
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BEYOND SINGLE NEURONS: POPULATION RESPONSE
GEOMETRY IN DIGITAL TWINS OF MOUSE VISUAL COR-
TEX

Anonymous authors
Paper under double-blind review

ABSTRACT

Hierarchical visual processing is essential for cognitive functions like object
recognition and spatial localization. Traditional studies of the neural basis of these
computations have focused on single-neuron activity, but recent advances in large-
scale neural recordings emphasize the growing need to understand computations
at the population level. Digital twins–computational models trained on neural
data–have successfully replicated single-neuron behavior, but their effectiveness
in capturing the joint activity of neurons remains unclear. In this study, we investi-
gate how well digital twins describe population responses in mouse visual cortex.
We show that these models fail to accurately represent the geometry of population
activity, particularly its differentiability and how this geometry evolves across the
visual hierarchy. To address this, we explore how dataset, network architecture,
loss function, and training method affect the ability of digital twins to recapitulate
population properties. We demonstrate that improving model alignment with ex-
periments requires training strategies that enhance robustness and generalization,
reflecting principles observed in biological systems. These findings underscore
the need to evaluate digital twins from multiple perspectives, identify key areas
for refinement, and establish a foundation for using these models to explore neu-
ral computations at the population level.

1 INTRODUCTION

Our ability to perform complex tasks, such as object recognition and spatial localization, relies on
hierarchical processing of visual information in the brain. Studies using single-neuron recordings
have found a progressive transformation of visual representations: from simple feature detection in
early sensory areas to complex object representations in higher visual areas (Felleman & Van Essen,
1991; Hubel & Wiesel, 1968). Advances in large-scale recordings have shifted the focus from
single-neuron activity to population-level responses. These provide a more comprehensive view of
the neural processes supporting cognitive functions and have been suggested to be the essential unit
of computation (Chung & Abbott, 2021; Vyas et al., 2020; Saxena & Cunningham, 2019).

A major challenge in studying the neural basis of complex computations, such as object classifica-
tion, is understanding how the joint activity of neurons represent stimuli and how these representa-
tions are transformed across brain areas. Limitations in consistently recording from large numbers
of neurons under diverse conditions constitute a significant barrier to addressing this challenge. Ar-
tificial neural networks trained on large-scale neural recordings (Fig. 1A), also referred as digital
twins, have recently emerged as powerful tools for bridging this gap (Lurz et al., 2020; Safarani
et al., 2021; Wang et al., 2023). By learning to predict neural responses, these models offer the
opportunity for extensive in silico experiments, which would be impractical in live animals, such
as identifying the most excitatory stimuli (Walker et al., 2019; Bashivan et al., 2019; Pierzchlewicz
et al., 2024) or mapping the landscape of relevant features across neuronal populations (Tong et al.,
2023). Despite their success at the single-neuron level, the potential of digital twins for studying
population-level neural responses remains underexplored.

In the visual cortex, neural population responses to visual stimuli form manifolds, whose structure
determines how efficiently downstream neural circuits can differentiate between stimuli, generalize
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Figure 1: Investigating population geometry of mouse visual cortex with digital twins (A) Schematic
of a digital twin used to predict single neuron responses. We study how well these models capture the neural
response geometry and its variation across cortical areas. (B) In Stringer et al. (Stringer et al., 2019a), mice were
exposed to thousands of natural images and parametric stimuli, grouped into ensembles of varying dimensions
d, while V1 neuronal activity was recorded simultaneously. The collective neuronal activity corresponding
to each stimulus type formed a manifold (left), whose structure was analyzed using the eigenspectrum of the
covariance matrix of neural activity, which exhibited a power-law decay (center; lighter and darker blue lines
represent individual sessions and their average, respectively). The decay exponent α depended on d and slightly
exceeded 1 + 2/d (right), suggesting that the neural representations are as high-dimensional as possible while
still being differentiable. (C) In Froudarakis et al. (Froudarakis et al., 2020), mice were presented with objects
undergoing identity-preserving transformations (rotation, scaling, translation, and variations in lighting) while
simultaneous recordings were made from thousands of neurons (left). The experiment revealed a hierarchy of
linearly decodable object information across different visual areas (center and right).

across appearance variations, and maintain robustness against noise (DiCarlo et al., 2012; Chung
et al., 2018; Chung & Abbott, 2021; Li et al., 2024). Accurately capturing the structure of these
population-level responses, both within individual brain areas and as it evolves across the visual
hierarchy, is important for digital twin models aiming to provide insights into neural computations.
In this study, we evaluate the ability of digital twins to replicate two landmark findings in the mouse
visual cortex hierarchy. First, we investigate the differentiability of population responses in primary
visual cortex (V1). Stringer et al. (Stringer et al., 2019a) demonstrated that V1 representations
exhibit a high-dimensional geometry that remains differentiable (Fig.1B), enabling robustness to
noise and small variations in stimuli. They achieved this by exposing mice to ensembles of visual
stimuli (e.g., natural images and parametric stimuli) grouped by dimension d and analyzing the re-
sulting neural activity manifolds using the eigenspectrum of the covariance matrix. The spectrum
followed a power-law decay, with an exponent α dependent on d and slightly exceeding 1 + 2/d.
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Stringer et al. (Stringer et al., 2019a) emphasized that a spectrum with too slow a decay is patho-
logical, as it requires an impractically large number of neurons to reconstruct stimuli and makes
neural responses extremely sensitive to small stimulus changes—both of which hinder learning to
generalize. Mathematically, they showed through functional analysis that the decay exponent α
reflects the geometry of neural representations. Specifically, the dimensionality of representations
increases with α, and their differentiability depends on key thresholds: representations with α < 1
are discontinuous, those with 1 ≤ α < 1 + 2/d are continuous but not differentiable, and those
with α > 1 + 2/d are differentiable. These results are based on the relationship between the eigen-
spectrum and the similarity of arbitrary neural response vectors. If the spectrum decays too slowly,
the trace of the covariance matrix (linked to vector similarity) diverges, causing instability in neural
representations. Second, we investigate how neural representations transform across cortical areas.
Experiments have revealed signatures of hierarchical information processing in mouse visual cortex,
at both the anatomical (Wang et al., 2012; D’Souza et al., 2022) and functional (Siegle et al., 2021;
Froudarakis et al., 2020; Hoeller et al., 2024) level. We focus on the experiment by Froudarakis et
al. (Froudarakis et al., 2020), which demonstrated that neural representations evolve to support in-
variant object recognition (Fig. 1C). They achieved this by recording neural activity in various areas
while presenting objects undergoing identity-preserving transformations, such as rotation, scaling,
and translation, and evaluating the discriminability of these representations across different areas.

We find that state-of-the-art digital twins struggle to replicate these experimental results. To tackle
this issue, we examine the impact of different dataset compositions, network architectures, loss func-
tions, and regularization techniques on the models’ capacity to capture population-level responses.
We show that adding regularization during training improves the model’s ability to learn neural rep-
resentations that match the experimental population response. Our findings underscore the need for
digital twin models to move beyond single-neuron predictions and push toward modelling the com-
plexities of neural population activity and its hierarchical transformations within the visual system.

2 RELATED WORKS

Encoding models of the visual cortex. Encoding models of the visual system aim to characterize
how sensory stimuli are transformed into neural responses. These models have evolved from linear-
nonlinear Poisson (LNP) models (Simoncelli et al., 2004) to deep artificial neural networks (ANNs),
which are now considered digital twins of the brain’s visual processing pathway. Two primary
approaches dominate: task-driven models, which optimize ANNs to solve specific computational
tasks like object recognition (Yamins et al., 2014; Bakhtiari et al., 2021; Kubilius et al., 2019; Zhuang
et al., 2021; Pogoncheff et al., 2023), and data-driven models, which are trained directly on neural
data to replicate observed responses (Klindt et al., 2017; Cadena et al., 2019; Lurz et al., 2020;
Safarani et al., 2021; Willeke et al., 2022; Li et al., 2023; Wang et al., 2023). Recently, new models
have been developed to address the complexity of dynamic stimuli, like videos. From the best
models of the Dynamic Sensorium Competition (Turishcheva et al., 2024) to multi-modal models
that combine visual images with behavioral variables (Xu et al., 2024), these models have achieved
great prediction accuracy. Despite these models’ success in capturing single-neuron responses, they
struggle to develop hierarchical representations (St-Yves et al., 2023; Dyballa et al., 2024) and we
show they also fail to represent the complex structure of neural population responses.

Single-neuron and population-level analysis. Applications of neural network models in visual
neuroscience have largely focused on single-neuron properties, investigating how individual neu-
rons respond to stimuli. Previous works have examined feature selectivity for object recognition
and texture perception (Walker et al., 2019), the columnar organization of selectivity in V4 (Willeke
et al., 2023), and the encoding of phase-invariant or fixed spatial patterns in V1 (Ding et al., 2023;
Ustyuzhaninov et al., 2022). While these analyses have provided valuable insights, they fall short
in capturing the population structure of neural responses. Recent work has started to address this
limitation. Pogoncheff et al. (Pogoncheff et al., 2023) explored the relationship between V1 pre-
dictability and population-level properties. Similarly, Margalit et al. (Margalit et al., 2024) examined
population-level topological properties across early (V1) and higher-order (VTC) visual areas. We
continue this shift towards population-level analysis by using digital twins to investigate the geomet-
rical properties of neural population responses, with a focus on differentiability and discriminability.
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Regularization strategies. To bridge the gap between observed neural activity and artificial models,
various studies have introduced regularization techniques, often drawing inspiration from principles
like the efficient coding hypothesis (Barlow et al., 1961). Sparsity constraints, for example, helped
neural networks to develop Gabor-like receptive fields, mimicking the tuning properties of early
visual neurons (Olshausen & Field, 1996; Bell & Sejnowski, 1997). These regularizations can be
applied during model training, e.g. adversarial training to improve robustness (Guo et al., 2022) or
through image augmentation techniques that enhance model generalization (Shorten & Khoshgof-
taar, 2019). More recent approaches apply architectural constraints, e.g. functional or topological
constraints, to better align artificial models with biological data, enhancing their interpretability and
functional similarity (Pogoncheff et al., 2023; Margalit et al., 2024). Our study builds on these ap-
proaches by demonstrating that introducing regularization strategies significantly enhance the mod-
els’ ability to learn representations aligning with those observed in biological systems.

3 DIGITAL TWIN OF THE MOUSE VISUAL CORTEX

To evaluate the capability of digital twins of the mouse visual cortex in capturing both single-neuron
and population-level response properties, we used the baseline model of the SENSORIUM com-
petition (Turishcheva et al., 2023), whose architecture is structured into three components: a core
module, a readout module, and a shifter module. The core is composed of 4 layers of 3D Convolu-
tional Neural Network (CNN), inspired by (Höfling et al., 2022), which encodes the spatiotemporal
features of visual stimuli and behaviors into a latent representation (see Supp. A.1). The readout,
taken from (Lurz et al., 2020), transforms the core representation into individual neuronal activity.
Its functioning is divided into two components: a spatial mask, which determines the neurons’ re-
ceptive field positions (i.e., where they “look” in the image), and a feature weight, which linearly
combines features from the core’s final layer to generate neural responses frame-by-frame. The
shifter takes the pupil center coordinates as input and produces a “gaze-shift” that is linearly ap-
plied to the spatial positioning of all neurons’ receptive fields. The output is then passed through
an activation function (ELU +1) to generate the final neuronal responses. We introduced a few mi-
nor modifications to the original architecture (see list in A.1), which we found to facilitate training
without modifying performance (see Table 1).

We trained the model using the MICrONS dataset (Consortium et al., 2021), which includes more
than 75,000 neurons spanning multiple areas of the mouse visual cortex (V1, LM, AL, RL) collected
in 14 recording sessions for a single mice. The network was trained to minimize the Poisson loss
between predicted and recorded responses (see Supp. A.1). Throughout this paper, we refer to this
trained model as the benchmark model. The model demonstrated strong performance in single-
neuron predictions, achieving a median normalized correlation coefficient (CCnorm) of 0.47–0.58
across sessions. This result is comparable to the performance reported by (Wang et al., 2023) (see
Table 1), which, to the best of our knowledge, is the only other model trained end-to-end on the
MICrONS dataset available in literature. Performance slightly varied across visual areas (Supp.
Fig. 1), with the highest prediction accuracy observed in V1 (mean corr-to-averge 0.305), followed
by LM (0.28), RL (0.255) and AL (0.253). These performance differences across areas may reflect
a higher number of neurons in certain regions, which could significantly impact the loss function
(83,222 units in V1, 14,817 in LM, 12,599 in RL and 4,734 in AL across all sessions); alternatively,
differences in single-neuron response reliability (6.77% in V1, 6.37% in LM, 5.08% and 5.03% in
AL calculated as Fraction of Explainable Variance over repeated stimuli) might bias the model to
learn one area better than another, with both factors potentially coexisting.

4 DIGITAL TWINS FAIL TO CAPTURE THE STRUCTURE OF POPULATION
RESPONSES IN MOUSE VISUAL AREAS

Traditional metrics for training and evaluating digital twins, such as Poisson loss and single-neuron
correlation, focus on individual neuron predictions and overlook population-level structures aris-
ing from neural interactions. This gap raises questions about whether these models can capture
key properties of population response structure observed experimentally in visual cortex (Stringer
et al., 2019a; Froudarakis et al., 2020). To address this, we replicated these experiments with our
benchmark model, testing its ability to capture the observed population-level properties.
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Figure 2: Population geometry in a 3D convolution model (A) Eigenspectrum of the covariance matrix
obtained from our benchmark model, simulating the experiment by Stringer et al. (Stringer et al., 2019a) with
natural images (lighter green lines are individual sessions; the darker green line is the average). The eigen-
spectrum exhibits a power-law decay (best-fit exponent α = 0.82) significantly slower than that observed in
experimental data from Stringer et al. (Stringer et al., 2019a) (blue, exponent α = 1.05). (B) Power-law expo-
nents for the model (green) and experimental data from Stringer et al. (Stringer et al., 2019a) (blue), calculated
across different types of visual stimuli with varying dimensionality. The digital twin’s representation aligns
with experimental observations, showing higher dimensionality with increased stimulus complexity. However,
it exhibits a slower decay for natural, whitened, spatially localized images and gratings, indicating that the
learned representation of these stimuli is not differentiable. (C) Hierarchy of neural representations obtained
from the benchmark model when simulating the experiment of Froudarakis et al. (Froudarakis et al., 2020). We
evaluated the ability of a linear classifier to predict object identity across conditions using neural representa-
tions from different areas generated in the model. Results represent the aggregation of three independent model
runs to ensure robustness and consistency. (D) Relative discriminability across areas computed in the model, as
in Fig. 1C. The model fails to capture the differences in discriminability observed experimentally across visual
areas. Here and in what follows: error bars represent the standard error of the mean (s.e.m.); stars indicate
significance levels from the Mann–Whitney U test (∗, ∗∗, ∗ ∗ ∗ indicate p-val< 0.05, 0.01, 0.001).

To analyze if digital twins capture the geometry of the neural representation of V1, we simulated the
experiment of Stringer et al. (Stringer et al., 2019a). We presented ensembles of images with varying
dimensionalities to the model, extracted predicted responses from neurons in layer 2/3 of V1, and
measured the covariance between neural responses across images, mimicking the experimental pro-
cedure (Fig. 1A and Supp. A.2). Despite the visual stimuli from Stringer et al. being substantially
different from those used in training, the model did not exhibit any pathological response (Supp.
Fig. 1), suggesting that it can generalize to these experimental protocols. Consistent with the ex-
perimental data, the spectrum of the covariance matrix between units in the model demonstrated a
power-law behavior for natural images (Fig. 2A) and for other types of visual stimuli investigated
(Supp. Fig. 1). Furthermore, the model recapitulates the qualitative dependency on stimulus dimen-
sionality observed experimentally, showing a smaller power-law exponent α for higher-dimensional
stimuli (Fig. 2B). Nevertheless, we found significant discrepancies between the model and the ex-
perimental results. Stringer et al. showed that the power law exponent α of the eigenspectrum
encapsulates key features of the geometry of neural representations. Smaller α indicates higher-
dimensional representations; α < 1 means the representation is not continuous, and α < 1 + 2/d
means it is not differentiable. In mice, α was found to be slightly above α = 1 + 2/d, suggesting
a nearly maximal dimensionality while maintaining differentiability. This allows the network to

Table 1: Comparison of model single-neuron prediction performance (definitions in Supp. A.1) on
the MICrONS (Consortium et al., 2021) and SENSORIUM (Turishcheva et al., 2023) datasets. For
SENSORIUM, results for (Turishcheva et al., 2023) are relative to the live test set, whereas ViV1T
and ours refer to the validation set.

Dataset (cortical areas) CCnorm Corr Corr-to-average

Wang et al. (2023) MICrONS (V1,LM,RL,AL) 0.48-0.65 - -
Our benchmark model MICrONS (V1,LM,RL,AL) 0.47-0.58 0.168 0.294

Turishcheva et al. (2023) SENSORIUM (V1) - 0.229 0.416
ViV1T (Turishcheva et al., 2024) SENSORIUM (V1) - 0.261 0.478

Our benchmark model SENSORIUM (V1) - 0.247 0.452
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Figure 3: Non-differentiable geometry of V1 population responses
across network models. Eigenspectrum of the covariance matrix for
natural stimuli in: (i) model trained on reliable neurons, (ii) model
trained on the SENSORIUM dataset, (iii) ViV1T, (iv) model trained on
correlations, and (v) experimentally observed power-law decay. Eigen-
spectra for other stimuli are shown in Supp. Fig. 2. Despite providing
better descriptions of either single neuron responses or the correlations
between them compared to our benchmark model, none of these models
exhibited a differentiable representation.

represent a wide range of stimuli smoothly, aiding downstream decoders in generalizing from small
stimulus changes. In our benchmark model, for different stimuli (natural images, spatially localized
stimuli, whitened stimuli, and gratings), we found a power law exponent α below the critical line
1 + 2/d (Fig. 2B). These findings indicate that, unlike the representation in the mouse V1, the rep-
resentation learned by the digital twin is not differentiable and, for natural, whitened and spatially
localized images, is not continuous.

To assess whether digital twins can account for hierarchy in discriminability observed across vi-
sual areas, we simulated the experiment by Froudarakis et al. (Froudarakis et al., 2020). In their
study, mice were shown movies of objects undergoing identity-preserving transformations, includ-
ing rotation, scaling, translation, and variations in lighting. We recreated these movies, fed them
into our benchmark model and extracted the predicted neural responses from different visual areas
(See Supp. A.3). Despite the significant differences between these stimuli and the training data, the
model produced plausible responses (Supp. Fig. 1). We then used these extracted responses to train
cross-validated logistic regression models for object identification (Fig. 2C,D and Supp. A.3). The
model showed notable quantitative discrepancies, with discriminability values higher than those re-
ported experimentally and less pronounced differences between visual areas (Fig. 2C). While these
discrepancies are expected due to the absence of spiking noise, reduced variability, and differences
in visual stimuli, changes in discriminability across areas (Fig. 2D) revealed a misrepresentation of
the hierarchy observed in (Froudarakis et al., 2020), with uniform object identity discriminability
across the four brain areas. This qualitative discrepancy indicates that the model fails to capture the
hierarchy in discriminability observed across visual areas of the mouse cortex.

These results show that while our model captures single-neuron responses, it fails to represent the
population-level structure and hierarchical transformations. Capturing the hierarchy of discrim-
inability across areas likely requires first understanding the representation geometry within an area,
as this determines decoder performance (Chung et al., 2018; Chung & Abbott, 2021; Li et al., 2024).
Thus, in what follows, we will first modify the model to capture the geometry of population re-
sponses in V1, then examine how these changes affect the hierarchy of discriminability across areas.

5 TOWARDS CAPTURING V1 REPRESENTATION GEOMETRY

To develop digital twins of mouse V1 that reflect neural response geometry, we first assessed the
robustness of our findings, by evaluating how variations in the dataset, training procedure or net-
work architectures may impact the ability to capture the geometry of V1 responses. After finding
these methods inadequate, we show that specific regularization techniques push the model toward
capturing representations consistent with those of mouse V1.

5.1 DIGITAL TWINS CONSISTENTLY FAIL TO REPLICATE DIFFERENTIABILITY OF NEURAL
REPRESENTATIONS

We first examined whether improving model performance could lead to improvements in capturing
the geometry of population responses. Experimental studies show that spontaneous activity overlaps
with visual responses, causing variability in neuron responses to repeated stimuli (Niell & Stryker,
2010; Stringer et al., 2019b; Avitan & Stringer, 2022). Although the model partially accounts for
this variability by including running and pupil size as inputs, it remains insufficient due to: (1)
the influence of additional behavioral variables on spontaneous activity (Stringer et al., 2019b),
and (2) the fact that not all spontaneous activity is behavior-driven (Stringer et al., 2019b). These
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limitations constrain the model’s accuracy in predicting single-neuron responses. We trained our
model to replicate exclusively the activity of neurons with high reliability to repeated videos (see
Supp. A.4). As expected, model performance improved for both single trials and trial-averaged
responses, with correlation increasing by 19.0% and 36.7%, respectively. Nevertheless, the spectral
properties remained unchanged (Fig. 3i and Supp. Fig. 2), suggesting that while individual response
predictions improved, the underlying population response geometry was not affected.

We then considered whether the characteristics of the training dataset influenced our findings. To
investigate this, we trained our model using the SENSORIUM competition dataset (Turishcheva
et al., 2023) (see Supp. A.4). The model trained on SENSORIUM significantly outperformed the
MICrONS-trained model, showing improvements in correlations between single-neuron responses
and model predictions by a factor of 47.0% in single trials and 53.7% in trial averages. Despite
this improvement, the model’s ability to capture the power-law exponents observed in experimental
data did not improve, either for natural images (Fig. 3ii) or other tested stimuli (Supp. Fig. 2). As
a result, the representation remained non-differentiable thereby discarding the training dataset as a
possible factor to influence the population geometry.

We then examined whether the model’s architecture affected our results. CNNs have historically
been prominent in computer vision, but recent advances have shown that transformers are now
achieving competitive and sometimes superior performance in various tasks (Khan et al., 2022; Az-
abou et al., 2024; Antoniades et al., 2023). Motivated by this, we employed ViV1T, a transformer-
based digital twin trained on the SENSORIUM dataset (Turishcheva et al., 2024), to replicate the
experiment from Stringer et al. (Stringer et al., 2019a). Our results show that ViV1T, like previ-
ous models, fails to capture the geometric properties of mouse V1, with representations remaining
non-differentiable despite improved accuracy (Fig. 3iii and Supp. Fig. 2).

Finally, we explored whether modifying the target of the loss function could improve the model’s
ability to capture the covariance between neurons. Previous models were optimized to predict
individual neuron responses, which prioritized single-neuron accuracy over population structure.
To address this, we developed a new training scheme where the loss function is based uniquely
on the correlations between neurons. The trained network significantly outperformed our bench-
mark model in describing correlations between neurons (root mean squared error on correlations
decreased by 41.76%). Unsurprisingly, this improvement came at the expense of the model’s ability
to capture single-neuron responses, which was significantly decreased. We replicated the experi-
ment by Stringer et al. (Stringer et al., 2019a) and analyzed the covariance matrix spectrum (Fig.3iv
and Supp. Fig. 2). Unlike previous approaches, this model displayed power-law behavior with a
significantly larger α than the benchmark model (0.93 for natural stimuli compared to 0.82 of the
original model). However, the decay was still slower than observed experimentally, and the result-
ing representation remained non-differentiable. We expanded this approach with multi-objective
optimization to balance single-neuron responses and population correlations (Supp. Fig. 8). We
found no evidence of a synergistic effect: gradually increasing the relative weight of the Poisson
loss led to models better capturing single-neuron responses but at the expense of the differentiability
of population representations. Additionally, we explored whether task-driven modeling could yield
more differentiable representations. Specifically, we fine-tuned a linear readout to predict neural
responses after each of the first three layer block of a ResNet50 with frozen weights trained on
object recognition. Consistent with the data-driven models, the task-driven model also produced a
non-differentiable representation (Supp. Fig. 6), suggesting that the chosen objective functions lack
the inductive bias necessary for developing differentiable representations.

5.2 TRAINING REGULARIZATION FACILITATES HIGH-DIMENSIONAL, DIFFERENTIABLE
REPRESENTATIONS IN DIGITAL TWINS

Our analyses reveal that digital twins are prone to learning neural representations that are not differ-
entiable. We hypothesize that introducing strategies to enhance robustness in neural responses could
improve differentiability. Specifically, we reasoned that training the model with pairs of images,
where neural responses are kept fixed while the images are slightly perturbed, would encourage the
model to learn representations in which small changes in the input produce minor changes in the
neural responses. This is effectively a way to ensure that the representations are differentiable.
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Figure 4: Effects of training regularization in digital twin models (A) Power-law exponent α measured
in digital twins simulating responses to natural images (from (Stringer et al., 2019a)) with respect to the
amplitude of image transformation used during training (see Supp. A.1) . (B) Power-law exponent α of natural
images with respect to the dropout rate. Digital twins with a dropout rate greater than 0.4 exhibit an exponent
larger than 1, indicating a differentiable representation of natural images. (C) Eigenspectrum of the covariance
matrix in response to natural images with a dropout rate of 0.4. The model exhibits a power-law decay of
α = 1.06, closely matching the experimental data of α = 1.05. (D) Power-law exponent as a function of
stimulus dimensionality for a dropout rate of 0.4. For all types of visual stimuli, except gratings, the model
exhibits a differentiable geometry of the neural representation, consistent with experimental data.

To test our hypothesis, we trained the model using stimulus augmentation, applying random trans-
formations (e.g., translation, rotation, rescaling) to the input images. These transformations were
chosen for their relevance to the differentiability of neural representations, simulating the way ani-
mals perceive stimuli from various angles and distances during movement. The model exhibited a
modest decline in performance when predicting single-neuron responses as transformation ampli-
tude increased (Supp. Fig. 3), while the covariance matrix retained a power-law spectrum (Supp.
Fig. 3). Larger transformations during training led to more robust neural representations, with
the power-law exponent of the spectrum approaching that of differentiable representations as the
transformation amplitude increased (Fig. 4A).

Another potential approach to enhancing the robustness of neural representations is to introduce
perturbations directly within the network itself. One widely used machine learning technique that
adopts this strategy is dropout (Srivastava et al., 2014). By randomly disabling units during train-
ing, dropout effectively reduces overfitting and encourages the model to generalize better across
unseen data. We hypothesized that this method could also improve the model’s ability to capture
the underlying structure of neural responses. To test this, we applied dropout across layers of the
3D CNN during training and analyzed its impact on the model’s representation of neural activity.
While dropout reduced performance as the dropout rate increased (Supp. Fig. 4), the model still
accurately predicted single-neuron responses and maintained a power-law spectrum for the covari-
ance matrix (Supp. Fig. 4). Gradually increasing the dropout rate significantly modified the power
spectrum across all stimulus types, achieving differentiable representations of natural images for
dropout rate ≥ 0.4 (Fig. 4B,C). Differentiable representations, consistent with those observed ex-
perimentally, emerged for all visual stimuli investigated, except for grating stimuli (Fig. 4D and
Supp. Fig. 4); we will discuss possible explanations for this exception in the discussion section.

6 IMPACT OF REPRESENTATION GEOMETRY ON THE HIERARCHY LEARNED
BY DIGITAL TWINS

The analysis of Fig. 2C,D shows that a digital twin trained to reproduce single-neuron responses
fails to capture the hierarchy of object discriminability observed experimentally (Froudarakis et al.,
2020). Given that population response geometry is critical for determining discriminability (Chung
et al., 2018; Chung & Abbott, 2021; Li et al., 2024), we investigated whether changes in geometry
induced by dropout would influence the hierarchical structure learned by the model.

To explore this, we simulated the experiment of Froudarakis et al. (Froudarakis et al., 2020) using
models trained on the MICrONS dataset with varying dropout rates. We then assessed how well each
model could discriminate between stimuli across different visual areas. Increasing the dropout rate
consistently reduced the ability to discriminate stimuli across all areas (Supp. Fig. 5). This finding
aligns with prior work, which demonstrates that higher dimensionality, reflected by a lower power-
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Figure 5: Hierarchy in discriminability across
visual areas in digital twins with different
representation geometry (A) Discriminability
changes relative to the mean across different ar-
eas, computed for the network models with non-
differentiable representations. (B) Same as in
A, but for models with differentiable represen-
tations. These models more effectively capture
the hierarchical relationships between areas ob-
served experimentally, accurately reflecting the
relationships among LM, V1, and RL. However,
the model incorrectly places AL at the bottom of
the hierarchy. Results in panels A and B were ob-
tained by aggregating simulations from the mod-
els shown in Fig. 4, with α < 1 for panel A and
α > 1 for panel B.

law exponent α, facilitates pattern discrimination (Babadi & Sompolinsky, 2014). Additionally, the
observed decrease in discriminability may stem from the model’s reduced performance in predicting
single-neuron responses (Supp. Fig. 5), potentially leading to lower information content in the
model’s responses to visual stimuli.

Interestingly, dropout also influenced the hierarchy of discriminability between areas (Fig. 5B). In
models with non-differentiable representations, object identity was more easily discriminated in
RL compared to LM and V1, with AL showing the lowest performance. This is the opposite of
what is observed experimentally (Froudarakis et al., 2020) (Fig. 1C). However, when the model
exhibited differentiable representations, the hierarchy aligned more closely with experimental data,
positioning LM above V1, which was above RL at the bottom (Froudarakis et al., 2020) (Fig. 5B).
While these qualitative results are promising, significant discrepancies remain. The model incor-
rectly places AL at the bottom of the hierarchy, whereas it was found experimentally to be at the top.
Additionally, the discriminability values were consistently higher than those observed experimen-
tally, and the differences between visual areas were less pronounced (Supp. Fig. 5). We comment
on potential causes for these discrepancies in the discussion section.

7 DISCUSSION AND LIMITATIONS

Digital twins have shown promise in modeling single-neuron responses, but their ability to cap-
ture population-level response structures remains largely unexplored. In this study, we evaluated
their performance in replicating population responses within the mouse visual cortex. Our findings
demonstrate that current models struggle to reproduce the differentiability of neural representations
and the hierarchy in object discriminability across areas observed experimentally (Stringer et al.,
2019a; Froudarakis et al., 2020). We observed this limitation across datasets, model architectures,
and loss functions.

Our results show that regularization during training enabled models to replicate the observed differ-
entiability of population responses. This effect likely arises because introducing stochasticity into
the relationship between inputs and neural responses fosters a more distributed and robust coding
scheme. In our models, stochasticity was introduced through dropout, which randomly deactivates
units during training, and data augmentation, which adds variability by shifting and scaling input
images. In biological systems, spiking variability and stochastic synaptic transmission effectively
introduce an analogous stochastic relationship between inputs and neural representations. Our find-
ings suggest that such biological noise could promote differentiable and robust representations.

The only stimuli that maintained a non-differentiable representation are gratings. This may be be-
cause models trained on one domain (e.g., natural images) have limited transferability to different
stimulus types, as previous studies have indicated (Sinz et al., 2018). Consistent with this interpre-
tation, we found that the tuning curves predicted by our model resemble those observed experimen-
tally for the oriented stimuli in the MICrONS dataset used for training but not for the gratings used
in the experiments by Stringer et al. (2019a) (Supp. Fig. 10). Though recent advancements in
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foundational models of mouse V1 have improved domain transfer performance (Wang et al., 2023),
challenges remain. To properly assess differentiability, it is not enough to predict simple features
like orientation preference; the entire tuning curve shape must be considered. This raises important
questions about how well models capture the geometric properties of population responses across
stimuli.

We demonstrated that models with differentiable representations better captured the hierarchy in
object discriminability across areas observed experimentally. Specifically, the discriminability of
stimuli increased from RL to V1, and from V1 to LM, consistent with the experimental hierarchy.
However, our models incorrectly placed AL at the bottom of the hierarchy and consistently overes-
timated discriminability and underestimated its variation across areas when compared with precious
experimental results (Froudarakis et al., 2020). These discrepancies likely stem from differences
between artificial and biological networks, including the absence of spiking noise and reduced trial-
to-trial variability in the models. Additionally, differences in training stimuli—such as object move-
ment speed or complexity—may contribute to the observed gaps between model predictions and
experimental data.

We found that regularization during training improved the ability to capture population-level re-
sponses but reduced single-neuron performance (Supp. Fig. 9), revealing a consistent trade-off
across models and regularization schemes. This occurs because state-of-the-art models capture only
a finite fraction of the explainable variance for single neurons. Accurately predicting single-neuron
responses reflects an approximation of marginal distributions but does not inherently constrain the
model to learn the higher-order dependencies that govern population structure and shape the covari-
ance matrix. Furthermore, fitting both single-neuron and population-level responses on one dataset
does not ensure generalization, as shown by discrepancies on datasets from Stringer et al. (Stringer
et al., 2019a) and Froudarakis et al. (Froudarakis et al., 2020), likely due to overfitting to dataset-
specific statistics rather than capturing biologically relevant structures. These results highlight key
limitations of current approaches and the need for models that balance this trade-off while general-
izing effectively across diverse datasets.

Future studies could benefit from using architectures that differentiate between neurons in distinct
visual areas, allowing for a more accurate replication of hierarchical transformations. Indeed, a
limitation of our architecture is that the core is shared across all visual areas thereby constraining
the model’s expressivity. In biological systems, receptive fields expand along the visual hierar-
chy (Siegle et al., 2021), a property our model does not capture due to its uniform receptive field
size. To explore this limitation, we examined more flexible digital twins that allow different areas
to rely on distinct internal representations. First, we employed a task-driven modeling approach by
finetuning a linear readout from layers of a model trained on object recognition and found that it did
not capture the discriminability hierarchy observed experimentally (Supp. Fig. 6). Additionally, we
trained a 3D CNN model independently on data from each area to capture area-specific differences.
While variations in object discriminability across areas were larger than in our benchmark model,
the hierarchy of discriminability was still incorrect (Supp. Fig. 7).

To further improve digital twins, it will be important to move beyond measures of covariance and
discrimination and consider more detailed manifold structures that underlie population responses,
such as radius and dimensionality (Chung et al., 2018; Froudarakis et al., 2020). These factors,
which significantly impact discriminability (Chung et al., 2018; Chung & Abbott, 2021; Li et al.,
2024), show clear trends along the visual hierarchy (Froudarakis et al., 2020).

Understanding how complex computations such as object recognition and localization emerge from
hierarchical neural transformations is a fundamental challenge. Digital twins provide a promising
tool for exploring these questions, as they allow for detailed control over stimuli and response vari-
ables. In this work, we have demonstrated that digital twins can capture key aspects of population
response geometry and qualitatively reproduce the hierarchy in object discriminability across areas
observed experimentally. However, further research is needed to fully validate these models and to
explore how joint activity within neuronal populations contributes to computations across different
visual areas.
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A.1 NEURAL NETWORK MODEL DESCRIPTION

This section provides a detailed description of the components that make up our benchmark model.
We begin by outlining the model architecture, including the key components and how they interact.
Specifically, we describe the core, readout, and shifter components, along with the modifications
made to the original baseline architecture to optimize performance. Next, we discuss the procedures
used to train the model, highlighting the strategies implemented to ensure robustness and accuracy,
followed by a description of the metrics we used to evaluate its performance.

A.1.1 NETWORK ARCHITECTURE

The model architecture is composed of three main components: core, shifter, and readout. The
model takes videos and behavioral variables as inputs, which are fed to the ”core” component and
then to the ”readout” component. The readout component linearly combines the representations
learned in the last layer of the core (feature weights) and determines the receptive field associated
with each neuron (spatial position). The spatial position is further adjusted by the ”Shifter” which
takes as input the pupil center’s coordinates. A graphical visualization of the model is provided in
Fig. 1. More details about each element are provided below.

Inputs. The input of the neural network model are: (1) Videos and behavior (Tensor V). This is a
5-d tensor with shape (Batch, Channels, Frames, Height, Width) where the first 3 channels represent
the gray screen video shown to the mouse and the last 2 channels the behavior (running speed and
pupil size). The behavior tensor was expanded to match the H and W of the videos and concatenated
to the videos tensor in the channel dimension. (2) Pupil center (Tensor P). It is a 3-d tensor with
shape (Batch, Frames, 2), with data on pupil center coordinates frame-by-frame.

Core. The core, taken from (Höfling et al., 2022), is composed of 4 layers of 3D Convolutional
Networks (16, 32, 64, 128 channels respectively), factorized in spatial and temporal components.
The spatial kernels are 11 × 11 in the 1st layer and 5 × 5 in all of the subsequent layers. Similarly,
the temporal kernels are 11 × 1 in the 1st layer and 5 × 1 afterwards. After each layer, batch
normalization and a final non-linearity (ELU + 1) were applied.

Readout. To compute single responses along stimulus presentation, we adopted the readout pre-
sented by (Lurz et al., 2020). For each neuron, a learnable spatial position pn ∈ [−1, 1]2 is used to
apply a bilinear interpolation at specified spatial positions of the core’s output. This method extracts
a feature vector which is then linearly combined with a learnable feature weight wn ∈ R128 and a
bias to predict the activity of individual neurons frame-by-frame. An (ELU + 1) non-linearity was
applied to final responses to keep them non-negative.

Shifter. This component is a multilayer perceptron (MLP) with three layers with five units each
that maps pupil center’s coordinates into a shift linearly applied to all neurons’ positions pn. At
the end of each layer, a Tanh nonlinearity is applied to ensure the output remains within the range
∈ [−1, 1]2.
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Modifications to original architecture. We slightly modified the original baseline architecture
proposed in (Turishcheva et al., 2023) with the following changes: we enforced temporal causality
in the temporal convolutions such that representations generated up to a certain time were influenced
by previous frames only; we included an additional batch normalization layer between the two
convolutions as we found it helped gradient stability and model convergence; lastly, we disabled
the Position Network in the readout component, an MLP that maps neurons’ anatomical coordinates
extracted during recordings to corresponding readout positions pn.

A.1.2 MODEL TRAINING

Loss function and training details. All videos were isotropically downsampled to a resolution
of 36 × 64 px (H × W) per frame. Functional and behavioral signals were resampled to 30 Hz by
linear spline interpolation to match the frequency of visual stimuli. Visual stimuli, behavioral data
and pupil center coordinates were normalized by subtracting the mean and dividing by the standard
deviation of the corresponding session. Neural responses were standardized to maintain their non-
negativity. Behavioral variables (running speed, pupil size) were added as separate channels to the
input images (Franke et al., 2022) to incorporate the modulatory effects of behavior on neural activ-
ity. Batches consisted of 150 consecutive frames randomly sampled from the corresponding trials
(each consisting of 300 frames). We trained our networks with a batch size of 9. For parameter op-
timization, AdamW was used with a momentum of 0.1, to minimize the negative likelihood Poisson
loss:

LPoisson
s =

nt∑
t=1

ns∑
i=1

ri,t − oi,tlog(ri,t) (1)

between the recorded responses o and predicted responses r, where nt is the number of frames in
one batch and nm is the number of neurons for session s. Gradient updates were performed after
a full pass across all sessions, a method that has been shown to increase performance (Li et al.,
2023). We employed a learning rate scheduler with a linear warm-up over the first 10 epochs. Then,
after each epoch, we calculated the correlation to average between predicted and true responses
on the validation set and averaged it across all neurons. If the correlation failed to increase for
eight consecutive epochs, we stopped the training and restored the model to its state after the best
performing epoch. Then, we either decreased the learning rate by a factor of 0.3 or stopped training
altogether, if the number of learning-rate decay steps was reached (n=4 decay steps).

Regularizarion strategies. When we used data augmentation, we applied random affine transfor-
mations (rotation, scaling and translation) to input videos. The transformations were parametrized
by a transformation factor (here called αaffine) determining the amplitude of the transformation ap-
plied as follows:

degrees = (−αaffine · rotationmax, αaffine · rotationmax)

translate = (−αaffine · translationmax, αaffine · translationmax)

scale = (1− αaffine · scalemax, 1 + αaffine · scalemax)

with rotationmax = 20, translationmax = 0.1 and scalemax = 0.2. The parameters
translate, scale and degrees were used as inputs of the corresponding arguments of the
PyTorch class RandomAffine (Paszke et al., 2019).

When we used dropout, we applied it at the end of each layer of the core, so that representations
generated were more robust by preventing overfitting and ensuring that the model did not rely too
heavily on any specific neurons.

A.1.3 MODEL EVALUATION

Model evaluation employed three distinct metrics: single trial correlation, correlation to average on
repeated trials and normalized correlation coefficient (CCnorm). Single trial correlation is calculated
as follows:

trial corr.(r, o) =

∑
i,j(ri,j − r̄)(oi,j − ō)√∑

i,j(ri,j − r̄)2
∑

i,j(oi,j − ō)2
(2)
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where ō and r̄ the average recorded and predicted responses across all trials. The correlation to
average metric is calculated as follows:

avg. corr.(r, o) =
∑

i(r̄i − r̄)(oi − ō)√∑
i(r̄i − r̄)2

∑
i(oi − ō)2

(3)

where r̄i =
∑J

j=1 ri,j is the average response across J repeats.
The normalized correlation coefficient CCnorm is another measure evaluated on repeated responses
introduced by (Schoppe et al., 2016) to account for the limited number of repetitions and the high
variability of neural responses. It is described as follows:

CCnorm =
CCabs

CCmax

where

CCabs =
Cov(r̄, ō)√
Var(r̄)Var(ō)

and

CCmax =

√
NVar(ō)− Var(o)
(N − 1)Var(ō)

where r is the predicted response and o is the observed response to N repeated stimuli. CCmax is a
normalization factor and it represents the theoretical maximum correlation coefficient between the
observed responses o and the model’s predicted responses r. In this way, it is possible to evaluate
neural models in the presence of noise and variability by accounting for the reliability of individual
neurons.

A.2 DETAILS OF SIMULATING THE EXPERIMENT OF STRINGER ET AL. (STRINGER ET AL.,
2019A)

Stimuli composition. Natural stimuli (natural) were composed by a total of 2,800 stimuli selected
from the ImageNet database20, from ethologically relevant categories: ‘birds’, ‘cat’, ‘flowers’,
‘hamster’, ‘holes’, ‘insects’, ‘mice’, ‘mushrooms’, ‘nests’, ‘pellets’, ‘snakes’ and ‘wildcat’. Spa-
tially whitened (white) versions of the 2,800 natural images, were obtained by adjusting their fre-
quency content using Fourier transforms, scaling them back to the pixel domain, and normalizing
the intensity to match the original images’ mean and standard deviation. Spatially localized stim-
uli (small) were obtained by windowing images over the receptive field of the recorded population.
Sparse noise stimuli (sparse) consisted of white or black squares on a grey background. The eight-
and four-dimensional stimuli (8D, 4D) were constructed using a reduced-rank regression model by
projecting the natural images onto a set of d basis functions (eight or four depending on the stimuli
constructed). Drifting gratings (ori32) consisted of 32 one-dimensional directions, evenly spaced at
11.25°.

Experiment replication. The original experiment consisted in the following procedure: each set of
images was presented twice to account for trial-to-trial variability. Images were presented for 0.5 s,
alternating with a grey-screen inter-stimulus interval lasting a random time between 0.3 and 1.1 s.
Collected responses were averaged across image presentation time to obtain a single response asso-
ciated to the corresponding image. Ongoing activity dimensions were removed by subtracting the
responses’ projection onto the top 32 spontaneous dimension. Then, cvPCA was used to estimate
the eigenspectrum from the set of responses collected over two presentations. Power law fits were
calculated between the 11th and 500th eigenvalues, except for gratings (where the range was 11-30).
Since our model was trained on movies, we created videos by repeating images over time (15 frames,
corresponding to 0.5 s). Additionally, 50 frames of gray-screen were added before image presen-
tation. Since the model takes as input also behavioral data, these were set to 0 (mean value post
normalization) across all stimulus presentation. In this way, we ensured that responses dynamics
were determined by visual stimulation only. We then collected the output of the digital twin in re-
sponse to the image presentation and computed its mean across the 15 frames, obtaining a single
response for each image. In line with the original experiment, we focused on responses of neurons
coming from V1 at recorded depths 100-350 µm from cortical surface (corresponding to layer 2/3).
Analyses were conducted only on neurons that were well captured by the model, defined as those
selected units with a correlation to the average metric greater than 15%. Starting from a dataset
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containing responses from all neurons to all stimuli, we calculated the covariance matrix and we
applied PCA to obtain the eigenspectrum for each session. From this, we obtained the power law
fits using the same methods of the original experiment.

A.3 DETAILS OF SIMULATING THE EXPERIMENT OF FROUDORAKIS ET AL. (FROUDARAKIS
ET AL., 2020)

To replicate the experiment from Froudarakis et. al. (Froudarakis et al., 2020) with our model,
we used Blender (Blender Development Team.) to render four three-dimensional objects (Fig. 1C),
replicating those used in the original study. Each object was subjected to a set of continuous, random
variations in position (X, Y, Z), scaling, tilt/rotation, and environmental lighting (intensity, position),
ensuring smooth and coherent movements consistent across all objects. All renders were done over
a uniform gray background. The resulting movies were split into 500 clips of 10 seconds each,
rendered at 30 fps, and fed to our benchmark model trained on the MICrONS dataset (Consortium
et al., 2021). We extracted the predicted neural responses from layer 2/3 for different visual areas,
focusing on neurons well described by the model in the training phase (correlation to average greater
than 0.15). We used these extracted responses to construct N-dimensional vectors of neural activity
aggregated in 500ms intervals. The vectors were then used to train one-versus-all logistic regression
models to classify object’s identity for different values of neurons count N. In all cases, we used a 10
fold cross-validation approach and reported the average performances for the 10% of the data that
were held out from the training of the decoder. We repeated the procedure 50 times with bootstrap
sampling of the neurons at each count step to evaluate decoding accuracy across visual areas. To
measure the discriminability we used the mutual information measured in bits by computing

MI(c, ĉ) =
∑
i

∑
j

pij log2

(
pij
pipj

)
where pij is the probability of observing the true class i and predicted class j and pi and pj are the
marginal probabilities.

The experiment of Froudarakis et. al. (Froudarakis et al., 2020) characterized the object discrim-
inability across 10 visual areas; in our analyses, we focus on the four (V1, LM, RL, AL) included in
the MICrONS dataset (Consortium et al., 2021), which we used to train our model.

A.4 DETAILS ON VARIATIONS OF THE MODEL DISCUSSED IN SECTION 5.1

Model trained on neurons with high reliability to repeated videos. To select the set of neurons
whose response were reliable across repeated stimuli, we used the Fraction of Explained Variance
(FEV) metric to quantify neurons’ reliability. The metric is calculated as follows:

FEV(o) =
Vartotal(o)− Varnoise(o)

Vartotal(o)

where Vartotal(o) is the variance of responses evaluated across trials, repetitions and frames and
Varnoise(o) is the variance evaluated on repeated trials, averaged across trials and frames. For each
session, we selected the 50% most reliable neurons.

Model trained on SENSORIUM. The SENSORIUM dataset was collected using 5 different mice,
all focusing on neurons located in V1. In total, over 38,000 neurons’ responses were recorded in
response to around 1800 natural scene videos (each lasting 10 s). Behavioral variables (running
speed, pupil size and pupil center’s coordinates) were recorded along with videos presentation. We
repeated the modeling procedure described in Section 3 of the main text on this dataset.

Transformer-based digital twin. The only difference of the ViV1T model compared to the bench-
mark model described in the main text is in the core part. The ViV1T core contains three main
components: (1) a tokenizer that concatenates the video and behaviour variables over the channel
dimensions and extracts overlapping tubelet patches along the temporal and spatial dimensions, fol-
lowed by a factorized positional embedding which learns the spatiotemporal location of each patch;
(2) a spatial Transformer which receives the tubelet embeddings and learns the spatial relationship
over the patches within each frame; (3) a temporal Transformer receives the spatial embedding and
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learns a joint spatiotemporal representation of the video and behavioural information. The readout
and shifter modules are equal to the model we used.

Model with loss function on the correlations between neuron. We developed a new loss func-
tion that focused on capturing correlations between neurons rather than accurately predicting single
neuron activity. This was defined as:

MSEcorr =

ns∑
i=1

ns∑
j=1

(Ri,j −Oi,j)
2 (4)

where Ri,j is the correlation between predicted responses for neurons i and j, while Oi,j is the
correlation between their observed responses.
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Supplementary Figure 1: Controls and additional measurements for simulations shown in Fig. 2 (A) Distri-
bution of correlation to the average measured in the benchmark model for neurons in the four visual areas under
investigation. (B) Distribution of responses across neurons measured in the benchmark model when simulating
the experiments of Stringer et al. (Stringer et al., 2019a) and Froudarakis et al. (Froudarakis et al., 2020). Dis-
tributions are shown in linear (left) and logarithmic (right) scale. Despite the visual stimuli being significantly
different from those used to train the model, it does not exhibit pathological behavior and generates responses
similar to those produced in response to stimuli from the MICrONS dataset. (C) Eigenspectrum of the covari-
ance matrix obtained from the digital twin (lighter and darker green lines represent individual sessions and their
average, respectively), simulating the experiment by Stringer et al. for all types of stimuli used (columns). In
each panel, the dashed line indicates the decay found in the experiment, while the solid gray line represents the
best fit of a power law to the model results, with the exponent reported as text.
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Supplementary Figure 2: Geometry of V1 population responses across stimuli for the network models
shown in Fig. 3. Eigenspectrum of the covariance matrix obtained when simulating the experiments of Stringer
et al. (Stringer et al., 2019a) with: (A) model trained on reliable neurons, (B) model trained on the SENSO-
RIUM dataset, (C) ViV1T, and (D) model trained on correlations. Columns correspond to different types of
stimuli used (titles). In each row, colored lines represent quantities measured in the digital twins (lighter and
darker lines indicate individual sessions and their average, respectively). The dashed lines show the decay ob-
served in the experiment, while the solid gray lines represent the best fit of a power law to the model results,
with the exponent reported as text.
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Supplementary Figure 3: Characterization of responses in simulations underlying the results shown in
Fig. 4A (A) Mean correlation to average measured across single neuron responses in models trained with dif-
ferent transformation amplitudes for each analyzed area. (B) Eigenspectrum of the covariance matrix obtained
from simulating the experiments of Stringer et al.(Stringer et al., 2019a). Different rows correspond to models
trained with varying transformation amplitudes (text on the left, only models trained with amplitude > 0 are
shown).
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Supplementary Figure 4: Characterization of responses in simulations underlying the results shown in
Fig. 4B,D (A) Mean correlation to average measured across single neuron responses in models trained with
different dropout rate for each analyzed area. (B) Eigenspectrum of the covariance matrix obtained from sim-
ulating the experiments of Stringer et al.(Stringer et al., 2019a). Different rows correspond to models trained
with varying dropout rate (text on the left, only models trained with dropout rate > 0 are shown).
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Supplementary Figure 5: Discriminability in simulations shown in Fig. 5 Discriminability as a function of
the number of neurons and cortical areas, computed from the network models shown in Fig.5.
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Supplementary Figure 6: Population geometry in a task-driven model. We finetuned a ResNet50 model
on the MICrONS dataset by training a linear readout after each of the first three layer block while keeping
the ResNet50 weights frozen. The same testing procedure used for the data-driven models was applied to the
predicted responses. Each row in the figure presents the eigenspectrum of the covariance matrix (left, as in
Fig. 2A) and the relative discriminability across areas (right, as in Fig. 2D) based on the linear readouts from
each layer. The results were consistent with those from our benchmark model: the learned representation was
not differentiable, and the model failed to capture the hierarchy of discriminability observed experimentally.
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Supplementary Figure 7: Population geometry in 3D convolution models trained independently for each
area. (A) Eigenspectrum of the covariance matrix, as shown in Fig. 2A, but for a 3D CNN model trained
exclusively on recordings from V1. The representation learned by the model was not differentiable. (B) Relative
discriminability across areas, as shown in Fig. 2D, but computed in four 3D CNN models, each trained using
data exclusively from one area. Object discriminability across areas varied significantly more than in our
benchmark model. While the model correctly positioned V1 above RL in the discriminability hierarchy, it
incorrectly placed V1 at the top and AL at the bottom, contradicting experimental observations.
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Supplementary Figure 8: Multi-objective optimization of single-neuron responses and population corre-
lations. Response properties in network models trained using a multi-objective optimization framework bal-
ancing single-neuron responses and population correlations. We trained three models with a combined Poisson
single-neuron loss and population correlation loss. Panels show the distribution of correlations and eigen-
spectrum of the covariance matrix obtained in models with: (A) larger weight on the Poisson loss; (B) equal
contributions from Poisson and population correlation losses; (C) larger weight on the population correlation
loss. The results showed no evidence of a synergistic effect: gradually increasing the relative weight of the
Poisson loss improved the models’ ability to capture single-neuron responses but reduced the differentiability
of population representations.
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Supplementary Figure 9: Trade-off between single-neuron responses and population geometry. This figure
shows the power-law exponent of the eigenspectrum of the covariance matrix as a function of the single-neuron
correlation to average across all models trained with the Poisson loss. Results reveal a negative correlation
between the ability to capture population geometry and the accuracy of single-neuron responses.
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Supplementary Figure 10: Analysis of model responses to oriented stimuli. (A) Example Monet stimuli
from the MICrONS dataset (Consortium et al., 2021), which were used for training the model. (B) Example
gratings from the experiment by Stringer et al. (Stringer et al., 2019a). These stimuli were not used for model
training but were used to test the trained models. (C) Average tuning curve of model neurons in response to
Monet stimuli. (D) Average tuning curve of model neurons in response to gratings. (E) Tuning curves of all
model neurons sorted by their preferred orientation for Monet stimuli. (F) Tuning curves of all model neurons
sorted by their preferred orientation for grating stimuli. Responses to Monet stimuli, which were used during
training, exhibit tuning curves similar to those commonly observed in real neurons. In contrast, responses to
gratings show pathological high-frequency oscillations, likely due to the substantial difference between the
grating stimuli and the Monet stimuli used during training.
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