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Abstract

Convolutional layers are a fundamental component of
most image-related models. These layers often implement
by default a static padding policy (e.g. zero padding), to
control the scale of the internal representations, and to al-
low kernel activations centered on the border regions. In
this work we identify Padding Aware Neurons (PANs), a
type of filter that is found in most (if not all) convolutional
models trained with static padding. PANs focus on the char-
acterization and recognition of input border location, in-
troducing a spatial inductive bias into the model (e.g. how
close to the input’s border a pattern typically is). We pro-
pose a method to identify PANs through their activations,
and explore their presence in several popular pre-trained
models, finding PANs on all models explored, from dozens
to hundreds. We discuss and illustrate different types of
PANs, their kernels and behaviour. To understand their rel-
evance, we test their impact on model performance, and find
padding and PANs to induce strong and characteristic bi-
ases in the data. Finally, we discuss whether or not PANs
are desirable, as well as the potential side effects of their
presence in the context of model performance, generalisa-
tion, efficiency and safety.

1. Introduction
Convolution has passed the test of time. Older than

its competitors [7], convolutional neurons have been
successfully integrated with memory-based models (e.g.
LSTM [13], GRU [26]), attention-based architectures [24]
and generative tasks [19]. However, convolution has an un-
desired side-effect: the implicit reduction of internal repre-
sentations [1] caused by the impossibility of applying the
convolved filter on border locations. To avoid this reduc-
tion, the most frequently used technique is padding, adding
synthetic data around the border of the input, so that kernels
can activate there, and produce an output for every input.

The most popular padding type is, by far and wide, zero-
padding (adding zeros to the input border). That is, a static
padding, the same for every sample and location. Previous

Figure 1. On the left, example of two left PAN filters. Activations
on left-border locations (A) give larger outputs than in the centre
(location B). On the right border, outputs are also slightly distinct.
An actual neuron behaving analogously to the centre kernel can be
appreciated in Figure 6.

works noticed this constant signal adds a bias that reduces
generalisation [2, 17, 1, 14], and several dynamic padding
methods have been proposed to prevent it [12, 22, 17, 26],
with very limited adoption 1. The reason for this is sim-
ple: models obtain better top-of-the-line metrics with static
padding, when trained and tested on data from the same
source. So far, the padding bias has been excused.

In this work we dig deeper into how padding influences
models. To do so, we provide evidence on how much model
complexity is dedicated to the data edge bias (between 1%
and 3%), and the magnitude of this shortcut in the model’s
outcome. This is characterized by the presence of padding
aware neurons (PANs), a symptom of padding bias. Our
work shows how PANs are likely present in the vast ma-
jority of models trained with static padding, and proposes a
diagnosis methodology which allows to locate them through
their activation patterns.

2. Setting

This work has been implemented using PyTorch
1.12.0 [18], torchvision 0.13.0 [16], numpy
1.23.1 [9] and scipy 1.8.1 [21], the latter for
Kolgomorov-Smirnov statistics. All models are provided
pre-trained by PyTorch. These are:

1https://pytorch.org/vision/stable/models.html
https://www.tensorflow.org/resources/models-datasets
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• ResNet-50 [10], trained on ILSVRC2012, named
ResNet101 Weights.IMAGENET1K V2 in torchvision.

• MobileNetV3 [11], trained on ILSVRC2012, named
MobileNet V3 Large Weights.IMAGENET1K V2 in
torchvision.

• GoogLeNet [20], trained on ILSVRC2012, named
GoogLeNet Weights.IMAGENET1K V1 in torchvi-
sion.

For each of these models We analyse all convolutional
layers with kernels bigger than 1x1. Notice these pre-
trained models are frequently used as source for fine-tuning
other models.

We use a random batch from Caltech101 [6] in §3, for
generating activations. In §4 we use the validation split
of ILSVRC2012 for assessing bias. The code necessary
to reproduce the experiments of this work can be found in
https://gitlab.com/paper14/padding-aware-neurons.

3. Definition & Analysis

Padding aware neurons, or PANs for short, are convo-
lutional filters that learn to recognise the padding added to
the input by some layers (e.g. a convolutional layer). PANs
pass information on border location through the network,
introducing a spatial bias into the model which may or
may not be desirable, depending on the domain of applica-
tion [2]. Padding is often implemented as a vertical or hor-
izontal edge (e.g. zero padding), which makes PANs a type
of edge detector. Edge detectors are fundamental vision ker-
nels. The most popular ones include Prewitt, Sobel and the
Laplacian of Gaussian (shown in Figure 2). These kernels
look for value contrasts anywhere in the input[15, 23], but
are maximised when the value contrast is centred on the
kernel (e.g. centre square of a 3x3). This is visible in the
symmetry exhibited by the filters of Figure 2. On the edges
defined by padding, which are never centred on the kernel,
edge detectors still activate moderately. In contrast to a reg-
ular edge detector, a PAN would maximize its output when
the edge is located at the border of the filter, in order to dis-
criminate the padding edges from other edges in the input.
An example of one such kernels are shown in Figure 1.

We hypothesise the existence of two types of PANs:
nascent and downstream. Nascent PANs react when directly
exposed to a padding area of the inputs, while downstream
PANs react to the presence of padding as conveyed by PANs
in previous layers (i.e. they do not directly perceive padded
values). In this work we focus on nascent PANs, which may
have a configuration analogous to the kernel shown in Fig-
ure 1. Beyond these toy examples, we consider any neuron
that activates distinctively – be it strongly or weakly – on
padded areas as a PAN. Notice a PAN can react to one or

Figure 2. Traditional edge detector filters. Prewitt (1st col.), Sobel
(2nd col.) and Laplacian of Gaussian (3rd col.).

more borders of the input. These include top row (T), bot-
tom row (B), left-most column (L) and right-most column
(R), but also any combination of these (i.e. T, B, L, R, TB,
TL, TR, BL, BR, LR, TBL, TBR, BLR and TBLR) in their
non-overlapping definition (e.g. T ∩ BT = ∅).

3.1. Finding Edge Detectors

Considering the complexities of characterising PANs
through their high dimensional kernels [8, 3], we decide to
use their activations instead. Next, we propose a method
to identify nascent PANs by looking at the activations they
produce on a padded input sampling. To be precise, we
consider four padding regions of the input (top and bottom
rows, left and right columns, all with corner overlap) of
size one pixel on the short axis2, and the remaining of the
input (centre, with no overlap). We record the activations a
given neuron produces on those five regions while process-
ing a batch of in-distribution data.

From these activations, we obtain five empirical proba-
bility density functions (PDF) per neuron (Atop, Abottom,
Aleft, Aright, Acentre). By comparing every border PDF
against Acentre we obtain four Kolgomorov-Smirnov test
(KS), which measure how distinct padding activations are
for a given neuron. At this point its important to notice
the sample size difference between border and center acti-
vations. Atop, Abottom, Aleft, Aright all include the same
number of values, N . Acentre on the other hand includes
(N − 2)2 activations, which grow quadratically w.r.t. N as-
suming a stride of one.

There’s another difference between border and central
activations. While border regions are entirely composed
by edge data (the one defined by padding), central areas
are partly so. While Atop, Abottom, Aleft and Aright con-
tain only edge activations, Acentre contains a majority of
non-edge activations and a few data-driven edge activations.
This skews the centre PDF w.r.t. the border ones, and turns
the KS statistic into a measure of how distinctively are edge
activations. A sort of padding-like edge detector. No-
tice this method can not find edge detectors which are not

2Only the first/last row/column of the input guarantees the receptive
field of the kernel covers the entire padded area, regardless of kernel size.
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Figure 3. Atop, Abottom, Aleft, Aright and Acentre PDFs for two
convolutional neurons of the ResNet50. Legend shows KS value
of centre against every border region. Top plot: Neuron 51 from
layer conv 1, an edge detector. Bottom plot: Neuron 101 from
layer conv2 2, a regular neuron.

straight vertical or horizontal. Figure 3 shows an example of
border and centre PDFs for two neurons, together with the
corresponding KS values while using the two-sided KS,
where the null hypothesis is that the two distributions are
identical.

Computing the KS values for all neurons in a model
shows the overall activation divergence between centre
and border locations. The KS distributions shown in
Figure 4 indicate most neurons have low KS values re-
gardless of layer depth, with a mean KS between 0.1
and 0.3 on all cases. In other words, most convo-
lutional neurons have no discriminative power between
activations in a padded border and the centre. No-
tice each neuron contributes with 4 values to each plot
of Figure 4 (KS(Atop, Acentre), KS(Abottom, Acentre),
KS(Aleft, Acentre) and KS(Aright, Acentre)), which
causes more KS values to be close to zero (e.g. a vertical
edge detector will most often generate low KS values for
the top and bottom PDFs). Overall, results that indicate po-
tential edge detector and PAN neurons (those with high KS
values) are a minority found in most layers, regardless of
depth.

Figure 4. Stacked distribution of KS distances for the first
and last four convolutional 3x3 layers of the ResNet50.
Notice each neuron contributes with four values to
each plot, KS(Atop, Acentre), KS(Abottom, Acentre),
KS(Aleft, Acentre) and KS(Aright, Acentre).

3.2. Finding PANs

A KS test between the complete Acentre and a border
PDF cannot properly discriminate between PANs and the
rest of edge detectors, as the presence of non-edge activa-
tions in Acentre dominates its PDF. To discriminate PANs
from regular edge detectors using the KS test, we need a
distribution of Acentre PDF which is comparable to border
PDFs, that is, one which contains only edge activations. To
that end, we define a simple hypothesis: the centre region
of an input (of size (N − 1)2) will include at least as many
edges as a padded border (of size N ). Notice this hypoth-
esis, as well as the PDF reliability, grows weaker with the
reduced input sizes typical of deeper layers.

Leveraging this hypothesis we define an heuristic: we
truncate Acentre by keeping only the k highest or lowest
values of Acentre, where k is the number of values in a
padded border. We keep both the highest and lowest, since
no assumptions are made on the relevance of their magni-
tude and sign for padding detection (i.e. a PAN may detect
padding by activating particularly strongly or weakly on it).
For each end of the Acentre distribution (which we refer to
as A+

centre and A−
centre), we use a different KS null hypoth-

esis. For the most positive end of the centre, A+
centre, we

use the less hypothesis (KS+), and for the most negative
end, A−

centre, we use the greater hypothesis (KS−).
The effect of using the truncated centre PDF, is shown in

Figure 5. The plot shows a neuron with negative activations
for the top border, with the rest of activations being closer
to zero. The computed KS(Atop, Acentre) is 0.53. These
results indicate this neuron is a vertical edge detector. How-
ever, when compared with the truncated A−

centre, the same
Atop is no longer distinctive (KS−(Atop, A

−
centre) = 0.0),

which indicates this neuron is not a PAN.
Given these insights, we label as PANs neurons which

hold (1) a high KS(Atop|bottom|left|right, Acentre) and,

3
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Depth 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 All
2*ResNet 0 4 3 0 0 10 1 3 0 16 1 1 1 1 2 30 8 - - - 81

0% 6% 4% 0% 0% 7% 0% 2% 0% 6% 0% 0% 0% 0% 0% 5% 1% - - - 2.0%
2*MobileNet 0 5 1 5 0 3 2 1 5 6 3 11 6 9 46 35 - - - - 138

0% 31% 1% 6% 0% 2% 1% 0% 2% 3% 1% 2% 0% 1% 4% 3% - - - - 2.7%
2*GoogLeNet 0 8 2 1 0 0 0 8 1 7 0 2 1 1 0 12 10 5 0 0 58

0% 4% 1% 3% 0% 0% 0% 16% 0% 10% 0% 3% 0% 1% 0% 9% 3% 3% 0% 0% 1.7%
Table 1. Number of PANs found in different model, layer-wise. First row is absolute number of PANs, second row is percentage of PANs
relative to layer size (rounded down). In bold, top three values per model on either category. Only 2D convolutional layers with kernels
3x3 or larger considered. Computed using θ = 0.5

Figure 5. Histogram of neuron activations on the border regions,
the center (purple) and the center truncated on the minus side
(brown). Legend shows to Kolmogorov-Smirnov test. KS cor-
responds to border vs center. KS− corresponds to border vs trun-
cated center. Model: ResNet50. Layer: Conv3 2. Neuron idx: 46.

(2) a high KS+(Atop|bottom|left|right, A
+
centre) or a high

KS−(Atop|bottom|left|right, A
−
centre). We set a threshold

θ = 0.5 in the rest of the paper for practical reasons. θ can
be modified to reduce or increase the requirements needed
for PAN detection. The distributions of PANs identified us-
ing this methodology with θ = 0.5 is shown in Table 1.

On the models considered, PANs represent roughly 2%
of all convolutional filters, and can be found at different
depths. This may be caused by the information about the
presence of padding being lost after going through sev-
eral layers, motivating the model to periodically re-locate
padding so that the next few layers can use that informa-
tion. Later layers seem to include a remarkable amount
of PANs, likely influenced by the large number of neurons
found there. This could be influenced by the reduced relia-
bility of the KS method when applied on inputs with small
width and height, but it could also indicate padding location
plays an important role on the final prediction.

Overall, applying the methodology to thousands of fil-
ters yields hundreds of edge detectors and dozens of PANs
per model. By slightly weakening the restrictions required
to be labelled as a PAN their number can be easily doubled

(e.g. ResNet includes 193 PANs when using θ = 0.4).

3.3. PAN exploration

Let us analyse neurons identified as PANs by the previ-
ously proposed method. For each neuron we look at their
histogram of activations for the centre (complete and trun-
cated PDF) and border regions. We also show these same
plots, when inference is made replacing the zero padding
policy by a reflect policy. Finally, we show activation maps
for a couple of samples to understand its spatial response.

The top plot of Figure 6 shows a PAN, with distinc-
tively low activation values on all four borders, even when
compared against the lowest values produced within the
larger central area (i.e. A+

centre, in pink). With θ = 0.5,
the PAN is detected as TBLR. An inspection of the ac-
tivations produced by the kernel on two inputs (bottom
plot of Figure 6) shows how this PAN has a preference
for the bottom and top padding, which is consistent with
KS+(Aleft|right, A

+
centre) < KS+(Atop|bottom, A+

centre)
(as shown in the top plot). Notice Aleft and Aright have
a bimodal distribution, peaking both at -10 and at -4. This
is caused by particularly strong activations on corner posi-
tions, which are high even within Atop and Abottom. This
neuron, beyond being padding aware, is also corner aware, a
behavior found on other neurons (e.g. conv1 0, 17; conv3 1,
212; conv4 1, 296; conv4 2, 447). When the padding is
changed from zero to reflect, as shown in the middle plot of
Figure 6, the neuron no longer detects padding. The distri-
butions of activation values for border regions become in-
distinguishable from the distribution in the centre.

Another representative neuron is shown in Figure 7. In
this case the PAN activates distinctively high on the left
and right padding. Since Aleft is significantly higher than
Aright, this may be primarily a L PAN that also detects the
right border by complement. This is in fact a behaviour
compatible with the kernel shown at the centre of Figure 1.
For the top and bottom padding locations, this neuron’s ac-
tivations are indistinguishable from those on central loca-
tions. The long tail of the top and bottom distributions
speaks of potential corner detection capabilities. All this is
illustrated by the bottom plot of Figure 7, which shows ac-
tivations on two inputs. Notice some edges are detected in
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Figure 6. Top plot: Activation histogram of a PAN, where
all four borders have high KS. Includes distributions for bor-
der regions, and central locations (complete and truncated).
Legend shows KS confidence w.r.t. truncated distribution (i.e.
KS+(Aborder, A

+
centre)). Middle plot: Same as top, using

padding reflect. Bottom plots: Activation heatmap on two inputs,
while using zero padding. Model: ResNet50. Layer: Conv3 1.
Neuron idx: 41.

centre locations, but not as strongly as on the left and right
padding. The middle plot of Figure 7 shows the same ac-
tivations when zero padding is replaced by reflect padding.
When this is the case, the neuron no longer detects padding,
with Aleft and Aright becoming aligned with the rest of
distributions.

The last neuron discussed here is the downstream
PAN of Figure 8. Following the proposed methodol-
ogy, this neuron is detected as a potential edge detec-
tor (KS(Atop, Acentre) = 0.66), but not as a PAN
(KS+(Atop, Acentre) = 0.0) (see top plot). Its spatial ac-
tivations on two different inputs (bottom plots of Figure 8)
indicate this is no regular edge detector. It activates distinc-
tively on the second highest row of the input, as if it was
detecting the top padding from afar. This explains the bi-
modal behaviour of this neuron in the top plot, where the

Figure 7. Top plot: Activation histogram of a PAN, where the
left and right borders have high KS. Includes distributions for
border regions, and central locations (complete and truncated).
Legend shows KS confidence w.r.t. truncated distribution (i.e.
KS+(Aborder, A

+
centre)). Middle plot: Same as top, using

padding reflect. Bottom plots: Activation heatmap on two inputs,
while using zero padding. Model: ResNet50. Layer: Conv2 1.
Neuron idx: 67

truncated +centre distribution (which includes most of the
second row) peaks both at around two (activations of the
second highest row) and zero (activations on the rest of cen-
tre). Since the kernel of this neuron is 3x3, it cannot di-
rectly detect the padding from this location (i.e. on the sec-
ond highest row activations, the kernel is located entirely
on the unpadded input). This neuron gets the information
about image border location from a previous layer, and turns
off (see middle plot of Figure 8) when static padding is re-
moved.

3.4. Nascent PAN types

Through the analysis defined in the previous sections we
have characterised and identified several types of nascent
PANs, those that directly detect padding in the input.
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Figure 8. Top plot: Activation histogram of a neuron which is an
edge detector candidate, not detected as PAN. Includes distribu-
tions for border regions, and central locations (complete and trun-
cated). Legend shows KS confidence w.r.t. truncated distribution
(i.e. KS+(Aborder, A

+
centre)). Notice the truncated centre distri-

bution on the high side (pink) is bimodal, with one peak around
zero and one around two. Middle plot: Same as top, using padding
reflect instead of zero. Bimodal distribution disappears. Bottom
plots: Activation heatmap on two inputs while using zero padding.
Model: ResNet50. Layer: Conv3 2. Neuron idx: 158

Nascent PANs frequently have a multi-modal behaviour, de-
tecting two or more padding edges. This multi-border de-
tection can be generic (i.e. several borders detected indistin-
guishably), or it can be distinct for different border types.
The neuron shown in Figure 6, for example, can discrim-
inate between horizontal borders (top and bottom), verti-
cal borders (left and right) and the rest of the input. But
it cannot discriminate among horizontal borders (between
top and bottom padding), or among vertical ones (left and
right padding). On the other hand, the neuron shown in Fig-
ure 7 can discriminate between left and right padding. This
later behaviour is consequence of the asymmetrical kernels
PANs may have, exemplified in the kernels of Figure 1.

We identify 14 possible types of nascent PANs based on
which padding borders they detect (i.e. T, B, L, R, TB, TL,
TR, BL, BR, LR, TBL, TBR, BLR and TBLR). We study the
distribution of nascent PAN types with the proposed method
in Table 2. Single border detectors (i.e. T, B, L, R) are the
most frequent types, representing about 75% of all identi-
fied PANs. The rest are mostly PANs which can detect com-
plementary borders (i.e. TB, LR), or all four borders (i.e.
TBLR). Complementary borders detecting PANs are likely
to be mirrored variations of the kernel shown in the mid-
dle of Figure 1, while the four borders PAN may be asym-
metrical versions of the bottom Laplacian of Gaussian filter
shown in Figure 2.

4. Performance and Bias
Once we have established the existence and pervasive-

ness of PANs in models trained with zero padding, let us
now assess the role these neurons play in model behaviour.
To do so, we study their influence in the network output
using three versions of the same pre-trained ResNet50:

• The original model, using the default zero-padding.

• The reflect model, where the padding of all convolu-
tional neurons has been changed to PyTorch’s reflect.

• The PAN-reflect model, where the padding of the neu-
rons identified as PANs by the previous methodol-
ogy (for ResNet50, 2.0% of convolutional neurons, 81
overall) has been changed to reflect. The rest of neu-
rons preserve zero-padding.

• The RAND-reflect model, where the padding of ran-
domly sampled non-PANs has been changed to reflect
and the rest preserve zero-padding. The random sub-
set has the same size (2.0% of neurons) and follows
the same layer distribution as PAN-reflect. This is the
control set.

We use the quantitative differences in the outputs of these
models to study the impact padding has towards specific
classes (i.e. the amount of padding bias). Then, we study the
influence of PANs in the context of particular data samples.

4.1. Bias influence

To verify to which extend PANs add relative location
bias to the model, we compare the soft-max outputs of orig-
inal with those of PAN-reflect. To be precise, we compute
the odds for each class. Assuming samples to be i.i.d.,
this can be computed as the quotient of the sum of soft-max
outputs:

Odds(c) =
P (c|MPan−reflect)

P (c|Moriginal)
=

∑
i MPan−reflect(i)[c]∑

i Moriginal(i)[c]
(1)
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PAN type T B L R TB TL TR BL BR LR TBL TBR TLR BLR TBLR
ResNet 10 32 8 10 8 1 0 0 3 4 1 0 0 0 4
MobileNet 47 90 9 6 9 5 0 1 3 8 0 0 1 1 13
GoogLeNet 7 24 4 2 7 1 0 0 1 7 0 0 1 1 3

Table 2. Distribution of PAN types identified on different models, with θ = 0.5.

And analogously for RAND-reflect. For PAN-reflect,
odds above 1 for a class c indicate a higher confidence in
the prediction of c in the absence of PANs. This can also be
interpreted as padding being used as evidence against that
class. Conversely, values below 1 would imply padding is
being used as evidence toward the class.

Figure 9 presents the logarithm of the odds per class,
computed on the ILSVRC validation set for both PAN-
reflect and RAND-reflect. All classes are affected, a few
severely so. Table 3 lists all classes whose odds change by
more than 7%. We choose a threshold instead of the top-K
to illustrate how the odds change in an asymmetrical man-
ner: there are more classes which use padding as evidence
toward the class (odds < 1) than those that use it against.
Remarkably, classes for which padding is used as evidence
against it seem to be mostly fine-grained types (mainly an-
imal species and dogs, with the exception of sliding door),
which hints at the relevance of padding for overfitting. Con-
versely, there are no animals among the classes that use
padding as positive evidence. Using a 5% threshold yields
consistent results: out of the 111 classes with negative log
odds, the only animal is the English Foxhound, whereas for
the 99 classes with positive log odds, there are only five
classes which are not fine-grained animals.

To verify if findings are related with the relevance of
padding or with the noise added by the data distribution,
let us consider the results while using RAND-reflect (or-
ange in Figures 9 and 10). In this case, the distribution of
PANs’ odds is characteristically different from that of ran-
dom, similarly-sampled neuron sets. While PANs seem to
affect most classes to a large degree, either positively or
negatively, the random set effect on classes is very lim-
ited. Only a few classes are affected, with the most com-
mon result being no output change. These results indicate
PANs strongly and homogeneously alter most classes’ prior,
whereas an equally sized random subset of neurons does
not.

Repeating this experiment with model reflect changes
the input distribution of 100% of convolutional layers,
whereas the previous two experiments (with PAN-reflect
and RAND-reflect) changed only 2% of neurons. As a re-
sult, the reflect odds suffer more extreme changes than ei-
ther one of the above. No tendency around which classes
receive positive and which negative log odds was found. In
this particular experiment, we believe the larger odds vari-
ance has to do with noise added to the distributions, rather
than due to some intrinsic quality of how padding is used.

Figure 9. Ordered change in log-odds, for PAN-reflect and RAND-
reflect w.r.t. original model. Vertical axis is the amount of change.
±0.05 log-odds corresponds to 5% difference in odds.

Figure 10. Class histogram of log odds change w.r.t. original
model, computed for both PAN-reflect and RAND-reflect. Notice
how the former has both a wider range and a bimodal distribution.

4.2. Sample influence

The previous section shows a clear influence of padding
in the overall performance and behaviour of the model.
However, the class-scale at which analysis is made means
that the effect of PANs on single predictions is lost or ag-
gregated. To analyse this facet, we look for the individual
samples with the largest change in the network’s output. We
compute this change as the Manhattan distance between the
logits of the original and the PAN-reflect model.

Significantly, the 30 images with the biggest padding in-
fluence are all incorrectly classified by both the original and
the PAN-reflect models, the predicted class remaining the
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Class Odds Class Odds
drum 0.91 cheetah 1.10

muzzle 0.91 Norfolk Terrier 1.09
packet 0.91 sliding door 1.09

sunscreen 0.92 Irish Water Spaniel 1.08
barrette 0.92 box turtle 1.08

tandem bicycle 0.92 Dobermann 1.08
candle 0.92 Flat-Coated Retriever 1.08

tent 0.92 Alaskan Malamute 1.08
tray 0.92 gossamer-winged butterfly 1.07

comic book 0.93 West Highland White Terrier 1.07
Windsor tie 0.93 Greater Swiss Mountain Dog 1.07

tile roof 0.93 guenon 1.07
backpack 0.93
overskirt 0.93
buckle 0.93
lab coat 0.93

shoal 0.93
paper knife 0.93

whistle 0.93
ice pop 0.93

stethoscope 0.93
barbell 0.93

lakeshore 0.93
megalith 0.93

scarf 0.93
Table 3. Classes with odds beyond 7% computed between the
PAN-reflect and the original model. Classes with odds above one,
increase their confidence in the absence of PAN information, are
less frequent and are mostly composed of animals. For odds below
1, we check 1

odds(c)
> 1.07.

same. Analysing the top 5,000 most affected images (10%
of the whole dataset), we find that the number of disagree-
ments between models is remarkably low (67 images). The
limited impact PANs have on samples which are not part of
the model training set, could also be the result of padding in-
formation being used for overfitting particularly hard train-
ing samples.

When repeating the experiment on RAND-reflect, these
effects disappear. The sample with the 5000th highest di-
vergence with the PAN-reflect has around 4 distance units,
whereas for RAND-reflect with this distance happens on the
13th sample. This alone shows PAN-reflect affects with
more strength to orders of magnitude more samples than
RAND-reflect. Of those 13 samples, 12 of them are incor-
rectly predicted as tench, which indicates the preference of
these randomly chosen 2% of neurons for this class.

5. Discussion
The use of static padding in convolutional layers pro-

vides the model with a stable signal of a perceptual edge.
That much was known from previous works [2, 17, 1, 14].
This paper reveals the extent of this inductive spatial bias,
identifying a set of neurons specialized in locating and ex-

ploiting it (what we call PANs), which account for at least
1.5%-3% of all deep CNNs convolutional filters. Consid-
ering PANs are likely to be inheritable (as long as the fine-
tuned model keeps zero padding) and the fact that PANs
were found on popular pre-training sources, one can assume
PANs are a widespread phenomenon.

Experiments indicate padding information is used to
change the prior of most classes. PAN are used as evidence
against fine-grained classes (i.e. animals), and seldom as ev-
idence for them. For the ILSVRC task we derive two differ-
ent hypothesis for explaining this. Either samples from fine-
grained class are generally better framed, which keeps the
padding away from the patterns most relevant for the class,
resulting in a spatial bias that can be leveraged; or padding
is used as a reference to identify arbitrary patterns in partic-
ularly hard samples, helping overfit on examples from the
long tail [5]. Testing both these hypothesis remains future
work as it requires its own experimental setup.

The desirability of PANs in a model depends on the ap-
plication, and its definition of un/desirable bias. On tasks
with fixed framing (e.g. fundus retina images [25], static
cctv feed [4] etc.) PANs may provide a useful location ref-
erence allowing a better contextualisation and structuring
of the input. On tasks which entail frame freedom (e.g. ob-
jects in the wild, variances among devices) PANs learn an
arbitrary bias, which may contribute to overfitting and lack
of generalisation [2, 17, 1]. For these reasons, we recom-
mend practitioners to choose padding carefully, using dy-
namic padding by default.

Even when PANs are useful, their current design is not
efficient. A lot of parameters (PAN kernels) and com-
putation are wasted on recognizing a constant. For those
cases where PANs are indeed desirable, one may find more
efficient and rich versions of them, at least in three dif-
ferent ways: (1) by implementing a sparse computation
which skips padding products, (2) by using models with
pre-initialised PAN kernels spread along the model, and (3)
by adding the complementary axis information to padding
(row height in vertical padding and vice-versa) for complete
spatial reference.

Finally, let us consider a safety vulnerability PANs en-
tail. Given their characteristic pattern, PANs are easy to
fool and trigger. Adding a one-row/column of zeros any-
where in the input will cause PANs to fire, out of the mani-
fold and into unpredictability. This can be easily mitigated,
for example, by doing data augmentation during training
with random rows/columns of padding in the input. This is
strongly suggested for models deployed on critical domains.
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