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Abstract001

Large language models (LLMs), despite their002
ability to perform few-shot machine transla-003
tion (MT), often lag behind dedicated MT sys-004
tems trained on parallel corpora, which are cru-005
cial for high quality machine translation (MT).006
However, parallel corpora are often scarce or007
non-existent for low-resource languages. In008
this paper, we propose CycleDistill, a bootstrap-009
ping approach leveraging LLMs and few-shot010
translation to obtain high-quality MT systems.011
CycleDistill involves iteratively generating syn-012
thetic parallel corpora from monolingual cor-013
pora via zero- or few-shot MT, which is then014
used to fine-tune the model that was used for015
generating said data for MT. CycleDistill does016
not need parallel corpora beyond 1 to 4 few-017
shot examples, and in our experiments focus-018
ing on three Indian languages, by relying solely019
on monolingual corpora, it can achieve high-020
quality machine translation, improving upon a021
few-shot baseline model by 20-30 chrF points022
on average in the first iteration. We also study023
the effect of leveraging softmax activations dur-024
ing the distillation process and observe mild025
improvements in translation quality.026

1 Introduction027

Machine translation (MT) for low-resource lan-028

guages poses persistent challenges due to the lim-029

ited availability of bilingual corpora and the lin-030

guistic variation these languages exhibit. Although031

large language models (LLMs) can perform trans-032

lation with minimal supervision, their effectiveness033

in low-resource settings is typically inferior to sys-034

tems trained with substantial parallel data (Koehn035

et al., 2017; Gu et al., 2018).036

This paper introduces CycleDistill, a resource-037

efficient framework for improving translation qual-038

ity without requiring extensive parallel data. The039

approach begins with a small set of example trans-040

lations and utilizes LLMs to generate synthetic041

Figure 1: chrF scores over distillation cycles for LLaMA
8B → 3B using Iterative and Softmax-Preserved Distil-
lation under a zero-shot Hindi setting. Marginal gains
observed across iterations.

parallel corpora from monolingual text. These cor- 042

pora are then used to iteratively fine-tune the trans- 043

lation model, enabling progressive performance 044

gains with each cycle. 045

The framework incorporates two key techniques. 046

First, Iterative Synthetic Data Distillation lever- 047

ages repeated cycles of data generation and model 048

training to enhance translation performance over 049

time (Kim et al., 2021). Second, Soft Distribution- 050

Preserving Distillation transfers detailed token- 051

level probability distributions from teacher to stu- 052

dent models, allowing for more comprehensive 053

knowledge retention (Tan et al., 2019). Building 054

on previous work in self-training (He et al., 2020), 055

sequence-level and soft-target knowledge distilla- 056

tion (Kim and Rush, 2016; Hinton et al., 2015), 057

CycleDistill offers a practical and scalable solution 058

for MT in low-resource scenarios. 059

The main contributions of this work are: 060

• We present CycleDistill, a self-supervised MT 061

framework that improves translation quality 062

using only monolingual corpora and minimal 063
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supervision.064

• We propose a token-level soft distillation strat-065

egy to facilitate richer and more effective066

learning from teacher models.067

• We demonstrate that our method achieves sub-068

stantial improvements of 20-30 chrF points069

over few-shot translation baselines, with con-070

sistent chrF score gains across three Indian071

low-resource languages.072

2 Related work073

Low-resource machine translation (MT) remains a074

significant challenge due to the scarcity of parallel075

corpora and high linguistic diversity (Koehn et al.,076

2017; Gu et al., 2018). Knowledge distillation077

(KD) has become a popular approach for address-078

ing these issues, transferring knowledge from large079

teacher models to smaller student models (Hinton080

et al., 2015). Sequence-level KD (Kim and Rush,081

2016) and iterative or self-training strategies (Kim082

et al., 2021; Furlanello et al., 2018) have demon-083

strated improvements in low-resource and multi-084

lingual MT (Tan et al., 2019). Recent advances085

include continual KD, which sequentially distills086

knowledge from multiple existing models (Zhang087

et al., 2023), and encoder-aware KD for better trans-088

fer in compute-constrained and low-resource set-089

tings (Velayuthan et al., 2025).090

Back-translation and its iterative variants are also091

highly effective for low-resource MT, as they lever-092

age monolingual data to generate synthetic par-093

allel corpora (Edunov et al., 2018; Hoang et al.,094

2018). These methods have shown strong gains095

in extremely low-resource and Indic language sce-096

narios, especially when combined with transfer097

learning and data filtering (Luo et al., 2020; Tars098

et al., 2021; Ahmed et al., 2023; Krishnamurthy099

et al., 2024).100

While both KD and back-translation have ad-101

vanced the field, their integration and comparative102

effectiveness, particularly in settings with mini-103

mal parallel supervision, remain active areas of104

research. Our proposed CycleDistill framework is105

novel in that it bootstraps high-quality MT systems106

using only monolingual corpora and a handful of107

few-shot examples, without relying on large-scale108

parallel data. Unlike prior work, CycleDistill com-109

bines cyclical iterative synthetic data generation110

with token-level soft distribution-preserving distil-111

lation, enabling progressive model refinement and112

compression.113

Figure 2: An overview of the CycleDistill framework,
which iteratively generates synthetic parallel data from
monolingual corpora and refines translation models
through cyclic self distillation.

3 Methodology 114

This work aims to enhance low resource languages 115

to English machine translation through the adop- 116

tion of two iterative distillation strategies: cyclic 117

synthetic data generation and an advanced distilla- 118

tion approach that preserves detailed token-level 119

information, such as softmax distributions and sub- 120

word structures. Our methodology is grounded in 121

recent developments in knowledge distillation and 122

self-training for neural machine translation (Kim 123

and Rush, 2016; Gou et al., 2021). 124

3.1 Iterative Synthetic Data Distillation 125

Our first approach enables the base translation 126

model to iteratively improve by generating and 127

learning from its own synthetic data. The proce- 128

dure is as follows: 129

• Base Model Initialization: The process be- 130

gins with a pretrained base translation model, 131

denoted as M0, which is capable of translating 132

from an Indic language to English. 133

• Synthetic Data Generation: The model M0 134

is employed to generate a synthetic dataset 135

D0 comprising translation pairs. This step is 136

inspired by self-training methodologies that 137

have demonstrated efficacy in low-resource 138

scenarios (He et al., 2020). 139

• Self-Distillation: Utilizing the generated syn- 140

thetic data, knowledge distillation is per- 141

formed in two ways: 142

– The same model architecture is further 143

refined, resulting in an updated model 144

M1. 145
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– Additionally, knowledge is distilled146

into a smaller student model, M ′
1, via147

sequence-level knowledge distillation,148

whereby the student learns from the149

teacher’s generated translations (Kim150

and Rush, 2016).151

• Iterative Refinement: This procedure is re-152

peated for three cycles. In each iteration i153

(where i = 1, 2, 3):154

– The distilled model Mi (or M ′
i ) produces155

a new dataset Di comprising additional156

translations.157

– Subsequently, Mi is distilled into Mi+1158

and a new student model M ′
i+1.159

The underlying principle is that, by iteratively160

learning from its own outputs, the model can pro-161

gressively improve its performance. This iterative162

process benefits both the primary and the student163

models, enhancing their generalization capabilities164

and, in certain cases, enabling model size reduction165

with minimal compromise in performance.166

3.2 Soft Distribution-Preserving Distillation167

The second strategy extends the distillation process168

by capturing more granular information from the169

teacher model:170

• Enhanced Data Extraction: During syn-171

thetic translation generation, for each token172

position t, we record:173

– The top-k token predictions174

({y(t)1 , . . . , y
(t)
k }) (Fan et al., 2018)175

– The corresponding softmax probabilities176

({p(t)1 , . . . , p
(t)
k }), where

∑k
j=1 p

(t)
j ≤ 1177

This comprehensive information set is moti-178

vated by the demonstrated effectiveness of179

soft-target distillation in capturing the teacher180

model’s knowledge (Hinton et al., 2015).181

• Logit-Based Distillation: The student model182

is trained to match not only the final output183

sequences but also the softmax distributions184

over the top-k tokens at each position. This is185

achieved by minimizing the Kullback-Leibler186

(KL) divergence (Kullback and Leibler, 1951)187

loss:188

LKD =
T∑
t=1

KL
(
P

(t)
teacher ∥ P

(t)
student

)
189

Figure 3: An Overview of the Soft Distribution Pre-
serving Distillation. Unlike standard distillation, this
method preserves top-k token distributions at each po-
sition. The student model learns not only from final
outputs but also from the richer probability landscape,
encouraging finer-grained generalization.

where T denotes the sequence length, and P (t) 190

represents the softmax distributions. This ap- 191

proach enables the student model to more ac- 192

curately approximate the teacher’s behavior, 193

as suggested in prior research (Hinton et al., 194

2015; Mukherjee and Khapra, 2021). 195

• Iterative Distillation: This process is also 196

conducted over three iterations. In each cy- 197

cle, the student from the previous round as- 198

sumes the role of the new teacher, and a fresh 199

synthetic dataset is generated, ensuring the 200

transfer of rich token-level distributions. 201

4 Experiments 202

This section outlines the experimental framework 203

designed to investigate the efficacy of iterative 204

knowledge distillation in enhancing machine trans- 205

lation quality. Our approach involves distill- 206

ing knowledge from larger language models into 207

smaller counterparts, followed by comprehensive 208

performance evaluation across multiple metrics and 209

languages. 210

4.1 Models and Languages 211

Our study employs four language models of vary- 212

ing sizes from the LLaMA (Meta, 2024) and 213

Gemma (Google, 2024) families: 214

• Gemma 2 9B (G9B) 215

• Gemma 2 2B (G2B) 216

• LLaMA 3.1 8B (L8B) 217

• LLaMA 3.2 3B (L3B) 218

Each larger model undergoes distillation to pro- 219

duce both a refined same-size model and a com- 220

pressed smaller model, adhering to established 221
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Sequence Distillation principles (Kim and Rush,222

2016). Our evaluation encompasses three Indic223

languages:224

• Hindi (HIN )225

• Bengali (BEN )226

• Malayalam (MAL)227

4.2 Distillation Process228

For a given teacher model T , distillation is per-229

formed to produce two student models:230

• Same-size student (Ssame ← T )231

• Smaller student (Ssmall ← T )232

The distillation relationships are formally ex-233

pressed as:234

G9B → {G′
9B, G2B}, L8B → {L′

8B, L3B}235

where the refined large models (G′
9B, L

′
8B) are sub-236

sequently utilized for synthetic data generation. We237

select k = 20 after empirical evaluation of the238

teacher models’ output distributions revealed that239

the probability mass beyond the 20 highest-scoring240

tokens is negligible. We perform the experiments241

only upto three iterations (n = 3). This limit was242

set because we observed that the performance gains243

stabilized after the third iteration. Further itera-244

tions yielded negligible improvements, indicating245

that the models were approaching a performance246

plateau, making additional computational cycles247

inefficient.248

4.3 Training Data249

Models are fine-tuned using the BPCC seed cor-250

pus (Gala et al., 2023), a parallel Indic-to-English251

dataset. Consistent with established practices in252

low-resource translation research (Kunchukuttan253

et al., 2023), we randomly sample 20,000 sentence254

pairs for training and distillation. We use a fixed255

prompt format for all of the language and model256

pair, discussed in Figure 4.257

4.4 Synthetic Data Generation258

Following each distillation iteration, the most re-259

cent large model generates synthetic English trans-260

lations for the original 20,000 source sentences.261

This synthetic data generation process is repeated262

for three complete cycles to enable progressive263

model refinement.264

4.5 Prompt Used265

The prompt utilized for the translation task de-266

scribed in Section 4.3 is shown in Figure 4.267

Figure 4: Example of the general prompt used for the
translation task.

In 1-shot and 4-shot settings, example translation 268

pairs are inserted into the middle section of the 269

prompt prior to the final instruction. 270

4.6 Evaluation 271

Model performance is assessed using the IN22 Gen 272

corpus (Gala et al., 2023), the standard evalua- 273

tion benchmark coupled with the BPCC seed cor- 274

pus. The translation quality is quantified through 275

chrF scores (Popović, 2015). This metric provides 276

standardized measurement of n-gram translation 277

accuracy, aligning with current best practices in 278

machine translation evaluation. 279

5 Results and Analyses 280

We first describe our main results on CycleDistill 281

(iterative self distillation) and then analyze its vari- 282

ous effects. 283

5.1 Main Results 284

Zero-Shot Setting We observe a consistent perfor- 285

mance trend across iterations of distillation. The 286

first iteration results in a substantial performance 287

increase. The second and third iteration usually 288

have similar values with the first iteration, but we 289

notice a small increase of 1-2% of chrF with each 290

iteration. 291

This pattern holds true for both iterative distil- 292

lation and soft distribution-preserving distillation, 293

with no significant differences observed between 294

the two. However there are some notable results – 295

• For the Gemma 2B model with Bengali and 296

the LLaMA 3B model with Malayalam, itera- 297
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Model Iter chrF (0-shot) chrF (1-shot) chrF (4-shot)

BEN HIN MAL BEN HIN MAL BEN HIN MAL

G9B

Base 41.4 47.9 39.9 42.7 49.2 38.8 24.2 44.6 14.5
DD1 61.1 64.4 60.2 60.8 64.2 60.0 53.1 63.8 37.0
SD1 60.9 64.7 60.4 60.1 64.5 57.9 49.3 63.7 18.2

DD2 61.4 64.5 60.7 60.5 64.6 60.2 52.4 63.7 37.2
SD2 60.5 64.7 60.7 64.8 64.9 59.1 49.3 64.3 32.9

DD3 61.0 60.4 61.1 60.6 59.0 60.4 52.8 57.7 37.8
SD3 61.4 64.4 61.0 60.9 63.3 58.4 45.0 64.1 48.1

L8B

Base 29.2 33.6 22.8 26.6 36.0 8.5 13.5 24.1 14.0
DD1 44.9 29.8 42.6 39.6 26.8 17.6 16.7 18.9 17.4
SD1 42.1 40.3 40.6 32.0 39.6 21.2 16.7 29.3 17.4

DD2 48.3 50.3 46.2 42.0 55.5 26.4 16.5 51.1 17.4
SD2 46.2 54.1 44.5 38.3 39.4 23.5 15.1 33.4 17.4

DD3 38.9 37.3 17.8 30.0 27.6 15.0 18.3 21.0 17.4
SD3 38.9 50.8 38.0 38.7 40.7 22.3 17.0 27.3 17.4

L3B

Base 24.2 14.5 2.9 18.4 17.8 5.0 13.4 14.5 14.0
DD1 46.0 52.7 38.9 39.3 52.8 27.4 27.0 36.3 17.4
SD1 49.4 53.1 33.5 37.5 51.9 18.2 17.2 34.5 17.3

DD2 34.3 55.0 37.5 28.0 55.6 24.5 12.8 42.7 17.3
SD2 52.3 54.4 29.4 39.3 54.8 17.5 16.6 44.4 17.2

DD3 26.1 55.1 27.1 16.4 55.5 18.7 13.4 42.6 17.4
SD3 45.2 53.9 25.3 37.5 54.3 17.4 13.5 42.8 17.3

G2B

Base 24.6 28.8 23.8 28.7 33.4 27.8 19.0 31.2 13.4
DD1 50.9 58.4 48.3 50.3 58.7 46.6 27.7 54.1 25.4
SD1 40.1 58.3 48.2 58.3 56.9 47.1 23.8 55.5 23.0

DD2 50.0 58.1 48.2 50.1 58.4 47.1 29.0 53.8 25.8
SD2 43.0 58.4 49.0 48.8 58.1 47.4 28.6 51.2 21.4

DD3 49.9 57.8 47.4 49.4 57.2 46.9 34.9 54.9 25.3
SD3 49.1 56.8 48.5 45.4 56.8 47.0 32.8 53.3 21.0

Average 44.4 51.5 40.9 39.8 49.6 31.0 26.8 42.5 21.6

Table 1: chrF scores for all models and methods across three languages and shot settings, with column averages.

tive distillation outperforms soft distribution-298

preserving distillation.299

• In contrast, for the LLaMA 8B model with300

Hindi and the LLaMA 3B model with Ben-301

gali, soft distribution-preserving distillation302

demonstrates superior performance compared303

to iterative distillation.304

One-Shot Setting The one-shot setting yields the305

best overall performance, with the highest chrF306

scores observed exclusively in this configuration.307

The performance trend across iterations closely re-308

sembles that of the zero-shot setting. We observe309

some crossover between the two distillation meth-310

ods, where one approach outperforms the other311

depending on the iteration count. Notable observa-312

tions include:313

• For the LLaMA 3B model on the Malayalam314

dataset, iterative distillation surpasses soft315

distribution-preserving distillation in perfor-316

mance.317

• Conversely, for the LLaMA 3B model on the 318

Bengali dataset, soft distribution-preserving 319

distillation outperforms iterative distillation. 320

Four-Shot Setting Performance declines slightly 321

in the four-shot setting compared to earlier con- 322

figurations, though iteration-wise differences re- 323

main minimal. Both iterative and soft distribution- 324

preserving distillation exhibit similar gradual im- 325

provements and overall trends. This drop is primar- 326

ily attributed to reduced contextual clarity due to 327

increased input length, the four-shot prompt is ap- 328

proximately 60% longer than the one-shot, placing 329

greater demands on the model’s context window. 330

Maintaining coherence across multiple examples 331

becomes harder as prompts grow longer. The degra- 332

dation is more pronounced in linguistically com- 333

plex languages, suggesting that context dilution 334

disproportionately affects grammatically rich tar- 335

gets. These results highlight the need to balance 336

shot count and context efficiency in multilingual 337
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distillation, especially under limited model capaci-338

ties.339

5.2 Impact of Language Morphology on chrF340

To further investigate the observed decline in 4-341

shot performance, particularly for morphologically342

rich languages, we visualize language-specific sen-343

sitivity to increasing shot settings. As shown in344

Table 1, we find a notable and steeper decline from345

1-shot to 4-shot for Bengali and Malayalam, com-346

pared to Hindi, which supports the hypothesis that347

context dilution disproportionately impacts mor-348

phologically complex languages.349

5.3 Effectiveness in Extremely Low Resource350

Languages351

Study on Nepali To assess the robustness and352

generalizability of our proposed method in low-353

resource or moderately known language settings,354

we conducted experiments using Meta’s LLaMA355

3.1 8B and LLaMA 3.2 3B models. We selected356

Nepali, written in the Devanagari script, as the357

target language. This language has partial repre-358

sentation in the model’s pretraining corpus, which359

means the models possess a basic understanding360

of it and are capable of generating reasonable out-361

puts, although it is not extensively covered. Despite362

this limited exposure, the models were able to pro-363

duce useful distillation data. When we applied364

our method, we observed consistent improvements365

over baseline methods, as shown in Table 2. These366

results suggest that our method remains effective367

even when the target language has minimal pres-368

ence in the training data. This demonstrates the369

potential of our approach to enhance performance370

in low-resource and cross-lingual generalization371

scenarios.372

Study on Manipuri The investigation included373

preliminary experiments on the Manipuri (Meitei374

script) to English translation task, utilizing sev-375

eral prominent large language models, specifically376

GPT-4, LLaMA 3.1 8B, and Gemma 2 9B. These377

models were evaluated for their ability to generate378

synthetic distillation data, which is the first step for379

the proposed CycleDistill framework.380

Results indicated a significant limitation: none381

of the evaluated models were capable of producing382

usable distillation data for Manipuri. This suggests383

that the process is inherently constrained in en-384

vironments where the base large language model385

cannot effectively perform few-shot translation for386

the target low-resource language. Further detailed387

Figure 5: Scatter plot illustrating the relationship be-
tween teacher model performance and student model
gain across zero-shot, one-shot, and four-shot settings
in the CycleDistill framework.

experiments were conducted on Manipuri (Meitei 388

script) using the LLaMA 3.1 8B and LLaMA 3.2 389

3B models within the iterative distillation frame- 390

work. As presented in Table 2, these results con- 391

sistently showed no improvement in chrF scores 392

across successive iterations. 393

5.4 Further Analyses 394

Teacher Quality vs. Student Gain 395

To examine the correlation between teacher 396

model performance and student gains within our 397

CycleDistill framework, we analyzed the relevant 398

data as depicted in Figure 5, where the x-axis indi- 399

cates teacher performance (measured by the chrF 400

score of models such as G′∗
9B or L′∗

8B when gener- 401
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Model Iter Nepali (Devanagari Script) Manipuri (Meitei Script)

0-shot 1-shot 4-shot 0-shot 1-shot 4-shot

L8B

Base 12.47 13.95 – 16.88 17.45 17.45
DD1 38.59 38.08 – 18.51 17.74 17.75
SD1 54.44 36.19 – 16.97 17.61 17.43

DD2 35.23 30.45 – 18.52 17.02 17.17
SD2 54.31 35.19 – 18.84 17.82 18.08

DD3 33.24 20.38 – 17.87 15.97 15.98
SD3 54.74 34.35 – 18.04 16.98 16.93

L3B

Base 17.16 17.15 – 17.13 17.44 17.45
DD1 48.55 48.75 – 18.58 16.82 17.41
SD1 47.31 25.51 – 18.70 16.77 16.81

DD2 40.48 38.23 – 17.88 14.74 14.57
SD2 47.31 25.67 – 17.35 15.11 14.81

DD3 41.15 39.34 – 17.49 15.73 15.59
SD3 47.08 31.11 – 17.08 13.64 13.47

Table 2: chrF scores for Nepali (Devanagari script) and Manipuri (Meitei script) over the Llama model family.

ating synthetic data), and the y-axis represents stu-402

dent gain (∆chrF, denoting the improvement over403

the baseline, e.g., chrF∗
G∗

2Bdistilled − chrF∗
G∗

2Bbase).404

Our analysis reveals that this relationship varies405

by shot setting. In zero-shot, a positive correlation406

holds, with higher teacher scores driving greater407

gains, validating distillation’s reliance on data qual-408

ity in example-free scenarios. In one-shot, corre-409

lation vanishes, as a single example anchors learn-410

ing, making gains independent of teacher quality.411

In four-shot, gains are suppressed overall, due to412

context dilution and error propagation in longer413

prompts, positioning one-shot as the optimal for414

effective distillation.415

Error Propagation and Recovery416

A key limitation observed during our experi-417

ments is the susceptibility of the iterative frame-418

work to error propagation. Specifically, if an error419

such as the use of incorrectly generated or mis-420

aligned synthetic data is introduced at any iteration421

(for example, the second cycle), it can lead to a422

substantial degradation in performance, with de-423

clines of up to 30 to 40 chrF points observed in cer-424

tain settings. These errors are compounded across425

subsequent iterations, as the model continues to426

self-distill based on flawed data, making recovery427

increasingly difficult. However, we also find that428

corrective interventions such as fine-tuning with429

accurately generated synthetic data can effectively430

mitigate such errors in subsequent iterations. This431

underscores the importance of early detection and432

correction of distillation errors, as well as the need433

for robust validation mechanisms during each cycle434

Figure 6: chrF gains for Gemma and LLaMA across
shot settings.

to prevent error amplification. 435

Performance of CycleDistill over Model Fami- 436

lies 437

A key finding is the divergence in performance 438

between LLaMA and Gemma models under Cy- 439

cleDistill, as shown in Figure 6. Gemma exhibits 440

superior, robust learning, as compared to LLaMA. 441

These results emphasize that the choice of base 442

model architecture critically influences the stability 443

and effectiveness of iterative distillation strategies. 444

Efficiency of Knowledge Absorption across 445

Model Families 446

The analysis of knowledge absorption rates re- 447

veals that the LLaMA 3B model exhibits a signifi- 448

cantly higher efficiency in learning from its teacher 449

compared to the Gemma 2B model. Specifically, 450

the average absorption rate for LLaMA 3B is 1.190, 451

while Gemma 2B achieves 0.628. This metric is 452
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defined as453

Absorption Rate =
Student Peak Gain
Teacher Base Score

454

where Student Peak Gain is the maximum chrF455

improvement over the student’s base score across456

distillation iterations and Teacher Base Score is the457

teacher’s initial chrF score, is averaged across nine458

evaluation conditions (three languages and three459

shot settings). Although the Gemma family demon-460

strates superior absolute chrF scores, supported461

by a stronger teacher (Gemma 9B), the LLaMA462

3B’s higher absorption rate suggests it is a more463

efficient learner, particularly beneficial in resource-464

constrained distillation scenarios.465

6 Conclusion466

This work presents CycleDistill, a structured and467

data-efficient framework for enhancing machine468

translation from low-resource languages to English.469

By leveraging iterative synthetic data generation470

and token-level soft distillation, CycleDistill im-471

proves translation performance without reliance on472

large-scale parallel corpora. Experimental results473

across multiple low-resource Indian languages con-474

firm consistent gains in chrF scores, demonstrating475

the effectiveness of the approach under varying476

linguistic and architectural conditions.477

The integration of iterative self-distillation with478

soft distribution-based learning reveals complemen-479

tary benefits, though performance improvements480

taper beyond the second iteration, and translation481

quality remains sensitive to error accumulation, par-482

ticularly in morphologically rich languages and lim-483

ited supervision settings. Nevertheless, CycleDis-484

till enables both model refinement and compres-485

sion without relying on large-scale parallel corpora,486

making it an efficient and scalable solution for low-487

resource MT and a meaningful contribution to mul-488

tilingual NLP research.489

7 Limitations490

Despite the effectiveness of CycleDistill in en-491

hancing translation performance through iterative492

and soft distribution-preserving distillation, the ap-493

proach exhibits several notable limitations. Firstly,494

empirical results demonstrate diminishing marginal495

improvements beyond the second iteration, with496

performance frequently plateauing or deteriorating497

by the third cycle. Secondly, the method relies on498

synthetic data generated by teacher models, which499

may introduce compounding translation errors over 500

successive iterations due to self-reinforcement ef- 501

fects. Thirdly, in few-shot scenarios, particularly 502

involving morphologically rich languages such as 503

Malayalam and Bengali, the system suffers signifi- 504

cant performance degradation, up to 30 chrF points, 505

largely attributable to increased prompt lengths and 506

consequent loss of contextual coherence. Finally, 507

the current evaluation is limited to three Indic lan- 508

guages and specific model families (Gemma and 509

LLaMA), thereby restricting the generalizability 510

of the findings to other language pairs and model 511

architectures. 512
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A Appendix A : Visualization of Effects of629

our Methods over Shots630

This appendix provides a set of visualizations that631

illustrate the impact of the proposed methods un-632

der varying shot settings. Figures 7-11 demonstrate633

how performance characteristics evolve as the num-634

ber of shots increases, thereby offering a more de-635

tailed understanding of the underlying behavior and636

effectiveness of our approach.637
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Figure 7: Comparison of the methods at 0-shot setting

Figure 8: Comparison of the methods at 1-shot setting
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Figure 9: Comparison of the methods at 4-shot setting

Figure 10: Comparison of the methods on the Manipuri
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Figure 11: Comparison of the methods on the Nepali
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