
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Padding Aware Neurons

Anonymous ICCV submission

Paper ID ****

Abstract

Convolutional layers are a fundamental component of
most image-related models. These layers often implement
by default a static padding policy (e.g. zero padding), to
control the scale of the internal representations, and to al-
low kernel activations centered on the border regions. In
this work we identify Padding Aware Neurons (PANs), a
type of filter that is found in most (if not all) convolutional
models trained with static padding. PANs focus on the char-
acterization and recognition of input border location, in-
troducing a spatial inductive bias into the model (e.g. how
close to the input’s border a pattern typically is). We pro-
pose a method to identify PANs through their activations,
and explore their presence in several popular pre-trained
models, finding PANs on all models explored, from dozens
to hundreds. We discuss and illustrate different types of
PANs, their kernels and behaviour. To understand their rel-
evance, we test their impact on model performance, and find
padding and PANs to induce strong and characteristic bi-
ases in the data. Finally, we discuss whether or not PANs
are desirable, as well as the potential side effects of their
presence in the context of model performance, generalisa-
tion, efficiency and safety.

1. Introduction
Convolution has passed the test of time. Older than

its competitors [7], convolutional neurons have been
successfully integrated with memory-based models (e.g.
LSTM [13], GRU [26]), attention-based architectures [24]
and generative tasks [19]. However, convolution has an un-
desired side-effect: the implicit reduction of internal repre-
sentations [1] caused by the impossibility of applying the
convolved filter on border locations. To avoid this reduc-
tion, the most frequently used technique is padding, adding
synthetic data around the border of the input, so that kernels
can activate there, and produce an output for every input.

The most popular padding type is, by far and wide, zero-
padding (adding zeros to the input border). That is, a static
padding, the same for every sample and location. Previous

Figure 1. On the left, example of two left PAN filters. Activations
on left-border locations (A) give larger outputs than in the centre
(location B). On the right border, outputs are also slightly distinct.
An actual neuron behaving analogously to the centre kernel can be
appreciated in Figure 6.

works noticed this constant signal adds a bias that reduces
generalisation [2, 17, 1, 14], and several dynamic padding
methods have been proposed to prevent it [12, 22, 17, 26],
with very limited adoption 1. The reason for this is sim-
ple: models obtain better top-of-the-line metrics with static
padding, when trained and tested on data from the same
source. So far, the padding bias has been excused.

In this work we dig deeper into how padding influences
models. To do so, we provide evidence on how much model
complexity is dedicated to the data edge bias (between 1%
and 3%), and the magnitude of this shortcut in the model’s
outcome. This is characterized by the presence of padding
aware neurons (PANs), a symptom of padding bias. Our
work shows how PANs are likely present in the vast ma-
jority of models trained with static padding, and proposes a
diagnosis methodology which allows to locate them through
their activation patterns.

2. Setting

This work has been implemented using PyTorch
1.12.0 [18], torchvision 0.13.0 [16], numpy
1.23.1 [9] and scipy 1.8.1 [21], the latter for
Kolgomorov-Smirnov statistics. All models are provided
pre-trained by PyTorch. These are:

1https://pytorch.org/vision/stable/models.html
https://www.tensorflow.org/resources/models-datasets

1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

• ResNet-50 [10], trained on ILSVRC2012, named
ResNet101 Weights.IMAGENET1K V2 in torchvision.

• MobileNetV3 [11], trained on ILSVRC2012, named
MobileNet V3 Large Weights.IMAGENET1K V2 in
torchvision.

• GoogLeNet [20], trained on ILSVRC2012, named
GoogLeNet Weights.IMAGENET1K V1 in torchvi-
sion.

For each of these models We analyse all convolutional
layers with kernels bigger than 1x1. Notice these pre-
trained models are frequently used as source for fine-tuning
other models.

We use a random batch from Caltech101 [6] in §3, for
generating activations. In §4 we use the validation split
of ILSVRC2012 for assessing bias. The code necessary
to reproduce the experiments of this work can be found in
https://gitlab.com/paper14/padding-aware-neurons.

3. Definition & Analysis

Padding aware neurons, or PANs for short, are convo-
lutional filters that learn to recognise the padding added to
the input by some layers (e.g. a convolutional layer). PANs
pass information on border location through the network,
introducing a spatial bias into the model which may or
may not be desirable, depending on the domain of applica-
tion [2]. Padding is often implemented as a vertical or hor-
izontal edge (e.g. zero padding), which makes PANs a type
of edge detector. Edge detectors are fundamental vision ker-
nels. The most popular ones include Prewitt, Sobel and the
Laplacian of Gaussian (shown in Figure 2). These kernels
look for value contrasts anywhere in the input[15, 23], but
are maximised when the value contrast is centred on the
kernel (e.g. centre square of a 3x3). This is visible in the
symmetry exhibited by the filters of Figure 2. On the edges
defined by padding, which are never centred on the kernel,
edge detectors still activate moderately. In contrast to a reg-
ular edge detector, a PAN would maximize its output when
the edge is located at the border of the filter, in order to dis-
criminate the padding edges from other edges in the input.
An example of one such kernels are shown in Figure 1.

We hypothesise the existence of two types of PANs:
nascent and downstream. Nascent PANs react when directly
exposed to a padding area of the inputs, while downstream
PANs react to the presence of padding as conveyed by PANs
in previous layers (i.e. they do not directly perceive padded
values). In this work we focus on nascent PANs, which may
have a configuration analogous to the kernel shown in Fig-
ure 1. Beyond these toy examples, we consider any neuron
that activates distinctively – be it strongly or weakly – on
padded areas as a PAN. Notice a PAN can react to one or

Figure 2. Traditional edge detector filters. Prewitt (1st col.), Sobel
(2nd col.) and Laplacian of Gaussian (3rd col.).

more borders of the input. These include top row (T), bot-
tom row (B), left-most column (L) and right-most column
(R), but also any combination of these (i.e. T, B, L, R, TB,
TL, TR, BL, BR, LR, TBL, TBR, BLR and TBLR) in their
non-overlapping definition (e.g. T ∩ BT = ∅).

3.1. Finding Edge Detectors

Considering the complexities of characterising PANs
through their high dimensional kernels [8, 3], we decide to
use their activations instead. Next, we propose a method
to identify nascent PANs by looking at the activations they
produce on a padded input sampling. To be precise, we
consider four padding regions of the input (top and bottom
rows, left and right columns, all with corner overlap) of
size one pixel on the short axis2, and the remaining of the
input (centre, with no overlap). We record the activations a
given neuron produces on those five regions while process-
ing a batch of in-distribution data.

From these activations, we obtain five empirical proba-
bility density functions (PDF) per neuron (Atop, Abottom,
Aleft, Aright, Acentre). By comparing every border PDF
against Acentre we obtain four Kolgomorov-Smirnov test
(KS), which measure how distinct padding activations are
for a given neuron. At this point its important to notice
the sample size difference between border and center acti-
vations. Atop, Abottom, Aleft, Aright all include the same
number of values, N . Acentre on the other hand includes
(N − 2)2 activations, which grow quadratically w.r.t. N as-
suming a stride of one.

There’s another difference between border and central
activations. While border regions are entirely composed
by edge data (the one defined by padding), central areas
are partly so. While Atop, Abottom, Aleft and Aright con-
tain only edge activations, Acentre contains a majority of
non-edge activations and a few data-driven edge activations.
This skews the centre PDF w.r.t. the border ones, and turns
the KS statistic into a measure of how distinctively are edge
activations. A sort of padding-like edge detector. No-
tice this method can not find edge detectors which are not

2Only the first/last row/column of the input guarantees the receptive
field of the kernel covers the entire padded area, regardless of kernel size.

2

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3. Atop, Abottom, Aleft, Aright and Acentre PDFs for two
convolutional neurons of the ResNet50. Legend shows KS value
of centre against every border region. Top plot: Neuron 51 from
layer conv 1, an edge detector. Bottom plot: Neuron 101 from
layer conv2 2, a regular neuron.

straight vertical or horizontal. Figure 3 shows an example of
border and centre PDFs for two neurons, together with the
corresponding KS values while using the two-sided KS,
where the null hypothesis is that the two distributions are
identical.

Computing the KS values for all neurons in a model
shows the overall activation divergence between centre
and border locations. The KS distributions shown in
Figure 4 indicate most neurons have low KS values re-
gardless of layer depth, with a mean KS between 0.1
and 0.3 on all cases. In other words, most convo-
lutional neurons have no discriminative power between
activations in a padded border and the centre. No-
tice each neuron contributes with 4 values to each plot
of Figure 4 (KS(Atop, Acentre), KS(Abottom, Acentre),
KS(Aleft, Acentre) and KS(Aright, Acentre)), which
causes more KS values to be close to zero (e.g. a vertical
edge detector will most often generate low KS values for
the top and bottom PDFs). Overall, results that indicate po-
tential edge detector and PAN neurons (those with high KS
values) are a minority found in most layers, regardless of
depth.

Figure 4. Stacked distribution of KS distances for the first
and last four convolutional 3x3 layers of the ResNet50.
Notice each neuron contributes with four values to
each plot, KS(Atop, Acentre), KS(Abottom, Acentre),
KS(Aleft, Acentre) and KS(Aright, Acentre).

3.2. Finding PANs

A KS test between the complete Acentre and a border
PDF cannot properly discriminate between PANs and the
rest of edge detectors, as the presence of non-edge activa-
tions in Acentre dominates its PDF. To discriminate PANs
from regular edge detectors using the KS test, we need a
distribution of Acentre PDF which is comparable to border
PDFs, that is, one which contains only edge activations. To
that end, we define a simple hypothesis: the centre region
of an input (of size (N − 1)2) will include at least as many
edges as a padded border (of size N). Notice this hypoth-
esis, as well as the PDF reliability, grows weaker with the
reduced input sizes typical of deeper layers.

Leveraging this hypothesis we define an heuristic: we
truncate Acentre by keeping only the k highest or lowest
values of Acentre, where k is the number of values in a
padded border. We keep both the highest and lowest, since
no assumptions are made on the relevance of their magni-
tude and sign for padding detection (i.e. a PAN may detect
padding by activating particularly strongly or weakly on it).
For each end of the Acentre distribution (which we refer to
as A+

centre and A−
centre), we use a different KS null hypoth-

esis. For the most positive end of the centre, A+
centre, we

use the less hypothesis (KS+), and for the most negative
end, A−

centre, we use the greater hypothesis (KS−).
The effect of using the truncated centre PDF, is shown in

Figure 5. The plot shows a neuron with negative activations
for the top border, with the rest of activations being closer
to zero. The computed KS(Atop, Acentre) is 0.53. These
results indicate this neuron is a vertical edge detector. How-
ever, when compared with the truncated A−

centre, the same
Atop is no longer distinctive (KS−(Atop, A

−
centre) = 0.0),

which indicates this neuron is not a PAN.
Given these insights, we label as PANs neurons which

hold (1) a high KS(Atop|bottom|left|right, Acentre) and,

3

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Depth 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 All
2*ResNet 0 4 3 0 0 10 1 3 0 16 1 1 1 1 2 30 8 - - - 81

0% 6% 4% 0% 0% 7% 0% 2% 0% 6% 0% 0% 0% 0% 0% 5% 1% - - - 2.0%
2*MobileNet 0 5 1 5 0 3 2 1 5 6 3 11 6 9 46 35 - - - - 138

0% 31% 1% 6% 0% 2% 1% 0% 2% 3% 1% 2% 0% 1% 4% 3% - - - - 2.7%
2*GoogLeNet 0 8 2 1 0 0 0 8 1 7 0 2 1 1 0 12 10 5 0 0 58

0% 4% 1% 3% 0% 0% 0% 16% 0% 10% 0% 3% 0% 1% 0% 9% 3% 3% 0% 0% 1.7%
Table 1. Number of PANs found in different model, layer-wise. First row is absolute number of PANs, second row is percentage of PANs
relative to layer size (rounded down). In bold, top three values per model on either category. Only 2D convolutional layers with kernels
3x3 or larger considered. Computed using θ = 0.5

Figure 5. Histogram of neuron activations on the border regions,
the center (purple) and the center truncated on the minus side
(brown). Legend shows to Kolmogorov-Smirnov test. KS cor-
responds to border vs center. KS− corresponds to border vs trun-
cated center. Model: ResNet50. Layer: Conv3 2. Neuron idx: 46.

(2) a high KS+(Atop|bottom|left|right, A
+
centre) or a high

KS−(Atop|bottom|left|right, A
−
centre). We set a threshold

θ = 0.5 in the rest of the paper for practical reasons. θ can
be modified to reduce or increase the requirements needed
for PAN detection. The distributions of PANs identified us-
ing this methodology with θ = 0.5 is shown in Table 1.

On the models considered, PANs represent roughly 2%
of all convolutional filters, and can be found at different
depths. This may be caused by the information about the
presence of padding being lost after going through sev-
eral layers, motivating the model to periodically re-locate
padding so that the next few layers can use that informa-
tion. Later layers seem to include a remarkable amount
of PANs, likely influenced by the large number of neurons
found there. This could be influenced by the reduced relia-
bility of the KS method when applied on inputs with small
width and height, but it could also indicate padding location
plays an important role on the final prediction.

Overall, applying the methodology to thousands of fil-
ters yields hundreds of edge detectors and dozens of PANs
per model. By slightly weakening the restrictions required
to be labelled as a PAN their number can be easily doubled

(e.g. ResNet includes 193 PANs when using θ = 0.4).

3.3. PAN exploration

Let us analyse neurons identified as PANs by the previ-
ously proposed method. For each neuron we look at their
histogram of activations for the centre (complete and trun-
cated PDF) and border regions. We also show these same
plots, when inference is made replacing the zero padding
policy by a reflect policy. Finally, we show activation maps
for a couple of samples to understand its spatial response.

The top plot of Figure 6 shows a PAN, with distinc-
tively low activation values on all four borders, even when
compared against the lowest values produced within the
larger central area (i.e. A+

centre, in pink). With θ = 0.5,
the PAN is detected as TBLR. An inspection of the ac-
tivations produced by the kernel on two inputs (bottom
plot of Figure 6) shows how this PAN has a preference
for the bottom and top padding, which is consistent with
KS+(Aleft|right, A

+
centre) < KS+(Atop|bottom, A+

centre)
(as shown in the top plot). Notice Aleft and Aright have
a bimodal distribution, peaking both at -10 and at -4. This
is caused by particularly strong activations on corner posi-
tions, which are high even within Atop and Abottom. This
neuron, beyond being padding aware, is also corner aware, a
behavior found on other neurons (e.g. conv1 0, 17; conv3 1,
212; conv4 1, 296; conv4 2, 447). When the padding is
changed from zero to reflect, as shown in the middle plot of
Figure 6, the neuron no longer detects padding. The distri-
butions of activation values for border regions become in-
distinguishable from the distribution in the centre.

Another representative neuron is shown in Figure 7. In
this case the PAN activates distinctively high on the left
and right padding. Since Aleft is significantly higher than
Aright, this may be primarily a L PAN that also detects the
right border by complement. This is in fact a behaviour
compatible with the kernel shown at the centre of Figure 1.
For the top and bottom padding locations, this neuron’s ac-
tivations are indistinguishable from those on central loca-
tions. The long tail of the top and bottom distributions
speaks of potential corner detection capabilities. All this is
illustrated by the bottom plot of Figure 7, which shows ac-
tivations on two inputs. Notice some edges are detected in

4

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 6. Top plot: Activation histogram of a PAN, where
all four borders have high KS. Includes distributions for bor-
der regions, and central locations (complete and truncated).
Legend shows KS confidence w.r.t. truncated distribution (i.e.
KS+(Aborder, A

+
centre)). Middle plot: Same as top, using

padding reflect. Bottom plots: Activation heatmap on two inputs,
while using zero padding. Model: ResNet50. Layer: Conv3 1.
Neuron idx: 41.

centre locations, but not as strongly as on the left and right
padding. The middle plot of Figure 7 shows the same ac-
tivations when zero padding is replaced by reflect padding.
When this is the case, the neuron no longer detects padding,
with Aleft and Aright becoming aligned with the rest of
distributions.

The last neuron discussed here is the downstream
PAN of Figure 8. Following the proposed methodol-
ogy, this neuron is detected as a potential edge detec-
tor (KS(Atop, Acentre) = 0.66), but not as a PAN
(KS+(Atop, Acentre) = 0.0) (see top plot). Its spatial ac-
tivations on two different inputs (bottom plots of Figure 8)
indicate this is no regular edge detector. It activates distinc-
tively on the second highest row of the input, as if it was
detecting the top padding from afar. This explains the bi-
modal behaviour of this neuron in the top plot, where the

Figure 7. Top plot: Activation histogram of a PAN, where the
left and right borders have high KS. Includes distributions for
border regions, and central locations (complete and truncated).
Legend shows KS confidence w.r.t. truncated distribution (i.e.
KS+(Aborder, A

+
centre)). Middle plot: Same as top, using

padding reflect. Bottom plots: Activation heatmap on two inputs,
while using zero padding. Model: ResNet50. Layer: Conv2 1.
Neuron idx: 67

truncated +centre distribution (which includes most of the
second row) peaks both at around two (activations of the
second highest row) and zero (activations on the rest of cen-
tre). Since the kernel of this neuron is 3x3, it cannot di-
rectly detect the padding from this location (i.e. on the sec-
ond highest row activations, the kernel is located entirely
on the unpadded input). This neuron gets the information
about image border location from a previous layer, and turns
off (see middle plot of Figure 8) when static padding is re-
moved.

3.4. Nascent PAN types

Through the analysis defined in the previous sections we
have characterised and identified several types of nascent
PANs, those that directly detect padding in the input.

5

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 8. Top plot: Activation histogram of a neuron which is an
edge detector candidate, not detected as PAN. Includes distribu-
tions for border regions, and central locations (complete and trun-
cated). Legend shows KS confidence w.r.t. truncated distribution
(i.e. KS+(Aborder, A

+
centre)). Notice the truncated centre distri-

bution on the high side (pink) is bimodal, with one peak around
zero and one around two. Middle plot: Same as top, using padding
reflect instead of zero. Bimodal distribution disappears. Bottom
plots: Activation heatmap on two inputs while using zero padding.
Model: ResNet50. Layer: Conv3 2. Neuron idx: 158

Nascent PANs frequently have a multi-modal behaviour, de-
tecting two or more padding edges. This multi-border de-
tection can be generic (i.e. several borders detected indistin-
guishably), or it can be distinct for different border types.
The neuron shown in Figure 6, for example, can discrim-
inate between horizontal borders (top and bottom), verti-
cal borders (left and right) and the rest of the input. But
it cannot discriminate among horizontal borders (between
top and bottom padding), or among vertical ones (left and
right padding). On the other hand, the neuron shown in Fig-
ure 7 can discriminate between left and right padding. This
later behaviour is consequence of the asymmetrical kernels
PANs may have, exemplified in the kernels of Figure 1.

We identify 14 possible types of nascent PANs based on
which padding borders they detect (i.e. T, B, L, R, TB, TL,
TR, BL, BR, LR, TBL, TBR, BLR and TBLR). We study the
distribution of nascent PAN types with the proposed method
in Table 2. Single border detectors (i.e. T, B, L, R) are the
most frequent types, representing about 75% of all identi-
fied PANs. The rest are mostly PANs which can detect com-
plementary borders (i.e. TB, LR), or all four borders (i.e.
TBLR). Complementary borders detecting PANs are likely
to be mirrored variations of the kernel shown in the mid-
dle of Figure 1, while the four borders PAN may be asym-
metrical versions of the bottom Laplacian of Gaussian filter
shown in Figure 2.

4. Performance and Bias
Once we have established the existence and pervasive-

ness of PANs in models trained with zero padding, let us
now assess the role these neurons play in model behaviour.
To do so, we study their influence in the network output
using three versions of the same pre-trained ResNet50:

• The original model, using the default zero-padding.

• The reflect model, where the padding of all convolu-
tional neurons has been changed to PyTorch’s reflect.

• The PAN-reflect model, where the padding of the neu-
rons identified as PANs by the previous methodol-
ogy (for ResNet50, 2.0% of convolutional neurons, 81
overall) has been changed to reflect. The rest of neu-
rons preserve zero-padding.

• The RAND-reflect model, where the padding of ran-
domly sampled non-PANs has been changed to reflect
and the rest preserve zero-padding. The random sub-
set has the same size (2.0% of neurons) and follows
the same layer distribution as PAN-reflect. This is the
control set.

We use the quantitative differences in the outputs of these
models to study the impact padding has towards specific
classes (i.e. the amount of padding bias). Then, we study the
influence of PANs in the context of particular data samples.

4.1. Bias influence

To verify to which extend PANs add relative location
bias to the model, we compare the soft-max outputs of orig-
inal with those of PAN-reflect. To be precise, we compute
the odds for each class. Assuming samples to be i.i.d.,
this can be computed as the quotient of the sum of soft-max
outputs:

Odds(c) =
P (c|MPan−reflect)

P (c|Moriginal)
=

∑
i MPan−reflect(i)[c]∑

i Moriginal(i)[c]
(1)

6

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

PAN type T B L R TB TL TR BL BR LR TBL TBR TLR BLR TBLR
ResNet 10 32 8 10 8 1 0 0 3 4 1 0 0 0 4
MobileNet 47 90 9 6 9 5 0 1 3 8 0 0 1 1 13
GoogLeNet 7 24 4 2 7 1 0 0 1 7 0 0 1 1 3

Table 2. Distribution of PAN types identified on different models, with θ = 0.5.

And analogously for RAND-reflect. For PAN-reflect,
odds above 1 for a class c indicate a higher confidence in
the prediction of c in the absence of PANs. This can also be
interpreted as padding being used as evidence against that
class. Conversely, values below 1 would imply padding is
being used as evidence toward the class.

Figure 9 presents the logarithm of the odds per class,
computed on the ILSVRC validation set for both PAN-
reflect and RAND-reflect. All classes are affected, a few
severely so. Table 3 lists all classes whose odds change by
more than 7%. We choose a threshold instead of the top-K
to illustrate how the odds change in an asymmetrical man-
ner: there are more classes which use padding as evidence
toward the class (odds < 1) than those that use it against.
Remarkably, classes for which padding is used as evidence
against it seem to be mostly fine-grained types (mainly an-
imal species and dogs, with the exception of sliding door),
which hints at the relevance of padding for overfitting. Con-
versely, there are no animals among the classes that use
padding as positive evidence. Using a 5% threshold yields
consistent results: out of the 111 classes with negative log
odds, the only animal is the English Foxhound, whereas for
the 99 classes with positive log odds, there are only five
classes which are not fine-grained animals.

To verify if findings are related with the relevance of
padding or with the noise added by the data distribution,
let us consider the results while using RAND-reflect (or-
ange in Figures 9 and 10). In this case, the distribution of
PANs’ odds is characteristically different from that of ran-
dom, similarly-sampled neuron sets. While PANs seem to
affect most classes to a large degree, either positively or
negatively, the random set effect on classes is very lim-
ited. Only a few classes are affected, with the most com-
mon result being no output change. These results indicate
PANs strongly and homogeneously alter most classes’ prior,
whereas an equally sized random subset of neurons does
not.

Repeating this experiment with model reflect changes
the input distribution of 100% of convolutional layers,
whereas the previous two experiments (with PAN-reflect
and RAND-reflect) changed only 2% of neurons. As a re-
sult, the reflect odds suffer more extreme changes than ei-
ther one of the above. No tendency around which classes
receive positive and which negative log odds was found. In
this particular experiment, we believe the larger odds vari-
ance has to do with noise added to the distributions, rather
than due to some intrinsic quality of how padding is used.

Figure 9. Ordered change in log-odds, for PAN-reflect and RAND-
reflect w.r.t. original model. Vertical axis is the amount of change.
±0.05 log-odds corresponds to 5% difference in odds.

Figure 10. Class histogram of log odds change w.r.t. original
model, computed for both PAN-reflect and RAND-reflect. Notice
how the former has both a wider range and a bimodal distribution.

4.2. Sample influence

The previous section shows a clear influence of padding
in the overall performance and behaviour of the model.
However, the class-scale at which analysis is made means
that the effect of PANs on single predictions is lost or ag-
gregated. To analyse this facet, we look for the individual
samples with the largest change in the network’s output. We
compute this change as the Manhattan distance between the
logits of the original and the PAN-reflect model.

Significantly, the 30 images with the biggest padding in-
fluence are all incorrectly classified by both the original and
the PAN-reflect models, the predicted class remaining the

7

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Class Odds Class Odds
drum 0.91 cheetah 1.10

muzzle 0.91 Norfolk Terrier 1.09
packet 0.91 sliding door 1.09

sunscreen 0.92 Irish Water Spaniel 1.08
barrette 0.92 box turtle 1.08

tandem bicycle 0.92 Dobermann 1.08
candle 0.92 Flat-Coated Retriever 1.08

tent 0.92 Alaskan Malamute 1.08
tray 0.92 gossamer-winged butterfly 1.07

comic book 0.93 West Highland White Terrier 1.07
Windsor tie 0.93 Greater Swiss Mountain Dog 1.07

tile roof 0.93 guenon 1.07
backpack 0.93
overskirt 0.93
buckle 0.93
lab coat 0.93

shoal 0.93
paper knife 0.93

whistle 0.93
ice pop 0.93

stethoscope 0.93
barbell 0.93

lakeshore 0.93
megalith 0.93

scarf 0.93
Table 3. Classes with odds beyond 7% computed between the
PAN-reflect and the original model. Classes with odds above one,
increase their confidence in the absence of PAN information, are
less frequent and are mostly composed of animals. For odds below
1, we check 1

odds(c)
> 1.07.

same. Analysing the top 5,000 most affected images (10%
of the whole dataset), we find that the number of disagree-
ments between models is remarkably low (67 images). The
limited impact PANs have on samples which are not part of
the model training set, could also be the result of padding in-
formation being used for overfitting particularly hard train-
ing samples.

When repeating the experiment on RAND-reflect, these
effects disappear. The sample with the 5000th highest di-
vergence with the PAN-reflect has around 4 distance units,
whereas for RAND-reflect with this distance happens on the
13th sample. This alone shows PAN-reflect affects with
more strength to orders of magnitude more samples than
RAND-reflect. Of those 13 samples, 12 of them are incor-
rectly predicted as tench, which indicates the preference of
these randomly chosen 2% of neurons for this class.

5. Discussion
The use of static padding in convolutional layers pro-

vides the model with a stable signal of a perceptual edge.
That much was known from previous works [2, 17, 1, 14].
This paper reveals the extent of this inductive spatial bias,
identifying a set of neurons specialized in locating and ex-

ploiting it (what we call PANs), which account for at least
1.5%-3% of all deep CNNs convolutional filters. Consid-
ering PANs are likely to be inheritable (as long as the fine-
tuned model keeps zero padding) and the fact that PANs
were found on popular pre-training sources, one can assume
PANs are a widespread phenomenon.

Experiments indicate padding information is used to
change the prior of most classes. PAN are used as evidence
against fine-grained classes (i.e. animals), and seldom as ev-
idence for them. For the ILSVRC task we derive two differ-
ent hypothesis for explaining this. Either samples from fine-
grained class are generally better framed, which keeps the
padding away from the patterns most relevant for the class,
resulting in a spatial bias that can be leveraged; or padding
is used as a reference to identify arbitrary patterns in partic-
ularly hard samples, helping overfit on examples from the
long tail [5]. Testing both these hypothesis remains future
work as it requires its own experimental setup.

The desirability of PANs in a model depends on the ap-
plication, and its definition of un/desirable bias. On tasks
with fixed framing (e.g. fundus retina images [25], static
cctv feed [4] etc.) PANs may provide a useful location ref-
erence allowing a better contextualisation and structuring
of the input. On tasks which entail frame freedom (e.g. ob-
jects in the wild, variances among devices) PANs learn an
arbitrary bias, which may contribute to overfitting and lack
of generalisation [2, 17, 1]. For these reasons, we recom-
mend practitioners to choose padding carefully, using dy-
namic padding by default.

Even when PANs are useful, their current design is not
efficient. A lot of parameters (PAN kernels) and com-
putation are wasted on recognizing a constant. For those
cases where PANs are indeed desirable, one may find more
efficient and rich versions of them, at least in three dif-
ferent ways: (1) by implementing a sparse computation
which skips padding products, (2) by using models with
pre-initialised PAN kernels spread along the model, and (3)
by adding the complementary axis information to padding
(row height in vertical padding and vice-versa) for complete
spatial reference.

Finally, let us consider a safety vulnerability PANs en-
tail. Given their characteristic pattern, PANs are easy to
fool and trigger. Adding a one-row/column of zeros any-
where in the input will cause PANs to fire, out of the mani-
fold and into unpredictability. This can be easily mitigated,
for example, by doing data augmentation during training
with random rows/columns of padding in the input. This is
strongly suggested for models deployed on critical domains.

References
[1] Farzin Aghdasi and Rabab K Ward. Reduction of boundary

artifacts in image restoration. IEEE Transactions on Image
Processing, 5(4):611–618, 1996.

8

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[2] Bilal Alsallakh, Narine Kokhlikyan, Vivek Miglani, Jun
Yuan, and Orion Reblitz-Richardson. Mind the pad–cnns
can develop blind spots. arXiv preprint arXiv:2010.02178,
2020.

[3] Vı́ctor Badenas Crespo. Detection and location of contrast-
aware and border-aware neurons in convolutional neural net-
works. Master’s thesis, Universitat Politècnica de Catalunya,
2022.

[4] Muhammad Tahir Bhatti, Muhammad Gufran Khan, Masood
Aslam, and Muhammad Junaid Fiaz. Weapon detection in
real-time cctv videos using deep learning. IEEE Access,
9:34366–34382, 2021.

[5] Daniel D’souza, Zach Nussbaum, Chirag Agarwal, and
Sara Hooker. A tale of two long tails. arXiv preprint
arXiv:2107.13098, 2021.

[6] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning gener-
ative visual models from few training examples: An incre-
mental bayesian approach tested on 101 object categories. In
2004 conference on computer vision and pattern recognition
workshop, pages 178–178. IEEE, 2004.

[7] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-
organizing neural network model for a mechanism of visual
pattern recognition. In Competition and cooperation in neu-
ral nets, pages 267–285. Springer, 1982.

[8] Carles Garriga Estradé. Studying the characterization of
deep cnn neurons. Master’s thesis, Universitat Politècnica
de Catalunya, 2019.

[9] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt,
Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.
Array programming with NumPy. Nature, 585(7825):357–
362, Sept. 2020.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[11] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1314–1324, 2019.

[12] Yu-Hui Huang, Marc Proesmans, and Luc Van Gool.
Context-aware padding for semantic segmentation. arXiv
preprint arXiv:2109.07854, 2021.

[13] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and
Shun Chen. Lstm fully convolutional networks for time se-
ries classification. IEEE access, 6:1662–1669, 2017.

[14] Osman Semih Kayhan and Jan C van Gemert. On translation
invariance in cnns: Convolutional layers can exploit abso-
lute spatial location. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
14274–14285, 2020.

[15] Raman Maini and Himanshu Aggarwal. Study and compar-
ison of various image edge detection techniques. Interna-
tional journal of image processing (IJIP), 3(1):1–11, 2009.

[16] Sébastien Marcel and Yann Rodriguez. Torchvision the
machine-vision package of torch. In Proceedings of the in-
ternational conference on Multimedia - MM ’10, page 1485,
Firenze, Italy, 2010. ACM Press.

[17] Anh-Duc Nguyen, Seonghwa Choi, Woojae Kim, Sewoong
Ahn, Jinwoo Kim, and Sanghoon Lee. Distribution padding
in convolutional neural networks. In 2019 IEEE Interna-
tional Conference on Image Processing (ICIP), pages 4275–
4279. IEEE, 2019.

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Im-
perative Style, High-Performance Deep Learning Library.
arXiv:1912.01703 [cs, stat], Dec. 2019. arXiv: 1912.01703.

[19] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022.

[20] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.

[21] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J
Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Van-
derPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,
Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, SciPy 1.0 Contributors, Aditya Vijaykumar,
Alessandro Pietro Bardelli, Alex Rothberg, Andreas Hilboll,
Andreas Kloeckner, Anthony Scopatz, Antony Lee, Ariel
Rokem, C. Nathan Woods, Chad Fulton, Charles Masson,
Christian Häggström, Clark Fitzgerald, David A. Nichol-
son, David R. Hagen, Dmitrii V. Pasechnik, Emanuele
Olivetti, Eric Martin, Eric Wieser, Fabrice Silva, Felix
Lenders, Florian Wilhelm, G. Young, Gavin A. Price,
Gert-Ludwig Ingold, Gregory E. Allen, Gregory R. Lee,
Hervé Audren, Irvin Probst, Jörg P. Dietrich, Jacob Sil-
terra, James T Webber, Janko Slavič, Joel Nothman, Jo-
hannes Buchner, Johannes Kulick, Johannes L. Schönberger,
José Vinı́cius de Miranda Cardoso, Joscha Reimer, Joseph
Harrington, Juan Luis Cano Rodrı́guez, Juan Nunez-Iglesias,
Justin Kuczynski, Kevin Tritz, Martin Thoma, Matthew
Newville, Matthias Kümmerer, Maximilian Bolingbroke,
Michael Tartre, Mikhail Pak, Nathaniel J. Smith, Nikolai
Nowaczyk, Nikolay Shebanov, Oleksandr Pavlyk, Per A.

9

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Brodtkorb, Perry Lee, Robert T. McGibbon, Roman Feld-
bauer, Sam Lewis, Sam Tygier, Scott Sievert, Sebastiano Vi-
gna, Stefan Peterson, Surhud More, Tadeusz Pudlik, Takuya
Oshima, Thomas J. Pingel, Thomas P. Robitaille, Thomas
Spura, Thouis R. Jones, Tim Cera, Tim Leslie, Tiziano Zito,
Tom Krauss, Utkarsh Upadhyay, Yaroslav O. Halchenko,
and Yoshiki Vázquez-Baeza. SciPy 1.0: fundamental algo-
rithms for scientific computing in Python. Nature Methods,
17(3):261–272, Mar. 2020.

[22] Shuang Wu, Guanrui Wang, Pei Tang, Feng Chen, and Lup-
ing Shi. Convolution with even-sized kernels and symmetric
padding. Advances in Neural Information Processing Sys-
tems, 32, 2019.

[23] Hongming Xu, Cheng Lu, Richard Berendt, Naresh Jha, and
Mrinal Mandal. Automatic nuclei detection based on gener-
alized laplacian of gaussian filters. IEEE Journal of Biomed-
ical and Health Informatics, 21(3):826–837, 2017.

[24] Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Feng-
wei Yu, and Wei Wu. Incorporating convolution designs into
visual transformers. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 579–588,
2021.

[25] Miguel Angel Zapata, Dı́dac Royo-Fibla, Octavi Font,
José Ignacio Vela, Ivanna Marcantonio, Eduardo Ulises
Moya-Sánchez, Abraham Sánchez-Pérez, Dario Garcia-
Gasulla, Ulises Cortés, Eduard Ayguadé, et al. Artificial
intelligence to identify retinal fundus images, quality vali-
dation, laterality evaluation, macular degeneration, and sus-
pected glaucoma. Clinical Ophthalmology (Auckland, NZ),
14:419, 2020.

[26] Ziqi Zhang, David Robinson, and Jonathan Tepper. De-
tecting hate speech on twitter using a convolution-gru based
deep neural network. In European semantic web conference,
pages 745–760. Springer, 2018.

10

