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ABSTRACT

Weak-to-Strong generalization (W2SG) is a new trend to elicit the full capabil-
ities of a strong model with supervision from a weak model. While existing
W2SG studies focus on simple tasks like binary classification, we extend this
paradigm to complex interactive decision-making environments. Specifically, we
fine-tune a strong model with trajectories of intermediate actions generated by a
weak model. Motivated by the human learning process, we propose to general-
ize not only successful knowledge but also failure experience so that the strong
model can learn from the failed trajectories accumulated by weak models. To
effectively and efficiently elicit the potential of strong agents, we further con-
struct “trajectory trees,” a hierarchical representation that organizes weak model-
generated action trajectories, coupled with Monte Carlo Tree Search (MCTS)
to optimize the strong model. Through theoretical analysis, we provide for-
mal guarantees for the effectiveness of our method in improving W2SG perfor-
mance. Our empirical evaluations demonstrate substantial improvements in rea-
soning and decision-making capabilities across diverse task domains, validating
the scalability and robustness of our proposed framework. Our code is available
at: https://github.com/yeruimeng/TraTree.git.

1 INTRODUCTION

The advent of Large-scale Language Models (LLMs) has marked a significant advancement in a
wide range of tasks. Currently, the alignment and supervision of these models primarily rely on
human feedback and fine-tuning paradigms such as RLHF Ouyang et al. (2022); Christiano et al.
(2017); Stiennon et al. (2020); Bai et al. (2022). However, as the research interest in LLMs continues
growing and new capabilities of LLMs are being developed rapidly, it is believed that superintelli-
gence (i.e., AI smarter than humans) could arrive within the next 10 years Burns et al. (2023) This
raises a critical challenge, as providing reliable supervision becomes increasingly difficult when
superhuman models potentially surpass human-level intelligence across numerous domains Casper
et al. (2023). Thus, how to effectively supervise LLMs that may exceed human capabilities in com-
plex tasks remains an open and pressing question.

This challenge has prompted researchers to explore alternative supervision mechanisms. A partic-
ularly promising paradigm is the Weak-to-Strong Generalization (W2SG) framework Burns et al.
(2023); Ye et al. (2025), which utilizes weak models as substitutes for human supervision, elicit-
ing strong models to learn from the weak labels generated by these less capable models. While
this approach has shown remarkable performance in simple tasks such as binary classification, its
application to complex scenarios such as reasoning remains largely unexplored. As the majority of
existing alignment methods in LLMs leverage RLHF (reinforcement learning from human feedback)
to align LLMs with human values (e.g., safety), we remark that the human values can be generalized
from the weak model with the W2SG framework when reliable human supervision is unavailable.
For example, if we fine-tune a weak model with SFT Ouyang et al. (2022) to follow human intention
in complex decision-making, the challenge is how to generalize the intention with a weak supervisor
and elicit the optimal policy in a strong model. Just like humans supervising strong models, we use
weak models carrying the human’s intention to align the strong models. Such a setup is called weak-
to-strong learning in Burns et al. (2023). In parallel, recent research has explored performance-based
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Figure 1: Illustration of the trajectory tree construction and the weak-to-strong generalization with
trajectories. The left part explores different trajectories with a weak model. A trajectory tree is
constructed by merging the same action path. Nodes on the tree represent different actions and
performing different actions will lead to various subsequent paths. Then the trajectory tree is used
to elicit the ability of the strong model.

learning approaches such as Direct Preference Optimization (DPO) Rafailov et al. (2024), which en-
ables agents to learn from trajectory pairs during exploration. However, these approaches still face
limitations due to the binary nature of pairwise preferences, which fails to capture the rich informa-
tion and structural relationships among multiple reasoning paths Amini et al. (2024).

In this paper, we first extend the W2SG problem to complex decision-making tasks where the so-
lution of an LLM agent is a trajectory of actions Li et al. (2022). Figure 1 demonstrates our pro-
posed W2SG workflow, where we use the weak LLM agent to explore diverse trajectories in the
environment, obtaining feedback, and the stronger model can learn from both positive and nega-
tive outcomes. Note that we use the weak LLM agent to explore environments to generate diverse
solution trajectories, since sub-optimal solutions may limit the generalizability. The benefits are
threefold: (1) The strategy addresses the limitation of entirely relying on human expert trajectories
by exploring solution trajectories with a weak supervision model. It enables strong LLM agents to
learn without human intervention (Section 3.1). (2) The explored trajectories can elicit the strong
model to explore the larger unknown solution landscape due to the limited ability of weak models
(Section 3.2); (3) The generalized knowledge can be passed with a bootstrapping framework (i.e.,
GPT-3→GPT-4→GPT-5). We remark that both success and failure trajectories are important for
W2SG. Similar to human learning from the failure experience summarized by ancestors, the failure
trajectories can elicit the strong model’s ability to avoid the same failure (Section 4.2).

The cornerstone of our innovation is the trajectory trees, a hierarchical representation that funda-
mentally extends beyond traditional linear Chains of Thought (CoT) Wei et al. (2022). While the
Tree-of-Thoughts (ToT) approach Yao et al. (2023b) also explores multiple reasoning paths, our tra-
jectory trees explicitly organize both successful and failed trajectories from weak models, thereby
capturing richer hierarchical relationships among diverse solution paths. Instead of relying on single,
linear reasoning paths, we explore and collect multiple solution trajectories from weak models and
construct a comprehensive tree structure. Figure 1 illustrates the construction of the trajectory tree.
Different from DPO Rafailov et al. (2024) that guides learning through random contrastive prefer-
ence data pairs (i.e., there is no overlap between two solution trajectories in a random preference
pair), trajectory trees capture the global relationships and hierarchical structures among reasoning
paths, providing more comprehensive and diverse training signals. For example, while the success
trajectory (the purple path in Figure 1) and the failure trajectory (the red path) share the same prefix
actions, the very first different action across two paths could be the key to the success. Compared
with random pairs, such structural differences can improve the efficacy of W2SG. We traverse the
trajectory tree and fine-tune the strong model with the preference of actions on the tree structure. To

2



Published as a conference paper at ICLR 2026

further improve the performance and efficiency of W2SG, we introduce Monte Carlo Tree Search
(MCTS) Grill et al. (2020); Castellini et al. (2023) as the policy optimization algorithm motivated
by the success of MCTS in board games Schrittwieser et al. (2020). Optimized actions are selected
by computing the cumulative reward and the node visit count. The optimization algorithms enable
the strong model to efficiently generalize from policies converging to optimality with a small error
probability. Specifically, the upper confidence bound applied to the trajectory trees is to deal with
the exploration-exploitation dilemma. Lastly, we theoretically prove that the weak-to-strong model
can surpass the strong model’s performance trained on expert trajectories, even when learning from
imperfect trajectories generated by the weak policy.

In the experiment, we demonstrate that weak, well-trained models can effectively produce auxiliary
signals to guide the learning of strong models, establishing a more scalable pathway for improving
LLM agent performance. Our primary contributions include:

• We investigate the feasibility of the weak-to-strong generalization of LLM agents in com-
plex tasks where the solution is a trajectory of actions. Our work addresses the limitation
of existing W2SG works in an analogous setup.

• We propose to construct trajectory trees to organize both success and failure trajectories ex-
plored by a weak model. Instead of relying on single reasoning paths or random contrastive
pairs, the tree structure can capture the shared path between a success trajectory and a fail-
ure trajectory. The divergence between the two paths is vital for knowledge generalization.

• To the best of the author’s knowledge, this is the first work that introduces MCTS in W2SG.
We employ MCTS to capture hierarchical relationships between reasoning paths and pro-
vide a more detailed and complete representation compared to traditional linear CoT ap-
proaches. We also present a theoretical analysis of W2S.

• Surprisingly, we find that the W2S model can even outperform the SFT strong model in the
experiment. It verifies the validity and effectiveness of our approach.

2 PRELIMINARY

LLM Agent Tasks Formulation Consider an LLM agent performing tasks formalized as a partially
observable Markov decision process (POMDP) (U, S,A,O, T,R). These components represent:
the space of possible instructions U ; the complete state space S; the set of available actions A; the
domain of observable feedback O; a state transition mapping T : S × A → S; and an immediate
reward function R : S ×A → [0, 1] quantifying performance for state-action pairs.

For any instruction u ∈ U , the LLM agent’s policy πθ, parameterized by θ, generates an action aj
at each step j sequentially according to aj ∼ πθ(·|u, a1, o1, . . . , aj−1, oj−1) (where (a1, o1, . . .) is
the interaction history; for j = 1, history contains u or an initial observation). This process yields a
trajectory:

e = (u, a1, o1, . . . , an−1, on−1, an, on), (1)

where n is the number of actions. The probability of the agent’s actions in e given u is:

πθ(e|u) =
n∏

j=1

πθ(aj |u, a1, o1, . . . , aj−1, oj−1), (2)

For each completed trajectory e, the environment assigns a final scalar score G(e) ∈ [0, 1], which
quantifies its overall quality or success rate on the task u. This G(e) serves as the primary feedback
for the trajectory. The overall performance of a policy πθ is its expected score, R(πθ), defined as:

R(πθ) = Eu∼DU ,e∼πθ(·|u)[G(e)], (3)

Here, DU is a distribution over the set of initial instructions U . R(πθ) represents the policy’s average
task score and is our primary evaluation metric. Further details on how G(e) is computed and how
it relates to the immediate reward R and the expected score R(πθ) can be found in Appendix E.

Problem Setup Our work investigates weak-to-strong generalization (W2SG) in the context of LLM
agents performing multi-step interactive tasks. We consider two types of models: a weak model (πw)
and a strong model (πs). These models differ in their underlying capacity (e.g., parameter count,
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architecture), with πs assumed to have a larger capacity and potentially higher performance ceiling
than πw. We denote the base pre-trained models as πbase

w and πbase
s . When fine-tuned on a dataset of

expert-demonstrated ground truth trajectories Dexpert using Supervised Fine-Tuning (SFT) Ouyang
et al. (2022), these models become πSFT

w and πSFT
s , respectively. The model πSFT

s serves as a crucial
baseline representing a strong model trained with high-quality expert supervision.

Our W2SG vs Prior Work

This framing extends the traditional Weak-to-Strong Generalization Burns et al. (2023),
which often focuses on a strong model learning from (potentially noisy) discrete labels pro-
vided by a weak supervisor. In contrast, our work applies W2SG to sequential decision-
making tasks where the weak model πSFT

w generates entire trajectories of interaction. We
propose that by structuring these explored experiences (via trajectory trees) and applying
advanced optimization algorithms (like DPO informed by tree structure, or MCTS for path
refinement), we can more effectively distill knowledge from weak model explorations to
guide the strong model.

The open problem we address is: can supervision derived from the less capable πSFT
w (in the form of

its generated trajectories) be used to elicit the full potential of πs, potentially enabling it to achieve
performance comparable to or even exceeding πSFT

s ? This exploration aims to determine if W2SG
holds for complex interactive tasks, evaluated by the policy’s expected task score R(π).

3 METHODS

Figure 2 depicts the workflow of our method. Our first step is to generate diverse action trajectories
with a fine-tuned weak model, πSFT

w . These trajectories are subsequently organized into a hierar-
chical trajectory tree. This tree then serves as the foundation for two proposed W2SG fine-tuning
algorithms designed to enhance the strong model’s (πs) reasoning and decision-making capabilities
by learning from the structured success and failure experiences of the weak model.

3.1 TRAJECTORY EXPLORATION

The initial step involves training the base weak LLM πbase
w using SFT on an expert demonstration

dataset Dexpert = {(Xi, Yi)}
Nexpert
i=1 to obtain πSFT

w . The SFT objective is the standard negative log-
likelihood:

LSFT(θw) =

− 1

Nexpert

Nexpert∑
i=1

|Yi|∑
t=1

log πw(y
(i)
t | Xi, y

(i)
<t; θw), (4)

Once πSFT
w is obtained, it is used to explore the task environments and further generalize the human

feedback to the strong model. For each instruction u, we prompt πSFT
w multiple times, varying sam-

pling parameters (e.g., temperature, top-p) to generate a diverse set of M trajectories {e1, . . . , eM}.
This diversity is crucial for constructing a rich trajectory tree that captures a wide range of behav-
iors—including successes, failures, and suboptimal paths. The score G(ek) for each trajectory ek is
provided by the environment’s objective success criteria. To further enhance exploration diversity,
we can optionally refine the exploration policy using a KL-divergence penalty against previously
generated trajectory distributions Song et al. (2024a):

Lexplore(θw) =

LSFT(θw)− λ ·KL(πw(·|X; θw)∥π′
explore(·|X)), (5)

where π′
explore is a reference policy from a previous exploration phase. These collected diverse

trajectories form the subsequent tree.

3.2 TRAJECTORY TREE CONSTRUCTION AND WEAK-TO-STRONG GENERALIZATION

The diverse trajectories collected from πSFT
w are organized into a unified trajectory tree T = (V, E),

where V is a set of nodes and E represents directed edges. This tree is constructed iteratively by
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(a) Trajectory Exploration (b) Construct Trajectory Tree (c1) W2SG with Structural Contrastive Pairs
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Figure 2: Illustration of the Weak-to-Strong framework. (a) Given an instruction, the weak LLM
agent interacts with the environment to collect both success and failure trajectories of actions. (b)
The explored trajectories are used to construct a trajectory tree by merging prefixes of actions. We
propose two methods to supervise the strong model: (c1) DPO with structural contrastive failure-
success pairs of trajectories instead of random pairs; (c2) Fine-tune the strong model with Monte
Carlo Tree Search.

adding each explored trajectory, starting from a root node that signifies the initial instruction. Each
node v ∈ V in this tree signifies an agent’s ”execution step” (ov, thv, av), comprising the preceding
environment observation ov , the agent’s thought thv , and its subsequent action av . Edges in the tree
implicitly represent the sequential progression from one such execution step to the next. To foster a
compact and generalizable structure, paths are merged: when adding a new step (onew, thnew, anew)
from a parent node, if an existing child node represents the same action anew taken from a seman-
tically similar observation ov (where similarity between ov and onew is determined using sentence
embeddings and a cosine similarity threshold ξsim), that existing child node is reused and its visit
count updated. Otherwise, a new node for (onew, thnew, anew) is created. Our merging strategy uses
exact matches for actions; consequently, even minor phrasal variations in actions lead to distinct
branches. The final environment-provided score G(e) for each original trajectory is associated with
its terminal execution step (node) in the tree, for example, by aggregation into a total reward.

A ”good” trajectory tree, conducive to our W2SG methods, exhibits several key characteristics: (i)
Diversity (Breadth), stemming from the varied explorations of πSFT

w , thereby capturing a wide range
of strategies and behaviors; (ii) Representativeness (Depth), with paths that are sufficiently long to
represent complete or near-complete attempts at solving the given tasks; and (iii) Informativeness,
featuring clear divergence points where different actions taken from similar (merged) states lead to
demonstrably varied outcomes, as indicated by their aggregated G(e) scores from the initial weak
model explorations.

Based on this trajectory tree, we propose two W2SG algorithms to fine-tune the strong model:
W2SG with action preferences Instead of directly fine-tuning with DPO Rafailov et al. (2024)
based on random contrastive pairs as in common DPO practice, we propose to model the structural
difference between two paths on the tree. Preference pairs are formed from divergence points within
the tree, where two different continuations σ+ and σ− from a shared prefix path h lead to distinct
aggregated G(e) outcomes in the weak model’s exploration. We define τ+ = (h, σ+) and τ− =
(h, σ−) to emphasize these critical decision points. The strong model πs is then fine-tuned on the
resulting dataset Dw = {(τ+i , τ−i )}Np

i=1 using the following DPO loss:

LTreeDPO(πs;π
SFT
w ) =

− E(τ+,τ−)∼Dw

[
log σ

(
rπs

(τ+)− rπs
(τ−)

)]
+ β ·KL(πs∥πSFT

w ), (6)

where rπs(τ) denotes the implicit DPO score of trajectory τ under the strong model πs (which
is being optimized), and πSFT

w serves as the fixed KL reference model during this DPO training
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phase. W2SG with MCTS While weak-to-strong generalization with the preference of actions is
intuitive, the computation complexity of optimizing with all contrastive pairs on the tree is high
due to the large action space on a large-scale dataset. To reduce the cost and identify informative
trajectory paths within this tree structure, we use MCTS offline to search the static trajectory tree and
synthesize a high-quality trajectory e∗ for SFT-based imitation by πs. The MCTS process iteratively
traverses the tree: child execution step nodes are selected from a parent node using UCB, which
balances exploration with exploitation based on node statistics (rM (v), cM (v)). These statistics
are updated via backup of terminal G(e) scores from the original weak trajectories that define the
traversed MCTS path. The UCB formula is:

UCB(v′) =
rM (v′)

cM (v′)
+ γ

√
logCM

cM (v′)
, (7)

After MCTS iterations, an optimized path e∗ is extracted by greedily selecting child nodes with
the highest MCTS-refined average rewards (rM (v)/cM (v)) at each step. The strong model πs then
learns from a dataset De∗ of these e∗ paths via SFT:

LMCTS(πs) =

− 1

|De∗ |
∑

e∗k∈De∗

|e∗k|−1∑
t=0

log πs(a
∗(k)
t | context∗(k)t ), (8)

3.3 ANALYSIS OF W2SG

We provide a theoretical analysis for our weak-to-strong generalization (W2SG) framework, focus-
ing on the scenario where Direct Preference Optimization (DPO) is employed with preference pairs
derived from the trajectory tree. Our aim is to explain why this method, despite learning from ”im-
perfect labels”, can enable a strong model π̂TreeDPO

s to surpass its SFT-trained baseline (πSFT
s ) and

potentially recover a significant portion of the performance achieved by more heavily supervised or
”ceiling” models. The policy performance metric is R(π) as defined in Section 2.

Our analysis is grounded in the Bayesian interpretation of DPO Rafailov et al. (2024); Jones et al.
(1998). We consider πSFT

w as a reference policy, forming part of a prior over the strong policy
πs ∈ Πs (where Πs is the hypothesis class for strong models):

log p(πs) = −βKL
(
πs

∥∥πSFT
w

)
+ C, (9)

The preference dataset Dw = {(τ+k , τ−k )}Np

k=1 from the trajectory tree informs the likelihood, where
p(τ+k ≻ τ−k | πs) = σ

(
rπs

(τ+k )− rπs
(τ−k )

)
. The policy π̂TreeDPO

s is then obtained by minimizing
the DPO objective LTreeDPO(πs;π

SFT
w ) as defined in Equation equation 6 from Section 3.2. Further

details on this Bayesian derivation are in Appendix F.

We introduce key assumptions for our analysis:
Assumption 1 (Strong Model Expressivity and Superior Policy). There exists a policy π∗ ∈ Πs

such that:
1. R(π∗) > R(πSFT

s ), where R(π) denotes the expected score.

2. For each (τ+, τ−) ∈ Dw, we have rπ∗(τ+) > rπ∗(τ−).
Assumption 2 (Weak Model Coverage and Tree Richness). The SFT-weak model πSFT

w , through
diverse exploration, generates trajectories yielding a variety of outcomes, with α > 0 proportion
being successful or high-quality.
Assumption 3 (Tree-Derived Preference Informativeness). Preference pairs (τ+, τ−) from the tra-
jectory tree—via shared prefixes and critical divergences identified from aggregated weak model
G(e) scores—are significantly more informative for DPO than unstructured, random pairs. Tree-
derived pairs isolate key decision points, providing DPO with clearer, more targeted learning signals
distilled from weak model experiences.

Assumption 2 concerns only coverage of the weak model’s exploration and does not imply Assump-
tion 3. Informativeness requires that divergent branches reflect outcome-relevant differences, which
does not follow from coverage alone. This distinction is essential for Theorem 1. Assumption 3 for-
malizes the informativeness of tree-derived preferences: reducing the DPO preference loss on these
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structured pairs correlates with improvements in the true return. This property is essential for trig-
gering the loss–performance sensitivity bound in Eq. equation 13, whose derivation and justification
are discussed in Appendix G.
Theorem 1 (Performance Guarantee for W2SG via Tree-Guided DPO). π̂TreeDPO

s is the policy ob-
tained by minimizing the TreeDPO loss over the random sampling of Dw:

R(π̂TreeDPO
s ) = R(πSFT

s ) +
(
R(π∗)−R(πSFT

s )
)

− C

√
KL(π∗∥πSFT

w ) + log(Np/δ0)

Np
, (10)

for some constant C > 0. This implies that π̂TreeDPO
s can outperform the SFT-strong baseline if

the potential improvement margin R(π∗) − R(πSFT
s ) is sufficiently large relative to the third term

(estimation error/complexity), which diminishes with Np. Full proof details are provided in Ap-
pendix G. The practical interpretation of Theorem 1 is that TreeDPO is beneficial precisely when
the trajectory tree generated by the weak model provides informative preference gaps along shared-
prefix divergences. These structured preferences activate the loss–performance sensitivity relation,
enabling the strong model to improve. When weak-model exploration collapses or the preference
pairs carry no information, this relation does not activate, and TreeDPO naturally reduces to the SFT
strong model without degrading its performance. This is exactly the failure-safe behavior guaranteed
by the KL-regularized objective.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets We evaluate our approach in three environments: WebShop Yao et al. (2022), a virtual
shopping platform for product search and purchase tasks; ScienceWorld Wang et al. (2022), an
environment for conducting scientific experiments and analysis; and AlfWorld Shridhar et al. (2020),
a household task simulation environment. WebShop and ScienceWorld provide continuous rewards
between 0 and 1 based on task completion quality, while AlfWorld uses binary rewards indicating
successful task completion. For each task, we use Average Reward and Success Rate in the test set
as the evaluation metrics. All experiments utilize Low-Rank Adaptation (LoRA) with rank r set as
64 and α set as 128 for efficient training. During the SFT phase, we employ the AdamW optimizer
with a batch size of 32 (with gradient accumulation) and a cosine learning rate of 1e− 5. After SFT,
the agent explores the training set instances to collect weak trajectories. For the ETO (Exploration
Trajectory Optimization, a DPO-based baseline described later in Section 4.1) training phase, we
maintain the batch size of 32 while setting the learning rate to 2e − 5. The DPO loss uses a KL
penalty coefficient β = 0.1. We employ language models with different capacities to investigate
weak-to-strong generalization: Llama and Qwen. By default, Llama2-7B serves as our weak model
and Llama2-13B is our strong model. We also conduct experiments on the Llama3-8B, Llama2-70B
and Qwen2.5. For details of the experimental setup, please refer to Appendix H.

Baselines To verify the effectiveness of the proposed method in W2SG, we introduce the following
baselines.: 1) Standard Supervised Fine-Tuning (SFT) uses expert trajectories to conduct imitation
learning. SFT is applied to both the weak and strong models on an expert demonstration dataset
(Dexpert) to obtain the SFT Weak Model (πSFT

w ) and the SFT Strong Model (πSFT
s ). πSFT

w addi-
tionally serves as the generator of initial trajectories for our tree construction, while πSFT

s acts as a
primary performance benchmark. 2) we employ Best-of-N (N = 8) sampling, where πSFT

s gen-
erates N trajectories per task, and the one with the highest environment-provided score G(e) is
selected, representing a strong inference strategy. 3) ETO (Exploration Trajectory Optimiza-
tion) Song et al. (2024b), a DPO-based method, where πSFT

s is further fine-tuned using preference
pairs derived from its own environmental explorations. Moreover, to establish a high-performance
mark, a Ceiling Model is trained by fine-tuning πSFT

s via DPO, using preference pairs that designate
trajectories from Dexpert as ”preferred” over those generated by πSFT

s ’s own explorations.

4.2 RESULTS AND ANALYSIS

Table 1 shows the weak-to-strong generalization performance across three tasks. We can observe
that the phenomenon of weak-to-strong generalization still holds for these interactive tasks. We use
“W2SG” to represent the weak-to-strong performance.

7



Published as a conference paper at ICLR 2026

Method WebShop ScienceWorld AlfWorld

Avg Reward Success Rate Avg Reward Success Rate Avg Reward

SFT Weak Model (
Llama-2-7b+SFT)

47.1 87.0 41.2 55.5 44.8

W2SG with Tree DPO 53.2 97.0 55.4 61.1 56.0
W2SG with MCTS

(ours)
56.9 (2nd) 99.0 (1st) 58.2 (1st) 66.8 (1st) 57.5 (2nd)

SFT Strong Model (
Llama-2-13b+SFT)

51.0 94.0 53.6 59.2 51.5

SFT Strong Model (
Llama-2-13b+ETO)

52.0 97.5 54.9 61.1 53.7

SFT Strong Model +
Best of N

52.3 96.0 55.3 60.7 55.2

Ceiling Model 58.3 (1st) 96.5 56.9 (2nd) 63.5 (2nd) 59.0 (1st)

Table 1: The average reward and success rate of different approaches on three agent datasets. W2SG
methods trained with weak model trajectories generalize better than strong SFT baselines across
tasks, with MCTS-based W2SG achieving best performance under purely weak supervision.

Base LLM WebShop SciWorld AlfWorld

Llama3-8B+SFT 60.8 59.5 59.7
Llama3-8B+Tree DPO 62.0 62.7 61.9
Llama3-8B+MCTS 65.3 67.9 65.7

Table 2: The average reward of weak-to-strong generalization to Llama3-8B.

Specifically, we can find that the fine-tuned strong model with trajectories generated by a weak
model consistently outperforms the fine-tuned weak model. Compared to the SFT weak model,
the W2SG with DPO improves a maximum of 4.3%. in terms of the average reward. Compared
with the ceiling model based on expert trajectories, we find imperfect trajectories can effectively
unlock the potential of strong models, recovering up to 39.4% of the ceiling model’s performance
under weak supervision. Notably, W2SG achieves these improvements without requiring additional
human-annotated data, relying entirely on weak models, which is particularly important in resource-
constrained scenarios.

Figure 3: Three agents are compared: SFT, WTS, and
MCTS. X shows the time steps while Y illustrates the
scores. The task ID is shown above the plot.

We further verify the effectiveness of
MCTS in W2SG. Surprisingly, by struc-
turing the weak model’s trajectories in
a tree format and using Monte Carlo
Tree Search to combine optimal nodes
for generating training signals, the result-
ing strong model even outperforms the
SFT strong model. There is an aver-
age reward improvement of 11.6% and
11.7% over the SFT strong model on Web-
Shop and AlfWorld, respectively. More-
over, on ScienceWorld tasks, it outper-
forms the ceiling model trained with the
ETO method. This demonstrates that
the proposed method enhances weak-to-
strong generalization performance. We compute the p-value to judge the significance of the im-
provement over 5 runs with random seeds. To justify that W2SG with TreeDPO significantly out-
performs the SFT strong model, we run a t-test and compute the p-value. The two-tailed P value
equals 0.0003 (null hypothesis: two population means are actually equal). By conventional criteria,
this difference is considered to be statistically significant. Similarly, the P value for SFT Strong and
W2SG MCTS (null hypothesis: two population means are actually equal) is 0.0001. Therefore, the
superiority of W2SG MCTS over the SFT strong model is also extremely statistically significant.

We also verify the phenomenon of weak-to-strong generalization with different LLM families. Ta-
ble 2 shows the average reward of Llama3-8B models Supervised by Llama2-13B. The result further
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verifies the feasibility of eliciting strong capabilities with weak supervision. Our work makes em-
pirical progress on the challenge of aligning superhuman models.

Method Tree β Avg Reward
SFT - - 53.6
WTS - 0.1 54.9

- 0.5 49.2
MCTS 5 - 57.6

6 - 58.2
7 - 54.9

Table 3: The effects of tree breadth and β.

Effectiveness of Parameters. As shown in Figure 3,
we assess agent efficiency in the ScienceWorld en-
vironment by measuring how effectively an agent
solves tasks with minimal action steps. Each task
is broken down into fine-grained subgoals, and re-
wards are incrementally granted as these subgoals
are achieved. Table 3 shows that when we use a
higher β value in W2SG in the ScienceWorld, the
performance was inferior compared to using a lower
one, which shows lower β value helps the strong
model maintain better knowledge transfer while avoiding overfitting to the reference policy.

Figure 4: The performance changes with the in-
crease of trajectory numbers.

We further explore the impact of the number
of trajectories used to construct the trajectory
tree in W2SG. Specifically, we adjust the de-
coding temperature and top-p sampling strat-
egy of the LLM agent to collect multiple tra-
jectories generated by the weak model. By in-
creasing the breadth of the trajectory tree, we
examined the effect of the number of collected
trajectories on the results, ranging from three
to ten trajectories. As shown in Figure 4, we
observe that increasing the number of collected
trajectories initially improves the model’s per-
formance but eventually leads to a decline. No-
tably, on the ScienceWorld task, the weak-to-
strong model achieves performance surpassing
the ceiling model when trained with six trajec-
tories. However, this does not imply that simply adding more trajectories will consistently enhance
generalization. For the AlfWorld task, when the number of trajectories used to construct the tree ex-
ceeds seven, the average reward achieved by the W2S model begins to decrease and the phenomenon
is also observed in the WebShop task. While increasing the number of trajectories can improve per-
formance, there is an optimal range beyond which additional trajectories may not yield better results
and could even negatively impact W2SG.

Base LLM Method Webshop Alfworld

Qwen2.5-7B SFT 65.5 58.2
Qwen2.5-14B SFT 71.7 61.9
Qwen2.5-14B TreeDPO 72.3 62.7
Qwen2.5-14B MCTS 76.1 65.7

Table 4: W2SG on Qwen.

Performance on Qwen. We additionally
investigate the W2SG performance on the
Qwen2.5 family. We used Qwen2.5-14B
as the strong model and Qwen2.5-7B as
the weak model. The results are shown in
Table 4. TreeDPO improves the Qwen2.5-
14B SFT baseline on both WebShop and
AlfWorld, despite using trajectories from
a significantly weaker model (Qwen2.5-
7B). This trend mirrors our Llama experiments and confirms that weak-to-strong generalization
is architecture-agnostic and not specific to the Llama family.

Method Avg Reward
SFT 59.7
Unstructured DPO 60.4
TreeDPO 61.9
MCTS 65.7

Table 5: Tree DPO vs. random pairs

Ablation study. To better isolate the contribution of the
tree structure, we additionally conducted an ablation on
Alfworld using unstructured preference pairs on Llama3-
8B, where two complete weak trajectories are randomly
paired based solely on reward. Unlike tree-derived pairs,
these pairs do not share a common prefix and therefore
contain substantially higher noise. As shown in Table 5,
the unstructured DPO variant improves slightly over the
strong SFT baseline but is noticeably weaker than TreeDPO. This confirms that shared-prefix diver-
gences provide much clearer and more stable training signals than arbitrary preference pairs.
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Cost of trajectory exploration and MCTS Rollouts. We remark that Trajectory tree construction
is inexpensive in practice because it only processes the weak model’s rollouts and does not require
additional model training. For example, on Webshop, the tree construction and 100 MCTS Rollouts
take 0.41 seconds and 0.23 seconds, respectively. Both components scale approximately linearly
with the action horizon and the number of states in the tree, since all operations are local expansions
or pointer traversals. Vocabulary size does not directly affect tree construction or search, since these
stages operate purely on already-sampled trajectories rather than enumerating language actions.

Model Webshop SciWorld AlfWorld
Llama2-7B 47.1 41.2 44.8
Llama3-8B 60.8 59.5 59.7

Table 6: The weakness of Llama2-7B
Method Llama2-7B Llama2-13B
Llama3-8B+SFT 60.8 60.8
Llama3-8B+Tree DPO 61.3 62.0
Llama3-8B+MCTS 63.7 65.3

Table 7: W2SG using Llama2-7B and Llama2-13B

Quality of weak models. Intuitively,
the quality of the weak model will have
an impact on the explored trajectories.
We conduct additional experiments on
Llama models and the Webshop Task
with two substantially different weak
models: Llama2-7B and Llama2-13B,
while keeping the strong model fixed as
Llama3-8B. First, as shown in Table 6,
Llama2-7 B’s standalone performance
is far below that of Llama3-8B. There-
fore, the weak model is indeed under-
performing. Second, the results in Table 7 show a clear and consistent trend: using the much weaker
Llama2-7B as the weak model, the weak-to-strong update still produces a small but stable im-
provement over the strong SFT baseline and never leads to negative transfer. Using the stronger
Llama2-13B leads to significantly larger gains. These findings confirm the monotonic relationship
predicted by our theoretical analysis: weak models with low exploration capacity offer limited but
non-negative signals, while stronger weak models provide more informative tree structures.

Case Study Figure 4 illustrates the actions of different models on the WebShop task. The strong
model trained using SFT fails to complete the task correctly as it repeats incorrect actions, leading
to failure and a reward score of 0. While the W2S model trained using the DPO method successfully
completes the task, it makes suboptimal choices, such as selecting a product that does not fully meet
the requirements. As a result, the reward score is relatively low at 0.5. However, the W2S model
trained using trajectory trees not only completes the task successfully but also performs a more
detailed search and makes more precise choices.

Agent: 
Thought: I think I should use the search bar to look 
for the product I need.
Action: search[nutmeg shade concealer that hides 
dark circle. also remember that i have sensitive skin, 
and price lower than 40.00 dollars.
Ob: {Show a shopping webpage with product details}
Agent:
Thought: I think I should click on the product I need, 
which is B09JBBVBDG.
Action: click[B09JBBVBDG]
Ob:{A new product details webpage}
Agent:
Thought: I think I should click on the '070 nutmeg' 
option to select the color I need.
Action: click[070 nutmeg]
Ob:{A new product details webpage}
Agent:
Thought:I think I should click on the 'Buy Now' 
button to purchase the product.
Action: click[Buy Now]

Success
Reward: 0.75                                 

Agent: 
Thought: I think I should use the search bar to 
look for the product I need.
Action: search[nutmeg shade concealer]
Ob: {Show a shopping webpage with product 
details}
Agent:
Thought: I think I should click on the 
'B09JBBVBDG' link to purchase the product.
Action: click[B09JBBVBDG]
Ob:{A new product details webpage}
Agent:
Thought:I think I should click on the 'Buy 
Now' button to purchase the product.
Action: click[Buy Now]

Success
Reward: 0.5                           

Pick a nutmeg shade concealer that hides dark circle. also remember that I have sensitive skin, and price lower than 40.00 dollars

Agent: 
Thought: I should use the keywords 'nutmeg shade' 
and 'concealer' in the search bar.
Action: search[nutmeg shade concealer]
Ob: {Show a shopping webpage with product details}
Agent:
Thought: I think I should select the product 
B07MWSX872, which is a nutmeg shade concealer 
that hides dark circles and is priced lower than 40.00 
dollars.
Action: click[B07MWSX872]
Ob:{Remain The same webpage}
Agent:
Thought:I think I should select the product with the 
keyword 'nutmeg shade' and click on the 'Buy Now' 
button.
Action: click[Buy Now]
Ob:{Remain The same webpage}
Agent: 
Thought: I think I should select the product with the 
keyword 'nutmeg shade' and click on the 'Buy Now' 
button.
Action: click[Buy Now]

Failure
Reward: 0.0                      

Agent: 
Thought: I should use the keywords 'nutmeg shade' 
and 'concealer' in the search bar.
Action: search[nutmeg shade concealer]
Ob: {Show a shopping webpage with product details}
Agent:
Thought: I think I should select the product with the 
keyword 'nutmeg shade' and click on the 'Buy Now' 
button.
Action: click[Buy Now]
Ob:{Remain The same webpage}
Agent:
Thought:I think I should select the product and click 
on the 'Buy Now' button.
Action: click[Buy Now]
Ob:{Remain The same webpage}
Agent: 
Thought: I think I should select the product and click 
on the 'Buy Now' button.
Action: click[Buy Now]

Failure
Reward: 0.0                               

Figure 5: An example of weak-to-strong generalization in the WebShop scenario. The 4 interactions
from left to right are the trajectories generated by the SFT Weak Model, the SFT Strong Model, the
W2S model trained with DPO, and the W2S Model trained with MCTS.

5 CONCLUSION

In this work, we present a Weak-to-Strong Generalization (W2SG) framework in LLM agents. Our
experiment verifies the feasibility of W2SG in reasoning and decision-making tasks. The theoretical
analysis provides a robust foundation for understanding how W2SG can achieve superior perfor-
mance, even when learning from imperfect trajectories. This work opens new pathways for scaling
up LLM agents’ training without requiring additional human supervision.
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Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization for LLM agents. CoRR, abs/2403.02502, 2024a. doi:
10.48550/ARXIV.2403.02502. URL https://doi.org/10.48550/arXiv.2403.02502.

12

https://doi.org/10.1145/3447548.3467236
https://openreview.net/forum?id=HhfcNgQn6p
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.48550/arXiv.2403.02502


Published as a conference paper at ICLR 2026

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization for llm agents. arXiv preprint arXiv:2403.02502,
2024b.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Chaojie Wang, Yanchen Deng, Zhiyi Lyu, Liang Zeng, Jujie He, Shuicheng Yan, and Bo An.
Q*: Improving multi-step reasoning for llms with deliberative planning. arXiv preprint
arXiv:2406.14283, 2024.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. Scienceworld: Is
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A LLM USAGE

During the preparation of this paper, we used large language models (e.g., ChatGPT) as writing
assistants for language polishing and clarity improvement. The models were not involved in idea
generation, experimental design, or result analysis. All scientific content and conclusions are the
responsibility of the authors.

B REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our results. All datasets used are publicly
accessible. Anonymous source code and scripts for reproducing our experiments will be made
available in the supplementary materials. These resources should allow researchers to replicate our
results and extend our framework to new settings.

C LIMITATIONS

As discussed in Burns et al. (2023), when the weak model can contain errors that are easy to learn,
the strong model could learn to imitate those errors. The limitation also exists in our setting: when a
weak model is explicitly misaligned, the misalignment can also be generalized to the strong model.
Due to the lack of a malicious human-labeled dataset used for RLHF, we are unable to investigate
the vulnerability of the W2SG framework. The research of W2SG is still in its early stages, and
there are many gaps between W2SG and other domains. Attacking through W2SG is a future work
we plan to explore and strengthen our claim in various practical scenarios.

D RELATED WORK

Weakly Supervised Learning. Traditional supervised learning methodologies are undergoing sig-
nificant transformation Zhou (2018); Burns et al. (2023). When it is impractical to obtain fully
annotated datasets, researchers have proposed to leverage imperfect but readily available signals
Lang et al. (2024); Hui et al. (2021). Weak supervision offers an alternative approach to supervised
learning Sang et al. (2024); Charikar et al. (2024), aiming to keep advanced artificial intelligence
models aligned with human intentions Yang et al. (2024a). A framework has recently demonstrated
significant potential in enhancing Large Language Models’ (LLMs) reasoning capabilities Lyu et al.
(2024). Progressive frameworks enable stronger models to autonomously optimize their training
data with crucial insights from weak supervisors Chen et al. (2024b;a); Kolossov et al. (2024). Re-
cent advances have further solidified the Weak-to-Strong Generalization (W2SG) paradigm as a
powerful framework for eliciting strong capabilities from imperfect supervision. Beyond empirical
gains in LLM reasoning and decision-making Yang et al. (2024b); Lyu et al. (2024), recent works
have explored its theoretical foundations Lang et al. (2024); Charikar et al. (2024), robustness in
self-supervised settings Shin et al. (2024); Xiao et al. (2024), and methods to mitigate overfitting
from noisy weak supervision in reasoning-intensive environments through staged bootstrapping Shi
et al. (2025). These studies reveal that carefully designed weak signals can outperform traditional
expert-labeled supervision in eliciting complex behaviors.
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LLMs Agents. Large Language Models have evolved beyond text generation into interactive agents
capable of complex reasoning and task execution Wei et al. (2022); Crispino et al. (2024); Xie
et al. (2024). A fundamental breakthrough came with chain-of-thought prompting and reasoning
frameworks Zhang et al. (2023); Xu et al. (2024), enabling agents to break down complex tasks
into manageable steps. The field has since advanced beyond simple sequential reasoning, with re-
searchers developing more sophisticated approaches such as Tree of Thoughts (ToT) Zhang et al.
(2024b); Yao et al. (2023a) for exploring multiple reasoning paths simultaneously and Graph of
Thoughts (GoT) Yao et al. (2023c); Besta et al. (2024) for handling complex problem-solving sce-
narios. Other works have also utilized search and value estimation for LLM reasoning. For instance,
ReST-MCTS* Zhang et al. (2024a) employs a reinforced self-training approach where Monte Carlo
Tree Search (MCTS) dynamically explores and expands reasoning paths to collect high-quality tra-
jectories and infer process rewards, aiming for iterative self-improvement of a model’s policy and
value functions. Our weak-to-strong generalization (W2SG) framework mainly focuses on offline
MCTS on a static trajectory tree generated by a weak model to synthesize data for fine-tuning a sep-
arate, stronger model. Further distinct are methods like Q* Wang et al. (2024) and QLASS Lin et al.
(2025), which primarily focus on enhancing an LLM’s performance at inference time. Q* learns a
Q-value model as a heuristic to guide an A*-like search during the LLM’s decoding process without
altering the LLM’s parameters. Similarly, QLASS trains a QNet to estimate step-wise Q-values from
self-generated exploration trees, using this QNet to guide the agent’s decision-making during infer-
ence. In contrast, our work leverages weak model explorations not for direct inference guidance, but
as a source of supervision to explicitly fine-tune and transfer knowledge to a more capable strong
model. However, significant challenges remain in ensuring reliability and safety, as LLM agents can
exhibit inconsistent behavior. Recent work has explored multi-agent systems, where LLM agents
collaborate to solve complex problems Zhang et al. (2023). The field continues to evolve rapidly,
addressing challenges in agent alignment, knowledge grounding, and robustness. While Weak-to-
strong generalization has been studied on reasoning ability Yang et al. (2024b), these works set up
the task as a classification problem, which is different from interactive tasks in our setting.

E DETAILS ON TRAJECTORY SCORE AND POLICY PERFORMANCE METRIC

Trajectory Score G(e): As defined in Section 2, G(e) is the final scalar score assigned by the
environment to a completed trajectory e (see Equation equation 1 for trajectory definition, using
your Sec 2.1 label). While the POMDP formalism includes an immediate reward function R :
S × A → [0, 1], for many complex interactive tasks such as those in WebShop or ScienceWorld,
the most salient form of feedback is a terminal reward that reflects the overall success of the entire
episode. This G(e) ∈ [0, 1] directly represents this terminal reward. Formally, if one considers
R(s, a) to be non-zero only at the final transition leading to task completion or failure, then G(e)
can be seen as the sum

∑
R(sj , aj) (using notation where sj is the state after aj , or sj−1 is the state

before aj), which simplifies to the terminal score if intermediate rewards are zero.

Policy Performance R(πθ): The performance of a policy πθ, R(πθ), is its expected trajectory
score, from Equation equation 3 (using your Sec 2.1 label): R(πθ) = Eu∼DU ,e∼πθ(·|u)[G(e)]. This
expectation averages the trajectory scores G(e) over:

1. The distribution of initial instructions or tasks DU .

2. The distribution of trajectories e ∼ πθ(·|u) generated for each task u, accounting for any
stochasticity in πθ or the environment.

Thus, R(πθ) provides a robust measure of the policy’s general effectiveness. It is the central quantity
our theoretical analysis concerns and corresponds to empirical metrics like average reward over a
test set.

F FURTHER DETAILS ON BAYESIAN INTERPRETATION OF DPO

The Direct Preference Optimization (DPO) objective, referenced in Section 3.3 as Equation equa-
tion 6 (defined in Section 3.2), is derived from finding the maximum a posteriori (MAP) estimate for
the strong policy πs given preference data Dw = {(τ+k , τ−k )}Np

k=1 and a prior p(πs). The posterior
is p(πs | Dw) ∝ p(Dw | πs)p(πs). The prior p(πs) ∝ exp

(
−βKL

(
πs

∥∥πSFT
w

))
(from Eq. equa-
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tion 9). The likelihood p(Dw | πs) =
∏Np

k=1 p(τ
+
k ≻ τ−k | πs), where individual preferences

p(τ+k ≻ τ−k | πs) = σ
(
rπs

(τ+k )− rπs
(τ−k )

)
. Minimizing the negative log-posterior directly yields

the DPO loss function. This framework ensures the learned policy balances fidelity to the reference
πSFT
w with exploiting preference signals from Dw.

G DETAILED PROOF OUTLINE FOR THEOREM 1

This appendix provides a more detailed outline for the argument supporting Theorem 1. Let
LDw

(πs) be the empirical DPO preference loss term from Equation equation 6. Let LP(πs) be
its true expectation over P , the underlying distribution of tree-derived preference pairs.

Proof The DPO objective (Eq. equation 6) finds π̂TreeDPO
s that minimizes empirical loss on Dw

subject to a KL penalty. Let LDw
(πs) be the empirical preference loss term and LP(πs) be its

true expectation over the distribution P of tree-derived preference pairs. By standard PAC-Bayesian
arguments McAllester (1999), the true loss LP(π̂

TreeDPO
s ) can be bounded. Since π̂TreeDPO

s is the
minimizer of the regularized empirical loss, its regularized empirical loss is no worse than that of
π∗ (from Assumption 1):

LDw(π̂
TreeDPO
s ) + βKL(π̂TreeDPO

s ∥πSFT
w ) ≤

LDw
(π∗) + βKL(π∗∥πSFT

w ), (11)

With high probability (at least 1 − δ0), concentration inequalities ensure that empirical losses are
close to true expected losses for relevant policies. Thus, we can relate the true loss of π̂TreeDPO

s to
that of π∗:

LP(π̂
TreeDPO
s ) ≤ LP(π

∗) + βKL(π∗∥πSFT
w )

+O

(√
Cap(Πs, βKL) + log(Np/δ0)

Np

)
, (12)

The core step is to link this preference loss LP(πs) to the policy’s actual performance R(πs). As-
sumption 3 is critical here: informative, tree-derived preference pairs ensure that a lower preference
loss (i.e., better alignment with true outcome distinctions) correlates strongly with higher policy
performance R(πs). We posit that for policies π close to π∗, there’s a relationship like

R(π∗)−R(π) ≤ ζ(LP(π)− LP(π
∗)), (13)

for some sensitivity ζ > 0. This implies that reducing the preference error towards the optimum
LP(π

∗) directly translates to improving R(π) towards R(π∗).

Combining the relationship equation 13 with the bound on LP(π̂
TreeDPO
s ) from Equation equation 12,

we obtain:

R(π̂TreeDPO
s ) ≥ R(π∗)− ζ

(
βKL(π∗∥πSFT

w )

+O

(√
Cap(Πs, βKL) + log(Np/δ0)

Np

))
, (14)

Substituting R(π∗) = R(πSFT
s )+(R(π∗)−R(πSFT

s )) into Equation equation 14 directly leads to the
form stated in Theorem 1 (Equation equation 10), where the constant C in the theorem encapsulates
ζ and constants from the O(·) notation.

1. Bounding the Empirical Loss of π̂TreeDPO
s As stated in Equation equation 11 in the main text, by

definition of π̂TreeDPO
s as the minimizer of the regularized empirical loss, for π∗ from Assumption 1:

LDw
(π̂TreeDPO

s ) + βKL(π̂TreeDPO
s ∥πSFT

w ) ≤
LDw

(π∗) + βKL(π∗∥πSFT
w ), (15)

2. Generalization Bound (Concentration of Empirical Loss to True Loss) With high prob-
ability (at least 1 − δ0), standard concentration inequalities (e.g., based on McAllester’s PAC-
Bayesian bounds McAllester (1999) or uniform convergence arguments for hypothesis class Πs)
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Base LLM WebShop SciWorld AlfWorld

Llama2-70B+SFT 65.1 64.6 63.4
Llama2-70B+Tree DPO 65.9 67.4 65.7
Llama2-70B+MCTS 70.4 69.1 68.7

Table 8: The average reward of weak-to-strong generalization with Llama2-70B.

relate empirical losses to true expected losses. For any policy π ∈ Πs: |LP(π) − LDw
(π)| ≤

GenError(Np, δ0,Πs), where:

GenError(Np, δ0,Πs) =

O

(√
cap(Πs, πSFT

w ) + log(Np/δ0)

Np

)
, (16)

The term cap(Πs, π
SFT
w ) represents a capacity or complexity measure of the policy class Πs, poten-

tially influenced by the KL regularization towards πSFT
w . This term often involves quantities like

VC dimension or Rademacher complexity for the functions parameterized by πs. Applying this to
π̂TreeDPO
s and π∗, and combining with the result from Step 1, yields Equation equation 12 from the

main text:

LP(π̂
TreeDPO
s ) ≤ LP(π

∗) + βKL(π∗∥πSFT
w )

+O

(√
cap(Πs, πSFT

w ) + log(Np/δ0)

Np

)
, (17)

The term KL(π∗∥πSFT
w ) here effectively captures the complexity component relevant to achieving

π∗ under the prior πSFT
w , as reflected in the final theorem (Eq. equation 10).

3. Linking Preference Loss to Policy Performance R(π) This step, as described in the main text
around Equation equation 13, relies on Assumption 3. The core idea is that for well-structured,
informative preferences (which tree-derived pairs are assumed to be), better satisfaction of these
preferences (lower LP(π)) implies better real-world performance R(π). The sensitivity parameter
ζ > 0 in R(π∗) − R(π) ≤ ζ(LP(π) − LP(π

∗)) formalizes this positive correlation. The specific
value of ζ depends on how directly the preferences captured by LP (which relate to rπs scores)
translate to the overall task score R. A strong correlation is more likely when rπs

accurately reflects
true utility differences.

4. Deriving the Final Performance Guarantee The derivation proceeds as outlined in the main
text, substituting the bound for LP(π̂

TreeDPO
s ) (Equation equation 12) into the loss-to-performance

relationship (Equation equation 13), and then expressing R(π∗) in terms of R(πSFT
s ) to arrive at the

statement in Theorem 1 (Equation equation 10). The constant C consolidates ζ and other constants
arising from the O(·) notation and the specific form of the concentration inequalities used.

H DATASETS

Additional Results on Llama-2-70B To further validate the scalability of our method, we ad-
ditionally conduct experiments with a 70B-parameter strong model. As shown in Table 8, both
TreeDPO and MCTS continue to improve over the SFT baseline, with MCTS achieving the best
average rewards across three tasks. This confirms that our weak-to-strong framework generalizes
effectively to larger-capacity models.

WebShop WebShop is a large-scale simulated e-commerce environment designed to test Large
Language Model agents. It evaluates an agent’s ability to understand natural language instructions,
navigate web pages, and select or purchase products. The platform challenges agents with tasks
such as query formulation, acting on noisy webpage text, and strategic exploration to assess their
decision-making and language understanding capabilities.
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ScienceWorld ScienceWorld is designed to test agents’ ability to perform elementary science
tasks, such as conducting experiments or reasoning about scientific concepts. It evaluates an agent’s
scientific reasoning by requiring them to combine procedural actions with scientific knowledge to
complete tasks like testing conductivity, modeling Mendelian genetics, or observing changes in
states of matter.

AlfWorld AlfWorld is a cross-modal framework that combines text-based and visually embodied
environments to train agents in abstract reasoning and task execution. It evaluates an agent’s ability
to transfer abstract policies learned in textual simulations to complex embodied tasks, such as object
manipulation and navigation, in visually diverse and dynamic settings.

Experimental Settings Task evaluation differs across environments: WebShop and ScienceWorld
implement average rewards from 0 to 1 to evaluate the model performance, whereas AlfWorld adopts
a simple binary success/failure rate as metrics. We defined the task score as 100 × Reward avg.,
which captures the average reward obtained across episodes Yao et al. (2022).

Table 9 illustrates the statistics of each dataset:

Dataset Train Text-Seen Text-Unseen

WebShop 1,824 200 -
ScienceWorld 1,483 194 211
AlfWorld 3,119 140 134

Table 9: Dataset statistics.

Following the evaluation environment set up in Song et al. (2024b), we construct corresponding
environments over three tasks to evaluate the LLM agent’s performance. The original ScienceWorld
and AlfWorld evaluation set comprises both seen and unseen sets. The Unseen set,s including new
task instances, measures the out-of-distribution generalization of the agents. We evaluate the model
performance on these unseen sets.
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Prompts

WebShop Instruction Prompts

You are web shopping. I will give you instructions about what to do. You have to follow the instruc-
tions. Every round I will give you an observation and a list of available actions, you have to respond
an action based on the state and instruction. You can use search action if search is available. You can
click one of the buttons in clickables. An action should be of the following structure:
search[keywords]
click[value]
If the action is not valid, perform nothing. Keywords in search are up to you, but the value in click
must be a value in the list of available actions. Remember that your keywords in search should be
carefully designed.
Your response should use the following format:
Thought: I think ...
Action: click[something]

ScienceWorld Instruction Prompts

You are a helpful assistant to do some scientific experiment in an environment. In the environment,
there are several rooms: kitchen, foundry, workshop, bathroom, outside, living room, bedroom, green-
house, art studio, hallway You should explore the environment and find the items you need to complete
the experiment. You can teleport to any room in one step. All containers in the environment have al-
ready been opened, you can directly get items from the containers.
The available actions are: open OBJ: open a container
close OBJ: close a container
activate OBJ: activate a device
deactivate OBJ: deactivate a device
connect OBJ to OBJ: connect electrical components
disconnect OBJ: disconnect electrical components
use OBJ [on OBJ]: use a device/item
look around: describe the current room
examine OBJ: describe an object in detail
look at OBJ: describe a container’s contents
read OBJ: read a note or book
move OBJ to OBJ: move an object to a container
pick up OBJ: move an object to the inventory
pour OBJ into OBJ: pour a liquid into a container
mix OBJ: chemically mix a container
teleport to LOC: teleport to a specific room
focus on OBJ: signal intent on a task object
wait: task no action for 10 steps wait1: task no action for a step

Alfworld Instruction Prompts

Interact with a household to solve a task. Imagine you are an intelligent agent in a household envi-
ronment and your target is to perform actions to complete the task goal. At the beginning of your
interactions, you will be given the detailed description of the current environment and your goal to
accomplish. For each of your turn, you will be given the observation of the last turn. You should first
think about the current condition and plan for your future actions, and then output your action in this
turn. Your output must strictly follow this format:
Thought: your thoughts.
Action: your next action. The available actions are:
1. go to recep
2. task obj from recep
3. put obj in/on recep
4. open recep
5. close recep
6. toggle obj recep
7. clean obj with recep
8. heat obj with recep
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9. cool obj with recep where obj and recep correspond to objects and receptacles.
After your each turn, the environment will give you immediate feedback based on which you plany-
our next few steps. if the envrionment output ”Nothing happened”, that means the previous action is
invalid and you should try more options.
Your response should use the following format: Thought: ¡your thoughts¿ Action: ¡your next action¿
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