y; θ̃)⊤

(
θ(x)− θ∗

π(x)
)
,

where θ̃ = tθ(x)+(1−t)θ∗
π for some t ∈ [0, 1]. Let ξ1 = min(α, η̄)/2. When ∥θ−θ∗

π∥L∞ ≤ ξ1, we have |α̃−α∗
π(x)| ≤ ξ1

and |η̃ − η∗
π(x)| ≤ ξ1. Plugging the expressions of the gradient in Equation (27), we have[

ℓ(x, y;θ(x))− ℓ(x, y;θ∗
π(x))

]2
=
[
∇ℓ(x, y; θ̃(x))⊤(θ(x)− θ∗

π(x))
]2

≤

{[(
1 +

y + η̃(x)

α̃(x)

)
exp

(
− y + η̃(x)

α̃(x)
− 1
)
+ δ

]2
+

[
1− exp

(
− y + η̃(x)

α̃(x)
− 1
)]2}

·
∥∥θ(x)− θ∗

π(x)
∥∥2
2

≤C(ȳ, ᾱ, α, η̄, δ) ·
∥∥θ(x)− θ∗

π(x)
∥∥2
2
,

where C(ȳ, ᾱ, α, η̄, δ) is a function of (ȳ, ᾱ, α, η̄, δ). Taking the expectation over PX,Y |A=π(X), we have∥∥ℓ(X,Y ;θ(X))− ℓ(X,Y ;θ∗
π(X))

∥∥
L2(PX,Y |A=π(X))

≤ C(ȳ, ᾱ, α, η̄, δ) ·
∥∥θ − θ∗∥∥

L2(PX |A=π(X))
,

completing the proof of (3).

F.2. Proof of Lemma D.2

We first introduce the ℓ2 distance on the policy space Π, as well as the corresponding covering number.

Definition F.1. Given a function h and a set of realized data z1, . . . , zn,

(1) the ℓ2 distance between two policies π1, π2 ∈ Π with respect to {z1, . . . , zn} is defined as

ℓ2
(
π1, π2; {z1, . . . , zn}

)
=

√∑n
i=1

(
h(zi, π1(xi)

)
− h(zi;π2(xi))

)2
4
∑n

i=1 ci(zi)
2

.
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(2) N2(γ,Π; {z1, . . . , zn}) is the minimum number of policies needed to γ-cover Π under ℓ2 with respect {z1, . . . , zn}.

Under the ℓ2 distance, we define a sequence of approximation operators Aj : Π 7→ Π for j ∈ [J ], where
J = ⌈log2 n⌉. Specifically, for any j = 0, 1, . . . , J , let Sj be the set of policies that 2−j-covers Π and satisfies
|Sj | = N2(2

−j ,Π; {Z1, . . . , Zn}). Specially, S0 = {π̄}, with π̄ is an arbitrary policy in Π — this is a valid choice
since for any π ∈ Π,

ℓ2(π, π̄; {z1, . . . , zn}) =

√∑n
i=1

(
h(zi, π(xi))− h(zi, π̄(xi))

)2
4
∑n

i=1 ci(zi)
2

≤ 1.

We shall let Λ = 2
√∑n

i=1 ci(zi)
2 to denote the normalization factor. The approximation operators are defined in a

backward manner: for any π ∈ Π,

(1) define AJ [π] = argmin
π′∈SJ

ℓ2
(
π, π′; {z1, . . . , zn}

)
;

(2) for j = J − 1, . . . , 0, define

Aj [π] = argmin
π′∈Sj

ℓ2
(
Aj+1[π], π

′; {z1, . . . , zn}
)
.

Using the sequential approximation operators, we decompose the inner expectation term in (17) (Rademacher complexity)
as

Eϵ

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵih(Zi, π(Xi))

∣∣∣∣
]

≤Eϵ

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵi
[
h(Zi, π(Xi))− h(Zi, AJ [π](Xi))

]∣∣∣∣
]

+ Eϵ

[
sup
π∈Π

∣∣∣∣ J∑
j=1

1

n

∑
i∈[n]

ϵi
[
h(Zi, Aj [π](Xi))− h(Zi, Aj−1[π](Xi))

]∣∣∣∣
]

+ Eϵ

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵih(Zi, A0[π](Xi))

∣∣∣∣
]

=:Ξ1 + Ξ2 + Ξ3.

For any π ∈ Π, by the Cauchy-Schwarz inequality,

sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵi
[
h(zi, π(xi))− h(zi, AJ [π](xi))

]∣∣∣∣
≤ 1

n

√
n
∑
i∈[n]

(
h
(
zi, π(xi))− h(zi, AJ [π](xi))

)2
=

Λ√
n
· ℓ2(π,AJ(π); {z1, . . . , zn})

≤ Λ√
n
2−J ≤ Λ

n3/2
,

where the second-to-last step is because AJ(π) is 2−J -close to π and the last step is by the choice of J . As a result the
above derivation, Ξ1 ≤ Λ/n3/2.
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Next, for any j = 1, . . . , J we use Pj to denote the projection of projecting a policy to Sj , i.e., Aj−1[π] = Pj−1[Aj [π]].
Once Aj(π) is determined, Aj−1(π) is also determined. For any s > 0,

Pϵ

(
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵi
[
h(zi, Aj [π](xi))− h(zi;Aj−1[π](xi))

]∣∣∣∣ ≥ s

)

≤
∑

π′∈Sj

Pϵ

(∣∣∣∣ 1n ∑
i∈[n]

ϵi

[
h(zi, π

′(xi))− h(zi, Pj−1[π
′](xi))

]∣∣∣∣ ≥ s

)

≤
∑

π′∈Sj

2 · exp

(
− 2n2s2∑n

i=1

[
h(zi, π′(xi))− h(zi, Pj−1[π′](xi))

]2
)

=
∑

π′∈Sj

2 · exp

(
− 2n2s2

Λ2ℓ2(π′, Pj−1(π′); z)2

)

≤ 2N2(2
−j ,Π;Z) · exp

(
− n2s2

Λ22−2j+1

)
,

we z is a shorthand for {z1, . . . , zn}. For any j = 1, . . . , J and m ∈ N, take

sj,m =
Λ

n2j−1/2

√
log
(
N2(2−j ,Π;Z) · 2m+1j2).

For a fixed m, with a union bound over j = 1, . . . , J we have that

Pϵ

(
sup
π∈Π

∣∣∣∣ J∑
j=1

1

n

∑
i∈[n]

ϵi
[
h(zi, Aj [π](xi))− h(zi, Aj−1[π](xi))

]∣∣∣∣ ≥ J∑
j=1

sj,m

)

≤
J∑

j=1

Pϵ

(
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵi
[
h(zi, Aj [π](xi))− h(zi, Aj−1[π](xi))

]∣∣∣∣ ≥ sj,m

)
≤

J∑
j=1

1

j22m
≤ 1

2m−1
.

To proceed, we shall use the following lemma, whose proof is deferred to Appendix F.3.

Lemma F.2. For any realization z1, . . . , zn and γ > 0, there is N2(γ,Π; z1, . . . , zn) ≤ NH(γ2,Π).

By Lemma F.2, for any m ∈ N+,

J∑
j=1

sj,m =

J∑
j=1

Λ

2j−1/2n

√
log
(
N2(2−j ,Π;Z) · 2m+1j2

)
≤

J∑
j=1

Λ

2j−1/2n

√
log(NH(2−2j ,Π)) + (m+ 1) log 2 + 2 log(j)

(i)
≤ 2Λ

n

J∑
j=1

2−j ·
(√

log(NH

(
2−2j ,Π)

)
+
√
m+ 1 +

√
2 log(j)

)
(ii)

≤ 4Λ

n

(
κ(Π) +

√
m+ 1 + 1

)
=: um,
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where step (i) uses
√
a+ b+ c ≤

√
a+
√
b+
√
c for a, b, c ≥ 0; step (ii) uses the definition of κ(Π). Then

Ξ2 = Eϵ

[
sup
π∈Π

∣∣∣∣ J∑
j=1

1

n

∑
i∈[n]

ϵi

[
h(zi, Aj [π](xi))− h(zi, Aj−1[π](xi))

]∣∣∣∣
]

=

∫ ∞

0

Pϵ

(
sup
π∈Π

∣∣∣∣ J∑
j=1

1

n

∑
i∈[n]

ϵi

[
h(zi, Aj [π](xi))− h(zi, Aj−1[π](xi))

]∣∣∣∣ > s

)
ds

≤ u1 +

∞∑
k=1

(uk+1 − uk) · 2−k+1

=
4Λ

n
·
(
κ(Π) +

√
2 + 1 +

∞∑
k=1

(
√
k + 2−

√
k + 1) · 2−k+1

)
≤ 4Λ

n
·
(
κ(Π) + 7

)
.

Finally, we consider Ξ3. Recall that S0 = {π̄}, and therefore

Ξ3 = Eϵ

[∣∣∣∣ 1n ∑
i∈[n]

ϵih(zi, π̄(xi))

∣∣∣∣
]
=

∫ ∞

0

Pϵ

(∣∣∣∣ 1n ∑
i∈[n]

ϵih(zi, π̄(xi))

∣∣∣∣ > s

)
ds

≤
∫ ∞

0

2 exp
(
− n2s2

Λ2

)
ds =

3Λ

n
.

Putting everything together,

Eϵ

[∣∣∣ 1
n

n∑
i=1

ϵih
(
xi, ai, yi, π(xi)

)∣∣∣] ≤ Λ

n
· (4κ(Π) + 32)

=
2
√∑n

i=1 ci(zi)
2

n
(4κ(Π) + 32).

F.3. Proof of Lemma F.2

Fix γ > 0. If NH(γ2,Π) =∞, the lemma is trivially true. Otherwise, let N0 = NH(γ2; Π). For any realization z1, . . . , zn,
define

(π∗
i,1, π

∗
i,2) = argmax

π1,π2

{
|h(zi, π1(xi))− h(zi, π2(xi))|

}
.

Implicitly, (π∗
i,1, π

∗
i,2) depends on zi. For an arbitrary positive integer m and i ∈ [n], we define

ni =
⌈ m

Λ2n

{
h(zi, π

∗
i,1(xi))− h(zi, π

∗
i,2(xi))

}2⌉
,

where we recall that Λ2 = 4
∑n

i=1 ci(zi)
2. We then construct a new set of data

{z̃1, . . . , z̃N} = {z1, . . . , z1, z2, . . . , z2, . . . , zn, . . . , zn},

where zi appears ni times and

N =

n∑
i=1

ni =

n∑
i=1

⌈m
Λ2

{
h(zi, π

∗
i,1(xi))− h(zi, π

∗
i,2(xi))

}2⌉ ≤ m+ n.
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By definition, there exists a policy set S0 to be a γ2-cover of Π the Hamming distance with respect to x̃ := {x̃1, . . . , x̃N}
such that |S0| = N0. As a result, for any π ∈ Π, there exists π′ ∈ S0 such that H(π, π′; x̃) ≤ γ2. On the other hand,

H(π, π′; x̃) =
1

N

N∑
i=1

1{π(x̃i) ̸= π′(x̃i)}

(i)
=

1

N

n∑
i=1

ni1{π(xi) ̸= π′(xi)}

≥ 1

N

n∑
i=1

m

Λ2

{
h(zi, π

∗
i,1(xi))− h(zi, π

∗
i,2(xi))

}2 · 1{π(xi) ̸= π′(xi)}

(ii)
≥ 1

N

n∑
i=1

m

Λ2

{
h(zi, π(xi))− h(zi, π

′(xi))
}2 · 1{π(xi) ̸= π′(xi)}

(iii)
=

1

N

n∑
i=1

m

Λ2

{
h(zi, π(xi))− h(zi, π

′(xi))
}2

.

Above, step (i) and (ii) follow from the choice of z̃ and (π∗
i,1, π

∗
i,2), respectively; step (iii) is because when π(xi) = π′(xi),

h(zi, π(xi)) = h(zi, π(x
′
i)). By the definition of the ℓ2 distance and that N ≤ m+ n, we further have

γ2 ≥ H(π, π′; x̃) ≥ m

(m+ n)
ℓ2(π, π′; z).

Since m is arbitrary, we take m to infinity and have ℓ2(π, π
′; z) ≤ γ. By definition, S0 is a γ-cover of Π under ℓ2 with

respect to z1, . . . , zn, and therefore N2(γ,Π; z1, . . . , zn) ≤ NH(γ2,Π).

F.4. Proof of Lemma D.3

By Yang et al. (2022, Lemma B12), gδ(q) is differentiable in q, and

g′δ(q) = −
∂qDKL(g(q) ∥ q)
∂pDKL(g(q) ∥ q)

=
g(q)/q − (1− g(q))/(1− q)

log
(
g(q)/(1− g(q))

)
− log

(
q/(1− q)

) .
Also by Yang et al. (2022, Lemma B12), gδ(q) is convex in q, so g′δ(q) is increasing in q. Since q ∈ [0.4, 0.6], g′δ(q) ≥
g′δ(0.4). From the dual form, we can check that g(0.4) ≥ 0.1. Plugging in q = 0.4, we have

g′δ(0.4) =
g(0.4)
0.4 + g(0.4)

0.6 − 5/3

log
(
g(0.4)/(1− g(0.4))

)
− log(2/3)

=
g(0.4)/0.24− 5/3

log(g(0.4)/(1− g(0.4)))− log(2/3)
.

Since the function f(x) = x/0.24−5/3
log(x/(1−x))−log(2/3) is increasing in x for x ∈ (0, 0.4), we conclude that

g′δ(0.4) ≥
1/2.4− 5/3

log(1/9)− log(2/3)
≥ 1/2,

completing the proof.
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