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ABSTRACT

Large language models (LLMs) have demonstrated impressive ability in solving
complex mathematical problems with multi-step reasoning and can be further en-
hanced with well-designed in-context learning (ICL) examples. However, this po-
tential is often constrained by two major challenges in ICL: granularity mismatch
and irrelevant information. We observe that while LLMs excel at decomposing
mathematical problems, they often struggle with reasoning errors in fine-grained
steps. Moreover, ICL examples retrieved at the question level may omit critical
steps or even mislead the model with irrelevant details. To address this issue,
we propose BoostStep, a method that enhances reasoning accuracy through step-
aligned ICL, a novel mechanism that carefully aligns retrieved reference steps
with the corresponding reasoning steps. Additionally, BoostStep incorporates an
effective ”first-try” strategy to retrieve for exemplars highly relevant to the current
state of reasoning. BoostStep is a flexible and powerful method that integrates
seamlessly with chain-of-thought (CoT) and tree search algorithms, refining both
candidate selection and decision-making. Empirical results show that BoostStep
improves GPT-4o’s CoT performance by 4.6% across mathematical benchmarks,
significantly surpassing traditional few-shot learning’s 1.2%. Moreover, it can
achieve an additional 7.5% gain combined with tree search. Surprisingly, it en-
hances state-of-the-art LLMs to solve challenging math problems using simpler
examples. It improves DeepSeek-R1-671B and Qwen3-235B’s performance on
American Invitational Mathematics Examination (AIME) by 2.2% and 5.0% re-
spectively, leveraging simple examples only from the MATH dataset.

1 INTRODUCTION

Mathematical reasoning is a crucial and challenging task in the development of artificial intelligence.
It serves as an indicator of a model’s ability to perform complex reasoning and has a wide range of
applications, such as problem-solving, theorem proving, and scientific discovery.

When solving complex mathematical problems, cutting-edge LLMs often adopt a multi-step rea-
soning strategy. Specifically, they first decompose a complex problem into several simpler steps and
then solve each single step independently.

Through the analysis of error cases, we found that current SOTA models are relatively correct in
the step-dividing phase, that is, the model can know exactly what tasks should be completed in
each step. However, there are still a lot of mistakes within each reasoning step, such as wrong
formula use, wrong calculation, insufficient enumeration, etc. To quantitatively substantiate this
observation, we provide GPT-4o-mini with a ground truth reasoning process to determine whether
the error in another response was due to an overarching flawed reasoning approach or a deviation
within a particular step. In less advanced models like LLaMA-3.1-8B (Dubey et al., 2024), 91.3%
of errors originate from single-step reasoning. In more advanced models like GPT-4o, up to 99.2%
of errors are ascribable to some particular steps. This exaggerated proportion suggests that the
correctness of single-step reasoning is the bottleneck of reasoning capability.

Various approaches have been employed to improve reasoning correctness, such as producing chains
of thought through prompt engineering (Kojima et al., 2022; Wei et al., 2022), fine-tuning with
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mathematical data (Shao et al., 2024; Yang et al., 2024; Ying et al., 2024), or generating multiple
candidate reasoning paths using Tree Search Methods (Zhang et al., 2024b;a; Wang et al., 2024b).

Among those techniques, in-context learning is a particularly important one, which offers similar ex-
amples to provide detailed guidance. However, the examples retrieved by traditional problem-level
in-context learning are listed before the reasoning process, thereby lacking fine-grained guidance
during the reasoning process. Moreover, since the example problem can’t be identical to the new
one, the irrelevant steps in those examples may even become a distraction from the current reason-
ing, thus even negatively affecting the single-step reasoning capability for some specific steps.

To this end, we refine in-context learning from problem-level to step-level granularity to offer similar
example steps during an ongoing reasoning process for fine-grained step-aligned guidance. We also
ensure that the introduced example is still relevant at the step level to avoid distractions.

Firstly, we have constructed an example problem bank with step-level granularity based on reasoning
content instead of commonly adopted grammatical separation. This ensures the steps in the problem
bank are consistent with the actual reasoning steps, thereby providing more appropriate guidance.

Building on the step-level granularity within the example problem bank, we propose an approach
that incorporates in-context learning through a ”first-try” format during an on-going reasoning pro-
cess. For a given problem to be solved, we first break down the solving process into step-by-step
reasoning paths. During the reasoning of a single step, we first allow the model to attempt a ‘first
try’ to comprehend what the model currently needs to reason about. Based on this initial attempt, we
then search the problem bank to find similar steps that can guide the model to accurately output the
current step. This helps ensure a higher similarity between the retrieved examples and the current
step so the distraction from irrelevant steps can be avoided and the guidance effect can be improved.

Compared with traditional problem-level ICL, our method provides examples during the reasoning
process directly based on the steps to be solved, thereby offering more relevant guidance. It demon-
strates significant improvements over traditional few-shot learning across various benchmarks, with
an average increase of 3.4% on GPT-4o.

Moreover, our method also reduces the sensitivity to the similarity between the example and the
target problem, as two different problems can still share similar steps. Consequently, dissimilar
problems can still offer effective guidance. On multi-modal benchmarks with lower similarity to
example problems, traditional few-host learning has a detrimental effect, resulting in an accuracy
reduction of 0.9% on GPT-4o. In contrast, our approach still achieves an improvement of 2.8%.

Besides, BoostStep also shows a promising potential to improve the reasoning quality on harder
problems with simpler examples. With examples from MATH (Hendrycks et al., 2021), it helps
Deepseek-R1 and Qwen3-235B-Instruct-2507 (Yang et al., 2025) achieve an improvement of 2.2%
and 5.0% respectively on the much more challenging American Invitational Mathematics Examina-
tion (AIME) problems.

Moreover, our method is also highly compatible with various current reasoning strategies that em-
ploy step-level tree search. Typically, a tree-search method requires a reason model to generate
multiple step-level candidate reasoning paths and a critic model to evaluate the correctness of these
candidates. Our approach can be integrated into both aspects. Specifically, when the reason model
generates new candidate reasoning nodes, our method can introduce similar examples in the afore-
mentioned ‘first-try’ manner to improve the accuracy of candidates. Additionally, it can aid the critic
model by incorporating similar example steps into the evaluation of candidate reasoning processes
to provide similar guidance. Experiments indicate that both applications contribute positively and
bring about an improvement of 8.5% jointly on GPT-4o.

2 RELATED WORKS

Mathematical Reasoning. Mathematical reasoning has long been a challenging task in artificial
intelligence. Early methods (Feigenbaum et al., 1963; Fletcher, 1985) attempted to perform sim-
ple mathematical reasoning through rule-based methods. With the advent of large language models
with enhanced reasoning capabilities, contemporary approaches typically focus on enhancing per-
formance during both the training and inference phases. The first category improves mathematical
capability by fine-tuning with more high-quality mathematical data (Shao et al., 2024; Yang et al.,
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2024; Lewkowycz et al., 2022; Yue et al., 2023; Xu et al., 2024). However, it demands substantial
high-quality mathematical data and computational resources. Consequently, more efforts have been
put into exploring various techniques during inference to enhance mathematical reasoning perfor-
mance. Some work (Wei et al., 2022; Kojima et al., 2022) involves prompt engineering to enable
models to generate comprehensive chains of thought. Others (Madaan et al., 2024; Gou et al., 2023;
Ke et al., 2024) use self-refinement techniques to revise the initial reasoning outputs.

Step-level Mathematical Reasoning. Recently, many studies have shifted the granularity of math-
ematical reasoning from the problem level to the step level. This approach involves addressing each
next step individually and completing small segments of reasoning within the overall task. These
works often employ tree searching strategies like Tree of Thoughts (ToT) (Yao et al., 2024; Besta
et al., 2024) or Monte Carlo Tree Search (Zhang et al., 2024b;a; Chen et al., 2024; Feng et al., 2023;
Zhu et al., 2022), extending multiple steps to optimize step answers and ultimately obtain the op-
timal solution. Additionally, Process-Supervised Models (Lightman et al., 2023; Luo et al., 2024)
are frequently used to verify the correctness of new candidate steps in real-time and prune reasoning
paths. This more detailed auxiliary strategy demonstrates greater potential.

ICL in Mathematical Reasoning. In-context learning can provide low-cost guidance through
similar examples. However, research on in-context learning within mathematical reasoning tasks re-
mains insufficient. Typically, this approach involves providing the model with similar problems and
their ground truth solutions to offer a general strategy for solving new problems (Hendrycks et al.,
2021; Wei et al., 2022). Some efforts have been made to improve the relevance of retrieved examples
by designing better retrieval mechanisms (Liu et al., 2024b). Others try to provide high-level con-
text instead to improve the generalizability (Wu et al., 2024). Some recent approaches (Dong et al.,
2024) introduce ICL into an on-going reasoning. However, all these methods share a common lim-
itation: the lack of fine-grained step-level guidance.They still perform ICL in problem granularity
and thus may not offer effective guidance for single-step reasoning.

3 STEP-LEVEL IN-CONTEXT LEARNING

3.1 REVISITING IN-CONTEXT LEARNING FROM CONDITIONAL PROBABILITY

Current models often employ next-token prediction for training and inference, where the conditional
probability is central to the model’s generation of the next token. Given a problem q, a model’s
reasoning process can be represented by rpredict = argmax

r
Pmodel(r | q), where we train the

model to get a better conditional probability Pmodel so that rpredict can be closer to the ground truth
answer rgt = argmax

r
Pgt(r | q).

In-context learning provides the model with conditional probabilities similar to the ground truth
answer for imitation without changing the probability model Pmodel. Specifically, an example
problem q′ and its corresponding correct solution r′ is provided and it can be posited that the
conditional probability P (r′ | q′) is similar to the probability of the ground truth answer of
the target problem P (rgt | q). Consequently, the model will imitate this similar example and
r′predict = argmax

r
Pmodel(r | q, q′, r′) will be closer to rgt comparing to rpredict.

However, given that the actual reasoning process r can be highly complex, the complete reasoning
process is often divided into multiple steps s1, s2, . . .. Step-level reasoning iteratively guides the
model to generate the next step s0−shot

i+1 = argmax
s

Pmodel(s | q, s1, s2, . . . , si).

At the step granularity, examples retrieved based on the problem q are evidently insufficient for
providing appropriate guidance. Similar problem q′ may not necessarily contain the correspond-
ing steps to guide the reasoning for the new problem q. Moreover, irrelevant steps may provide
dissimilar conditional probabilities, thereby distracting the model’s reasoning process.

To this end, we propose step-aligned in-context learning and a first-try strategy to provide detailed
and relevant example steps when in step-level reasoning. Specifically, when generating new steps
si+1 based on previous reasoning steps si, si−1, . . . , s1 and question q, we first utilize a first-try
strategy to obtain an approximate estimate of sfirsti+1 . Then, we use this sfirsti+1 to retrieve a similar step
s′n+1 along with the corresponding q′, s′1, s

′
2, . . . , s

′
n. Since these two steps are similar, a very rea-
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Figure 1: Our strategy refines in-context learning from problem-level granularity (fig.a) to step-level
granularity(fig.b) to provide more real-time fine-grained guidance. Moreover, our strategy can guide
the reasoning and verifying process in tree-searching strategies by introducing examples.

sonable assumption is that P (s′n+1 | q′, s′1, . . . , s′n) closely approximates P (sgti+1
| q, s1, . . . , si).

Therefore, the generated step si+1 = argmax
s

Pmodel(s | q, s1, . . . , si, q′, s′1, . . . , s′n, , s′n+1, ) will

be more closed to sgti+1
comparing to s0−shot

i+1 . Details about our step-level in-context learning and
first-try strategy will be explained in Sec. 3.3

3.2 STEP-LEVEL EXAMPLE PROBLEM BANK

Current open-source mathematical data no longer consist solely of problems and their final answers
to determine whether the final answer obtained is correct or not. Instead, they also provide detailed
solution processes to provide more fine-grained measurements. However, most current open-source
mathematical data still do not break down the solution processes to the step level.

A major advantage of decomposing the question example bank into individual steps is that it facil-
itates step-level retrieval and guidance, which is of significant importance. As illustrated in Fig. 2,
two distinctly different problems may contain similar key steps. Traditional problem-level in-context
learning often overlooks such examples, whereas step-level in-context learning can effectively recall
these steps, thereby providing fine-grained guidance to the ongoing reasoning process.

How to derive different steps from a complete solution is of great importance. Some ap-
proaches (Lightman et al., 2023) proposed using a clear semantic delimiter like the period ’.’ or
a new line to segment steps. This allows for the quick decomposition without any additional assis-
tance. However, this simple decomposition mode is obviously unreliable. A single reasoning step
should have a consistent target and a complete thought process, making it the atomic granularity of
reasoning. Using semantic delimiter may disrupt this atomicity. For example, it may split a complete
enumeration for the same objective into multiple steps.

Therefore, we suggest that the most appropriate method for step segmentation is to allow the reason
model itself to autonomously decompose the process. This approach ensures that the granularity of
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Figure 2: Different problems may contain similar steps. Problem-level in-context learning will
ignore this example due to low problem similarity. In contrast, our step-level in-context learning
strategy can introduce the core skills by step-level retrieval and guidance.
the decomposed steps in example problem bank aligns with that of the real-time reasoning steps.
Specifically, we define the concept of a step through prompts, which encapsulate a complete and
simple inference. This guides GPT-4o in decomposing the answer at the step level.

We demonstrate some specific examples of different step-dividing strategies in Sec. 4.2.

3.3 STEP-LEVEL ICL WITH FIRST-TRY STRATEGY

The core challenge of in-context learning lies in how to effectively retrieve relevant problems or steps
for effective guidance. This is contingent upon both the similarity between the problem database
and the target problem, as well as the retrieval strategy employed. Traditional problem-level in-
context learning involves retrieving similar problems based solely on the problem statement, which
straightforward but effective, as similar problems typically encompass similar reasoning processes.

At the more granular step level, however, the situation becomes much more complex. A sim-
ple strategy is to perform retrieval using the given problem and all preceding reasoning steps
si−1, si−2, . . . , s1, q. The clear drawback of this method is the excessive length of the retrieval
content, which diminishes the emphasis on the uniqueness of the current step. Another strategy is to
use the previous step si−1 to retrieve s′j−1 from a step-level database, thereby guiding the reason-
ing of si through the correct resolution of s′j . However, this approach is rather crude, as it models
step-level reasoning as a Markov process, which is evidently unreasonable. Similar steps can be
applicable to different reasoning tasks, and therefore similarity in the previous step does not neces-
sarily indicate that the retrieved subsequent step will provide valuable guidance for the reasoning in
the current step.

To this end, we propose a straightforward and effective ”first-try” strategy to enhance the similarity
of search steps. Our premise is that the most accurate way to estimate the next step is to actually
allow the model to attempt the reasoning for the next step. Specifically, given a problem q and all
preceding reasoning steps si−1, si−2, . . . , s1, we first instruct the model to attempt continuing the
reasoning process to arrive at a tentative step stryi without the aid of any examples. Subsequently,
we use stryi to retrieve similar steps s′j along with their corresponding problem q′ and preceding
steps s′1, . . . , s

′
j−1 from a step-level database. Finally, we feed the retrieved similar steps back to the

model, enabling it to deduce the final step si. Besides, we add a widely accepted strategy reference
rejection. Specifically, if the similarity of the retrieved most similar example remains below a cer-
tain threshold, we consider that there are no sufficiently similar examples available for reference and
we do not provide any examples to avoid the negative effects associated with incoherent in-context
learning. This ”try-retrieve-reason” strategy significantly enhances retrieval relevance, thereby im-
proving reasoning effectiveness. Experiments in Sec. 4.3 compare our method with several other
retrieval strategies, demonstrating our superiority.

3.4 STEP-LEVEL GUIDANCE IN TREE SEARCH

Our step-level in-context learning can significantly enhance the model’s single-step reasoning capa-
bility, which makes it easily integrated into common step-level tree-search strategies.
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Table 1: BoostStep generalizes across models and benchmarks. Comparison of different ICL
strategies on different benchmarks on GPT-4o, Qwen2.5-Math-72B-Instruct and Qwen3-32B.

Model Method MATH AMC12 AMC10 AQUA MathBench(C) MathBench(H) Olympiad Avg

GPT-4o
0-shot 73.4 53.6 55.8 81.1 80.0 77.3 40.6 66.0

few-shot 73.8 56.5 56.7 83.9 80.7 79.3 39.3 67.2 (+1.2)
Ours 76.4 63.0 60.4 85.4 82.0 84.0 43.3 70.6 (+4.6)

Qwen2.5
Math-72B

0-shot 83.0 67.4 67.7 84.6 80.6 82.0 49.7 73.6
few-shot 83.8 67.4 66.8 85.0 81.3 82.7 49.9 73.8 (+0.2)

Ours 85.2 69.2 69.6 86.6 82.7 84.7 52.7 75.8 (+2.2)

Qwen3-32B
0-shot 85.4 66.6 66.8 83.9 83.3 84.7 56.6 75.3

few-shot 86.0 64.5 66.3 85.1 86.7 80.0 53.9 74.6 (-0.7)
Ours 87.6 68.9 69.1 85.1 90.7 87.3 57.0 78.0 (+2.7)

Generally, tree search methods necessitate two key components: a reason model that generates
step-level reasoning and a Process-Supervised Reward Model (PRM) that continuously evaluates
the current reasoning step in real time. Our method is beneficial for both of these components. It
enhances the step-level reasoning performed by the reason model and improves the effectiveness of
the PRM in evaluating current reasoning steps.

For the reason model, tree search methods inherently require step-by-step reasoning expansion.
When expanding at node si, we can apply the previously mentioned strategy: the model performs
n first tries and retrieve for n example steps. For each example, the model then completes the
reasoning to generate n child nodes s1i+1, . . . , s

n
i+1 with the help of these examples. Similarly, our

strategy can improve the accuracy of individual nodes sji+1.

Evidently, judgment ability is closely related to reasoning ability. Therefore, since our strategy can
enhance the accuracy of single-step reasoning, a reasonable assumption is that introducing appropri-
ate example steps can improve the PRM’s ability to assess the correctness of the current reasoning
process. In particular, when evaluating the correctness of an inference step candidate sji , we re-
trieve similar steps s′k along with their corresponding preceding steps s′k−1, . . . , s

′
1 and question q′

from the step-level example bank. Similarly, the probability distributions P (s′k|s′k−1, . . . , s
′
1, q

′)
and P (sgti |si−1, . . . , s1, q) exhibit similarities. This resemblance aids in assessing the discrepancy
between sji and sgti , thereby enhancing the accuracy of the critic model’s evaluations.

Detailed ablation experiments in Sec. 4.4 demonstrate that both strategies contribute positivel.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Reasoning Model. We conducted experiments on different reasoning models including GPT-
4o (Hurst et al., 2024), which is our primary model, Qwen2.5-Math-72B-Instruct (Yang et al.,
2024), Qwen3-32B (Yang et al., 2025) and SOTA rasoning models Qwen-QwQ-32B (Team, 2024),
DeepSeek-R1-671B (Guo et al., 2025) and Qwen3-235B-A22B-Instruct-2507 (Yang et al., 2025).

Evaluation Benchmark. We tested our approach on several challenging open-source mathematical
benchmarks. More details are listed in the appendix.

Example Problem Bank. The problems and the solutions are obtained from PRM800K (Lightman
et al., 2023). Then we use our step-dividing strategy discussed above to divide example steps.

Retriever. We utilized the TF-IDF strategy as the retriever. The TF-IDF weight matrix is derived
from the example problem bank because the impact of the newly generated step is negligible.

Hyper-Parameters. The temperature value is 0 in all the experiments except 0.3 at step-level tree
search. The reference rejection threshold is 0.7. The shot number for traditional ICL is 4.

Prompt. The specific prompts are listed in the appendix.
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Table 2: BoostStep enables “simple-aids-complex”.
Simpler examples from PRM800K can guide LLMs on
much more challenging AIME.

Model Method AIME23 AIME24

QwQ-32B
0-shot 38.9 43.3

few-shot 33.3 (-5.6) 38.9 (-4.4)
Ours 41.1 (+2.2) 47.8 (+4.5)

DeepSeek-R1
0-shot 75.6 80.0

few-shot 65.6 (-10.0) 70.0 (-10.0)
Ours 77.8 (+2.2) 82.2 (+2.2)

Qwen3-235B
Instruct-2507

0-shot 70.0 70.0
few-shot 66.7 (-3.3) 66.7 (-6.6)

Ours 73.3 (+3.3) 76.7 (+6.7)

Table 3: BoostStep generalizes across
modality. Plain-text examples from
PRM800K can provide effective guid-
ance for MLLMs when solving multi-
modal mathematical problems from
MathVision and MathVerse, while tra-
ditional few-shot learning may even
have negative impact.

Method MathVision MathVerse

0-shot 30.6 53.2
few-shot 28.7 (-1.9) 53.2 (0.0)

Ours 35.2 (+4.6) 54.2 (+1.0)

Figure 3: Our step division can provide complete and clear example steps as we divide the steps
based on the reasoning content. By contrast, previous grammar-based dividing strategy may result
in meaningless or even incorrect steps.

4.2 MAIN RESULTS

BoostStep generalizes across models. We evaluate BoostStep as a model-agnostic strategy across
both general-purpose and math-specialized LLMs. As shown in Tab. 1, BoostStep brings consistent
improvements to both GPT-4o and Qwen-Math, demonstrating its broad applicability. The perfor-
mance gains across all benchmarks confirm that BoostStep does not rely on model-specific tuning
or architectural assumptions, but instead offers universally beneficial step-level guidance.

BoostStep generalizes to out-of-bank benchmarks. Notably, the example bank used by BoostStep
is constructed solely from the PRM800K training set (i.e., MATH500), yet the method achieves
strong performance across a wide range of math benchmarks. This out-of-distribution generaliza-
tion highlights the robustness of the step-level design: even when benchmark distributions differ,
BoostStep increases the likelihood of identifying transferable intermediate steps, enabling effective
reasoning in unfamiliar problem domains.

BoostStep enables “simple-aids-complex”. As shown in Tab. 1 and Tab. 2, although the exam-
ple bank is constructed from PRM800K—an easier dataset than the evaluated benchmarks—the
step-level design still provides valuable guidance for solving specific steps within complex math
problems. This demonstrates that even a relatively simple bank can effectively enhance model per-
formance on more challenging tasks by offering transferable step-wise insights.

SOTA reasoning LLMs also benefit from BoostStep. While SOTA reasoning LLMs already ex-
hibit strong performance on complex mathematical problems, BoostStep can still bring gains by
providing accurate step-level guidance, as evidenced in Tab. 2. In contrast, traditional few-shot
learning often fails to deliver effective support, highlighting the unique advantages of BoostStep’s
structured, step-wise assistance even for advanced models.

BoostStep generalizes across modality. Despite differences in input modality, multi-modal math-
ematical reasoning still follows a step-by-step logical process. BoostStep leverages this shared
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Table 4: Comparing Booststep with some step-level reasoning
strategies without In-context learning.

Method MATH AMC12 AMC10 Avg
ToT 77.8 58.7 59.0 65.17

Self-Refine 73.0 51.4 54.8 59.73
Ours 76.4 63.0 60.4 66.60

Table 5: Comparing BoostStep
with other advanced ICL methods.

Method MATH
IDS 74.2

LMS3 75.2
Ours 76.4

Table 6: Robustness toward bank quality. Exper-
iments on the sensitivity of the similarity between
questions and examples. R t indicates that the exam-
ples are the t th similar without any rejection.

Method Math-level5 AMC12 AMC10

0-shot 50.7 53.6 55.8

few-shot R 1 52.2 (+1.5) 56.5 (+2.9) 56.7 (+0.9)
few-shot R 4 46.3 (-4.4) 52.2 (-1.4) 53.7 (-2.1)

Ours R 1 56.0 (+5.3) 62.3 (+8.7) 60.4 (+4.6)
Ours R 4 52.2 (+1.5) 61.6 (+8.0) 58.1 (+2.3)

Table 7: Effectiveness of our First-Try
Strategy. We compare our strategy with
two other step-level retrieval strategies.
’Path’ represents using the complete reason-
ing path si−1, . . . , s1 while ’Pre-Step’ rep-
resents using the previous step si−1.

Strategy AMC12 AMC10 MATH

Path 56.5 58.1 73.8
Pre-Step 57.2 56.7 74.0
First-try 63.0 60.4 76.4

structure to provide effective guidance when applied to multi-modal benchmarks. We evaluate our
method on MathVision (Wang et al., 2024a) and MathVerse (Zhang et al., 2025), using the plain-
text examples from PRM800K. As shown in Tab. 3, traditional few-shot prompting at the problem
level not only fails to improve performance but may even degrade reasoning quality. In contrast,
BoostStep consistently delivers substantial gains, demonstrating its ability to bridge modality gaps
and support systematic reasoning under more complex, visually grounded scenarios.

BoostStep outperforms other advanced strategies. We compare our BoostStep with step-level
reasoning strategies without ICL in Tab. 4 and other advanced ICL strategies in Tab. 5. For step-
level reasoning without ICL, we follow the settings in our paper and reproduced the performance
of the GPT-4o model on Tree of Thoughts (Yao et al., 2024) and Step-level Self-Refine (Madaan
et al., 2024) methods across the AMC10, AMC12, and MATH500 test sets. For other advanced ICL
methods, since these methods are not open-sourced, we are unable to reproduce and compare them
on a broader set of test datasets. Therefore, we compare our results on the MATH dataset with the
accuracy reported in the LSM3 (Liu et al., 2024b) and IDS (Qin et al., 2023) papers.

4.3 ANALYSIS ON BOOSTSTEP

Robustness toward bank quality. The sensitivity toward the example bank quality is a fundamen-
tal challenge for ICL, and BoostStep significantly mitigates this sensitivity by providing step-level
guidance. Here we study its robustness quantitatively. As shown in Tab. 6, we decrease the similar-
ity by selecting the t th similar example during reasoning. We observe that traditional ICL suffers
from a severe decrease and is even worse than 0-shot learning when t is larger than 4. In contrast,
our method does not show a significant decline and is consistently better than the 0-shot reasoning.

Effectiveness of reasoning-based step division. To better align with the steps in reasoning, we pro-
pose constructing a step-level problem bank based on the reasoning content rather than grammatical
divisions. To prove our assumption, we compare our approach with a commonly used strategy that
constructs steps based on grammatical segmentation, using periods ’.’ as the delimiter, on the same
dataset PRM800K and under identical conditions. Results are presented in Tab. 8. Our method
largely outperforms those using periods as a delimiter. Fig. 3 demonstrates a specific example of
different step-dividing strategies. Dividing by grammatical separation may break a complete reason-
ing step into several incomplete fragments, thereby losing its guiding value. While ours can provide
complete and clear example steps.

Effectiveness of First-Try Strategy. The key factor of in-context learning lies in the relevance of
the retrieved examples. At the finer-grained step level, designing an appropriate retrieval strategy
becomes even more crucial and challenging. Therefore, we propose the first-try strategy, which
involves understanding what the model currently needs to reason about using a first attempt and then
searching the problem set for similar steps to guide the model in fully outputting the current step.
To validate the effectiveness of this method, we compare it with several other strategies mentioned
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Table 8: Comparison of different step-
level example problem Bank construction
methods. ’GS’ represents using Gram-
matical Separation ’.’ as delimiter while
our strategy use the reasoning content to
divide the steps.

Strategy AMC12 AMC10 MATH

GS 56.5 58.1 74.8
Ours 63.0 60.4 76.4

Table 9: Detailed ablation on incorporating retrieving
similar example steps during the reasoning and verify-
ing phases of step-level tree search methods.

Reason Verify AMC12 AMC10 MATH Avg
w/o tree-search 53.6 55.8 73.4 60.9

% % 58.7 59.0 77.8 65.2 (+4.3)
! % 64.4 62.2 79.2 68.6 (+7.7)
% ! 61.6 60.4 78.2 66.7 (+5.8)
! ! 65.2 63.6 79.4 69.4 (+8.5)

in Sec.3.3, retrieving by the entire reasoning path si−1, si−2, . . . , s1, q or only by the immediately
preceding step si−1. Tab. 7 presents the detailed result. Our method significantly outperforms the
other two strategies, better anticipating the content that needs to be inferred in the current step.

Efficiency. To provide appropriate examples at the step granularity, we have introduced more so-
phisticated reasoning and retrieval mechanisms. Therefore, the additional time cost also warrants
discussion. The extra cost is primarily attributable to the per-step retrieval and the first-try strategy.
Fortunately, owing to the adoption of appropriate strategies, neither introduces significant time costs.

For example retrieval, since the TF-IDF vectors of the example bank can be precomputed, what
needs to be encoded and computed during real-time reasoning is actually minimal, resulting in a
negligible time cost. Quantitatively, a single retrieval takes only a few milliseconds, which accounts
for less than 1% of the time required by any model.

For the first-try part, a rejection strategy is adopted: if the similarity of the most similar example step
is still below a certain threshold, we directly use the first-try as the inference content. This strategy
ensures the quality of the provided examples while also improving the efficiency of our approach.
Quantitively, the first-try attempt will only add 30% time cost to our reasoning.

Case Study. We provide a specific example of how Booststep improves single-step reasoning
through example steps in Sec. C in the appendix.

4.4 EXTENDING BOOSTSTEP TO TREE SEARCH

The reasoning capability of the reason model and the verifying capability of the critic model are two
core factors of step-level tree search methods, and our strategy can bring benefits in both ways. On
one hand, it can improve the accuracy of generating candidate nodes using the previously mentioned
first-try strategy when reasoning nodes are generated. On the other hand, it can increase the accuracy
of evaluation by introducing similar examples during critic model assessments and therefore ensures
that the correct reasoning nodes are more likely to be preserved. These can be decoupled, allowing
us to demonstrate the effectiveness of each component through ablation studies.

We utilize GPT-4o as the reason model, GPT-4o-mini as the PRM and adopt the Pairwise Preference
Reward Model (PPRM) configuration (Zhang et al., 2024b). Detailed settings of our tree search
method will be listed in the appendix.

Tab. 9 presents the results of integrating in-context learning into the reasoning and evaluation phases
of Tree Search methods. The results of this ablation study indicate that introducing example steps
can enhance both the reasoning and verifying capabilities of tree search methods. Therefore both
approaches contribute to the improvement of overall reasoning performance.

5 CONCLUSION

We propose BoostStep, addressing two criticial challenges in previous In-Context Learning strate-
gies: granularity mismatch and irrelevant information. BoostStep can provide highly-related exam-
ples at the step granularity, thereby providing fine-grained guidance during an on-going reasoning.
BoostStep is a strong and general approach which can enhance the model’s reasoning capabilities
and reduce the sensitivity of the examples. It can break through the limitations of traditional ICL
like achieving ’simple-aids-complex’ and cross-modal guidance. Moreover, it can be applied in tree
search methods to enhance the reasoning and verifying capability.
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A DETAILED EXPERIMENT SETTING

A.1 PROMPT

Prompt for 0-shot COT: You are a professional math problem solver. Solve the problem step by
step and output the final answer within \\boxed{}.

Prompt for problem-level few-shot learning: You are a professional math problem solver. Solve
the problem step by step and output the final answer within \\boxed{}. In case you don’t know how
to solve it, I will give you example problems with their full solutions which you can refer to.

Example i:

Problem: xxx

Solution: xxx

Prompt for first-try in step-level COT: You are a professional math problem solver. I will give
you a math problem and part of its solution. And you need to only output the next step of the
solution, starting with ’Step i:’, where i is the step number. If you think that the final step is derived,
put the answer within \\boxed{}.

Prompt for step-level few-shot learning: You are a professional math problem solver. I will give
you a math problem and part of its solution. And you need to only output the next step of the
solution, starting with ’Step i:’, where i is the step number. In case you don’t know how to derive
the correct content, an example with ’Key Step’ will be given. You need to learn how ’Key Step’ is
derived, and implement similar strategy in your derivation procedure. If you think that the final step
is derived, put the answer within \\boxed{}.

Example Problem: xxx

Example Solution: Step 1: xxx, Step 2: xxx, ..., Step i (Key Step): xxx.

A.2 DETAILS OF GRADING AND METRICS

We follow the setting of Opencompass (Contributors, 2023) and VLMEvalKit (Duan et al., 2024).
Specifically, we first require the model to put the final answer within \\boxed{}. Then, we use GPT-
4o-mini as the judge model to compare the final answer with the ground truth answer. Compared
to string matching, this approach can eliminate some false negative evaluations because the same
mathematical expression can be expressed in many forms. If the model fails to follow the the
expected format in the prompt and the rule-based extraction fails, the solution is directly judged
as inconsistent with ground truth.

A.3 BENCHMARKS

We tested our approach on several mathematical benchmarks, including MATH500 (Hendrycks
et al., 2021), AQuA (Ling et al., 2017), OlympiadBench-TO (He et al., 2024) and MATHBench (Liu
et al., 2024a) and the real questions of American Invitational Mathematics Examination (AIME) in
year 2023 and 2024. Specifically, we use the Olympiad-TO (text-only) subset of OlympiadBench
and the application problems in college-level and high-level difficulty of MATHBench.

In addition, we collected problems from the AMC-10 and AMC-12 competitions to serve as more
challenging benchmarks. They include real questions from the 2018-2023 AMC exams.

For multi-modal math benchmarks, we use MathVision-Mini (Wang et al., 2024a) and vision-
dominant version of problems in MathVerse-Mini (Zhang et al., 2025).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 4: A specific example of adjusting reasoning during real-time inference through step-level
in-context learning. The first try uses a wrong equation while the retrieving example step guides the
model to use the correct equation and get the correct conclusion.

B DETAILED SETUP FOR EXAMPLE-GUIDED STEP-LEVEL TREE SEARCH

In the setup for tree search methods, we utilize GPT-4o as the reason model and employ GPT-
4o-mini as the Process-supervised Reward Model (PRM). For the PRM, we adopted the Pairwise
Preference Reward Model (PPRM) configuration (Zhang et al., 2024b). Specifically, PPRM trans-
forms the absolute rewards calculation into preference predictions between solutions to calculate
rewards. This approach reduces the variability associated with scoring characteristics and thus leads
to a more robust and consistent evaluation of different solutions.

The complete reasoning process in our experiment is as follows: we start with the target problem as
the root node and obtain two initial solution steps through sampling to serve as the two initial parent
nodes. In each step-level reasoning phase, we expand these two parent nodes through sampling,
generating four candidate child nodes. Using the PPRM, we select the two child nodes with higher
confidence to become the parent nodes for the next step of reasoning. This process continues until
both candidate nodes have completed their reasoning paths, resulting in the final answers. Finally,
PPRM is used to select the ultimate answer from these two reasoning paths.

C CASE STUDY

Here we demonstrate a specific example of how our step-level in-context learning boosts step-level
reasoning. Given the question, we first let the model have a first try on step one. Unfortunately,
because the model is unfamiliar with trigonometric functions, it makes an error on the tangent sum
formula, therefore leading to a wrong step. However, we can get a rough idea of what the model
wants to calculate at this step according to the first try. Then, we find a similar step that correctly
leverages the tangent sum formula in the step-level example problem bank. Therefore, with the
guidance provided, the model correctly applied the tangent sum formula during the second reasoning
attempt and arrived at the correct answer.
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