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ABSTRACT

We introduce a novel optimization algorithm for image recovery under learned
sparse and low-rank constraints, which we parameterize as weighted extensions of
the ℓpp-vector and Sp

p Schatten-matrix quasi-norms for 0< p≤ 1, respectively. Our
proposed algorithm generalizes the Iteratively Reweighted Least Squares (IRLS)
method, used for signal recovery under ℓ1 and nuclear-norm constrained mini-
mization. Further, we interpret our overall minimization approach as a recurrent
network that we then employ to deal with inverse low-level computer vision prob-
lems. Thanks to the convergence guarantees that our IRLS strategy offers, we
are able to train the derived reconstruction networks using a memory-efficient
implicit back-propagation scheme, which does not pose any restrictions on their
effective depth. To assess our networks’ performance, we compare them against
other existing reconstruction methods on several inverse problems, namely image
deblurring, super-resolution, demosaicking and sparse recovery. Our reconstruc-
tion results are shown to be very competitive and in many cases outperform those
of existing unrolled networks, whose number of parameters is orders of magnitude
higher than that of our learned models. The code is available at this link.

1 INTRODUCTION

With the advent of modern imaging techniques, we are witnessing a significant rise of interest in
inverse problems, which appear increasingly in a host of applications ranging from microscopy
and medical imaging to digital photography, 2D&3D computer vision, and astronomy (Bertero &
Boccacci, 1998). An inverse imaging problem amounts to estimating a latent image from a set of
possibly incomplete and distorted indirect measurements. In practice, such problems are typical ill-
posed (Tikhonov, 1963; Vogel, 2002), which implies that the equations relating the underlying image
with the measurements (image formation model) are not adequate by themselves to uniquely char-
acterize the solution. Therefore, in order to recover approximate solutions, which are meaningful in
a statistical or physical sense, from the set of solutions that are consistent with the image formation
model, it is imperative to exploit prior knowledge about certain properties of the underlying image.

Among the key approaches for solving ill-posed inverse problems are variational methods (Benning
& Burger, 2018), which entail the minimization of an objective function. A crucial part of such an
objective function is the regularization term, whose role is to promote those solutions that fit best
our prior knowledge about the latent image. Variational methods have also direct links to Bayesian
methods and can be interpreted as seeking the penalized maximum likelihood or the maximum a
posteriori (MAP) estimator (Figueiredo et al., 2007), with the regularizer matching the negative
log-prior. Due to the great impact of the regularizer in the reconsturction quality, significant re-
search effort has been put in the design of suitable priors. Among the overwhelming number of
existing priors in the literature, sparsity and low-rank (spectral-domain sparsity) promoting priors
have received considerable attention. This is mainly due to their solid mathematical foundation and
the competitive results they achieve (Bruckstein et al., 2009; Mairal et al., 2014).

Nowdays, thanks to the advancements of deep learning there is a plethora of networks dedicated
to image reconstruction problems, which significantly outperform conventional approaches. Nev-
ertheless, they are mostly specialized and applicable to a single task. Further, they are difficult to
analyze and interpret since they do not explicitly model any of the well-studied image properties,
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successfully utilized in the past (Monga et al., 2021). In this work, we aim to harness the power of
supervised learning but at the same time rely on the rich body of modeling and algorithmic ideas that
have been developed in the past for dealing with inverse problems. To this end our contributions are:
(1) We introduce a generalization of the Iterative Reweighted Least Squares (IRLS) method based
on novel tight upper-bounds that we derive. (2) We design a recurrent network architecture that ex-
plicitly models sparsity-promoting image priors and is applicable to a wide range of reconstruction
problems. (3) We propose a memory efficient training strategy based on implicit back-propagation
that does not restrict in any way our network’s effective depth.

2 IMAGE RECONSTRUCTION

Let us first focus on how one typically deals with inverse imaging problems of the form:
y = Ax+ n, (1)

where x∈Rn·c is the multichannel latent image of c channels, that we seek to recover, A : Rn·c →
Rm·c′ is a linear operator that models the impulse response of the sensing device, y ∈ Rm·c′ is
the observation vector, and n∈Rm·c′ is a noise vector that models all approximation errors of the
forward model and measurement noise. Hereafter, we will assume that n consists of i.i.d samples
drawn from a Gaussian distribution of zero mean and variance σ2

n. Note that despite of the seeming
simplicity of this observation model, it is widely used in the literature, since it can accurately enough
describe a plethora of practical problems. Specifically, by varying the form of A, Eq. (1) can cover
many different inverse imaging problems such as denoising, deblurring, demosaicking, inpainting,
super-resolution, MRI reconstruction, etc. If we further define the objective function:

J (x) = 1
2σ2

n
∥y −Ax∥22 +R (x) , (2)

where R :Rn·c→R+={x ∈ R|x ≥ 0} is the regularizer (image prior), we can recover an estimate
of the latent image x∗ as the minimizer of the optimization problem: x∗ = argminx J (x). Since
the type of the regularizer R (x) can significantly affect the reconstruction quality, it is of the utmost
importance to employ a proper regularizer for the reconstruction task at hand.

2.1 SPARSE AND LOW-RANK IMAGE PRIORS

Most of the existing image regularizers in the literature can be written in the generic form:

R (x) =

ℓ∑
i=1

ϕ (Gix) , (3)

where G :Rn·c→Rℓ·d is the regularization operator that transforms x, Gi=MiG, Mi=Id⊗eTi
with ⊗ denoting the Kronecker product, and ei is the unit vector of the standard Rℓ basis. Further,
ϕ : Rd → R+ is a potential function that penalizes the response of the d-dimensional transform-
domain feature vector, zi = Gix ∈ Rd. Among such regularizers, widely used are those that
promote sparse and low-rank responses by utilizing as their potential functions the ℓ1 and nuclear
norms (Rudin et al., 1992; Figueiredo et al., 2007; Lefkimmiatis et al., 2013; 2015). Enforcing spar-
sity of the solution in some transform-domain has been studied in-depth and is supported both by
solid mathematical theory (Donoho, 2006; Candes & Wakin, 2008; Elad, 2010) as well as strong
empirical results, which indicate that distorted images do not typically exhibit sparse or low-rank
representations, as opposed to their clean counterparts. More recently it has also been advocated
that non-convex penalties such as the ℓpp vector and Sp

p Schatten-matrix quasi-norms enforce spar-
sity better and lead to improved image reconstruction results (Chartrand, 2007; Lai et al., 2013;
Candes et al., 2008; Gu et al., 2014; Liu et al., 2014; Xie et al., 2016; Kümmerle & Verdun, 2021).

Based on the above, we consider two expressive parametric forms for the potential function ϕ (·),
which correspond to weighted and smooth extensions of the ℓpp and the Schatten matrix Sp

p quasi-
norms with 0 < p ≤ 1, respectively. The first one is a sparsity-promoting penalty, defined as:

ϕsp (z;w, p) =

d∑
j=1

wj

(
z2
j + γ

) p
2 , z,w ∈ Rd, (4)

while the second one is a low-rank (spectral-domain sparsity) promoting penalty, defined as:

ϕlr (Z;w, p) =

r∑
j=1

wj

(
σ2
j (Z) + γ

) p
2 ,Z ∈ Rm×n,w ∈ Rr

+, with r = min (m,n) . (5)
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In both definitions γ is a small fixed constant that ensures the smoothness of the penalty functions.
Moreover, in Eq. (5) σ (Z) denotes the vector with the singular values of Z sorted in decreasing
order, while the weights w are sorted in increasing order. The reason for the latter order is that to
better promote low-rank solutions we need to penalize more the smaller singular values of the matrix
than its larger ones. Next, we define our proposed sparse and low-rank promoting image priors as:

Rsp (x) =

ℓ∑
i=1

ϕsp (zi;wi, p) , (6a) Rlr (x) =

ℓ∑
i=1

ϕlr (Zi;wi, p) , (6b)

where in Eq. (6a) zi =Gix ∈ Rd, while in Eq. (6b) Zi ∈ Rc×q is a matrix whose dependence on
x is expressed as: vec (Zi) = Gix ∈ Rd, with d = c ·q. In words, the j-th row of Zi is formed
by the q-dimensional feature vector Z(j,:)

i extracted from the image channel xj , j = 1,. . . ,c. The
motivation for enforcing the matrices Zi to have low-rank is that the channels of natural images are
typically highly correlated. Thus, it is reasonable to expect that the features stored in the rows of Zi,
would be dependent to each other. We note that a similar low-rank enforcing regularization strategy
is typically followed by regularizers whose goal is to model the non-local similarity property of
natural images Gu et al. (2014); Xie et al. (2016). In these cases the matrices Zi are formed in such
a way so that each of their rows holds the elements of a patch extracted from the image, while the
entire matrix consists of groups of structurally similar patches.

2.2 MAJORIZATION-MINIMIZATION STRATEGY

One of the challenges in the minimization of the overall objective function in Eq. (2) is that the
image priors introduced in Eq. (6) are generally non-convex w.r.t x. This precludes any guarantees
of reaching a global minimum, and we can only opt for a stationary point. One way to handle the
minimization task would be to employ the gradient descent method. Potential problems in such case
are the slow convergence as well as the need to adjust the step-size in every iteration of the algorithm,
so as to avoid divergence from the solution. Other possible minimization strategies are variable
splitting (VS) techniques such as the Alternating Method of Multipliers (Boyd et al., 2011) and Half-
Quadratic splitting (Nikolova & Ng, 2005), or the Fast Iterative Shrinkage Algorithm (FISTA) (Beck
& Teboulle, 2009). The underlying idea of such methods is to transform the original problem in
easier to solve sub-problems. However, VS techniques require finetuning of additional algorithmic
parameters, to ensure that a satisfactory convergence rate is achieved, while FISTA works-well under
the assumption that the proximal map of the regularizer (Boyd & Vandenberghe, 2004) is not hard
to compute. Unfortunately, this is not the case for the regularizers considered in this work.

For all the above reasons, here we pursue a majorization-minimization (MM) approach (Hunter &
Lange, 2004), which does not pose such strict requirements. Under the MM approach, instead of
trying to minimize the objective function J (x) directly, we follow an iterative procedure where
each iteration consists of two steps: (a) selection of a surrogate function that serves as a tight upper-
bound of the original objective (majorization-step) and (b) computation of a current estimate of
the solution by minimizing the surrogate function (minimization-step). Specifically, the iterative
algorithm for solving the minimization problem x∗ = argminx J (x) takes the form: xk+1 =
argminx Q

(
x;xk

)
, where Q

(
x;xk

)
is the majorizer of the objective function J (x) at some

point xk, satisfying the two conditions:

Q
(
x;xk

)
≥ J (x) ,∀x,xk and Q

(
xk;xk

)
= J

(
xk
)
. (7)

Given these two properties of the majorizer, it can be easily shown that iteratively minimizing
Q
(
x;xk

)
also monotonically decreases the objective function J (x) (Hunter & Lange, 2004). In

fact, to ensure this, it only suffices to find a xk+1 that decreases the value of the majorizer, i.e.,
Q
(
xk+1;xk

)
≤ Q

(
xk;xk

)
. Moreover, given that both Q

(
x;xk

)
and J (x) are bounded from

below, we can safely state that upon convergence we will reach a stationary point.

The success of the described iterative strategy solely relies on our ability to efficiently minimize the
chosen majorizer. Noting that the data fidelity term of the objective is quadratic, we proceed by
seeking a quadratic majorizer for the image prior R (x). This way the overall majorizer will be of
quadratic form, which is amenable to efficient minimization by solving the corresponding normal
equations. Below we provide two results that allow us to design such tight quadratic upper bounds
both for the sparsity-promoting (6a) and the low-rank promoting (6b) regularizers. Their proofs are
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provided in Appendix A.1. We note that, to the best of our knowledge, the derived upper-bound
presented in Lemma 2 is novel and it can find use in a wider range of applications, which also utilize
low-rank inducing penalties (Hu et al., 2021), than the ones we focus here.
Lemma 1. Let x, y ∈ Rn and w ∈ Rn

+. The weighted-ℓpp function ϕsp (x;w, p) defined in Eq. (4)
can be upper-bounded as:

ϕsp (x;w, p) ≤ p

2
xTWyx+

pγ

2
tr (Wy) +

2−p

2
ϕsp (y;w, p) , ∀x,y (8)

where Wy = diag (w)
[
I ◦
(
yyT + γI

)] p−2
2 and ◦ denotes the Hadamard product. The equality

in (8) is attained when x = y.
Lemma 2. Let X,Y ∈Rm×n and σ(Y ) ,w ∈Rr

+ with r =min (m,n). The vector σ(Y ) holds
the singular values of Y in decreasing order while the elements of w are sorted in increasing order.
The weighted-Schatten-matrix function ϕlr (X;w, p) defined in Eq. (5) can be upper-bounded as:

ϕlr (X;w, p) ≤ p
2 tr

(
WY XXT

)
+ pγ

2 tr (WY ) + 2−p
2 ϕlr (Y ;w, p) , ∀X,Y (9)

where WY = U diag (w)UT
(
Y Y T + γI

) p−2
2 and Y = U diag (σ (Y ))V T, with U ∈ Rm×r

and V ∈ Rn×r. The equality in (9) is attained when X = Y .

Next, with the help of the derived tight upper-bounds we obtain the quadratic majorizers for both of
our regularizers as:

Qsp

(
x;xk

)
= p

2

ℓ∑
i=1

zT
i Wzk

i
zi, (10a) Qlr

(
x;xk

)
= p

2

ℓ∑
i=1

tr
(
ZT

i WZk
i
Zi

)
, (10b)

where zi and Zi are defined as in Eq. (6), Wzk
i
,WZk

i
are defined in Lemmas 1 and 2, respectively,

and we have ignored all the constant terms that do not depend on x. In both cases, by adding the
majorizer of the regularizer, Qreg

(
x;xk

)
, to the quadratic data fidelity term we obtain the overall

majorizer Q
(
x;xk

)
, of the objective function J (x). Since this majorizer is quadratic, it is now

possible to obtain the (k+1)-th update of the MM iteration by solving the normal equations:

xk+1 =

(
ATA+ p·σ2

n

ℓ∑
i=1

GT
i W

k
i Gi + αI

)−1 (
ATy + αxk

)
=
(
Sk + αI

)−1
bk, (11)

where α= δσ2
n, W k

i =Wzk
i
∈Rd×d for Rsp (x) , and W k

i =Iq⊗WZk
i
∈Rc·q×c·q for Rlr (x). We

note that, to ensure that the system matrix in Eq. (11) is invertible, we use an augmented majorizer
that includes the additional term δ

2

∥∥x− xk
∥∥2
2
, with δ > 0 being a fixed small constant (we refer

to Appendix A.1.1 for a justification of the validity of this strategy). This leads to the presence of
the extra term αI additionally to the system matrix Sk and of αxk in bk. Based on the above, the
minimization of J (x), incorporating any of the two regularizers of Eq. (6), boils down to solving
a sequence of re-weighted least squares problems, where the weights W k

i of the current iteration
are updated using the solution of the previous one. Given that our regularizers in Eq. (6) include the
weights wi ̸= 1, our proposed algorithm generalizes the IRLS methods introduced by Daubechies
et al. (2010) and Mohan & Fazel (2012), which only consider the case where wi = 1 and have been
successfully applied in the past on sparse and low-rank recovery problems, respectively.

3 LEARNING PRIORS USING IRLS RECONSTRUCTION NETWORKS

To deploy the proposed IRLS algorithm, we have to specify both the regularization operator G and
the parameters w = {wi}ℓi=1 , p of the potential functions in Eqs. (4) and (5), which constitute the
image regularizers of Eq. (6). Manually selecting their values, with the goal of achieving satisfactory
reconstructions, can be a cumbersome task. Thus, instead of explicitly defining them, we pursue the
idea of implementing IRLS as a recurrent network, and learn their values in a supervised way.
Under this approach, our learned IRLS-based reconstruction network (LIRLS) can be described as:
xk+1=fθ

(
xk;y

)
, with θ={G,w, p} denoting its parameters. The network itself consists of three

main components: (a) A feature extraction layer that accepts as input the current reconstruction
estimate, xk, and outputs the feature maps

{
zk
i = Gix

k
}ℓ
i=1

. (b) The weight module that acts on
zk
i and the parameters wi to construct the weight matrix W k

i , which is part of the system matrix
Sk in Eq. (11). (c) The least-squares (LS) layer whose role is to produce a refined reconstruction
estimate, xk+1, as the solution of Eq. (11). The overall architecture of LIRLS is shown in Fig. 1.
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Figure 1: The proposed LIRLS recurrent architecture.

3.1 NETWORK TRAINING

A common training strategy for re-
current networks is to unroll the net-
work using a fixed number of iter-
ations and update its parameters ei-
ther by means of back-propagation
through time (BPTT) or by its trun-
cated version (TBPTT) (Robinson &
Fallside, 1987; Kokkinos & Lefkim-
miatis, 2019). However, this strategy cannot be efficiently applied to LIRLS. The reason is that the
system matrix Sk in Eq. (11) typically is of huge dimensions and its direct inversion is generally in-
feasible. Thus, to compute xk+1 via Eq. (11) we need to rely on a matrix-free iterative linear solver
such as the conjugate gradient method (CG) (Shewchuk, 1994). This means that apart from the
IRLS iterations we need also to take into account the internal iterations required by the linear solver.
Therefore, unrolling both types of iterations would result in a very deep network, whose efficient
training would be extremely challenging for two main reasons. The first is the required amount of
memory, which would be prohibitively large. The second one is the problem of vanishing/exploding
gradients that appears in recurrent architectures (Pascanu et al., 2013), which would be even more
pronounced in the case of LIRLS due to its very deep structure.

To overcome these problems, we rely on the fact that our IRLS strategy guarantees the convergence
to a fixed point x∗. Practically, this means that upon convergence of IRLS, it will hold x∗ =
fθ (x

∗;y). Considering the form of our IRLS iterations, as shown in Eq. (11), this translates to:

g (x∗,θ) ≡ x∗ − fθ (x
∗;y) = S∗ (x∗,θ)x∗ −ATy = 0, (12)

where we explicitly indicate the dependency of S∗ on x∗ and θ. To update the network’s parameters
during training, we have to compute the gradients ∇θL (x∗) = ∇θx

∗∇x∗L (x∗), where L is a loss
function. Now, if we differentiate both sides of Eq. (12) w.r.t θ, then we get:

∂g (x∗,θ)

∂θ
+

∂g (x∗,θ)

∂x∗
∂x∗

∂θ
= 0 ⇒ ∇θx

∗ = −∇θg (x
∗,θ) (∇x∗g (x∗,θ))

−1
. (13)

Thus, we can now compute the gradient of the loss function w.r.t the network’s parameters as:

∇θL (x∗) = −∇θg (x
∗,θ)v, (14)

where v is obtained as the solution of the linear problem ∇x∗g (x∗,θ)v=∇x∗L (x∗) and all the
necessary auxiliary gradients can be computed via automatic differentiation. Based on the above,
we can train the LIRLS network without having to restrict its overall effective depth or save any
intermediate results that would significantly increase the memory requirements. The implementation
details of our network for both its forward and backward passes, are described in Algorithm 1 in
Sec. A.4. Finally, while our training strategy is similar in spirit with the one used for training Deep
Equilibrium Models (DEQ) (Bai et al., 2019), an important difference is that our recurrent networks
are guaranteed to converge to a fixed point, while in general this is not true for DEQ models.

3.2 LIRLS NETWORK IMPLEMENTATION

In this section we discuss implementation details for the LIRLS variants whose performance we
will assess on different grayscale/color image reconstruction tasks. As mentioned earlier, among the
parameters that we aim to learn is the regularization operator G. For all the different networks we
parameterize G with a valid convolution layer that consists of 24 filters of size 5 × 5. In the case
of color images these filters are shared across channels. Further, depending on the particular LIRLS
instance that we utilize, we either fix the values of the parameters w, p or we learn them during
training. Hereafter, we will use the notations ℓp,wp and Sp,w

p to refer to the networks that employ a
learned sparse-promoting prior and a learned low-rank promoting prior, respectively. The different
LIRLS instances that we consider in this work are listed below:
1. ℓ1/S1 (nuclear): fixed p=1, fixed w=1, where 1 is a vector of ones.
2. Weighted ℓw1 /Sw

1 (weighted nuclear): fixed p=1, weights w are computed by a weight prediction
neural network (WPN). WPN accepts as inputs either the features z0 = Ĝx0 for the grayscale
case or their singluar values for the color case, as well as the noise standard deviation σn. The
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Table 1: Comparisons on grayscale image deblurring.
Dataset TV-ℓ1 TV ℓ1 ℓpp ℓw1 ℓp,wp RED IRCNN FDN

Sun et al. (2013) PSNR 30.81 30.96 31.98 32.36 32.70 32.67 31.68 32.55 32.63
SSIM 0.8272 0.8351 0.8759 0.8849 0.8965 0.8960 0.8573 0.8860 0.8894

Levin et al. (2009) PSNR 34.74 34.92 35.19 35.33 35.75 35.60 35.19 32.86 35.08
SSIM 0.9552 0.9568 0.9600 0.9617 0.9647 0.9628 0.9584 0.9118 0.9609

Table 2: Comparisons on color image deblurring.
TVN VTV S1 Sp

p Sw
1 Sp,w

p RED IRCNN FDN DWDN
PSNR 31.71 31.38 33.09 34.17 33.95 34.24 31.38 33.19 32.51 34.09
SSIM 0.8506 0.8440 0.8995 0.9227 0.9179 0.9234 0.8233 0.9123 0.8857 0.9197

vector x0 is the estimate obtained after 5 IRLS steps of the pretrained ℓ1/S1 networks, while Ĝ
is their learned regularization operator. For all studied problems except of MRI reconstruction,
we use a lightweight RFDN architecture proposed by Liu et al. (2020) to predict the weights,
while for MRI reconstruction we use a lightweight UNet from Ronneberger et al. (2015), which
we have found to be more suitable for this task. For the Sw

1 network, in order to enforce the
predicted weights to be sorted in increasing order, we apply across channels of the ouput of
WPN a cumulative sum. In all cases, the number of parameters of WPN does not exceed 0.3M.

3. ℓpp/Sp
p : learned p∈ [0.4, 0.9], fixed w=1.

4. ℓp,wp /Sp,w
p : learned p∈ [0.4, 0.9], weights w are computed as described in item 2, with the only

difference being that both x0 and Ĝ are now obtained from the pretarained ℓpp/Sp
p networks.

We note that the output of the LS layer, which corresponds to the solution of the normal equations
in Eq. (11), is computed by utilizing a preconditioned version of CG (PCG) Hestenes & Stiefel
(1952). This allows for an improved convergence of the linear solver. Details about our adopted
preconditioning strategy are provided in Appendix A.2. Finally, in all the reported cases, the constant
δ related to the parameter α in Eq. (11) is set to 8e−4, while as initial solution for the linear solver
we use the output of an independently trained fast FFT-based Wiener filter.

3.3 TRAINING DETAILS

The convergence of the forward pass of LIRLS to a fixed point x∗ is determined according to the
criterion: ||S∗ (x∗,θ)x∗−ATy||2/||ATy||2 < 1e−4, which needs to be satisfied for 3 consecutive
IRLS steps. If this criterion is not satisfied, the forward pass is terminated after 400 IRLS steps
during training and 15 steps during inference. In the LS layers we use at most 150 CG iterations
during training and perform an early exit if the relative tolerance of the residual falls below 1e−6,
while during inference the maximum amount of CG iterations is reduced to 50. When training
LIRLS, in the backward pass, as shown in Eq. (14), we are required to solve a linear problem whose
system matrix corresponds to the Hessian of the objective function (2). This symmetric matrix is
positive definite when J (x) is convex and indefinite otherwise. In the former case we utilize the CG
algorithm to solve the linear problem, while in the latter one we use the Minimal Residual Method
(MINRES) (Paige & Saunders, 1975). We perform early exit if the relative tolerance of the residual
is below 1e−2 and limit the maximum amount of iterations to 2000. It should be noted that we have
experimentally found these values to be adequate for achieving stable training.

All our models are trained using as loss function the negative peak-to-signal-noise-ratio (PSNR)
between the ground truth and the network’s output. We use the Adam optimizer (Kingma & Ba,
2015) with a learning rate 5e−3 for all the models that do not involve a WPN and 1e−4 otherwise.
The learning rate is decreased by a factor of 0.98 after each epoch. On average we set the batch size
to 8 and train our models for 100 epochs, where each epoch consists of 500 batch passes.

4 EXPERIMENTS
In this section we assess the performance of all the LIRLS instances described in Sec. 3.2 on four
different image reconstruction tasks, namely image deblurring, super-resolution, demosaicking and
MRI reconstruction. In all these cases the only difference in the objective function J (x) is the
form of the degradation operator A. Specifically, the operator A has one of the following forms:
(a) low-pass valid convolutional operator (deblurring), (b) composition of a low-pass valid convo-
lutional operator and a decimation operator (super-resolution), (c) color filter array (CFA) operator
(demosaicking), and (d) sub-sampled Fourier operator (MRI reconstruction). The first two recovery
tasks are related to either grayscale or color images, demosaicking is related to color images, and
MRI reconstruction is related to single-channel images.
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Table 3: Comparisons on grayscale image super-resolution.
Scale Noise TV-ℓ1 TV ℓ1 ℓpp ℓw1 ℓp,wp Bicubic RED IRCNN USRNet

x2
0%

PSNR 26.23 28.04 28.20 27.98 28.76 28.31 24.74 28.34 28.48 28.58
SSIM 0.6937 0.8028 0.8064 0.7953 0.8186 0.8067 0.6699 0.8213 0.8324 0.8188

1%
PSNR 17.37 26.64 26.81 26.64 27.32 26.94 24.63 26.88 26.22 27.26
SSIM 0.2739 0.7320 0.7379 0.7292 0.7610 0.7470 0.6521 0.7275 0.6799 0.7607

x3
0%

PSNR 24.50 25.55 25.63 25.44 26.02 25.67 23.34 25.70 25.91 26.06
SSIM 0.5875 0.6825 0.6857 0.6741 0.6975 0.6832 0.5872 0.7006 0.7144 0.7101

1%
PSNR 14.26 24.62 24.67 24.48 25.03 24.79 23.26 24.81 24.70 25.07
SSIM 0.1812 0.6276 0.6306 0.6195 0.6472 0.6353 0.5739 0.6417 0.6219 0.6586

x4
0%

PSNR 22.51 24.07 24.09 23.92 24.16 24.10 22.27 24.15 23.72 23.30
SSIM 0.4773 0.6031 0.6052 0.5960 0.6061 0.6010 0.5342 0.6164 0.6168 0.6203

1%
PSNR 11.81 23.31 23.32 23.13 23.35 23.38 22.21 23.35 23.44 21.41
SSIM 0.1228 0.5627 0.5643 0.5551 0.5661 0.5648 0.5247 0.5731 0.5713 0.4945

Table 4: Comparisons on color image super-resolution.
Scale Noise TVN VTV S1 Sp

p Sw
1 Sp,w

p Bicubic RED IRCNN USRNet

x2
0%

PSNR 28.01 28.13 28.21 28.62 28.42 28.78 24.73 28.68 28.33 28.86
SSIM 0.8035 0.8042 0.8088 0.8203 0.8212 0.8217 0.6661 0.8210 0.8331 0.8359

1%
PSNR 26.87 26.86 27.06 27.43 27.46 27.48 24.62 25.74 26.37 27.97
SSIM 0.7404 0.7392 0.7469 0.7646 0.7640 0.7687 0.6486 0.6215 0.6843 0.7924

x3
0%

PSNR 25.46 25.62 25.50 25.60 25.35 25.90 23.33 25.90 25.74 26.17
SSIM 0.6812 0.6823 0.6828 0.6904 0.6877 0.6928 0.5833 0.7030 0.7092 0.7203

1%
PSNR 24.76 24.76 24.83 25.09 25.08 25.11 23.25 24.72 24.77 25.65
SSIM 0.6322 0.6314 0.6348 0.6468 0.6452 0.6497 0.5702 0.6075 0.6203 0.6857

x4
0%

PSNR 24.05 24.13 24.15 24.28 24.22 24.27 22.25 24.33 23.46 23.30
SSIM 0.6018 0.6024 0.6045 0.6111 0.6079 0.6101 0.5305 0.6191 0.6073 0.6238

1%
PSNR 23.43 23.42 23.46 23.66 23.53 23.66 22.19 23.64 23.40 23.57
SSIM 0.5655 0.5645 0.5666 0.5752 0.5698 0.5774 0.5210 0.5681 0.5643 0.6028

4.1 TRAIN AND TEST DATA

To train our models for the first three recovery tasks, we use random crops of size 64 × 64 taken
from the train and val subsets of the BSD500 dataset provided by Martin et al. (2001), while for
MRI reconstruction we use 320×320 single-coil 3T images from the NYU fastMRI knee dataset
(Knoll et al. (2020)). In order to train the deblurring networks we use synthetically created blur
kernels varying in size from 13 to 35 pixels according to the procedure described by Boracchi &
Foi (2012). For the super-resolution task we use scale factors 2, 3 and 4 with 25 × 25 kernels
randomly synthesized using the algorithm provided by Bell-Kligler et al. (2019). For accelerated
MRI we consider ×4 and ×8 undersampling factors in k-space using conjugate-symmetric masks
so that training and inference is performed in the real domain. For the demosaicking problem we
use the RGGB CFA pattern. All our models are trained and evaluated on a range of noise levels that
are typical in the literature for each considered problem. Based on this, we consider σn to be up to
1% of the maximum image intensity for deblurring, super-resolution and MRI reconstruction tasks,
while for demosaicing we use a wider range of noise levels, with σn being up to 3%.

For our evaluation purposes we use common benchmarks proposed for each recovery task. In par-
ticular, for deblurring we use the benchmarks proposed by Sun et al. (2013) and Levin et al. (2009).
For super-resolution we use the BSD100RK dataset, which consists of 100 test images from the
BSD500 dataset, and the degradation model proposed by Bell-Kligler et al. (2019). For demosaick-
ing we use the images from the McMaster (Zhang et al., 2011) dataset. For MRI reconstruction we
use the 3T scans from the val subset of the NYU fastMRI knee dataset, where from each scan we
take the central slice and two more slices located 8 slices apart from the central one. None of our
training data intersect with the data we use for evaluation purposes. We should further note, that all
benchmarks we use for evaluation contain diverse sets of images with relatively large resolutions.
This strategy is not common for other general purpose methods, which typically report results on
a limited set of small images, due to their need to manually fine-tune certain parameters. In our
case all network parameters are learned via training and remain fixed during inference. In order to
provide a fair comparison, for the methods that do require manual tuning of parameters, we perform
a grid search on a smaller subset of images to find the values that lead to the best results. Then we
use these values fixed during the evaluation for the entire set of images per each benchmark. Finally,
note that for all TV-based regularizers we compute their solutions using an IRLS strategy.

4.2 RESULTS

Deblurring. In Table 1 we report the average results in terms of PSNR and structure-similarity
index measure (SSIM) for several of our LIRLS instances, utilizing different sparsity-promoting
priors, and few competing methods, namely anisotropic (TV-ℓ1) (Zach et al., 2007) and isotropic
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Table 5: Comparisons on image demosaicking.
Dataset Noise TVN VTV S1 Sp

p Sw
1 Sp,w

p Bilinear RED IRCNN

0%
PSNR 33.33 32.64 36.27 37.66 36.60 37.62 32.27 34.53 37.52
SSIM 0.9377 0.9285 0.9605 0.9649 0.9606 0.9632 0.9259 0.9338 0.9612

1%
PSNR 33.32 32.16 35.14 36.43 35.49 36.37 31.76 34.40 36.12

McMaster SSIM 0.9198 0.9076 0.9416 0.9498 0.9451 0.9490 0.9014 0.9208 0.9403
Zhang et al. (2011)

2%
PSNR 32.21 31.16 33.37 34.55 33.95 34.80 30.64 33.08 34.42
SSIM 0.8843 0.8638 0.9151 0.9224 0.9226 0.9281 0.8443 0.8821 0.9178

3%
PSNR 31.19 30.13 31.39 32.44 32.60 33.34 29.34 31.59 33.23
SSIM 0.8539 0.8164 0.8808 0.8835 0.8997 0.9050 0.7745 0.8308 0.8931

Table 6: Comparisons on MRI reconstruction.
Acceleration TV-ℓ1 TV ℓ1 ℓpp ℓw1 ℓp,wp FBP

x4 PSNR 26.31 26.40 28.53 28.99 30.11 29.75 25.53
SSIM 0.5883 0.5921 0.6585 0.6701 0.7081 0.6958 0.6014

x8 PSNR 24.43 24.51 25.86 26.19 28.02 27.30 24.34
SSIM 0.5092 0.5120 0.5518 0.5620 0.6168 0.5973 0.5237

Total Variation (Rudin et al., 1992), RED (Romano et al., 2017), IRCNN (Zhang et al., 2017),
and FDN (Kruse et al., 2017). From these results we observe that our LIRLS models lead to very
competitive performance, despite the relatively small number of learned parameters. In fact, the ℓw1
and ℓp,wp variants obtain the best results among all methods, including FDN, which is the current
grayscale sota method, and IRCNN that involves 4.7M parameters in total (for its 25 denoising
networks). Similar comparisons for color images are provided in Table 2, where we report the
reconstruction results of our LIRLS variants, which utilize different learned low-rank promoting
priors. For these comparisons we further consider the vector-valued TV (VTV) (Blomgren & Chan,
1998), Nuclear TV (TVN) Lefkimmiatis et al. (2015) and DWDN (Dong et al., 2020). From these
results we again observe that the LIRLS models perform very well. The most interesting observation
though, is that our Sp

p model with a total of 601 learned parameters manages to outperform the DWD
network which involves 7M learned parameters. It is also better than Sw

1 and very close to Sp,w
p ,

which indicates that the norm order p plays a more crucial role in this task than the weights w.

Super-resolution. Similarly to the image deblurring problem, we provide comparisons among com-
peting methods both for grayscale and color images. For these comparisons we still consider the
RED and IRCNN methods as before and we further include results from bicubic upsampling and the
USRNet network Zhang et al. (2020). The latter network, unlike RED and IRCNN, is specifically
designed to deal with the problem of super-resolution and involves 17M of learned parameters. From
the reported results we can see that for both the grayscale and color cases the results we obtain with
our LIRLS instances are very competitive and they are only slightly inferior than the specialized
USRNet network. For a visual assessment of the reconstructions quality we refer to Fig. 3.

Demosaicking. For this recovery task we compare our low-rank promoting LIRLS models against
the same general-purpose classical and deep learning approaches as in color deblurring, plus bicubic
upsamplping. The average results of all the competing methods are reported in Table 5. From these
results we come to a similar conclusion as in the debluring case. Specifically, the best performance
is achieved by the Sp

p and Sp,w
p LIRLS models. The first one performs best for lower noise levels

while the latter achieves the best results for the highest ones. Visual comparisons among the different
methods are provided in Fig. 4.

MRI Reconstruction. In Table 6 we compare the performance of our LIRLS models with
anisotropic and isotropic TV reconstruction and the Fourier back-projection (FBP) method. While

Input TVN Sp
p Sw

1 IRCNN DWDN

Figure 2: Visual comparisons among several methods on a real blurred color image. Image and blur
kernel were taken from Pan et al. (2016). For more visual examples please refer to Appendix A.7.
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Input (Bicubic) TVN Sp
p Sw

1 RED USRNet

Figure 3: Visual comparisons among several methods on a real low-resolution image enlarged by a
scale factor 2. Image from Cai et al. (2019), downscaling kernel was obtained using the method by
Bell-Kligler et al. (2019). For more visual examples please refer to Appendix A.7.

these three methods are conventional ones, they can be quite competitive on this task and are still
relevant due to their interpretability, which is very important in medical applications. Based on
the reported results and the visual comparisons provided in Fig. 5 we can conclude that the LIRLS
models do a very good job in terms of reconstruction quality. It is also worth noting that similarly
to the other two gray-scale recovery tasks, we observe that the best performance among the LIRLS
models is achieved by ℓw1 . This can be attributed to the fact that the learned prior of this model while
being adaptive, thanks to the presence of the weights, is still convex, unlike ℓpp and ℓp,wp . There-
fore, its output is not significantly affected by the initial solution. Additional discussions about our
networks reconstruction performance related to the choice of p and the weights w is provided in
Appendix A.3, along with some possible extensions that we plan to explore in the future.

5 CONCLUSIONS

In this work we have demonstrated that our proposed IRLS method, which covers a rich family of
sparsity and low-rank promoting priors, can be successfully applied to deal with a wide range of
practical inverse problems. In addition, thanks to its convergence guarantees we have managed to
use it in the context of supervised learning and efficiently train recurrent networks that involve only
a small number of parameters, but can still lead to very competitive reconstructions. Given that most
of the studied image priors are non-convex, an interesting open research topic is to analyze how the
initial solution affects the output of the LIRLS models and how we can exploit this knowledge to
further improve their reconstruction performance. Finally, it would be interesting to explore whether
learned priors with spatially adaptive norm orders p, can lead to additional improvements.

Bilinear: 32.05 TVN: 32.00 Sp
p : 35.07 Sw

1 : 32.57 RED: 32.12 IRCNN: 33.93 Target

Figure 4: Visual comparisons among several methods on a mosaicked image with 1% noise. For
each image its PSNR value is provided in dB. For more visual examples please refer to Appendix
A.7.

FBP: 22.95 TV: 25.52 ℓ1: 27.77 ℓpp: 28.59 ℓw1 : 30.30 Target

Figure 5: Visual comparisons among several methods on a simulated MRI with x4 acceleration. For
each image its PSNR value is provided in dB. For more visual examples please refer to Appendix
A.7.
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A APPENDIX

A.1 PROOFS

In this section we derive the proofs for the tight upper-bounds presented in Lemma 1 and Lemma 2.
For our proofs we use the following inequality for a function |x|p, 0 < p ≤ 2, which is given by Sun
et al. (2017):

|x|p ≤ p

2
|y|p−2x2 +

2− p

2
|y|p, ∀x ∈ R and y ∈ R \ {0} (15)

and the Ruhe’s trace inequality (Marshall et al., 1979), which is stated in the following theorem:

Theorem 1. Let A and B be n× n positive semidefinite Hermittian matrices. Then it holds that:

tr (AB) ≥
n∑

i=1

σi (A)σn−i+1 (B) , (16)

where σi (A) denotes the i-th singular value of A and the singular values are sorted in a decreasing
order, that is σi (A) > σi+1 (A).

Proof of Lemma 1. The proof is straightforward and relies on the inequality of Eq. (15). Specifically,
let us consider the positive scalars

√
x2
i + γ,

√
y2
i + γ, with γ > 0. If we plug them in (15) we get:(

x2
i + γ

) p
2 ≤ p

2

(
y2
i + γ

) p−2
2
(
x2
i + γ

)
+

2− p

2

(
y2
i + γ

) p
2 . (17)

Multiplying both sides by a non-negative scalar wi leads to:

wi

(
x2
i + γ

) p
2 ≤ p

2

(
y2
i + γ

) p−2
2 wi

(
x2
i + γ

)
+

2− p

2
wi

(
y2
i + γ

) p
2 . (18)

The above inequality is closed under summation and, thus, it further holds that:

ϕsp (x;w, p) =

n∑
i=1

wi

(
x2
i + γ

) p
2 (19)

≤ p

2

∑
i=1

wi

(
y2
i + γ

) p−2
2
(
x2
i + γ

)
+

2− p

2

n∑
i=1

wi

(
y2
i + γ

) p
2

=
p

2

n∑
i=1

wi

(
y2
i + γ

) p−2
2 x2

i +
pγ

2

n∑
i=1

wi

(
y2
i + γ

) p−2
2 +

2− p

2

n∑
i=1

wi

(
y2
i + γ

) p
2

=
p

2
xTWyx+

pγ

2
tr (Wy) +

2− p

2
ϕsp (y;w, p) , ∀x,y (20)

with Wy = diag

(
w1

(
y2
1 + γ

) p−2
2 , . . . ,wn

(
y2
n + γ

) p−2
2

)
= diag (w)

[
I ◦
(
yyT + γI

)] p−2
2 .

By substitution and carrying over the algebraic operations on the r.h.s of Eq. (20), we can show that
when x = y, the inequality reduces to equality.

We note that it is possible to derive the IRLS algorithm that minimizes J (x) of Eq. (2) under the
weighted ℓpp regularizers, without relying on the MM framework. In particular, we can redefine the
regularizer ϕsp (·) as:

ϕ̃sp (x;w, p) =

n∑
i=1

wi

(
x2
i + γ

) p−2
2 x2

i (21)

from where the weights Wy of Lemma 1 can be inferred. Then, the convergence of the IRLS
strategy to a stationary point can be proven according to (Daubechies et al., 2010).
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Unfortunately, this strategy doesn’t seem to apply for the weights WY of Lemma 2. The reason is
that the weighted Sp

p regularizers don’t apply directly on the matrix X but instead on its singular
values. Specifically, it holds that:

ϕlr (X;w, p) =

n∑
i=1

wi

(
σ2
i (X) + γ

) p
2 = tr

(
W (X)

(
XXT + γI

) p
2

)
. (22)

Unlike the previous case, here the weights w are included in the matrix W (X), which directly
depends on X as: W (X) = U (X) diag (w)UT (X), with U (X) being the left singular vectors
of X . Therefore it is unclear how the approach by Mohan & Fazel (2012) would apply in this case
and how the convergence of IRLS can be established.

Proof of Lemma 2. Let us consider the positive scalars
√

σ2
i (X) + γ,

√
σ2
i (Y ) + γ. If we plug

them in (15) we get:(
σ2
i (X) + γ

) p
2 ≤ p

2

(
σ2
i (Y ) + γ

) p−2
2
(
σ2
i (X) + γ

)
+

2− p

2

(
σ2
i (Y ) + γ

) p
2 . (23)

Multiplying both sides by a non-negative scalar wi leads to:

wi

(
σ2
i (X) + γ

) p
2 ≤ p

2
wi

(
σ2
i (Y ) + γ

) p−2
2
(
σ2
i (X) + γ

)
+

2− p

2
wi

(
σ2
i (Y ) + γ

) p
2 . (24)

The above inequality is closed under summation and, thus, it further holds that:

ϕlr (X;w, p) =

r∑
i=1

wi

(
σ2
i (X) + γ

) p
2

≤ p

2

r∑
i=1

wi

(
σ2
i (Y ) + γ

) p−2
2
(
σ2
i (X) + γ

)
+

2− p

2

r∑
i=1

wi

(
σ2
i (Y ) + γ

) p
2

=
p

2

r∑
i=1

wi

(
σ2
i (Y ) + γ

) p−2
2 σ2

i (X) +
pγ

2

r∑
i=1

wi

(
σ2
i (Y ) + γ

) p−2
2 +

2−p

2
ϕlr (Y ;w, p)

=
p

2

r∑
i=1

σr−i+1 (WY )σi

(
XXT

)
+

pγ

2
tr (WY ) +

2−p

2
ϕlr (Y ;w, p) , (25)

where WY = U diag (w)UT
(
Y Y T + γI

) p−2
2 and Y admits the singular value decomposition

Y = U diag (σ (Y ))V T with U ∈ Rm×r, V ∈ Rn×r, and r=min (m,n). Further, we show that
it holds:

WY = U diag (w)UT
(
Y Y T + γI

) p−2
2

= U


w1

(
σ2
1 (Y ) + γ

) p−2
2 . . . 0

. . .

0 . . . wr

(
σ2
r (Y ) + γ

) p−2
2

UT

= Û


wr

(
σ2
r (Y ) + γ

) p−2
2 . . . 0

. . .

0 . . . w1

(
σ2
1 (Y ) + γ

) p−2
2

 ÛT (26)

= Û diag (σ (WY )) ÛT ∈ Rm×m,

where Û = UJ , with J denoting the exchange matrix (row-reversed identity matrix). We note
that the vector σ (WY ) ∈ Rr

+, similarly to σ (X) and σ (Y ), holds the singular values of WY in
decreasing order, given that

wi+1

(
σ2
i+1 (Y ) + γ

) p−2
2 ≥ wi

(
σ2
i (Y ) + γ

) p−2
2 ∀i. (27)
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This is true because according to the definition of w, it holds wi+1 ≥ wi ∀i, while it also holds(
σ2
i+1 (Y ) + γ

) p−2
2 ≥

(
σ2
i (Y ) + γ

) p−2
2 ∀i, since σi+1 (Y ) ≤ σi (Y ) and p−2

2 ≤ 0.

Finally, given that both WY and XXT are positive semidefinite symmetric matrices, we can invoke
Ruhe’s trace inequality from Theorem 1 and combine it with Eq. (25) to get:

ϕlr (X;w, p) ≤ p

2
tr
(
WY XXT

)
+

pγ

2
tr (WY ) +

2−p

2
ϕlr (Y ;w, p) ∀X,Y . (28)

By substitution and carrying over the algebraic operations on the r.h.s of Eq. (28), we can show that
when X = Y the inequality reduces to equality.

A.1.1 THEORETICAL JUSTIFICATION FOR USING AN AUGMENTED MAJORIZER

In Section 2.2 where we consider the solution of the normal equations in Eq. (11), instead of the
majorizers that we derived in Eqs. (10), Qreg, we consider their augmented counterparts which are
of the form:

Q̃
(
x;xk

)
= Qreg

(
x;xk

)
+

α

2

∥∥x− xk
∥∥2
2
. (29)

The reason is that, under this choice the system matrix of Eq. (11) is guaranteed to be non-singular
and, thus, a unique solution of the linear system always exists. To verify that this choice doesn’t
compromise the convergence guarantees of our IRLS approach, we note that Q̃

(
x;xk

)
is still a

valid majorizer and satisfies both properties of Eq. (7), required by the MM framework. Specifically,
it is straightforward to show that:

Q̃ (x;x) = Qreg (x) and Q̃
(
xk;x

)
≥ Qreg ∀x,xk. (30)

Finally, we note that the use of the augmented majorizer serves an additional purpose. In particular,
due to the term α

2

∥∥x− xk
∥∥2
2
, the majorizer Q̃ enforces the IRLS estimates between two successive

IRLS iterations, xk and xk+1, not to differ significantly. Both the unique solution of the linear
system and the closeness of the the successive IRLS estimates play an important role for the stability
of the training stage of our LIRLS networks.

A.2 MATRIX EQUILIBRATION PRECONDITIONING

During the training and inference of LIRLS, both the network parameters as well as the samples in
the input batches vary significantly. This results in a convergence behavior that is not consistent,
which is mostly attributed to the varying convergence rate of the linear solver at each IRLS step.
Indeed, it turns out that the main term Sk of system matrix, defined in Eq.(11), in certain cases can
be poorly conditioned. To deal with this issue and improve the overall convergence of LIRLS we
apply a preconditioning strategy. In particular, we employ a matrix equilibration (Duff & Koster,
2001) such that the resulting preconditioned matrix has a unit diagonal, while its off-diagonal entries
are not greater than 1 in magnitude. In our case all the components that form the system matrix
are given in operator form, and thus we do not have access to the individual matrix elements of
S = Sk + αI . For this reason, we describe below the practical technique of forming a diagonal
matrix preconditioner that equilibrates the matrix S ∈ Rn·c×n·c.

We start by noting that such matrix can be decomposed as:

S = ATA+ p·σ2
nG

TWG+ αI =
[
AT √

p·σnG
TW 1/2

√
αI
]  A√

p·σnW
1/2G√

αI

 = BTB,

(31)

where B ∈ R(n1+n2+n3)×n3 , with n3=n·c. We further note a simple fact, that any diagonal matrix
D = diag (d) multiplied with B from the right (BD) equally scales all the elements of each
column B:,j with a corresponding diagonal element dj , and the same diagonal matrix multiplied
with BT from the left (DBT) scales the same way each matrix row of BT. Let us now select the
diagonal elements dj of matrix D to be of the form dj = 1/||B:,j ||2, i.e. the inverse of the ℓ2 norm
of the corresponding column of the matrix B. In this case, the product BD results in a matrix
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with normalized columns, while the product DBT results in a matrix with normalized rows. The
product of the two, i.e., the preconditioned matrix DTBTBD, becomes equilibrated since it has a
unit diagonal and all of its non-diagonal elements are smaller or equal to 1. The task then becomes
to develop a simple way of calculating the vector d that holds the norms of the matrix B columns.

From the definition of matrix B in Eq (31), the squared norm of its j-th column can be computed
as:

||B:,j ||22 =

n1+n2+n3∑
i=1

B2
i,j =

n1∑
i=1

A2
i,j + p·σ2

n

n2∑
i=1

[
W 1/2G

]2
i,j

+ α. (32)

All restoration problems under study are large-scale, meaning the matrices A and G and W are
structured, but only available in an operator form. Depending on the problem at hand, A is either a
valid convolution matrix (deblurring), strided valid convolution matrix (super-resolution), diagonal
binary matrix (demosaicing) or orthonormal subsampled FFT matrix (MRI reconstruction), G is a
block matrix with valid convolution matrices as blocks, while the matrix W is either a diagonal one,
for the case of sparse promoting priors, or a block diagonal matrix with each block being a matrix
of dimensions c× c, for the case of low-rank promoting priors.

We utilize the following trick in order to calculate both terms
n1∑
i=1

A2
i,j and

n2∑
i=1

[
W 1/2G

]2
i,j

appear-

ing in Eq. (32). In particular, considering any arbitrary matrix C and a vector of ones 1 we note that
n∑

i=1

C2
i,j =

([
C◦2]T 1

)
j
, where C◦2 ≡ C ◦ C is the Hadamard square operation and ◦ denotes

the Hadamard product. The computation of the Haramard square for operators A is straightforward:
for possibly strided valid convolution matrices (the following also holds for convolutions with pe-
riodic and zero boundaries) used in deblurring and super-resolution problems the Hadamard square
operator can be obtained by squaring element-wise all the elements of the convolution kernel, for
the demosaicing problem we have A◦2 = A, and for the MRI reconstruction with subsampled
orthonormal FFT matrix, we compute the squared norms of the columns directly, as it is equal to
the corresponding acceleration (sampling) rate. Since the matrix W has a the specific structure de-
scribed above, and the convolution filter bank operator G is applied independently for each color
channel, it is straightforward to show, that for both sparse and low-rank cases the following holds:

n2∑
i=1

[
W 1/2G

]2
i,j

=

([(
W 1/2G

)◦2]T
1

)
j

=

(
G◦2

(
W 1/2

)◦2
1

)
j

. (33)

As already discussed above, G◦2 can be obtained by squaring element-wise all the elements of the
convolution filter bank. The computation of

(
W 1/2

)◦2
is trivial for the sparse case where W is

a diagonal matrix for which
(
W 1/2

)◦2
= W . For the low-rank case we construct W from its

eigendecomposition, so all of its eigenvalues and eigenvectors are at hand, meaning that we can
easily obtain W 1/2 by computing the square root of eigenvalues of W and composing them with
its eigenvectors. Then,

(
W 1/2

)◦2
is computed easily by squaring element-wise all of the elements

of W 1/2.

A.3 DISCUSSION ON THE PERFORMANCE OF THE LIRLS MODELS

In Section 4.2 we reported the reconstruction results that different LIRLS models have achieved
for the studied reconstruction tasks both for grayscale/single-channel and color images. From these
results we observe that for different recovery problems, the best performance is not always achieved
by the same model. In particular, for the grayscale reconstruction tasks we can see that the ℓw1 and
ℓp,wp LIRLS models perform better on average than the ℓ1 and ℓpp models. This is a strong indication
that the presence of the learned weights w lead to more powerful sparsity-promoting regularizers
and have a positive impact on the reconstruction quality. Moreover, we also observe that the best
performance among all the models is accomplished by the ℓw1 , which can be somehow counter-
intuitive since in theory the choice of p < 1 should promote sparse solutions better. A possible
explanation for this is that the ℓw1 regularizer is a convex one and, thus, is amenable to efficient
minimization and LIRLS will converge to the global minimum of the objective function J (x) in
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Eq. (2). On the other hand, the ℓp,wp regularizer is non-convex, which means that the stationary point
reached by LIRLS can be sensitive to the initialization and might be far from the global minimum.

Regarding the color reconstruction tasks and the learned low-rank promoting regularizers that we
have considered, we observe that the best performance on average is achieved by the Sp

p and Sp,w
p

LIRLS models with p < 1. To better interpret this results, we need to have in mind that the only
convex regularizer out of this family is the S1 (nuclear norm). Given that the nuclear norm is not as
expressive as the rest of the low-rank promoting regularizers, it is expected that this LIRLS model
will be the least performing. Also note that the weighted nuclear norm, Sw

1 , unlike to the ℓw1 , is non-
convex and thus it does not benefit from the convex optimization guarantees. Based on the above,
and having in mind the results we report in Section 4.2, it turns out that in this case the choice of a
p < 1 plays a more important role in the reconstruction quality than the learned weights w.

Another important issue that is worth of discussing, is the fact that in this work we have applied
sparsity-promoting regularization on grayscale reconstruction tasks and low-rank promoting reg-
ularization on color recovery tasks. We note that by no means this is a strict requirement and it
is possible to seek for low-rank solutions in some transform domain when dealing with grayscale
images as in Lefkimmiatis et al. (2012; 2013; 2015), or sparse solutions when dealing with color
images. Due to space limitations we have not explored this cases in this work, but we plan to include
related results in an extended version of this paper.

Algorithm 1: Forward and backward passes of LIRLS networks.
Inputs: x0: initial solution, y: degraded image, A: degradation operator
Input parameters: θ = {G,w, p}: network parameters, σ2

n, α, γ
Forward Pass

Initialize: k = 0;
repeat

1. Compute the feature maps
{
zk
i = Gix

k
}ℓ
i=1

,
(
Zk

i =vec
(
zk
i

)
for the low-rank case

)
.

2. Compute the updated W k
i weight matrices based on the current estimate xk:

• Sparse case: W k
i = diag (wi)

[
I ◦
(
zk
i z

k
i
T
+ γI

)] p−2
2 .

• Low-rank case: W k
i = Iq ⊗

[
Uk

i diag (wi)U
k
i
T
(
Zk

i Z
k
i
T
+ γI

) p−2
2

]
, where

Zk
i = Uk

i diag
(
σ(Zk

i )
)
V k

i
T

.

3. Find the updated solution xk+1 by solving the linear system:

xk+1 =

(
ATA+ p·σ2

n

ℓ∑
i=1

GT
i W

k
i Gi + αI

)−1 (
ATy + αxk

)
.

4. k = k + 1.
until the convergence criterion is satisfied;
Return x∗ = xk;

Backward Pass

1. Use x∗ to compute W ∗
i = W ∗

i (G,x∗) following steps 1 and 2 in the Forward Pass.
Then use both to define the following auxiliary network with parameters θ:

g (x∗,θ) =

(
ATA+ p·σ2

n

ℓ∑
i=1

GT
i W

∗
i (G,x∗)Gi

)
x∗ −ATy.

2. Compute v = (∇x∗g)−1 ρ by solving the linear system ∇x∗g · v = ρ,
where ρ = ∇x∗L and L is the training loss function.

3. Obtain the gradient ∇θL by computing the product ∇θg · v.

4. Use ∇θL to update the network’s parameters θ or backpropagate further into their parent
leafs.

17



Published as a conference paper at ICLR 2023

A.4 ALGORITHMIC IMPLEMENTATION OF LIRLS NETWORKS

In Algorithm 1 we provide the pseudo-code for the forward and backward passes of the LIRLS
models, where we distinguish between the learned low-rank and sparsity promoting scenarios. The
gradients in the backward pass can be easily computed using any of the existing autograd libraries.

A.5 EMPIRICAL CONVERGENCE OF LIRLS TO A FIXED POINT

As we have explained in the manuscript, relying on Lemmas 1 and 2 we have managed to find valid
quadratic majorizers for both the sparsity- and low-rank promoting regularizers defined in Eq. (6).
Given that these majorizers satisfy all the necessary conditions required by the MM framework, we
can safely conclude that the proposed IRLS strategy will converge to a fixed point. In this section
we provide further empirical evidence which support our theoretical justification. In particular, we
have conducted several evaluations of the trained LIRLS models. In the first scenario we run LIRLS
models for 30 steps for color deblurring and simulated MRI with x4 acceleration on the correspond-
ing datasets described in Subsection 4.1. After that, we calculate the mean PSNR and SSIM scores
individually for each step across all images in each dataset. We provide the resulting plots in Fig. 6.
As we can notice, after approximately 25 iterations, both PSNR and SSIM curves for all different
learned regularizers have reached an equillibrium and their values do not change. For comparison
reasons we also plot the evolution of PSNR and SSIM for standard TV-based regularizers that exist
in the literature. These results provide a strong indication that our LIRLS models indeed reach a
fixed point, which is well aligned with the theory.

Additionally to the previous averaged convergence results, we provide some representative examples
of convergence to a fixed point per individual images and models. For this reason we have selected
images from grayscale and color super-resolution benchmarks and provide the inference results of
ℓp,wp and Sp,w

p , respectively in Figs.7,8. The plots in the top row of each figure depict the evolution

of the relative tolerance rtol = ||xk−xk−1||
xk , the value of the objective function J (x)− const shifted

by a constant value, and the PSNR score across the number of the performed IRLS iterations. The
middle rows show the estimated solutions at specific steps, while the bottom rows include the corre-
sponding relative error, i.e. the difference between the current latent estimate and the one from the
previous step. The corresponding PSNR values and relative errors are provided for each image. For
visualization purposes the images with the difference are normalized by the maximum relative error.
From these figures it is clearly evident that the relative error between the current estimate and the
one from the previous IRLS iteration gradually decreases and approaches zero. At the same time the
value of the objective function approaches a stationary point, and the PSNR value starts saturating
at the later iterations. Please note that in Fig. 8 we include results obtained by employing more than
the 15 IRLS iterations that we used for the comparisons reported in Sec. 4.2. The reason for this,
is that our main purpose here is to experimentally demonstrate that our Sp,w

p LIRLS model indeed
converges to a fixed point and not to increase the computational efficiency of the model.
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Color deblurring

MRI reconstruction

Figure 6: Convergence of LIRLS models to a fixed point. Top: color deblurring Sun et al. (2013)
dataset with 1% noise, bottom: simulated MRI with x4 acceleration and 1% noise benchmark based
on Knoll et al. (2020) and described in Subsection 4.1.
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Input Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 15

PSNR:22.83 PSNR:24.11 PSNR:24.36 PSNR:24.48 PSNR:24.55 PSNR:24.58 PSNR:24.61 PSNR:24.66

rtol:1.55·10−2 rtol:8.39·10−3 rtol:5.40·10−3 rtol:3.76·10−3 tol:2.76·10−3 rtol:2.05·10−3 rtol:3.50·10−4

Figure 7: Demonstration of convergence to a fixed point of the the ℓp,wp LIRLS model for the task
of grayscale super-resolution. The input corresponds to a synthetically downscaled image by a scale
factor of 3 with 1% noise. The image is taken from the BSD100RK dataset.
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Input Step 1 Step 3 Step 5 Step 7 Step 9 Step 11 Step 50

PSNR:22.59 PSNR:26.67 PSNR:26.80 PSNR:26.94 PSNR:27.04 PSNR:27.11 PSNR:27.17 PSNR:27.58

rtol:4.25·10−3 rtol:3.76·10−3 rtol:2.77·10−3 rtol:2.38·10−3 tol:2.12·10−3 rtol:1.87·10−3 rtol:7.46·10−4

Figure 8: Demonstration of convergence to a fixed point of the the Sp,w
p LIRLS model for the task of

color super-resolution. The input corresponds to a synthetically downscaled image by a scale factor
of 4 without noise. The image is taken from the BSD100RK dataset.
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A.6 WEIGHT PREDICTION NETWORKS ARCHITECTURES

In the main manuscript we have specified a neural network, whose role is to predict the weights w
from some initial solution x0, that will then be used in the weighted ℓpp and Sp

p norms during the
optimization stage (see Fig. 1). This weight prediction network is chosen to be either a lightweight
RFDN architecture proposed by Liu et al. (2020) for the deblurring, super-resolution and demosaic-
ing problems, or a lightweight UNet from Ronneberger et al. (2015) for MRI reconstruction. Below
in Table 7 and Table 8 we present a detailed per-layer structure of both networks that we have used
in our reported experiments.

Table 7: Detailed per-layer structure of the RFDN Liu et al. (2020) weight prediction network
(WPN) that was used to predict the weights w of the weighted ℓpp (ℓw1 , ℓp,wp ) and weighted Sp

p
(Sw

1 , Sp,w
p ) norms for the deblurring, super-resolution and demosaicing problems. Here “conv”

denotes a convolution layer, “relu” denotes a rectified linear unit function (ReLU), “lrelu” denotes
a leaky ReLU function with negative slope of 0.05, “sigmoid” denotes a sigmoid function, “sc”
denotes a skip-connection, “cat” denotes a concatenation along channels dimension, “maxpool”
denotes a max-pooling operation, “interp” denotes a bilinear interpolation, “mul” denotes a point-
wise multiplication. For sparsity promoting priors the number of input and output channels is 25
and 24 respectively, while for low-rank promoting priors it is 4 and 3, respectively. Blocks with
repeated structures (but not shared weights) are denoted with —"—. For a more detailed architecture
description we refer to the codes released by the authors of Liu et al. (2020), which we have used
without any modifications: https://github.com/njulj/RFDN.

Block Layer Kernel
Size Stride Padding Input

Channels
Output

Channels Bias

conv 3× 3 1× 1 1× 1 25/4 40 True

Residual
Feature

Distillation
Block

conv+lrelu 3× 3 1× 1 40 20 True
conv+sc+lrelu 3× 3 1× 1 1× 1 40 40 True

conv+lrelu 3× 3 1× 1 40 20 True
conv+sc+lrelu 3× 3 1× 1 1× 1 40 40 True

conv+lrelu 3× 3 1× 1 40 20 True
conv+sc+lrelu 3× 3 1× 1 1× 1 40 40 True

conv+lrelu 3× 3 1× 1 1× 1 40 20 True
cat+conv 3× 3 1× 1 80 40 True

conv 1× 1 1× 1 40 10 True
conv 3× 3 2× 2 10 10 True

maxpool 7× 7 3× 3
conv+relu 3× 3 1× 1 1× 1 10 10 True
conv+relu 3× 3 1× 1 1× 1 10 10 True

conv+interp 3× 3 1× 1 1× 1 10 10 True
conv+sc 1× 1 1× 1 10 10 True

conv+sigmoid+mul 1× 1 1× 1 10 40 True
Residual
Feature

Distillation
Block

—"—

Residual
Feature

Distillation
Block

—"—

Residual
Feature

Distillation
Block

—"—

cat+conv+lrelu 1× 1 1× 1 160 40 True
conv+sc 3× 3 1× 1 1× 1 40 40 True

conv 3× 3 1× 1 1× 1 40 24/3 True

22

https://github.com/njulj/RFDN


Published as a conference paper at ICLR 2023

Table 8: Detailed per-layer structure of the U-Net Ronneberger et al. (2015) weight prediction net-
work (WPN) that was used to predict the weights w of the weighted ℓpp norm (ℓp,wp ) for the MRI
reconstruction problem. Here “conv” denotes a convolution layer, “up-conv” denotes a transpose
convolution layer, “relu” denotes a rectified linear unit function (ReLU), “norm” denotes an in-
stance normalization layer Ulyanov et al. (2016), “sc” denotes a skip-connection, “cat” denotes a
concatenation along channels dimension, “maxpool” denotes a max-pooling operation.

Block Layer Kernel
Size Stride Input

Channels
Output

Channels Bias

conv+norm+relu 3× 3 1× 1 25 25 True
conv+norm+relu 3× 3 1× 1 25 25 True

Down
maxpool 2× 2 2× 2

conv+norm+relu 3× 3 1× 1 25 32 True
conv+norm+relu 3× 3 1× 1 32 32 True

Down
maxpool 2× 2 2× 2

conv+norm+relu 3× 3 1× 1 32 64 True
conv+norm+relu 3× 3 1× 1 64 64 True

Down
maxpool 2× 2 2× 2

conv+norm+relu 3× 3 1× 1 64 64 True
conv+norm+relu 3× 3 1× 1 64 64 True

Up
up-conv+cat 2× 2 2× 2 64 64 True

conv+norm+relu 3× 3 1× 1 128 32 True
conv+norm+relu 3× 3 1× 1 32 32 True

Up
up-conv+cat 2× 2 2× 2 32 32 True

conv+norm+relu 3× 3 1× 1 64 25 True
conv+norm+relu 3× 3 1× 1 25 25 True

Up
up-conv+cat 2× 2 2× 2 25 25 True

conv+norm+relu 3× 3 1× 1 50 25 True
conv+norm+relu 3× 3 1× 1 25 25 True

conv 1× 1 1× 1 25 24 True

23



Published as a conference paper at ICLR 2023

A.7 VISUAL RESULTS

In this section we provide additional visual comparisons among the competing methods for all the
inverse problems under study.

Input: 20.43 TV-ℓ1: 33.75 TV: 33.89 ℓ1: 34.13

ℓpp: 34.28 ℓw1 : 34.50 ℓp,wp : 34.38 RED: 33.19

IRCNN: 26.06 FDN: 34.04 Target

Figure 9: Visual comparisons among several methods on an optically blurred image from the Levin
et al. (2009) dataset. For each reconstructed image its PSNR value is provided in dB.
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Input: 24.62 TV-ℓ1: 30.32 TV: 30.39

ℓ1: 31.23 ℓpp: 31.82 ℓw1 : 31.96

ℓp,wp : 31.98 RED: 30.80 IRCNN: 31.62

FDN: 31.92 Target

Figure 10: Visual comparisons among several methods on a synthetically blurred image from the
Sun et al. (2013) dataset. For each reconstructed image its PSNR value is provided in dB.
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Input: 23.54 VTV: 29.20 TVN: 29.46

S1: 29.90 Sp
p : 30.99 Sw

1 : 30.95

Sp,w
p : 31.09 RED: 28.76 IRCNN: 30.89

FDN: 29.33 DWDN: 30.50 Target

Figure 11: Visual comparisons among several methods on a synthetically blurred image from the
Sun et al. (2013) dataset. For each reconstructed image its PSNR value is provided in dB.
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Input (Bicubic): 32.97 TV-ℓ1: 32.65 TV: 36.22

ℓ1: 36.33 ℓpp: 36.45 ℓw1 : 38.55

ℓp,wp : 37.62 RED: 35.73 IRCNN: 34.71

USRNet: 38.77 Target

Figure 12: Visual comparisons among several methods on x3 synthetically downscaled image with
1% noise from the BSD100RK dataset. For each reconstructed image its PSNR value is provided in
dB.
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Input (Bicubic): 23.79 VTV: 24.09 TVN: 24.10

S1: 24.13 Sp
p : 24.17 Sw

1 : 24.11

Sp,w
p : 24.20 RED: 24.19 IRCNN: 23.98

USRNet: 23.09 Target

Figure 13: Visual comparisons among several methods on x4 synthetically downscaled image with
1% noise from the BSD100RK dataset. For each reconstructed image its PSNR value is provided in
dB.

28



Published as a conference paper at ICLR 2023

Bilinear: 29.51 VTV: 31.75 TVN: 32.90 S1: 34.82 Sp
p : 36.11

Sw
1 : 35.22 Sp,w

p : 36.02 RED: 34.45 IRCNN: 36.09 Target

Figure 14: Visual comparisons among several methods on a mosaicked image without noise. For
each demosaicked image its PSNR value is provided in dB.

Bilinear: 28.88 VTV: 29.15 TVN: 30.08 S1: 29.54 Sp
p : 30.75

Sw
1 : 30.83 Sp,w

p : 31.69 RED: 29.53 IRCNN: 31.06 Target

Figure 15: Visual comparisons among several methods on a mosaicked image with 3% noise. For
each demosaicked image its PSNR value is provided in dB.

29



Published as a conference paper at ICLR 2023

Sampling mask (k-space) FBP: 22.95 TV-ℓ1: 25.52

TV: 25.99 ℓ1: 27.77 ℓpp: 28.59

ℓw1 : 30.82 ℓp,wp : 30.30 Target

Figure 16: Visual comparisons among several methods on a simulated MRI with x4 acceleration.
For each reconstructed image its PSNR value is provided in dB.
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Sampling mask (k-space) FBP: 23.69 TV-ℓ1: 25.29

TV: 25.17 ℓ1: 26.85 ℓpp: 27.36

ℓw1 : 30.43 ℓp,wp : 29.31 Target

Figure 17: Visual comparisons among several methods on a simulated MRI with x8 acceleration.
For each reconstructed image its PSNR value is provided in dB.
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