
Under review as a conference paper at ICLR 2022

M6-10T: A SHARING-DELINKING PARADIGM FOR EF-
FICIENT MULTI-TRILLION PARAMETER PRETRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent expeditious developments in deep learning algorithms, distributed training,
and even hardware design for large models have enabled training extreme-scale
models, say GPT-3 and Switch Transformer possessing hundreds of billions or
even trillions of parameters. However, under limited resources, extreme-scale
model training that requires enormous amounts of computes and memory foot-
print suffers from frustratingly low efficiency in model convergence. In this paper,
we propose a simple training strategy called “Pseudo-to-Real” for high-memory-
footprint-required large models. Pseudo-to-Real is compatible with large models
with architecture of sequential layers. We demonstrate a practice of pretraining
unprecedented 10-trillion-parameter model, an order of magnitude larger than the
state-of-the-art, on solely 512 GPUs within 10 days. Besides demonstrating the ap-
plication of Pseudo-to-Real, we also provide a technique, Granular CPU offloading,
to manage CPU memory for training large model and maintain high GPU utilities.
Fast training of extreme-scale models on a decent amount of resources can bring
much smaller carbon footprint and contribute to greener AI.

1 INTRODUCTION

Foundation models with self-supervised learning on big data have become an emerging paradigm
of artificial intelligence systems [2], as they mostly possess high transferability to a wide
range of downstream tasks and even multiple modalities. The scale of foundation models
across domains, including natural language processing, computer vision, and cross-modality
representation learning, have been growing tremendously from millions to trillions of parame-
ters [7; 23; 24; 26; 33; 37; 3; 29; 14; 11; 16; 47; 46; 42; 44; 38] thanks to the concurrent advancement
in distributed training framework [20; 27; 31; 28; 1; 12; 30] and hardware design, and these studies
have made a demonstration of the neural scaling law [13]. However, the training of these transformer-
based models incurs high financial costs and even environmental damage due to the massive carbon
footprint and thus training extreme-scale models under a decent amount of resources but with high
efficiency should be a fundamental goal for both the research and industrial communities to achieve,
which promotes the progress of greener AI [22; 34].

Generally there are two tracks of research in large-scale pretraining, dense models and sparse
expert models respectively. A typical case of large-scale dense models is GPT-3 [3], a 175-billion-
parameter transformer model trained with 10, 000 GPUs for months, incurring striking financial
and environmental costs. Researchers have been searching for methods to training large-scale
models with a decent amount of costs. Solutions include effective management of memory with
gradient and optimizer state partitioning [27] or more efficient model parallelism and pipeline
parallelism [37; 20; 12]. A series of following studies apply those techniques to realize fast training
of 10-billion-parameter transformers with hundreds of GPUs in 1 − 2 months. [16; 46; 44; 38]
Sparse expert models with large model capacity are capable of fast training owing to the combination
of data parallelism and expert parallelism [35; 14; 11; 32], and it is even accessible to train a
1-trillion-parameter transformer with no more than 500 GPUs [42].

Be there as it may, a question emerges in our mind: is it possible to train an extreme-scale model
with only a decent amount of resources, e.g., training a 10-trillion-parameter model with around 500
GPUs? Tackling the problem requires the utilization of external memory except for GPU memory,
for instance, CPU memory or even NVMe storage [31; 28]. These methods resolve the problem of

1



Under review as a conference paper at ICLR 2022

high memory footprint, but instead, their extra cost is low training efficiency caused by the frequent
swap in-and-out between memories.

In this paper, we provide a solution to training large models that require high memory footprint, and
we demonstrate a successful practice of pretraining an unprecedented extreme-scale model with over
10 trillion parameters, an order of magnitude larger than the previous state-of-the-arts [11; 42]. The
whole pretraining was conducted on solely 512 NVIDIA-V100 GPUs and lasted around 10 days.
A simple and effective training strategy called “Pseudo-to-Real” enables the sharing and delinking
of parameters. This training strategy is compatible with architectures built by stacking layers of an
identical structure, including dense models like GPT [23; 24; 3], BERT [7], or sparse expert models
like M6 [16; 42]. It is essentially a two-stage training. It first trains a relatively small model but with a
computation graph of a large one with the utilization of cross-layer parameter sharing, and we name it
“Pseudo Giant”. Then it builds a correspondingly large model and delinks the parameters of the shared
layer for second-stage model initialization. In this way, we achieve fast convergence in the first stage
as the training costs much less memory and speeds up with large batches. Parameter sharing that
addresses the communication overhead improves training speed as well. The second-stage training is
responsible for the final convergence for better performance.

We unlock the secret of pretraining an unprecedented extreme-scale model with over 10 trillion
parameters on limited resources of 512 GPUs. Compared with the previous M6-T on around 500
GPUs, we do not have a significant increase in computation resources but level up the model scale
by an order of magnitude. Besides the application of the “Pseudo-to-Real” training strategy, we
provide a faster offloading mechanism for both management of CPU memory for parameter storage
and utility of GPUs. We successfully train the M6-10T within 10 days to reach strong performance in
log perplexity evaluation and outperform the baseline M6-T.

Contributions at a glance are below:

• We illustrate the training difficulty of extreme-scale models on limited resources and pro-
vide a simple but effective solution called “Pseudo-to-Real”. Upstream and downstream
evaluation demonstrates the effectiveness of the strategy.

• We further demonstrate a successful practice of pretraining a 10-trillion-parameter model on
512 GPUs and reach an outstanding performance within 10 days.

2 RELATED WORK

Large-Scale Pretraining In recent years, pretrained language models with growing magnitudes of
parameters have been proposed, keeping to raise the validated upper limit of scaling law for model
capacity w.r.t the number of parameters [13]. Earlier milestones of extreme-large models come from
GPT-2 [24] and Megatron-LM [37], which demonstrates that scaling the transformer model up to
billions of parameters can result in improvement on language modeling benchmarks [19; 21]. Turing-
NLG [33], as a successor, implements a 17-billion-parameter transformer and achieves further lower
perplexity. Similar phenomena are also observed on classification language tasks by T5 model [26].
The GPT-3 [3] pushes the boundary of model scale to 1,750 billion parameters and demonstrates
its striking effectiveness on downstream tasks in even zero-shot settings. Furthermore, large-scale
pretraining has recently demonstrated success in other fields, including pretraining on other languages
or cross-lingual pretraining [41; 46; 44; 6], cross-modal pretraining [25; 29; 16; 8; 48] and code
generation [4]. Along with the benefit from increasing the model scale, the concern of unaffordable
pretraining cost in time, computation resource and energy keeps emerging [22; 2], resulting in the
strong demand for more efficient and greener large-scale pretraining [34].

Methods to Train Larger Models Faster Our work is about designing algorithm to train extreme-
scale models efficiently. Researchers have been demonstrating different types of methods to reach this
objective. To reduce the computational cost during training, some studies introduce sparsity to the
model. Mixture-of-Experts (MoE) [35] was proposed and was reintroduced in Mesh Tensorflow [36].
It shows that MoE with sparsity can significantly improve the model scale efficiently without
increasing computation, and the models achieved state-of-the-art performance in language modeling
and machine translation. GShard [14] extended it to a tremendously large scale of 600B parameters
with the sophisticated collaborated design of model architecture and demonstrated its effectiveness

2



Under review as a conference paper at ICLR 2022

input

Self attention

Add & LayerNorm

Add & LayerNorm

Self attention

Add & LayerNorm

Add & LayerNorm

Feed-Forward

…Share Weights
for Pseudo Stage

Delink Weights
for Real Stage

Feed-Forward

Figure 1: A demonstration of the Pseudo-to-Real training paradigm. It first shares parameters across
layers at the Pseudo stage, and then delinks the parameters at the Real stage.

across over 100 languages. Similarly, Switch Transformer reached 1.6 trillion parameters and showed
its strong performance on NLU tasks. Those models with high sparsity are computationally efficient,
and therefore though they possess large model capacity they still can be trained with high efficiency.
Most other studies still focus on training dense models to validate the scaling law, and thus the emerged
problem is the distributed training of large models. The most influential distributed framework should
be DeepSpeed that proposed ZERO [27] that partitions optimizer states and gradients to multiple
GPU devices, and ZERO-offload [31] as well as ZERO-Infinity [28] can even offload parameters to
CPU memory and NVMe storage. The memory footprint management makes training extremely large
models on limited resources possible. However, such offloading mechanisms still have some defects
that they may fail to fully utilize the fast hardware. For example, when offloading all parameters to
the CPU, the GPU memory can be idle. In this work, we tackle this issue by proposing a granular
offloading mechanism that can determine which parameters to be offloaded.

In addition to reducing the amount of computation in a single iteration, another route to speedup
training is to reduce the needed iterations for model convergence. Child et al. [5] and Xiong et al.
[40] propose to put forward the layernorm operations in transformer blocks for more stabilized and
faster convergence. You et al. [43] employs a layer-wise adaptive optimizer to enable super-large
pretraining batches. Zhang & He [45] progressively increases the layer dropping rate in a stochastic
manner which significantly speedups pretraining.

3 APPROACH

3.1 MODEL ARCHITECTURE

Choice in model architecture depends on several factors. First, the architecture should contain a
sequence of stacking layers, as the sequential structure enables cross-layer parameter sharing. We
prefer a simple encoder or decoder architecture, instead of an encoder-decoder framework where
there are cross attentions that bring extra parameters and incur difficulties in activation checkpointing.
Second, a model of such architecture should be compatible with different types of downstream tasks,
including understanding and generation, and it is more preferable that it can be compatible with
multiple modalities. Third, as we mention that dense models and sparse expert models are two main
tracks of large-scale pretraining, we prefer the model that can flexibly become whether dense or
sparse expert models. Therefore, we select M6 [16] as an option, and we evaluate the effects of our
method on M6 of different scales and types.

3



Under review as a conference paper at ICLR 2022

M6 is built with stacking transformer layers, which includes self attention and feed-forward neural
nets (FFN). For the transformation from dense models to sparse expert models, we should only
replace FFN layers with the Mixture-of-Expert (MoE) layers. MoE consists of multiple experts,
which are usually FFNs distributed on different devices. A gating network decides the dispatching
and combining behaviors of each token and thus tokens can be processed in diverse devices. Such
mechanism is a combination of data parallelism and expert parallelism, and thus it is highly efficient
though with large model capacity. For the training, to realize the learning of both understanding and
generation, the model is trained with text denoising and language modeling on plain text data and
with image-based text denoising and image captioning on multimodal data. The model is compatible
with different types of downstream tasks and can process information of multiple modalities.

3.2 PSEUDO-TO-REAL

This section demonstrates the details of “Pseudo-to-Real” two-stage training strategy that enables
fast training of high-memory-footprint-required transformer models. The strategy consists of two
stages. The first stage trains a model with many fewer parameters but with a large computation graph
(“Pseudo Giant”), and the second stage trains a corresponding large model (“Real Giant”) initialized
with the delinked weights of the shared layer. Thus we name the strategy “Pseudo-to-Real”, and the
general idea is demonstrated in Figure 1.

3.2.1 “PSEUDO” STAGE: LAYER-WISE PARAMETER SHARING

The core of “Pseudo” stage is to train a Pseudo-Giant that shares parameters across layers. Cross-layer
parameter sharing has proved successful in maintaining satisfactory performance while keeping a
much smaller amount of parameters. We introduce it to training an extreme-scale model, and we
hypothesize that the first-stage training can gain benefits from cross-parameter sharing as it can
address communication overhead and it consumes much less memory footprint. Also, as Pseudo
Giant with much fewer parameters is not bounded by memory, it can be trained with large batches for
acceleration.

Suppose we build an M6 model withL layers that share parameters across all layers. The Pseudo Giant
though consists of a computation graph of a L-layer transformer, its number of weight parameters and
optimizer states should be 1/L of those of the original one. As to the gradients, we can accumulate the
gradients of each layer in the backward computation process, and therefore the amount of gradients
becomes 2/L of the original one. Such saving in memory enables much faster training with larger
batches. Also, it is capable to use fewer resources even due to lower memory consumption.

This can also be applied to sparse expert models, as their architecture is stacking transformer layers.
However, different from dense models, the MoE partition their weights to all devices, and each
token is distributed to a selected expert by a routing function. Thus the models can trained with data
parallelism across all devices and expert parallelism where parameters at each device are activated.
This mechanism though enlarges model capacity significantly without much efficiency loss, yet it
limits the flexible usage of GPU resources in different stages, say training and inference. Due to
the application of data parallelism, we can implement dense models on different numbers of GPU
devices at the training and inference stage. However, as mentioned above, the combination of data
parallelism and expert parallelism requires the identical amount of devices at different stages.

To tackle this problem, we specifically design methods for expert merging and partitioning. Due to
cross-layer parameter sharing, at the Pseudo stage it is capable of implementing more experts on each
device, and it is available to use fewer GPUs while keeping the total number of experts. We name it
expert merging for simplicity. At the Real stage, the delinking of parameters with the same amount o
devices will cause out-of-memory errors. We delink the parameters and partition experts to more
devices, e.g., from 256 to 512, and thus there are fewer experts on each device where memory is
sufficient. Thus we name it expert partitioning. Therefore, now it is available to use different number
of GPU devices at different stages for training sparse expert models.

3.2.2 “REAL” STAGE: DELINKING THE SHARED PARAMETERS

We name a large model without cross-layer parameter sharing “Real Giant”, in comparison with
Pseudo Giant. Both models share an identical computation graph, but possess different numbers

4



Under review as a conference paper at ICLR 2022

Table 1: Experimental results on downstream evaluation of natural language understanding. We
evaluate the performance of models on 8 tasks of GLUE dev set except for WNLI following Devlin
et al. [7].

Model #Params SST-2 CoLA MNLI QNLI QQP MRPC RTE STS-B Avg

BERT 345M 93.7 60.6 86.6 92.3 91.3 88.0 70.4 90.0 84.1
M6 350M 94.2 61.3 86.3 92.3 91.4 91.4 83.4 89.0 86.2

M6 (P) 65M 90.5 46.2 80.8 89.4 89.9 90.1 70.7 85.6 80.4
M6 (P2R) 65M/350M 94.4 58.6 86.6 93.3 91.5 91.5 84.5 89.1 86.2

of parameters. Given a Pseudo Giant fully trained until convergence, we apply the delinking of
cross-layer shared parameters to accelerate Real Giant training. There is no need to train a large
model from scratch. The model can start its convergence from low perplexity.

Embedding initialization can be directly restored, but the layer weights should be treated specially. In
practice, there is only one layer of weights θshared in Pseudo Giant, and there are L layers of weights
{θ1, θ2, · · · , θL} in Real Giant. Thanks to their identical structure, each layer of Real Giant can be
initialized with θshared. Without further training, this model is equivalent to a fully-trained Pseudo
Giant.

This extremely simple training strategy is highly beneficial for the high-memory-footprint-required
large models, especially extreme-scale models like the 10-trillion-parameter M6. While the first stage
of training saves much time for faster convergence, we can use a decent amount of computational
resources in this stage as lower efficiency in this stage becomes acceptable. Therefore, in the practice
of training an extreme-scale M6, we apply CPU offloading to utilize CPU memory. Therefore, we can
use a limited amount of resources, e.g., 512 GPUs, to train an unprecedented 10-trillion-parameter
model efficiently, which is an order of magnitude larger than the state-of-the-arts.

3.2.3 TIMING FOR SWITCHING

A question naturally emerges: when should we switch from the Pseudo stage to the Real stage?
As mentioned above, the greatest advantage of Pseudo stage for training is the significantly faster
convergence speed. Yet the performance of Pseudo Giant is bounded by its limitation in the number
of parameters. Training Pseudo Giant until convergence apparently incurs much waste of time.

In practice, we present a simple strategy to determine the training step to switch from Pseudo to Real
based on the convergence speed. During the training of the Pseudo stage, we evaluate a training step
in a fixed interval by attempting to transfer it into the Real stage and training for a small while (e.g.,
30 minutes). After that, we will revert the model parameters to the evaluated step and continue the
training of the Pseudo stage for the same training time as the Real stage. If the decreasing speed of
loss in the Real stage surpasses that of the Pseudo stage, we determine the evaluated training step as
the best switching point for the next-stage training.

3.3 EXPERIMENTS

In this section, we demonstrate experiments to evaluate the effectiveness of the training strategy by
evaluating the model quality and observing the performance improvement.

3.3.1 PERFORMANCE EVALUATION

We aim to validate two hypotheses: 1. Pseudo-to-Real training paradigm can help the model reach
competitive performance with the one trained from scratch without parameter sharing; 2. Pseudo-to-
Real can effectively accelerate convergence in training of large-scale models.

We aim at discovering the model quality brought by different pretraining strategies. “Pseudo (P)”
refers to training with parameter sharing across layers, and “Pseudo-to-Real (P2R)” refers to the
proposed two-stage training of a sharing-delinking paradigm. We pretrain the model on BookCor-
pus [49] and English Wikipedia [7], which are corpora with around 16GB of plain texts. Following
Radford et al. [23] and Lewis et al. [15], we use a vocabulary of around 50, 000 subwords. Each

5



Under review as a conference paper at ICLR 2022

Table 2: Experimental results on downstream task evaluation. “#Params” refers to the number of
parameters. We report the PPL evaluation on WikiText-103 and the ROUGE1, ROUGE-2, and
ROUGE-L evaluation on Gigaword.

Model #Params WikiText-103 Gigaword

Megatron-LM 350M 16.69 -
UniLM 340M - 38.5/19.5/35.4

M6 350M 16.59 38.8/20.1/36.0

M6 (P) 65M 28.60 36.9/18.1/34.3
M6 (P2R) 65M/350M 16.60 38.3/19.3/35.7

Table 3: Model refers to the types of model. dmodel and dff refer to the hidden size and intermediate
size. L refers to the number of layers in the computation graph, and l refers to the number of
transformer layers with parameters. #Heads refers to the number of heads in self attention. #Params
refers to the total number of model parameters. We also report their training speed on 48 GPU devices
by the number of consumed samples per second.

Model dmodel dff l/L #Heads #Params Speed

Base 1024 4096 24/24 16 350M 650
Pseudo 1024 16384 1/36 16 1.4B 248

Real 1024 16384 36/36 16 1.4B 48

sample consists of sentences from an identical passage, and we use a sequence length of 512 and
correspondingly truncate or pad the sequence. Following the common practice in pretraining [7; 17],
we apply AdamW optimizer [18] for optimization. To determine the most suitable learning rate of
the two stages for fast convergence, we have made some preliminary tests and finally used the peak
learning rate of 2e-4 for “Pseudo” stage and 8e-5 for “Real” stage, respectively. We use a cosine
decaying mechanism for learning rate scheduling and a warm-up ratio of 0.001. We pretrain the
models until convergence and transfer them to downstream tasks.

For comprehensive analysis, the experiments include natural language understanding and generation
tasks. Notably, for NLU tasks, we follow Devlin et al. [7] and validate transfer effects on GLUE [39].
For natural language generation, we specify zero-shot language modeling and text summarization
to evaluate both models’ upstream and downstream quality on generation. Specifically, we conduct
experiments on WikiText-103 and Gigaword for both tasks.

Experimental results on NLU tasks are demonstrated in Table 1. For better comparison, we also
present the experimental results of BERT with a similar amount of parameters, and it shows that M6
can achieve a better performance over the baseline. From Table 1, we find that Pseudo-only training
brings a significant performance downgrade in the 8 tasks. It is fair to believe that the limited amount
of parameters hinders downstream performance, though with a large computation graph. However, in
comparison, we find that P2R can help the model perform similarly to the one trained from scratch
without parameter sharing. Specifically, M6 with P2R can even outperform the baseline on 6 tasks,
including SST-2, MNLI, QQP, MRPC, RTE, and STS-B. We further validate their performance on
zero-shot language modeling and text sumarization tasks. Table 2 demonstrate the model performance
on both tasks, and we additionally add Megatron-LM [37] and [10] for better comparison. Similarly,
Pseudo-only training leads to far worse performance, and P2R is also able to help the model achieve
similar performance with Real training.

3.3.2 EFFICIENCY EVALUATION

Next, we evaluate the efficiency of training strategies by observing model performance under the
condition of identical computation budget.

Experimental Setup To satisfy the requirements of high memory footprint where the two-staged
training can make a difference in training efficiency, we conduct experiments on a 1.4B-parameter
model. We present the details of model configuration in Table 3.

6



Under review as a conference paper at ICLR 2022

Table 4: Experimental results of large models trained with limited budget on downstream task
evaluation. We report the PPL on WikiText-103 and the ROUGE scores on Gigaword.

Model #Params WikiText-103 Gigaword

limited budget
M6-1B (P) 90M 56.79 36.8/17.9/34.1
M6-1B (R) 1.4B 26.80 36.9/18.2/34.2

M6-1B (P2R) 90M/1.4B 23.60 37.3/18.3/34.5

For both Pseudo and Real Giant, we train them with a total batch size of 6, 144. In practice, we
use a micro-batch size of 32 and a gradient accumulation step of 4, and we train our models on 48
NVIDIA-V100 GPU devices. We compare the model performance with a limited budget, where
models have been trained for the same duration of time. Correspondingly, “Pseudo” has been trained
for around 25, 000 steps, Real has been trained for around 4, 700 steps, and “P2R” has been trained
for 12, 000 steps.

Lo
g 

Pe
rp

le
xi

ty

Training Time (min)

Real
Pseudo Stage
P2R Stage

Figure 2: Comparison of pretraining language mod-
eling loss of M6-1B P2R and Real on time-basis.

Model Performance Table 3 demonstrates
the training speed of the models. We report
their training speed on 48 NVIDIA-V100 GPU
devices with their consumed samples per sec-
ond. Training Real Giant model from scratch is
highly time-consuming. Pseudo Giant training
has an advantage of around 5 times of conver-
gence speed over Real Giant training. We also
observe the loss convergence of both P2R and
Real Giant trained from scratch. In Figure 2 we
present the development of pretraining language
modeling loss, which is the log perplexity, on
the time basis. The log perplexity of P2R de-
creases much faster than that of the Real Giant,
with an advantage larger than 0.3.

Experimental results on downstream tasks pre-
sented in Table 4 are consistent with our hypoth-
esis that Pseudo-to-Real training can speed up training effectively. In the setup of limited budget,
the M6 model trained with Pseudo-to-Real can outperform the Pseudo Giant and Real Giant in both
language modeling and text generation.

4 TOWARDS A 10-TRILLION-PARAMETER MODEL

Previously, training large-scale models brings tons of challenges to the collaboration algorithm
design, distributed training, as well as hardware design, etc. Training a GPT-3 of 175B parameters
with a combination of data parallelism on over 500GB of data should cost around 300 GPU-years.
Later with the emergence of partitioning on optimizer states, gradients, and even weights, GPU
memory can be fully utilized without performance degradation. Now we can even use the CPU
memory or even NVMe storage to store the parameters, but we have to bear the costs of efficiency.
Therefore, we attempt to tackle the difficulty of extreme-scale model training from the perspective of
algorithm design and thus we apply the aforementioned Pseudo-to-Real training strategy to train an
extreme-scale model.

4.1 MODEL SETUP

We design a 10-trillion-parameter M6 model with the combination of existing methods and proposed
strategies to demonstrate a case of how to train an extreme-scale model efficiently. In comparison
with the previous studies of trillion-parameter models [11; 42], this one is almost 10 times larger. To
efficiently utilize the memory, we adopt Mixture-of-Experts and we replace every FFN layer with the
memory-efficient MoE layers. Notably, we remove the auxiliary loss that consumes memory and

7



Under review as a conference paper at ICLR 2022

F0

B0

A0

W0

F1

B1

A1

W1

F2

B2

A2

W2

Fn-1

Bn-1

An-1

Wn-1

Fn

Bn

An

Wn

...

...

GPU

CPU

Figure 3: A demonstration of Granular CPU Offloading mechanism.

demonstrates little effects on model quality, and we follow Yang et al. [42] to apply expert prototyping
for improved model quality and training stability. To be more specific, the hidden size dmodel is 1024
and the intermediate size dff is 9984. The number of model layers is 48. For each MoE layer, there
are 10240 experts distributed on multiple devices. We use 80 prototypes of experts based on our
experience in preliminary experiments. The training batch size per GPU device is 8. We implement
models on EFLOPs, a distributed training platform with an advanced server architecture and a new
network topology [9]. Specifically our models are trained on a cluster of 8-GPU workers connected
by RDMA networks with a bandwidth of 100Gb. The CPU memory of each worker is around 750GB.
The expert distribution and Granular Offloading strategies are supported by Whale framework[12].

4.2 GRANULAR CPU OFFLOADING

To utilize CPU memory for larger models with fewer resources, we apply the Granular CPU offloading
which has a higher efficiency compared with the conventional CPU offloading. Previously we note
that conventional offloading mechanisms offload all parameters, which may fail to effectively utilize
GPU. To improve the efficiency of CPU offloading, we propose a new CPU offloading mechanism
called Granular CPU offloading. The training process is composed of phases including “Forward
(Fn)”, “Backward(Bn)” and “Apply (An)”. Offloading all model parameters to CPU in Fn and
Bn requires loading parameters from CPU to GPU memory twice. Activation checkpointing that
brings recomputation needs the parameters loaded in Bn. An requires the gradients offloaded from
GPU memory to CPU memory. Assume the model parameter size is W, the above processes bring
parameter movement of size 4 ∗W.

In offloading, PCIE is the bottleneck of the whole training process. We observe that when offloading
all parameters with recomputation, the GPU memory is idle. We can fill up the GPU memory by
selective offloading, leaving part of the model in GPU memory. In this way, the model can be
accelerated by reducing across-device memory copy. In our preliminary experiment, with the setting
of training a 48-layer 78B-parameter M6 model on 8 NVIDIA-V100 GPU devices, the step-time
costs 89 seconds when fully offloading the parameters into CPU memory. In comparison, granularly
offloading the first 24 layers into CPU memory and leaving the remaining 24 layers on GPU reduces
the step-time to only 45 seconds. The significant difference in training step-time indicates that the
time-cost of parameter movement between CPU and GPU will dominate the training step-time when
offloading is employed, thus the granularity of offloading and the utilization of GPU should be
seriously considered in extreme-scale pretraining. In addition, offloading the whole model can result
in OOM error in the CPU when the model is extremely large.

With Granular CPU offloading, we successfully implement a 10-trillion-parameter M6 model on
solely 512 NVIDIA-V100 GPUs. Furthermore, at the Pseudo stage, we can train a Pseudo Giant with
a computation graph of 10 trillion parameters only with 256 GPU devices without the utilization of
CPU memory for offloading. Thus in our practice, we train a Pseudo Giant with only 256 GPUs, and

8



Under review as a conference paper at ICLR 2022

Lo
g 

Pe
rp

le
xi

ty

Training Time (min)

M6-10T Real
M6-10T P2R

(a) M6-10T P2R vs. Real on time-basis

Lo
g 

Pe
rp

le
xi

ty

Training Samples

M6-T
M6-10T P2R

(b) M6-10T P2R vs. M6-T on sample-basis

Figure 4: The log perplexity of M6-10T Pesudo-to-Real (P2R) compared with baselines on time-
basis and sample-basis, respectively. (a) Compared with M6-10T Real on time-basis, M6-10T P2R
converges much faster due to the significant reduction of time-cost on offloading in the Pseudo stage.
(b) Compared with 1T-parameter M6-T model on sample-basis, though undergoing the Pseudo stage
which limits the model capacity, M6-10T still has an advantage in training sample efficiency.

then partition the experts and redistribute them to 512 GPUs. This saves the usage of GPU resources,
which is more resource-efficient and also more environmentally friendly.

4.3 ANALYSIS

Training Efficiency We pretrain the M6-10T with Pseudo-to-Real training strategy for around
10 days, and we additionally train an M6-10T from scratch without the strategy for around 3 days
for comparison. The Real stage training can be facilitated without Out-of-Memory errors with the
help of Granular CPU offloading, but its step-time is only around 180s. In contrast, the step-time of
Pseudo stage is only 14s without the cost of offloading, which greatly boosts the training efficiency
of M6-10T P2R. The M6-10T with P2R has been trained for 15k steps, but the one from scratch
has been trained for solely 1.3k steps. We record the log perplexity of both models trained on the
M6-Corpus on the time basis in Figure 4(a). Results show that within the same length of time M6-10T
with P2R can outperform the one trained from scratch by a large margin.

Convergence Analysis We have trained M6-10T with Pseudo-to-Real strategy for around 10 days,
and the model converges to a low level of log perplexity based on the upstream evaluation on the
M6-Corpus. For better comparison, we also show the convergence performance of the 1T-parameter
M6-T model proposed in the previous work. As shown in Figure 4(b), the observation is consistent
with our intuition that the model with a larger capacity can converge faster on the sample basis, and
it should achieve the best performance on language modeling. What leaves open is whether it can
positively lead to better downstream performance concerning different types of downstream tasks.
Finetuning extreme-scale models should be difficult and there is still much room for us to discover
the potential of extreme-scale models.

5 CONCLUSION AND FUTURE WORK

Pseudo-to-Real training strategy is a simple and effective way to train large-scale models that are
highly memory consuming, and it is also essential to training extremely large models with limited
resources with significantly higher training efficiency. We unlock pretraining unprecedented extreme-
scale models with 10 trillion parameters with limited resources of 512 GPUs in 10 days. Besides
the application of Pseudo-to-Real training strategy, we further provide Granular CPU offloading to
enhance GPU utility while breaking the GPU memory wall with a cost in efficiency. The advances
take a leap towards extreme-scale model training beyond implementation on limited resources. With
only a few GPU cards, training large models with tens or hundreds of parameters has become
accessible to many researchers. We believe that this can motivate low carbon dioxide production and
encourages the progress of green AI.

9



Under review as a conference paper at ICLR 2022

ETHICS STATEMENT

This work is highly concerned with large-scale language models and multimodal pretrained models.
These models have been pretrained on broad data of plain texts and image-text pairs, which might
contain harmful information, such as hate speech, terrorism, pornography, etc. We have put much
efforts to remove these kinds of data in our datasets by quality evaluation on texts and images.
However, this problem cannot be eliminated and ignored, and it is common in the pretraining
community. For those models that are not trained on commonly-used public datasets, we will
carefully release the model checkpoints before careful evaluation, and also limit the access to avoid
misconduct.

REPRODUCIBILITY STATEMENT

This work is generally reproducible. Following the description in Section 3, researchers can easily im-
plement the training strategy on the codebases for pretraining, including Huggingface Transformer 1,
Fairseq 2, etc.

REFERENCES

[1] Mandeep Baines, Shruti Bhosale, Vittorio Caggiano, Naman Goyal, Siddharth Goyal, Myle Ott,
Benjamin Lefaudeux, Vitaliy Liptchinsky, Mike Rabbat, Sam Sheiffer, Anjali Sridhar, and Min
Xu. Fairscale: A general purpose modular pytorch library for high performance and large scale
training. https://github.com/facebookresearch/fairscale, 2021.

[2] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin
(eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan, Harri
Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language
models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[5] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[6] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wen-
zek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov.
Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, ACL 2020, pp. 8440–8451, 2020.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapo-
lis, Minnesota, 2019. Association for Computational Linguistics.

1https://github.com/huggingface/transformers
2https://github.com/pytorch/fairseq

10

https://github.com/facebookresearch/fairscale
https://github.com/huggingface/transformers
https://github.com/pytorch/fairseq


Under review as a conference paper at ICLR 2022

[8] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin,
Xu Zou, Zhou Shao, Hongxia Yang, and Jie Tang. Cogview: Mastering text-to-image generation
via transformers. CoRR, abs/2105.13290, 2021.

[9] Jianbo Dong, Zheng Cao, Tao Zhang, Jianxi Ye, Shaochuang Wang, Fei Feng, Li Zhao,
Xiaoyong Liu, Liuyihan Song, Liwei Peng, Yiqun Guo, Xiaowei Jiang, Lingbo Tang, Yin
Du, Yingya Zhang, Pan Pan, and Yuan Xie. EFLOPS: algorithm and system co-design for
a high performance distributed training platform. In IEEE International Symposium on High
Performance Computer Architecture, HPCA 2020, pp. 610–622, 2020.

[10] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming
Zhou, and Hsiao-Wuen Hon. Unified language model pre-training for natural language un-
derstanding and generation. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Flo-
rence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 13042–13054, 2019.

[11] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

[12] Xianyan Jia, Le Jiang, Ang Wang, Jie Zhang, Xinyuan Li, Wencong Xiao, Yong Li, Zhen Zheng,
Xiaoyong Liu, and Wei Lin. Whale: Scaling deep learning model training to the trillions. arXiv
preprint arXiv:2011.09208, 2020.

[13] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[14] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

[15] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880,
Online, 2020. Association for Computational Linguistics.

[16] Junyang Lin, Rui Men, An Yang, Chang Zhou, Ming Ding, Yichang Zhang, Peng Wang, Ang
Wang, Le Jiang, Xianyan Jia, et al. M6: A chinese multimodal pretrainer. arXiv preprint
arXiv:2103.00823, 2021.

[17] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[18] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[19] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[20] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary,
Vijay Anand Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catan-
zaro, et al. Efficient large-scale language model training on gpu clusters. arXiv preprint
arXiv:2104.04473, 2021.

[21] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA
dataset: Word prediction requiring a broad discourse context. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1525–1534, Berlin, Germany, August 2016. Association for Computational Linguistics.

11



Under review as a conference paper at ICLR 2022

[22] David A. Patterson, Joseph Gonzalez, Quoc V. Le, Chen Liang, Lluis-Miquel Munguia, Daniel
Rothchild, David R. So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network
training. arXiv preprint arXiv:2104.10350, 2021.

[23] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative pre-
training. URL https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/
languageunsupervised/language understanding paper. pdf, 2018.

[24] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners, 2019.

[25] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and
Ilya Sutskever. Learning transferable visual models from natural language supervision. In
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, pp. 8748–
8763, 2021.

[26] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21:1–67, 2020.

[27] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
tions toward training trillion parameter models. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

[28] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-
infinity: Breaking the gpu memory wall for extreme scale deep learning. arXiv preprint
arXiv:2104.07857, 2021.

[29] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. arXiv preprint arXiv:2102.12092,
2021.

[30] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 3505–3506, 2020.

[31] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang,
Minjia Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model
training. arXiv preprint arXiv:2101.06840, 2021.

[32] Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, and Jason Weston. Hash layers for large
sparse models. arXiv preprint arXiv:2106.04426, 2021.

[33] Corby Rosset. Turing-nlg: A 17-billion parameter language model by microsoft. Microsoft
Research Blog, 2020.

[34] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green AI. Commun. ACM, 63
(12):54–63, 2020.

[35] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E.
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer. In 5th International Conference on Learning Representations, ICLR 2017,
2017.

[36] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanan-
takool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi, and
Blake A. Hechtman. Mesh-tensorflow: Deep learning for supercomputers. In Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, pp. 10435–10444, 2018.

12



Under review as a conference paper at ICLR 2022

[37] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. arXiv preprint arXiv:1909.08053, 2019.

[38] Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding, Chao Pang, Junyuan Shang, Jiaxiang Liu,
Xuyi Chen, Yanbin Zhao, Yuxiang Lu, et al. Ernie 3.0: Large-scale knowledge enhanced
pre-training for language understanding and generation. arXiv preprint arXiv:2107.02137,
2021.

[39] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding.
In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019.

[40] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architec-
ture. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp.
10524–10533. PMLR, 2020.

[41] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant,
Aditya Barua, and Colin Raffel. mT5: A massively multilingual pre-trained text-to-text
transformer. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 483–498, On-
line, June 2021. Association for Computational Linguistics.

[42] An Yang, Junyang Lin, Rui Men, Chang Zhou, Le Jiang, Xianyan Jia, Ang Wang, Jie Zhang,
Jiamang Wang, Yong Li, et al. M6-t: Exploring sparse expert models and beyond. arXiv
preprint arXiv:2105.15082, 2021.

[43] Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,
Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization
for deep learning: Training BERT in 76 minutes. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020.

[44] Wei Zeng, Xiaozhe Ren, Teng Su, Hui Wang, Yi Liao, Zhiwei Wang, Xin Jiang, ZhenZhang
Yang, Kaisheng Wang, Xiaoda Zhang, et al. Pangu-α: Large-scale autoregressive pretrained
chinese language models with auto-parallel computation. arXiv preprint arXiv:2104.12369,
2021.

[45] Minjia Zhang and Yuxiong He. Accelerating training of transformer-based language models
with progressive layer dropping. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

[46] Zhengyan Zhang, Yuxian Gu, Xu Han, Shengqi Chen, Chaojun Xiao, Zhenbo Sun, Yuan Yao,
Fanchao Qi, Jian Guan, Pei Ke, et al. Cpm-2: Large-scale cost-effective pre-trained language
models. arXiv preprint arXiv:2106.10715, 2021.

[47] Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su,
Haozhe Ji, Jian Guan, et al. Cpm: A large-scale generative chinese pre-trained language model.
AI Open, 2:93–99, 2021.

[48] Zhu Zhang, Jianxin Ma, Chang Zhou, Rui Men, Zhikang Li, Ming Ding, Jie Tang, Jingren Zhou,
and Hongxia Yang. M6-ufc: Unifying multi-modal controls for conditional image synthesis.
arXiv preprint arXiv:2105.14211, 2021.

[49] Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations
by watching movies and reading books. In 2015 IEEE International Conference on Computer
Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pp. 19–27. IEEE Computer Society,
2015.

13


	Introduction
	Related Work
	Approach
	Model Architecture
	Pseudo-to-Real
	``Pseudo'' Stage: Layer-wise Parameter Sharing
	``Real'' Stage: Delinking the Shared Parameters
	Timing for Switching

	Experiments
	Performance Evaluation
	Efficiency Evaluation


	Towards a 10-Trillion-Parameter Model
	Model Setup
	Granular CPU offloading
	Analysis

	Conclusion and Future Work

