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ABSTRACT

Transformer plays a central role in many fundamental deep learning models, e.g.,
the ViT in computer vision and the BERT and GPT in natural language process-
ing, whose effectiveness is mainly attributed to its multi-head attention (MHA)
mechanism. In this study, we propose a simple and novel channel-wise sample
permutation (CSP) operator, achieving a new structured MHA with fewer pa-
rameters and lower complexity. Given an input matrix, CSP circularly shifts the
samples of different channels with various steps and then sorts grouped samples
of each channel. This operator is equivalent to implicitly implementing cross-
channel attention maps as permutation matrices, which achieves linear complex-
ity and suppresses the risk of rank collapse when representing data. We replace
the MHA of some representative models with CSP and test the CSP-based models
in several discriminative tasks, including image classification and long sequence
analysis. Experiments show that the CSP-based models achieve comparable or
better performance with fewer parameters and lower computational costs than
the classic Transformer and its state-of-the-art variants. The code is available
at https://anonymous.4open.science/r/CSP-BA52.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has been widely adopted in the deep learning domain. Re-
cent large language models like GPT (Brown et al., 2020; Radford et al.) and LLaMA (Touvron
et al., 2023a;b) series are built based on the Transformer and its variants, which demonstrate their
remarkable abilities in natural language processing. In the field of computer vision, Vision Trans-
formers (ViTs) (Dosovitskiy et al., 2021), such as EfficientViT (Cai et al., 2023; Liu et al., 2023)
and SHViT (Yun & Ro, 2024), exhibit exceptional performance and consistently push their limits.
In addition, the Transformer-based models have been designed for the complex structured data in
various applications, including the Informer (Zhou et al., 2021) for time series broadcasting, the
Transformer Hawkes process (Zuo et al., 2020) for continuous-time event sequence prediction, the
Graphormer (Ying et al., 2021) for molecular representation, the Mesh Transformer (Lin et al., 2021)
for 3D mesh representation, the Set-Transformer (Lee et al., 2019) and Point-Transformer (Zhao
et al., 2021) for point cloud modeling, and so on. Although some new alternatives like Mamba (Gu
& Dao, 2023) and RWKV (Peng et al., 2023) have been proposed and shown their competitiveness
in some aspects, Transformer still maintains a dominant position when developing deep learning
models because of its strong performance and outstanding universality.

The effectiveness of Transformer is mainly attributed to its multi-head attention (MHA) mecha-
nism (Vaswani et al., 2017). However, MHA’s quadratic complexity concerning sequence length
leads to a heavy, even unaffordable, computational overhead when modeling long sequences. To
improve the efficiency of MHA, many variants of Transformer introduce sparse or low-rank struc-
tures into attention maps (Child et al., 2019; Kitaev et al., 2020; Wang et al., 2020; Ma et al., 2021;
Wang et al., 2024) and apply algorithms friendly to GPU acceleration (Dao et al., 2022; Dao, 2024).
At the same time, many attempts have been made to explore the mathematical reasons for the power
of MHA, e.g., analyzing the representation power and rank collapse risk of MHA (Dong et al., 2021;
Ying et al., 2021) and revisiting attention maps through the lens of kernel theory (Tsai et al., 2019;
Qin et al., 2022) and optimal transport (Tay et al., 2020; Sander et al., 2022). Currently, the above
two research directions seem “parallel” in most situations: The acceleration methods of MHA are

1

https://anonymous.4open.science/r/CSP-BA52


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Chan
nel

 1

Chan
nel

 2

Chan
nel

 3

Chan
nel

 1

Chan
nel

 2

Chan
nel

 3

Chan
nel

 1

Chan
nel

 2

Chan
nel

 3

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6

Group 1

Group 2

Group 3

Circular
Shifting

Group
Sorting

Implicit Cross-Channel 
Attention Maps

Channel-wise Sample Permutation

Equivalence

Figure 1: An illustration of the proposed channel-wise sample permutation operator and the equiva-
lent implicit cross-channel attention maps.

often empirical, but the theoretical work mainly analyzes the classic MHA, making it seldom support
the rationality of the accelerated MHAs or contribute to developing a new MHA.

In this study, we propose a novel Channel-wise Sample Permutation (CSP) operator, which leads
to a new multi-head attention mechanism that is solid in theory and efficient in practice. As illus-
trated in Figure 1, given an input matrix, CSP first shifts the samples of different channels circularly
with various steps and then sorts grouped samples of each channel. This operator is equivalent
to implicitly implementing cross-channel attention maps as permutation matrices, which introduce
inter- and intra-group interactions for the samples across different channels. CSP is much simpler
than the classic MHA and its existing variants. It has no learnable parameters and can achieve linear
computational complexity regarding sequence length.

The proposed CSP operator is motivated by the recent development of MHA. In particular, the
work in (Child et al., 2019; Beltagy et al., 2020; Kitaev et al., 2020; Sander et al., 2022) empiri-
cally demonstrate the rationality of pursuing attention maps with sparse doubly stochastic structures,
which is further verified by an analytic experiment in this study. CSP achieves permutation-based
implicit attention maps that satisfy these structural properties, and thus, it has a good chance of pro-
viding a better MHA mechanism. Moreover, such attention maps have all-one spectrums because
of their permutation nature. Based on the theoretical analysis framework provided in (Dong et al.,
2021), we prove that replacing MHA with CSP can suppress the risk of rank collapse when repre-
senting data. In addition, we provide insightful understandings of the CSP operator by explaining its
circular shifting and group sorting steps from the perspectives of optimal transport-based attention
layer (Sander et al., 2022) and channel-wise mixer (Yu et al., 2022; Lian et al., 2022), respectively.

To demonstrate the usefulness of CSP, we replace the MHA of some state-of-the-art models with
CSP and compare the CSP-based models with the original MHA-based ones in representative dis-
criminative tasks, including long sequence analysis and image classification. For each model, re-
placing its MHA with CSP significantly reduces the number of parameters and the computational
cost while maintaining or even improving model performance.

2 PRELIMINARIES AND RELATED WORK

Typically, given an input X ∈ RN×C , where N indicates the length of a sequence or the size of a
sample set and C is the number of channels (feature dimensions), an attention head (Vaswani et al.,
2017) first obtains the value, query, and key matrices by linear maps, i.e., V = XWV ∈ RN×D,
Q = XWQ ∈ RN×D, and K = XWK ∈ RN×D, and then projects V as follows:

Att(V ;Q,K) := P (Q,K)V , where P (Q,K) = Softmax
(QK⊤

√
D

)
. (1)

Here, we denote V as the input matrix of the head and P (Q,K) ∈ RN×N as the attention map
parametrized by Q and K, respectively. The multi-head attention mechanism applies a group of
linear maps, i.e., θ = {WV,m,WQ,m,WK,m ∈ RC×D}Mm=1, to construct M attention heads and
concatenates their outputs, i.e.,

MHAθ(X) := ∥Mm=1Att(Vm;Qm,Km) ∈ RN×MD, (2)
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where Vm = XWV,m, Qm = XWQ,m, and Km = XWK,m for m = 1, ...,M , and “∥” denotes
the concatenation operation. In practice, we set MD = C for applying skip connections in the
Transformer architecture, i.e., MHAθ(X) +X .

The attention map in (1) has quadratic computational complexity concerning the sequence length N
because of its “query-key-value” (abbreviately, QKV) architecture. Considering the high complexity
per attention head, the MHA has to restrict the number of attention heads to achieve a trade-off
between model capacity and computational efficiency, which may limit its representation power.

Many efforts have been made to improve the classic MHA. SparseTrans (Child et al., 2019) and
Longformer (Beltagy et al., 2020) compute local attention maps based on the subsequences extracted
by sliding windows, which leads to sparse global attention maps. To use shorter subsequences while
retaining more information, S3Attention (Wang et al., 2024) integrates global and local informa-
tion by leveraging Fourier Transformation and a convolutional kernel. Some other models sparsify
the key and query matrices directly by locality-sensitive hashing (LSH) (Kitaev et al., 2020) or
ReLU (Qin et al., 2022). Besides pursuing sparse attention maps, Performer (Choromanski et al.,
2021) and Linformer (Wang et al., 2020) apply low-rank attention maps. Recently, FlashAttention
and its variants (Dao et al., 2022; Dao, 2024) further accelerate the computation of attention maps
for long sequences by sophisticated I/O design, parallelism, and work partitioning. In addition to
simplifying the computation of the attention maps, some work provides new understandings of the
attention mechanism. The work in (Tsai et al., 2019; Choromanski et al., 2021; Qin et al., 2022)
implements attention maps as various kernel matrices. The work in (Sander et al., 2022) implements
doubly stochastic attention maps by the Sinkhorn-Knopp algorithm (Sinkhorn & Knopp, 1967) and
explains the computation of each attention map as a discretized Wasserstein gradient flow.

Currently, the above accelerated or structured MHAs often lead to the performance degradation,
while the theoretical understandings of MHA seldom help improve its computational efficiency in
practice. Our work attempts to bridge the gap, proposing a theoretically solid multi-head attention
mechanism with low complexity and competitive performance.

3 PROPOSED METHOD

3.1 MOTIVATION: PURSUING SPARSE DOUBLY STOCHASTIC ATTENTION MAPS

As shown in Section 2, many models apply various strategies to construct sparse attention maps, e.g.,
the locality-sensitive hashing (LSH) in (Kitaev et al., 2020), the subsequence sampling in (Child
et al., 2019; Beltagy et al., 2020), and the sparse activation in (Qin et al., 2022). These models
achieve encouraging performance and higher efficiency than the vanilla Transformer, demonstrating
sparse attention maps’ rationality. Besides making attention maps sparse, the work in (Sander et al.,
2022) shows that in various discriminative tasks, the attention maps tend to be doubly stochastic au-
tomatically (i.e., P ∈ ΠN , where ΠN = {A ≥ 0|A1N = 1N ,A⊤1N = 1N ) during training,1 and
the Transformer applying doubly stochastic attention (called Sinkformer) outperforms the vanilla
Transformer in image and text classification.

The above recent models show that sparse attention maps help improve the models’ computational
efficiency (thus making increasing attention heads feasible), and doubly stochastic attention maps
help improve the models’ discriminative power. These phenomena imply that designing sparse
doubly stochastic attention maps may lead to a better MHA mechanism and further boost
model performance. To verify this claim, we conduct an analytic experiment, replacing the at-
tention maps in a standard ViT (Dosovitskiy et al., 2021) with simple permutation matrices (the
doubly stochastic matrices with the strongest sparsity) and evaluating the model performance on the
CIFAR-10 dataset (Krizhevsky, 2009). In particular, the ViT used in this experiment consists of six
Transformer layers. Each Transformer has eight attention heads (i.e., M = 8), and each head sets
N = 64, C = 512, and D = 64. For each layer, we replace the attention map of the m-th head with
the following permutation matrix:

SC(m−1)/D =

[
0 IC(m−1)/D

IN−C(m−1)/D 0

]
, for m = 1, ...,M, (3)

1Please refer to Section 3 in (Sander et al., 2022) for more details.
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Table 1: A comparison for various MHAs and their classification accuracy (%) on CIFAR-10.

MHA #Heads per layer Parameters per layer Top-1 Acc. Top-5 Acc.

∥Mm=1P (Qm,Km)Vm 8 (=M) {WQ,m,WK,m,WV,m}Mm=1 81.90 98.85
∥Mm=1SC(m−1)/DVm 8 (=M) {WV,m}Mm=1 80.70 98.97
∥Cc=1S(c−1) mod Nvc 64 (= N) {WV,m}Mm=1 83.84 99.27

where IN indicates an identity matrix with a size N × N . Obviously, the permutation matrix
SC(m−1)/D corresponds to a circular shifting operator — SC(m−1)/DVm means shifting the rows of
Vm circularly with C(m− 1)/D steps. Furthermore, for each layer, we can concatenate {Vm}Mm=1
to get V = [v1, ...,vC ] ∈ RN×C and circularly shift the channels of this matrix by applying
S(c−1) mod Nvc for c = 1, ..., C, where “mod” is the modulo operation. In this case, the number of
attention heads, equal to the number of distinguishable permutation matrices, becomes N . As shown
in Table 1, even if the sparse doubly stochastic attention maps we designed are extremely simple
and have no parameters, applying them with a sufficient number can still result in competitive, even
better performance. This experimental result motivates us to construct sufficiently many sparse
doubly stochastic attention maps with low complexity, leading to the proposed channel-wise sample
permutation operator.

3.2 CHANNEL-WISE SAMPLE PERMUTATION FOR IMPLICIT CROSS-CHANNEL ATTENTION

As shown in Figure 1, given an input matrix X ∈ RN×C , the CSP operator first projects X to a
value matrix with the same size, i.e., V = XW = [v1, ...,vC ] ∈ RN×C , where W ∈ RC×C

and vc denotes the N samples in the c-th channel. Given V , the CSP operator shifts the samples of
different channels circularly with various steps and then sorts grouped samples of each channel, i.e.,

CSPW (X) := ∥Cc=1GSortK(SJcvc) = ∥Cc=1Pcvc, where GSortK(v) = ∥Kk=1Sort(v(k)). (4)

Here, SJc is the circular shifting operator defined in (3). GSortK(v) denotes grouping the elements
of a vector v into K parts, i.e., v = [v(1); ...;v(K)], and sorting each part accordingly. When
implementing the CSP operator, we take the first channel v1 as the reference in this study: The
circular shifting of each vc is with respect to v1, and the group sorting permutes the elements of
(SJcvc)

(k) according to the element-wise order of v(k)
1 , for c = 2, ..., C and k = 1, ...,K.

The CSP operator is equivalent to implicitly implementing sparse doubly stochastic attention maps
as permutation matrices, which builds interactions for the samples across different channels. As
shown in (4), we denote each attention map as Pc. For v1, P1 = IN . For the remaining vc, Pc can
be decomposed into the following two parts:

Pc = TcSJc
= BlkDiag({T (k)

c }Kk=1)SJc
, for c = 2, ..., C, (5)

where Tc is a block-diagonal permutation matrix determined by the group sorting operation. The
k-th block T

(k)
c is a permutation matrix determined by the sorting within the k-th group, which

introduces intra-group sample interactions across different channels. The circular shifting operation
introduces inter-group sampler interactions across different channels, and the ranges of the interac-
tions are determined by the predefined shifting steps. As a result, for arbitrary two vc and vc′ , Pcvc

and Pc′vc′ captures their interactions determined by P⊤
c Pc′ .

3.2.1 ADVANTAGES OVER EXISTING MHAS

High computational efficiency: Replacing MHA with CSP leads to a new variant of Transformer.
Table 2 compares the proposed model with the existing MHA-based models. We can find that
the computational complexity of CSP can be O(N log N

K ) when applying QuickSort (Hoare, 1962)
to implement the group sorting operation, which is much lower than the computational complex-
ity of the existing MHAs. When the group size is 2, we can achieve group sorting by the simple
“min-max” operation (Anil et al., 2019; Tanielian & Biau, 2021), and the computational complexity
further reduces to O(N). In addition, as shown in (4), except for the projection matrix W corre-
sponding to the value matrix, CSP does not require additional projection matrices to construct the
query and key matrices. In other words, its parameters are only one-third of the classic MHA.
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Table 2: A comparison for existing MHA mechanisms and CSP.

Model Attention(V ;Q,K) Complexity Attention Structure

Transformer Softmax
(

QK⊤
√
D

)
V O(CN2) Row-normalized

SparseTrans Local2D-Softmax
(

QK⊤
√
D

)
V O(CN1.5) Sparse+Row-normalized

Longformer Local1D-Softmax
(

QK⊤
√
D

)
V O(CNE) Sparse+Row-normalized

Reformer LSH-Softmax
(

QK⊤
√
D

)
V O(CN logN) Sparse+Row-normalized

CosFormer (QcosK
⊤
cos +QsinK

⊤
sin)V O(min{CEQK , NEQ}) Sparse

MEGA f
(

QK⊤
√
D

+B
)
V O(CN2) ∼ O(CNr) (Optional) Sparse+Row-normalized

Performer ϕr(Q)ϕr(K)⊤V O(CNr) Low-rank

Linformer Softmax
(

Qψr(K)⊤√
D

)
ψr(V ) O(CNr) Low-rank+Row-normalized

Proposed ∥Cc=1Pcvc O(CN log N
K
) ∼ O(CN) Sparse+Doubly stochastic

1 “Local1D” considers subsequences with length E when computing attention maps. “Local2D” considers
the row-wise and column-wise local data for a sequence zigzagging in the 2D space.

2 ϕr : RD 7→ Rr , and ϕr(Q), ϕr(K) ∈ RN×r; ψr : RN 7→ Rr , and ψr(K), ψr(V ) ∈ Rr×D .
3 Kcos = diag({cos πi

2M
}Ni=1)ReLU(K), Ksin = diag({sin πi

2M
}Ni=1)ReLU(K). So are Qcos and Qsin.

EQK and EQ are the numbers of nonzero elements in QcosK
⊤
cos and Qcos, respectively.

4 For MEGA, B ∈ RN×N is a bias matrix. f denotes the Softmax function in NLP tasks and a Laplace
function in computer vision tasks. Its complexity becomes O(CNr) when applying a chunk mechanism
to derive sparse attention maps.

A low risk of rank collapse: Besides significantly improving computational efficiency, CSP can
suppress an ordinary risk of the classic MHA, rank collapse. In particular, we define the rank-1
estimation residual of a matrix X associated with an arbitrary matrix norm as

ϵ(X) = X − 1x̂⊤, where x̂ = argminx ∥X − 1x⊤∥. (6)

In addition, for a matrix X = [xnc] ∈ RN×C , we can define its (1,∞)-norm as ∥X∥1,∞ =√
∥X∥1∥X∥∞, where ∥X∥1 = maxc

∑N
n=1 |xnc| and ∥X∥∞ = maxn

∑C
c=1 |xnc|, respectively.

It has been known that ∥ϵ(X)∥1,∞ measures the rank collapse of X effectively, i.e., ∥ϵ(X)∥1,∞ →
0 means that X collapses to a rank-1 matrix. The work in (Dong et al., 2021) shows that if we con-
struct a Transformer by stacking MHA layers without skip connections, its output matrix will lose
its rank doubly exponentially with depth, i.e., ∥ϵ(MHAL◦· · ·◦MHA1(X))∥1,∞ = O(∥ϵ(X)∥3L1,∞),
where L is the number of the MHA layers.

Applying CSP can suppress this risk, which is supported by the following theorem.

Theorem 1 Suppose that we construct a layer-L network as (f ◦CSP)L = (fλL
◦CSPW (L))◦ · · · ◦

(fλ1 ◦ CSPW (1)). For ℓ = 1, ..., L, CSPW (ℓ) is a C-channel CSP operator, and fλℓ
: RC 7→ RC is

a λℓ-Lipschitz function. Denote β = maxℓ ∥W (ℓ)∥1 and λ = maxℓ λℓ. Then, we have

∥ϵ((f ◦ CSP)L(X))∥1,∞ ≤ C
L
2 (λβ)L∥ϵ(X)∥1,∞, ∀X ∈ RN×C . (7)

Theorem 1 indicates a linear convergence rate of the residual. It means that the model applying CSP
avoids the rapid decay of the matrix rank. A detailed proof is shown in Appendix A.

3.2.2 IMPLEMENTATION DETAILS

Circular shifting: The shifting step is crucial for the circular shifting operation, which determines
the range of sample interaction. When the sequence length is comparable to the number of channels
in each layer, i.e., N ≈ C, we can simply set the shifting step size Jc = c⌈N

C ⌉ for c = 1, ..., C,
so that the circular shifting operation can generate sufficient distinguishable attention heads with
respect to the sequence length. However, for long sequences, i.e., N ≫ C, we need to set the
shifting steps of different channels with high dynamics, making C attention heads build diverse
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interactions in a long sequence. In this study, given a Transformer-based model with L layers, we
consider all L value matrices in these layers jointly, and set LC different shifting steps based on
power law, as illustrated in Figure 2. In particular, we denote J as the base shifting step. For
c = 1, ..., LC, we shift the c-th channel circularly with Jc−1 − 1 steps. In addition, for the last
channel, we require JLC−1 − 1 ≈ N − 1. Therefore, we can set J = ⌊N1/(LC−1)⌋.
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Figure 2: The shifting
strategies when N ≈ C
and N ≫ C.

Group sorting: Instead of merely applying the circular shifting oper-
ation (as in Section 3.1), we introduce the group sorting operation to
CSP, which helps increase the number of attention heads. Given an in-
put matrix with size N × C, the circular shifting operation constructs
min{N,C} different attention maps, which results in repeated attention
maps when C > N . For the channels applying the same circular shifting
steps, the group sorting operation can make their attention maps different
from each other as long as the orders of their samples are inconsistent.
As a result, the group sorting helps CSP increase the number of attention
heads from min{C,N} to C.

A special case of CSP: Note that when setting K = 1, the group sorting
becomes the classic complete sorting, leading to a special case of CSP.
Given C channels, the complete sorting can directly generate at most
C distinguishable permutation matrices/attention heads. In addition, be-
cause of using the complete sorting, the circular shifting step of CSP
becomes redundant. In the following experiments, empirically, imple-
menting CSP as the complete sorting often works well when modeling
long sequences while the CSP combining circular shifting with group
sorting helps represent visual objects.

3.3 FUNCTIONALITY AND RATIONALITY ANALYSIS OF CSP

Circular shifting works as a channel-wise mixer: The circular shifting of CSP is similar to the
channel-wise mixers used in visual representation models. In particular, the convolution neural
networks like ShuffleNet (Zhang et al., 2018) and its variant (Ma et al., 2018) apply grouped con-
volution operation to reduce computational costs and increase inter-group interactions by shuffling
the channels across different groups. This shuffling strategy inspires many lightweight channel-wise
mixers, e.g., the hierarchical rearrangement in Hira-MLP (Guo et al., 2022), the spatial-shift module
in S2-MLP (Yu et al., 2022), and the axial-shift module in AS-MLP (Lian et al., 2022). For example,
given a visual feature tensor with a size H×W×C (i.e., 2D images with C channels), the axial-shift
module applies horizontal and vertical shifts with zero padding to the 2D images of different chan-
nels. The spatial-shift module first divides the input tensor into four parts by grouping its channels
and then shifts the four sub-tensors along four different directions. Both these two modules apply
small shifting steps to achieve local shifting. The circular shifting of CSP corresponds to applying
these shifting modules to 1D sequences. To capture the short-range and long-range interactions be-
tween the samples of different channels simultaneously, we apply various shifting steps to different
channels and replace zero padding with circular padding.

Group sorting works as an optimal transport-based MHA: Without causing any ambiguity, we
denote (SJc

vc)
(k) as v

(k)
c for simplification. It is easy to prove that the T

(k)
c in (5) is the opti-

mal transport (OT) between v
(k)
1 and v

(k)
c , which can be derived by minT∈ΠN/K

⟨−v
(k)
1 v

(k)⊤
c ,T ⟩.2

From this viewpoint, CSP achieves a new OT-based MHA mechanism. In addition, when approx-
imating T

(k)
c as an entropic optimal transport, we can connect CSP to the doubly stochastic at-

tention mechanism used in Sinkformer (Sander et al., 2022). In particular, each attention head in
Sinkformer derives a doubly stochastic attention map, denoted as TT,τ , by the Sinkhorn-Knopp
algorithm (Sinkhorn & Knopp, 1967), i.e.,

Tt,τ = Sinkhornt

(
exp

(QK⊤

τ
√
D

))
, and T∞,τ = argminT∈ΠN

⟨−QK⊤,T ⟩+ τ
√
DH(T ). (8)

Here, Sinkhornt(A) means normalizing the rows and columns of a nonnegative matrix A alterna-
tively by t times, i.e., A(0) = A, and A(i) = Nc ◦ Nr(A

(i−1)) for i = 1, ..., t, where Nc and Nr

2See Appendix B for a detailed derivation.
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denote column-wise and row-wise normalization, respectively. As shown in (8), the attention map
corresponds to the optimal solution of an entropic optimal transport problem (Cuturi, 2013) when
t → ∞, where ⟨·, ·⟩ denotes the inner product operation, H(T ) = ⟨T , logT ⟩ denotes the entropy
of T , and its significance is controlled by τ > 0.

We can connect Sinkformer to CSP by modifying the attention mechanism in (8) as follows. Given a
value matrix V = [v1, ...,vC ] ∈ RN×C , we replace the Q and K in (8) with v1 and vc, respectively,
for c = 1, ..., C, and divide each vector into K groups. We can achieve a C-head K-group doubly
stochastic attention mechanism by applying the Sinkhorn-Knopp algorithm to v

(k)
1 v

(k)⊤
c , for c =

1, ..., C and k = 1, ...,K, i.e.,

Tc,t,τ = BlkDiag
({

Sinkhornt

(
exp

(
1
τ v

(k)
1 v

(k)⊤
c

))}K

k=1

)
= BlkDiag({T (k)

c,t,τ}Kk=1), (9)

where Tc,t,τ is a doubly stochastic attention map with a block-diagonal structure, and T
(k)
c,t,τ denotes

a local attention map, which corresponds to computing the entropic optimal transport between v
(k)
1

and v
(k)
c when t → ∞, i.e., T (k)

c,∞,τ = argminT∈ΠN/K
⟨−v

(k)
1 v

(k)⊤
c ,T ⟩+ τH(T ).

The connection between the attention map in (9) and CSP is captured by the following theorem.

Theorem 2 If minT∈ΠN/K
⟨−v

(k)
1 v

(k)⊤
c ,T ⟩ admits a unique optimal solution, for c = 1, ..., C and

k = 1, ...,K, then for the Tc,t,τ in (9), limτ→0 Tc,∞,τSJc converges to the Pc in (5) weakly.

Theorem 2 can be derived directly based on the weak convergence of entropic optimal transport
(Theorem 5.10 in (Nutz, 2022)). This theorem indicates that a Sinkformer can implement CSP
approximately if it i) sets the query and key matrices as the channels of the value matrix and ii)
applies the Sinkhorn-Knopp algorithm to the grouped samples.

4 EXPERIMENTS

To demonstrate the effectiveness and efficiency of CSP, we conduct comprehensive comparative
and analytic experiments in two representative discriminative tasks, image classification and long
sequence analysis. The implementation details can be found in Appendix C.

4.1 IMAGE CLASSIFICATION

We conduct comparative experiments and ablation studies on three image datasets, including
CIFAR-10, CIFAR-100 (Krizhevsky, 2009), and ImageNet-1k (Deng et al., 2009). For each dataset,
we treat the classic ViT as the baseline and replace its MHA layers with i) circular shifting, ii)
group sorting, and iii) the proposed CSP operator, respectively. Here, the circular shifting and
the group sorting are two simplified CSP operators that help analyze the contributions of different
CSP modules. Table 3 shows these models’ size and classification accuracy. Applying CSP and
its simplified variants can reduce the model size significantly without the query and key matrices.
The circular shifting operator achieves competitive performance in all three datasets. In addition,
although the standalone group sorting operator results in performance degradation, combining it
with the circular shifting operator, i.e., the proposed CSP, can achieve the best performance. These
observations are consistent with the experimental results achieved by mixer-MLP models (Yu et al.,
2022; Lian et al., 2022): i) Simple channel-wise interactions can replace the dense and smoothed
attention maps and lead to promising model performance, and ii) the shifting operator is crucial
for CSP in computer vision tasks because it fully leverages the local similarity nature of the image.
Moreover, when we increase the number of channels per layer and make the model size comparable
to the original ViT, we can further boost the performance of the CSP-based models and achieve the
best performance.

In Figure 3, we illustrate the singular spectrums of the output matrices achieved by different methods
on ImageNet-1k. The spectrums achieved by the circular shifting and CSP operators decay much
more slowly than the spectrum achieved by MHA. This observed phenomenon serves as a strong
validation of the theoretical result in Theorem 1, providing further evidence that the representation
model using permutation-based attention maps indeed carries a lower risk of rank collapse compared
to the classic MHA-based model.
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Table 3: The comparison for various models on the number of parameters (×106) and classification
accuracy (%). The best result on each dataset is bold, and the second best result is underlined.

Model Attention CIFAR-10 CIFAR-100 ImageNet-1k
#Param. Top-1 Top-5 #Param. Top-1 Top-5 #Param. Top-1 Top-5

ViT

MHA 9.52 81.90 98.85 9.65 53.30 79.97 22.05 76.53 92.81
Circular Shifting 6.38 83.84 99.27 6.50 58.38 84.26 18.50 75.64 92.42

Group Sorting 6.38 79.41 99.03 6.50 51.47 79.67 18.50 64.77 85.28

CSP (Proposed) 6.38 84.81 99.35 6.50 59.16 84.76 18.50 76.66 93.05
9.52 85.02 99.37 9.65 59.23 85.09 22.05 77.14 93.23
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Figure 3: The singular spectrums of the output matrices achieved on ImageNet-1k.

4.2 LONG RANGE ARENA BENCHMARK
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Figure 4: The performance and effi-
ciency of various models on the LRA
benchmark. The disk area indicates the
memory cost of each method.

Long Range Arena (LRA) is a benchmark designed to
evaluate models for long sequence analysis (Tay et al.,
2021b), which consists of six discriminative tasks, includ-
ing ListOps (Nangia & Bowman, 2018), byte-level text
classification (Maas et al., 2011), byte-level document
retrieval (Radev et al., 2013), and three sequentialized
image classification tasks, i.e., CIFAR-10 (Krizhevsky,
2009), PathFind, and Path-X (Linsley et al., 2018).3 Each
image is formulated as a long sequence of pixels in the
three image classification tasks. We first replace the MHA
of the classic Transformer with CSP and compare it with
other variants of Transformer. As shown in Figure 4 and
the first part of Table 4, the Transformer using CSP out-
performs other models on both performance and compu-
tational efficiency. It achieves the highest average score
and the fastest training speed among all the models, and
its memory cost is comparable to the most efficient vari-
ant of Transformer. For long sequence modeling, we sim-
ply implement CSP as the complete sorting operator in
this experiment, which can capture the long-range inter-
actions between the samples with the highest flexibility.

Besides improving the classic Transformer, we further
plug CSP into the state-of-the-art attention-based model, MEGA (Ma et al., 2022), and analyze
its impacts on the model performance. As evidenced in the second part of Table 4, the MEGA with
dense attention maps currently outperforms all other methods, including those based on the state
space model (SSM), such as S5 (Smith et al., 2022) and SPADE (Zuo et al., 2024), on the LRA
benchmark. When MEGA applies chunked attention maps, its performance degrades slightly but its
computational complexity can reduce from O(CN2) to O(CNr), where r is the chunk size. When
replacing the attention mechanism of MEGA with the proposed CSP operator, the complexity of

3Given a set of gray-level images, each of which plots two points and several curves, PathFind aims to
recognize whether there exists a path connecting the points in each image. Path-X is a more challenging
version of Pathfind because of applying high-resolution images.
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Table 4: Results (%) of various methods on the LRA benchmark. The first group contains the classic
Transformer and its variants, and the second group contains the state-of-the-art methods on LRA.
The best result on each dataset is bold, and the second best result is underlined.

Type Model ListOps Text Retrieval Image PathFind Path-X Avg.

MHA

Transformer (Vaswani et al., 2017) 36.37 64.27 57.46 42.44 71.40 FAIL 54.39
LocalAttention (Tay et al., 2021b) 15.82 52.98 53.39 41.46 66.63 FAIL 46.06
LinearTrans (Katharopoulos et al., 2020) 16.13 65.90 53.09 42.34 75.30 FAIL 50.55
Reformer (Kitaev et al., 2020) 37.27 56.10 53.40 38.07 68.50 FAIL 50.67
Sinkformer (Sander et al., 2022) 30.70 64.03 55.45 41.08 64.65 FAIL 51.18
SparseTrans (Child et al., 2019) 17.07 63.58 59.59 44.24 71.71 FAIL 51.24
SinkhornTrans (Tay et al., 2020) 33.67 61.20 53.83 41.23 67.45 FAIL 51.29
Linformer (Wang et al., 2020) 35.70 53.94 52.27 38.56 76.34 FAIL 51.36
Performer (Choromanski et al., 2021) 18.01 65.40 53.82 42.77 77.05 FAIL 51.41
Synthesizer (Tay et al., 2021a) 36.99 61.68 54.67 41.61 69.45 FAIL 52.88
Longformer (Beltagy et al., 2020) 35.63 62.85 56.89 42.22 69.71 FAIL 53.46
BigBird (Zaheer et al., 2020) 36.05 64.02 59.29 40.83 74.87 FAIL 55.01
Cosformer (Qin et al., 2022) 37.90 63.41 61.36 43.17 70.33 FAIL 55.23
Transformer using CSP (Proposed) 37.65 64.60 62.23 48.02 82.04 FAIL 58.91

Type Model Complexity ListOps Text Retrieval Image PathFind Path-X Avg.

CNN CCNN (Romero et al., 2022) O(CN2) 43.60 84.08 FAIL 88.90 91.51 FAIL 68.02

SSM

ETSMLP (Chu & Lin, 2024)

O(CN)

62.55 88.49 86.72 75.34 91.66 93.78 83.09
S4 (Gu et al., 2022) 58.35 76.02 87.09 87.26 86.05 88.10 80.48
S5 (Smith et al., 2022) 62.15 89.31 91.40 88.00 95.33 98.58 87.46
SPADE (Zuo et al., 2024) 59.70 87.55 90.13 89.11 96.42 94.22 86.19

MHA
MEGA (Ma et al., 2022) O(CN2) 63.14 90.43 91.25 90.44 96.01 97.98 88.21
MEGA-chunk (Ma et al., 2022) O(CNr) 58.76 90.19 90.97 85.80 94.41 93.81 85.66
MEGA using CSP (Proposed) O(CN) 61.85 90.27 90.09 87.42 93.74 91.98 85.89

the CSP-based MEGA becomes linear and thus comparable to that of the chunked MEGA and the
SSM-based models. At the same time, the CSP-based MEGA is better than the chunked MEGA in
the overall performance. These results serve as compelling evidence, demonstrating the practical
rationality of CSP.

5 CONCLUSION & FUTURE WORK

We have proposed a novel channel-wise sample permutation operator, leading to a simple but ef-
fective surrogate of existing multi-head attention mechanisms. In theory, we demonstrate that the
proposed CSP operator overcomes the rank collapse problem of the classic MHA because of imple-
menting sparse doubly stochastic attention maps as permutation matrices. In addition, we explain
the operator from the perspective of channel-wise mixer and optimal transport-based attention. For
representative MHA-based models, replacing their MHA layers with the CSP operator helps im-
prove their performance in discriminative tasks and reduce their computational cost at the same
time. In summary, our work provides a promising solution to developing a better multi-head at-
tention mechanism, demonstrating the usefulness of discrete algorithms like shifting and sorting in
model design.

Limitations and Future Work. Currently, the design of CSP is motivated by pursuing sparse dou-
bly stochastic attention maps, which restricts its application to discriminative tasks — the attention
maps of Transformer decoder in generative tasks are lower-triangular, so that imposing the doubly
stochastic constraint on the attention maps results in trivial identity matrices. For the Transformers
in generative tasks (Radford et al.; Touvron et al., 2023a;b), how to achieve effective and efficient
attention maps by simple algorithms is still an open problem, which is left as our future work. In
addition, we implement our method based on Pytorch at the current stage. To maximize the com-
putational efficiency of our method, we plan to refactor its underlying code and optimize its I/O,
parallelism, and partitioning strategies as FlashAttention (Dao et al., 2022; Dao, 2024) did.
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A THE PROOF OF THEOREM 1

A Single Channel: Given a CSP’s output matrix, we can derive a residue for each channel as

ϵ(PcXwc) = PcXwc − 1âc, for c = 1, ..., C. (10)

where â = [âc] and

âc = argmina ∥PcXwc − 1a∥ = argmina ∥Xwc − 1a∥. (11)

Then, we have

∥ϵ(PcXwc)∥ = ∥PcXwc − 1âc∥ = ∥Xwc − 1âc∥ ≤ ∥(X − 1x⊤)wc∥ ≤ ∥wc∥∥ϵ(X)∥, (12)

where the second equation is based on the permutation invariance of the matrix norm, the first
inequation is based on (11), and the second inequation is based on the sub-multiplicativity (or called
consistency) of the matrix norm.

A Single CSP: Considering all C heads and specifying the matrix norm to be 1-norm and ∞-norm,
respectively, we have

∥ϵ(CSPW (X))∥1 = ∥(∥Cc=1PcXwc)− 1â⊤∥1
= max

c
∥PcXwc − 1âc∥1

≤ (max
c

∥wc∥1)∥ϵ(X)∥1
= ∥W ∥1∥ϵ(X)∥1.

(13)

∥ϵ(CSPW (X))∥∞ = ∥(∥Cc=1PcXwc)− 1â⊤∥∞
≤

∑C

c=1
∥PcXwc − 1âc∥∞

≤
∑C

c=1
∥wc∥∞∥ϵ(X)∥∞

≤
∑C

c=1

∑N

n=1
|wnc|∥ϵ(X)∥∞

≤ C(max
c

∥wc∥1)∥ϵ(X)∥∞
= C∥W ∥1∥ϵ(X)∥∞.

(14)

Combining the above two inequations, we have

∥ϵ(CSPW (X))∥1,∞ ≤
√
C∥W ∥1∥ϵ(X)∥1,∞. (15)

A Single CSP followed by a Lipschitz function. Given a Lipschitz function fλ : RC 7→ RC , we
apply it to each row of a CSP’s output matrix. For the residual of fλ ◦ CSPW (X), we have

∥ϵ(fλ ◦ CSPW (X))∥ = ∥fλ ◦ CSPW (X)− 1ŷ⊤∥
≤ ∥fλ ◦ CSPW (X)− 1f⊤

λ (â)∥
≤ λ∥CSPW (X)− 1â⊤∥
= λ∥ϵ(CSPW (X))∥,

(16)

where ŷ = argminy ∥fλ ◦ CSPW (X)− 1y⊤∥ and â is the vector associated to ϵ(CSPW (X)).

Stacking L CSP Operators: We can recursively leverage the above results and derive the following
inequation:

∥ϵ((f ◦ CSP)L(X))∥1,∞ ≤λL

√
C∥W (L)∥1∥ϵ((f ◦ CSP)L−1(X))∥1,∞

≤C
L
2

(∏L

ℓ=1
λℓ∥W (ℓ)∥1

)
∥ϵ(X)∥1,∞

≤C
L
2 (λβ)L∥ϵ(X)∥1,∞,

(17)

where β = maxℓ ∥W (ℓ)∥1 and λ = maxℓ λℓ. When the f ’s are the identity map, we have
∥ϵ(CSPL(X))∥1,∞ ≤ C

L
2 βL∥ϵ(X)∥1,∞.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B THE OT-BASED EXPLANATION OF CROSS-CHANNEL SORTING

For convenience, denote the group size N/K by G. For v(k)
1 ,v

(k)
c ∈ RG The optimal transport

distance between v
(k)
1 and v

(k)
c can be defined as the following linear programming problem:

W (v
(k)
1 ,v(k)

c ) := minT∈ΠG
⟨D,T ⟩, (18)

where D = (v
(k)
1 ⊙ v

(k)
1 )1⊤

G + 1G(v
(k)
c ⊙ v

(k)
c )⊤ − 2v

(k)
1 v

(k)⊤
c is the squared Euclidean distance

matrix, and ⊙ denotes the Hadamard product. Denote the optimal solution of (18) as T ∗. Because
T ∈ ΠG, we have

T ∗ = argminT∈ΠG
⟨D,T ⟩

= argminT∈ΠG
⟨(v(k)

1 ⊙ v
(k)
1 )1⊤

G + 1G(v
(k)
c ⊙ v(k)

c )⊤ − 2v
(k)
1 v(k)⊤

c ,T ⟩
= argminT∈ΠG

⟨v(k)
1 ⊙ v

(k)
1 ,T1G⟩+ ⟨v(k)

c ⊙ v(k)
c ,T1G⟩ − 2⟨v(k)

1 v(k)⊤
c ,T ⟩

= argminT∈ΠG
⟨v(k)

1 ⊙ v
(k)
1 ,1G×G⟩+ ⟨v(k)

c ⊙ v(k)
c ,1G×G⟩︸ ︷︷ ︸

A Constant C0

−2⟨v(k)
1 v(k)⊤

c ,T ⟩

⇔ argminT∈ΠG
⟨−v

(k)
1 v(k)⊤

c ,T ⟩.

(19)

In addition, because v
(k)
1 and v

(k)
c are 1D vectors, their OT distance can be computed by aligning

the elements of v(k)
c to align to those of v(k)

1 , which corresponds to the sorting operation, i.e.,

W (v
(k)
1 ,v(k)

c ) = ∥v(k)
1 − T (k)

c v(k)
c ∥22 = ⟨v(k)

1 ,v
(k)
1 ⟩+ ⟨v(k)

c ,v(k)
c ⟩︸ ︷︷ ︸

=C0

−2⟨v(k)
1 v(k)⊤

c ,T (k)
c ⟩, (20)

where T
(k)
c is the permutation matrix. Therefore, as long as W (v

(k)
1 ,v

(k)
c ) has a unique optimal

transport, T (k)
c = T ∗.

C IMPLEMENTATION DETAILS

C.1 IMAGE CLASSIFICATION

The detailed hyperparameter setups are presented in Table 5. Both training and testing are conducted
on 8 NVIDIA GeForce RTX 4080 SUPER GPUs.

Table 5: The hyperparameters of ViT using CSP on image classification tasks.
Dataset CIFAR-10 CIFAR-100 ImageNet-1k

#Groups K 32 128 98
Shifting step Linear Linear Linear
Batch Size 64 64 256
Epochs 100 100 300
Learning Rate 1E-04 1E-04 5E-04
LR scheduler cosine cosine cosine
Optimizer Adam Adam AdamW
Dropout Rate 0.1 0.1 0.1

Hidden Dims 512 512 386
Num. Layers 6 6 12
Pooling Type mean mean mean
#Param. 6.46M 6.50M 18.50M

C.2 LONG RANGE ARENA BENCHMARK

We strictly follow the LRA benchmark (Tay et al., 2021b)’s default data processing and experimental
design. The detailed hyperparameter setups are presented in Table 6 and Table 7. For Image task,
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Table 6: The hyperparameters of Transformer using CSP on LRA.
Dataset ListOps Text Retrieval Image PathFind

#Groups K 1 1 1 1 1
Shifting step — — — — —
Batch Size 32 32 8 256 256
Train steps 5000 20000 5000 35156 125000
Learning Rate 5E-02 5E-02 5E-02 8E-03 1E-03
LR scheduler sqrt sqrt sqrt cosine cosine
Optimizer Adam Adam Adam Adam Adam
Weight Decay 1E-01 1E-01 1E-01 0 0

Hidden Dims 512 256 128 128 64
Num. Layers 4 4 4 4 6
Pooling Type cls cls cls cls cls

Table 7: The hyperparameters of MEGA using CSP on LRA.
Dataset ListOps Text Retrieval Image PathFind Path-X

#Groups K 1 1 1 — 512 8192
Shifting step — — — Linear Linear Exp
Batch Size 64 25 8 50 64 60
Epochs 60 50 40 200 200 100
Learning Rate 1E-03 4E-03 6E-03 1E-02 3E-02 1E-02
LR scheduler linear linear linear linear linear linear
Optimizer Adam Adam Adam Adam Adam Adam
Weight Decay 1E-02 1E-02 4E-02 2E-02 1E-02 1E-02
Dropout Rate 0.1 0.1 0.1 0.0 0.1 0.5

Hidden Dims 160 256 256 1024 256 128
Num. Layers 6 4 6 8 6 4
Pooling Type mean mean mean mean mean mean

we only apply the circular shifting operation. Both training and testing are conducted on 8 NVIDIA
RTX A6000 GPUs.

In Figure 4, we compare Transformer using CSP with other baselines based on JAX Bradbury et al.
(2018). These models are trained on 4 NVIDIA GeForce RTX 3090 GPUs. The detailed settings are
as follows: The length of the sequence is 3K. The x-axis corresponds to the number of training steps
per second. The y-axis corresponds to the average score (%) on the LRA benchmark. The peak
memory usage of each model is represented as the area of the corresponding circle. For a better
comparison, the values (GB) of the top-2 models are shown.
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