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Abstract

Multiple types of inference are available for probabilistic graphical models, e.g.,
marginal, maximum-a-posteriori, and even marginal maximum-a-posteriori. Which
one do researchers mean when they talk about “planning as inference”? There is
no consistency in the literature, different types are used, and their ability to do
planning is further entangled with specific approximations or additional constraints.
In this work we use the variational framework to show that, just like all commonly
used types of inference correspond to different weightings of the entropy terms in
the variational problem, planning corresponds exactly to a different set of weights.
This means that all the tricks of variational inference are readily applicable to
planning. We develop an analogue of loopy belief propagation that allows us
to perform approximate planning in factored-state Markov decisions processes
without incurring intractability due to the exponentially large state space. The
variational perspective shows that the previous types of inference for planning are
only adequate in environments with low stochasticity, and allows us to characterize
each type by its own merits, disentangling the type of inference from the additional
approximations that its practical use requires. We validate these results empirically
on synthetic MDPs and tasks posed in the International Planning Competition.

1 Introduction

There are many kinds of probabilistic inference, such as marginal, maximum-a-posteriori (MAP), or
marginal MAP (MMAP) that are used in the planning as inference literature (Attias,[2003; Levine,
2018} Cui et al., [2019; Palmieri et al., 2022 Wu and Khardon, 2022)). In this work we show that
planning is a distinct type of inference, and that under stochastic dynamics does not correspond
exactly with any of the above methods. Furthermore, we show how to rank the above methods in
terms of quality as it pertains to planning.

Our approach is based on a variational perspective, which allows direct comparison between different
inference types, and to develop analogues of existing approximate inference algorithms for this
“planning inference” task. Given the “flat” Markov Decision Process (MDP) from Fig[I[Left], we
show that planning inference provides the same (exact) results as value iteration. Using an analogue
of loopy belief propagation (LBP), we show how to apply approximate planning inference to the
factored MDP in Fig. [T[[Right], which has an exponentially large state space, and for which exact
solutions are no longer tractable. Under moderate stochasticity in the dynamics, we show that this
approximate planning inference might be superior to other more established types of inference.

2 Background

2.1 Markov Decision processes (MDPs) and notation

A finite-horizon Markov decision process (MDP) is a tuple (X, A, p(z1),P, R, T), where X is
the state space, A an action space with cardinality NV, p(z1) the starting state distribution, P the
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Figure 1: Factor graphs: [Left] Standard MDP [Right] Factored MDP with sparse factor connectivity.

transition probabilities P(x11|as, 2+) (i.e., the dynamics of the process), R:(xt, at, x1y1) the reward
for transitioning from z; to x4 1 under action a; at time step ¢, and 7" is the horizon. For simplicity of
exposition we will consider discrete states and actions, but analogous results apply in the continuous
case. Solving an MDP corresponds to finding a policy 7 (a¢|z;) that maximizes the expectation of (a
function of) the sum of the reward at each time step. The optimal policy can be different at each time
step, i.e., non-stationary. We do not use a discount factor, but it can be trivially included in the reward
function, since it is also non-stationary. Policies, states and actions at all time steps will be noted

7 = {m(ale) iz = {w ], and a = {a,}/ 5"
In a state-factored MDP (factored MDP for short), each state x; factorizes into N, r.v. or entities

{xii)}f\;ﬁl, each with cardinality NV, so it has an exponentially large state space of size NV¢. Tran-

sitions factorize as P(z41|ar, 7)) = [[5 Pl 2", a;), where 20" is the subset of z; on

which $£21 depends, which we will assume to be small to allow for a tabular definition of the transi-
tion without exponential cost (pa(i) stands in for “parents of 7" ). For simplicity of notation, we will

assume that the reward of factored MDPs at each time step depends only on the current state, and for

tractability, that it can be decomposed in multiple additive subterms R;(x:) = Zfi";}:\il Rt(xfa(i)),
pa(7)
t

where z is a small subset of z; on which the (i — N.)-th reward depends, for a total of N,
reward subterms. As before, this allows for a compact tabular representation of the reward. Including
additional dependencies in the reward (on actions, or on the next state of an entity) is straightforward.

For a more comprehensive introduction to MDPs, refer to (Puterman, [2014}; Sutton, 2018).

2.2 Variational inference

Let’s consider running different zypes of inference in the unnormalizecﬂ factor graph shown in
Fig. [[[Left]. Marginal inference would compute the sum over all the «, @ configurations (the partition
function); MAP inference would compute the maximizing configuration (the posterior mode); and
marginal MAP (MMAP) inference (see Liu and Ihler, 2013) would find the assignment of a that
maximizes the summation over x conditional on that a. Although marginal, MAP, and MMAP
inference are distinct, a lot is shared. They all target a “quantity of interest” (e.g., partition function,
maximum probability state, best conditional partition function); they all produce a distribution as a
result of inference (respectively, full posterior, delta at the mode, best conditional posterior); naive
computation requires a number of summations and/or maximizations exponential in the number
of variables; and finally, they can all be represented as a variational inference (VI) problemﬂ The
VI representation naturally leads to efficient message-passing solutions and approximate inference
algorithms, as we show below.

For the factor graph f(z, a) from Fig. Left], the VI problenﬂis MaXy (g, q)(l0g f(x,a))q(z,a) +
H;™(x,a) where q(x,a) is an arbitrary variational distribution over the variables of the factor

!Just like in undirected graphical models, the different types of inference are well-defined despite lack of
normalization. Tablem shows the precise definitions including two reasonable definitions of marginalization.

>We assume familiarity with variational inference, see (Jordan et al.,|1999) for an introduction.

*In this work we will use the standard VI notation for expectation, where E,(,[-] is written as ()¢ ().



Table 1: Different types of inference from a variational perspective, including a proper “planning”
inference type. They all share the same energy term E'(q) defined in Eq. (3), and differ only in the
entropy term. The closed-form expressions provide the optimal value of the bound, but are generally
intractable. The general tractability of the bound maximization for MDPs is marked in the Tr column.
All bounds are monotonically related, and listed in descending order, except the last two, whose
relative ordering only applies when dynamics are deterministic. See Section[d.T|for details.

Type of Closed form for quant. of interest Entropy term H""(q) for variational bound  Tr
inference F = maxq F(q) Fx(q) = 5 (—Ex(q) + H*™(q))

Marginaf] 1 log dea P(z|a)er (@) Hy(z1) + ZtT:_ll Hy(zey1, atlxe) v
Planning 1 maxy log(eM ™) b laynaley  Hq(w1) + Zt | Hy(zig1]ae, ze) v
M. MAP L max, log 3, P(z|a)e ™) Ho(z1) + 3,5 Hy(weg1, aewe) — Hy(ar) X

MAP 1 maxz q log P(z|a)e AR(@,a) 0 v
Marginal” 1 log Yea P(:c\a) LM @a) g () + )5 (He (w41, al ) — log No) - v

graph, the term —(log f (&, @)) (x,q) is known as the energy term, and Hg™(z, a) is a particular

entropy choice that will determine the inference type. It is a standard result, (e.g., Jordan et al.,
1999) that using the Shannon entropy H,(x, @) results in marginal inference. Setting it to zero (aka
the zero-temperature limit) corresponds to MAP inference (Weiss et al.,|2012; Sontag et al., 2011}
Wainwright et al.,[2005} Kolmogorov, 2005; Martins et al.,|2015)). Setting it to the conditional entropy
H,(xzla) = Hy(x,a) — Hy(a) results in MMAP inference (Liu and Ihler, 2013). Note that the only
difference across VI problems is the weighting of the entropy terms.

Despite the similarities, the computational complexity of these types of inference can differ signif-
icantly, even for tree-structured graphs. In particular, the entropy term for MMAP is not concave,
and inference is NP-hard (Liu and Ihler, [2013)), whereas for marginal and MAP inference the entropy
term is concave (the energy term is always linear), and inference is polynomial.

3 Methods

In this section we introduce our VI framework, which we will use to derive a novel linear programming
formulation of planning problems, a novel value belief propagation (VBP) algorithm and a novel
closed form (sampling-free) approach to determinization.

3.1 VI for standard MDPs

The main quantity of interest in this paper is the best exponential utility, which we will refer to simply
as the utility. Given an MDP with horizon 7" and a risk parameter A > 0, the utility is defined as

T—1 T-1
Fflannmg X logmaXZeXp ()\ Z Ri(zt, ap, @yyq )P(ml) H P(zii1]ae, z)me(aze) (1)
t=1 t=1

1
= 5 max log(exp(AR(z, @))) P(|a)r(alz);

where P(xz|a) = P(x1) HtT;ll P(zy1]|ae, xt), R(x,a) = 23:11 Ri(zy, at,x441), and 7(a|x) =
[T molanlae).

Observe that we can always set A — 07 to recover the standard planning setting in which we seek the
best expected additive reward, so here we are tackling a strictly more general case. To be precise, if

we take the limit FP"® = limy o+ FP*™ = max, (R(, @) p(z|a)r(alz) Marthe et al., 2023).

The motivation for the introduction of A is two-fold. On the one hand, by using a more general
formulation of the reward, we can trade off between risk-neutral (A — 07) and risk-seeking (A > 0)

“Two types of marginal inference are included for precision. “Marginal” refers to marginal inference directly
applied on the same exact factor graph as the other types of inference. Because the factor graph lacks a prior
over a, it is not a properly normalized joint distribution. Adding a uniform prior over the actions resolves this
and results in “Marginal””. Both are a constant apart and are of independent interest.



policies, adding a tunable parameter that makes the model more flexible, see (Marthe et al., 2023}
Follmer and Schied, 2011} Shen et al., 2014) for more details. On the other hand, it allows us to
express the expected reward as a proper factor graph: note that Eq. (T) can be expressed as a product
of factors involving not only the dynamics terms, but also the reward terms, allowing us to write it
as FPAMNE 3 logmaxy Y , f(z,a)r(alz), where f(x,a) is the factor graph of Fig. Left].
This factorization would not have been possible if we had simply used an additive reward. But at the
same time, notice that we are not losing generality, since the additive reward case can be recovered
by setting A — 0T. Alternatively, we could have achieved a factorized model by introducing an
additional latent “selector” variable connected to all the rewards, but this would complicate our
upcoming formulation and analysis. Furthermore, this formulation allows us to encompass prior work
on planning as inference that uses A > 0.

We can turn this new quantity of interest, the utility, into the solution of a VI problem on the factor
graph of Fig.[[[Left]. Crucially, the factor graph includes the known dynamics and rewards terms,
but not any policy term, since the policy is the outcome of inference.

Theorem 1 (Variational formulation of planning). Given known dynamics P(x¢11]|at, x¢), an initial

distribution P(x1) and reward functions Ry(xy, ay, x¢41), the best exponential utility F fla'mmg from
Eq. (1) can be expressed as the result of a concave variational optimization problem

Fﬁ\;lanmng _ mgx Fg\;lannmg(q); Fg\)lannmg(q) _ X(_E)\ (q) T H[’lannmg(q)) 2)
with energy E\ (q) and entropy Hl’lanning(q) terms
T—1
Ex(q) = —(log P(¢1))g(er) — ) (l0g P(&e41lar, @) + ARe(e, ar, @e41))gon s 00,00)
t=1
3
T—1
HPms(q) = Hy(ey) + ) Hy(2es|as, z) @
t=1

where q = q(x, a) is an arbitrary distribution over the space of states and actions.

Proof is in Appendix [A] This entropy thus corresponds to “planning inference”. The optimal policy
at each time step corresponds to the optimal variational distribution g(a¢|x;). Table [I|lists the
types of inference problems and their associated entropies (see Appendix [Hfor their derivation and
corresponding references). As we will discuss in Section[d] they display a monotonic ordering (in
almost all cases).

The VI problem Eq. () reduces to the standard one when A = 1, and extends VI in a meaningful
way in the presence of rewards, regardless of the type of inference used: rewards interact in an
additive way when A\ — 07, rather than the default multiplicative (or more precisely, exponentiated
summation) interaction of A = 1. Furthermore, it turns out that it is possible to take the A — 0% limit
exactly, to obtain the dual LP formulation of an MDP (Puterman, 2014)).

Corollary 1.1 (Additive limit). In the limit A\ — 07, the concave problem Eq. (2) becomes the
following linear program (LP):

T-1

planning planning _ 2 :
F}\_}OJr = max F>\_>0+ (q) = max _— <Rt (SCt, G, xt+1)>P(mt+1Iat,wp)q(wma:)

q {Q($t7at)}t:1 t=1

s.t. q(z1) = P(z1); Z q(Tt41, a41) = Z P(xii1lag, x¢)q(we, ar) Vi

at4+1 Tt,at

q(z) = gl ar) V5 gl ar) > 0V,

at

Fplanning

which corresponds to the maximum expected reward FY"[\"® = maxy (R(x, a)) p(z|a)r(a|z)-

See Appendix |B|for proof.



3.2 VILP and VBP for factored MDPs

Factored MDPs (e.g., Fig. [[[Right]) are loopy factor graphs with an exponentially large state space,
so the previous approaches cannot be applied directly. An effective approximate marginal inference
approach for this type of problem is loopy belief propagation (LBP). Since planning is now seen as a
type of inference, we can create an analogue to LBP which we call value belief propagation (VBP).

Following LBP, we make two approximations to Eq. (Z) to make it tractable.

First, we replace the variational distribution g with pseudo-marginals §. Eqs. (3) and @) never
access the full joint ¢(«, a), but only the local marginals of each factor. Pseudo-marginals are the
collection of such local distributions, consistent at each variable, but not necessarily marginals of any
distribution. Just like g is defined in a convex region called the marginal polytope M, q is defined in
an outer convex region called the local polytope L that contains M (Weller et al.,[2014).

Second, we replace the entropy HPRming () with its Bethe approximation

Ne+Ny
H™ (@) ZH +Z(ZH ATENOED DR AT

=1

where Iq(xlt)a(z)) 2 kepa(iy Hal@ (k)) H, (xlt)a( )) is the mutual information of the parents of It+1’
see Appendix [C] for details. This approximation is tractable as long as the factors (transition and
rewards) are tractable, typically by connecting to a small number of parent variables. Note that the
policy (which would connect to all the state variables in a time slice and introduce exponential cost)
is not a factor in the graph.

The term Iq(:c‘t’a(l)) is key. It always non-negative but neither concave nor convex in general and
can be interpreted as the mutual information correcting the discrepancy between (a) the entropy of
a collection of variables considered independently (as the output of the previous time step) and (b)
the entropy of the same collection when considered jointly (as parents for the current time step). It
makes the optimization problem harder, but also more accurate.

For non-factored MDPs, I, («} pai )) = 0and g = g, so we recover Eq. (2). In general factored MDPs
this is not true. We can st111 choose to ignore this correction to obtain a concave bound

T—1 N
HRleming (g ZH NI Hy(af) |25 ) > Hpsw™ (). )

t=1 i=1
Then, the planning Bethe approximation of the variational bound and its concave upper bound are

~ lannin ~ Slanning ; ~ ]. nnin; ~
FREE = moxc Y (@) = max 3 (~Bx(@) + Hpaie (@) st G € £ ©

Frplanning
F by concave

= max F{*""(q) = max %(—EA( 7) + HOwwe(§)) st Ge L. @)
We see that FPO™0E > fPIaming o q prplmning > pplannine “The former is trivial given the negative
term removed. The latter follows from (a) switching the optimization domain from M to £ O M,
which can only increase the value of the bound, and (b) Eq. (3) corresponds to Eq. @), but with joint
entropies over entities replaced with sums of the entropies, which is an upper bound. The fact that
FP™" () is concave and upper bounds the exact utility has two advantages: it can be computed
without local minima problems, and it is an admissible heuristic of the original utility, meaning that it
can be used as a heuristic for algorithms that emit a certificate of optimality or infeasibility.

Lemma (Additive limit for factored MDPs). In the limit A\ — 07, the concave problem Eq.
becomes the following VI LP:

Ne+N,

Z 2 ))>Q(m‘ia(i))

A—=0Tt G A—01

T
I ! 2 :
Fp anning = max Fp annmg max
E ——

=Pl vi;, ger

Z P('rgil xf“( )7 t)q(xi,a(i)7at) v‘ri(:glvt? 1 S 1 S Ne
wqa(i),at

s.t. gz

‘J(IEL)



which upper bounds the max. expected reward F fli"gilg > F/’\’Tgi”g = max, (R(x, a)) p(z|a)r(a|z)-

Alternatively, the same expression can be obtained from Corollary [I.1| by relaxing the marginal
polytope into the local polytope. Since it is a relaxation, the upper bounding is trivial.

To the best of our knowledge, this is a novel VI LP formulation and it can be used to tractably (over)
estimate the optimal expected reward in factored MDPs. Similarities with (Koller and Parr, |1999;
Guestrin et al.,[2003)) are only surface level, see Section E}

EPR0e () from Eq. (7) can be maximized with a conic solver (or an LP solver if A — 07). The

non-concave Ffla”m“g(d) from Eq. (6) is more challenging. Conveniently, Fflam”g((j) looks just like
the Bethe free energy that motivates LBP, but with a different weighting of the local entropy terms.

Multiple works consider modifying the entropy weighting in LBP, usually with the aim of “con-
cavifying” the overall entropy term and developing convergent alternatives to LBP. In particular,
(Hazan and Shashua, [2010) provide fixed-point message updates for arbitrary entropy weights. For

the specific weighting of HE"" () the message updates approach a singularity, which we will

avoid by using (1 — ) HEAM™ 2 (§)) 4 e Hy2" (). The resulting message passing algorithm updates
are well-defined for any € > 0, interpolate between “planning inference” and marginal inference, and
can get arbitrarily close to the former by making e — 0. This smoothing is not just a mathematical
convenience, but we prove that it exactly corresponds to MaxEnt RL in Appendix[E See (Liu and
Ihler,|2013) for an analogous technique with the same purpose (but without this nice interpretation).

VBP inherits many of the properties of LBP: the message updates are not guaranteed to converge, but
if they do, they do so at a fixed point of Eq. (6). Convergence can be improved by the use of damping
and annealing. The precise message updates for the general case are provided in Appendix

Computation associated with VBP scales as expected, O(T' (Zf\il N, NP+ +ZZN=TN N Jpath| ).
where N., N, N,, N have been defined in Section[2.1} Note that the derivation is straightforward.
Each VBP iteration involves computing message updates for each factor in the graph. The cost is
dominated by the blue factors (N, of them per time step) and green factors (/V,. of them per time step)
in Fig.|I[Right]. There are a total of 7" time steps. And finally the number of possible configurations

is N, NP for blue factors and NP for green factors.

3.3 VBP for standard MDPs

It is instructive to look at the VBP updates for a standard, non-factored MDP. In this case, it is
possible to take the limit ¢ — 0" and get well-defined updates. For A = 1 and a single reward at T’
Backward updates: my(z7) = e77); my (2,) = max Q(24, ay);

Forward updateS: mf(xl) = P(‘Tl)v mf(xt-‘rl) = Z p(xt+1|17t, at)éat,argmaxaé Q(It,a;)mf(xt)

Tt,at

Optimal dist.: q(2¢11, L4, ar) o< M (Z41)P(Te41 [0, 01)0a, argmax,; Q(reap)Mi(Tt)

where Q (x4, a¢) = me,“ M (@41)p(T441|2e, ar) and 0 1, is a standard Kronecker delta that equals
1 when j = k and O otherwise. Iterating these updates converges in a single backward and forward
pass to the global optimum. The backward messages correspond to the value function (hence the
name VBP), and the familiar intermediate quantity Q(z+, a;) matches the Q-function. The forward
messages correspond to occupancy probabilities under the optimal policy. Thus, in a non-factored
MDP we recover the standard Bellman backups, implementing value iteration and providing the
exact solution. The same happens, conceptually, in a factored MDP, but only approximately, with the
forward messages helping to determine where the backward approximation should be more precise.

3.4 Determinization in hindsight

The previous presentation implies that all VI tricks are now applicable to planning. As an example,
we can show that for determinization (Yoon et al.,|2008)) (a technique from the planning literature
to extend deterministic planning algorithms to stochastic domains, and that is usually computed via
sampling), we can obtain a precise upper bound as the solution of a tractable concave problem.



To be more precise, we can compute Fyo"P*"™"¢UB (for MDPs) and Fy= P U8 (for factored
MDPs) as a concave optimization problem (avoiding sampling) when the inner deterministic planning
problem is solved with an LP MAP relaxation (exact for MDPs). Additionally, we can prove that for
factored MDPs FPRne < prletPlamine UB (¢ e superiority of the bound introduced here wt this
determinization upper bound in the case of factored MDPs). See Appendix [H]for further details.

4 The different types of inference and their adequacy for planning

4.1 Ranking inference types for planning

As we show in Section[5] the term “planning as inference” has been used in the literature to refer to
different inference types, none of which corresponds, to the best of our knowledge, with the “planning
inference” from this work, which is exact. Table[T]associates each type of inference to a corresponding
lower bound on its quantity of interest. Turns out that by inspecting the entropy term (since the
energy is the same for all of them), we can also relate those lower bounds to one another for a given

MAP
FA (q) < FMMAP( ) < Fplanning( ) < Fmarginal( )
FmarginalU (Q) = TA q) = ) q) = Ly q)-
A
This in turn means that for the optimal variational distribution of each type of inference we have
FMaP

U
marginal
Fy

variational distribution g, resulting in

} < F;\\/[MAP < F;\)lanning < F;\narginal. (8)

See Appendix [G] for proof. VI aims to maximize a lower bound on the quantity of interest, with
tighter bounds generally indicating better performance. Since MMAP is, among the lower bounds,
the tightest, it follows that MMAP inference is expected to be no worse and potentially better than all
other common types of inference. However, as noted in Section [2.2] MMAP inference is particularly
hard, even in trees, meaning that in the case of a non-factorial MDP like the one in Fig. Left],
the computation of FMMAP i intractable, even though all the other quantities, including the one

of interest, Ff\’lammg, are exactly computable. What we can tractably compute is the lower bound

FMMAP(g) < FMMAP and try to maximize it wrt g, but without guarantees of finding the optimal
value. Thus, among the common inference types, MMAP seems a better choice, but it is either
intractable or, if using VI, can run into local minima problems. This seems more acceptable in the
factored MDP case, but it is disappointing that the problem persists for standard, non-factored MDPs.

4.2 The stochasticity of the dynamics is key

The energy term Eq. (3), which is common to all inference methods, contains subterms
(log P(w¢11las, ) q(werr ae,a0) (@nd (log P(21))q(z,) for the first state). When dynamics are deter-
ministic (which we assume to also imply that P(z1) is deterministic, i.e., the first state is known), this
forces the optimal variational conditional to be g(x¢41|as, x¢) = P(xt41]at, x¢) (and ¢(z1) = P(xq)
for the first state), since any other choice would make those subterms, and therefore the bound, —oco.
This affects the relationships of the quantities of interest, which are now (proof in Appendix [G):

AU . .
marginal MAP __ [sMMAP __ g-planning marginal
Ey < FYY = FY =Fy < Iy

)

and justifies the use of MAP and MMAP inference as planning when dynamics are deterministic.
When using approximate inference, if dynamics are close to deterministic, it might make more sense
to choose the type of inference based on the quality of the approximation, rather than its tightness. If
dynamics are stochastic, the suboptimality of MMAP can be explained as a lack of reactivity to the
environment. Indeed, if we reduce the planning problem to a non-reactive policy 7(a¢|z:) = 7(a:)
we recover MMAP inference as optimal. We test this experimentally in Section [6]and further expand
on it in Appendix [[.2} MAP has the same problem, but additionally lacks integration over observation
sequences (“trajectories”). Even with deterministic dynamics, marginal inference might not produce
good utility estimates, but its action posterior will be proportional to the reward of the action sequence,
so if we additionally assume exp(AR(x)) € {0, 1} (i.e., pure planning where we want to attain any
of a subset of states), it will produce optimal planning choices. Interestingly, our framework also
shows that marginal inference is exact for a generalization of MaxEnt planning when the policy
entropy regularization is set to o« = 1/, regardless of stochasticity, see Appendix



5 Related work

As stated, the meaning of “planning as inference” is uneven across the literature. (Toussaint and
Storkey, 20006) introduce the policy in the MDP factor graph and maximize the likelihood wrt to
its parameters using EM. This is an exact approach, although it is more appropriate to say that it is
planning as learning rather than a type of inference, since the EM process updates the parameters of
the factor graph and inference typically operates on a graph with fixed parameters. (Levine, 2018)) is a
well-known reference that considers MAP inference for standard planning and marginal inference for
MaxEnt planning (Ziebart,[2010). Both are exact only under deterministic dynamics. This problem is
not addressed in the case of standard planning, but it is pursued for MaxEnt planning. To achieve exact
MaxEnt planning under stochastic dynamics, a modified marginal inference procedure is provided. It
can be seen as structured variational inference where q(2¢41|2+, ar) = P(x¢41|2t, at) is forced. With
the right smoothing, our VBP corresponds to MaxEnt planning, and extends this modified marginal
inference to the factored case, see Appendix @} (Cui et al.,|2015)) introduces ARollout, which can
be seen as running a single-forward-pass LBP to approximate marginal inference for each possible
initial action, and then choosing the highest scoring initial actiorE], and is applicable to factored MDPs.
In the follow-up works (Cui and Khardon, |2016; Cui et al.,|2019) the authors develop conformant
SOGBOFA, which approximates marginal-MAP inference by using ARollout in an inner loop and
gradient descent to optimize over the action prior in an outer loop. A number of refinements are
added for superior performance. This is a strong baseline and was the runner-up in the international
probabilistic planning competition (IPPC) 2018, which agrees with our analysis from Section[4] (Lee
et al.,[2014; Lee et al.,2016) provide initial results on the connection between conformant planning
and MMAP inference. Many works, such as (Attias,|2003)) choose MAP inference for planning.

Two frameworks (Palmieri et al., 2022; Wu and Khardon, [2022)) have been recently introduced to
analyze planning from a message-passing perspective. The former analyzes six update rules and
their qualitative effect on the plans; the latter focuses on disentangling the inference directiorﬂ
(either forward —from causes to outcomes— or backward —from outcomes to causes—) from the
approximation type. This work provides two novel message-passing algorithms for factored MDPs:
MFVI (mean field VI) and CSVI (collapsed state VI), using the planning tasks from IPPC 2011 as
benchmark. We will compare with their results in Section [6]

Influence diagrams (Matheson, [2005}; Shachter, 2007)) are used to represent general decision problems,
and various approximate inference approaches have been developed, e.g., (Lee et al., [2018; Lee

SIf the choice of initial action is included in the inference process (rather than in an outer loop), it becomes an
MMAP problem. However, this is a “degenerate” MMAP problem with a single maximization variable. To show
this degeneracy, consider a non-factored MDP. Exact ARollout is tractable in the non-factored case. In contrast,
exact SOGBOFA is not tractable even in the non-factored case because it maximizes over all decision variables.

SNote that the term inference direction may be misleading: the authors establish a direct equivalence between
forward and MMAP inference, and between backward and marginal inference, regardless of the direction in
which messages are passed or any other considerations (R. Khardon, personal communication, Oct 2024).
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Figure 2: Performance of different types of inference on factored MDPs as a function of their level of
stochasticity (normalized entropy). [Left] Estimation error of the best utility. Lower is better. [Right]
Advantage of the next action prescribed by a method vs. optimal planning. Higher is better.



et al.,[2020). Closest to our work, (Cheng et al., 2013} Chen et al.,[2015) tackle graph-based MDPs,
similar to factored MDPs, but with a factorized action space: multiple actions are taken at each time
step, each locally affecting a single entity. This locality results in additional efficiencies, so direct
application to a state-only-factored MDPs would still result in exponential cost.

LP formulations for the solution non-stationary, finite-horizon MDPs have received significant
attention over the last decade (e.g., Kumar et al.,2015; Bhattacharya and Kharoufeh, 2017; Altman,
2021; Bhat et al.,[2023)), but they lack a variational perspective and do not generalize easily to handle
state-factored MDPs. The LPs in (Koller and Parr, [1999; Guestrin et al.,|[2003; Malek et al., 2014) on
the other hand do handle factored MDPs and have a closer connection to our work. The problem setup
is slightly different, infinite-horizon MDPs with a stationary policy in their case vs our finite horizon
MDPs, which allows us to use local non-stationary policies. More importantly, their computational
cost can be significantly higher than in this proposal. E.g., (Guestrin et al.,[2003| Section 4.2.1) states
that the cost is dependent on the variable elimination order. In the optimal case (which is NP-hard to
find), it scales exponentially with the width of the cost network, which is based on the dependencies
between entities, and can be much larger than exponential in the number of parents (our case).

6 Empirical validation

Synthetic MDPs  We generate 5, 000 synthetic factored MDPs structured as in Fig. [[[Right] with
random dynamics, all-or-nothing reward at the last time step, and controlled normalized entropies,

I(i) Tt,At . .
ZT&“;VZE,%C *lggl ‘N D ¢ [0,1]. See Appendix for more details.

defined as Hypp =

They are purposefully small so that we can compute [marginal” | IMAP - IMMAP - poplanning exactly,
even though they are intractable in general. We also compute F™¥€na (tractable), and FMMAP
(tractable bound, generally intractable optimization), which correspond to ARollout (Cui et al.,2015)
and optimal SOGBOFA-LC* (Cui et al., |[2019)), respectively. Finally, we include VBP (tractable,
imperfect optimization of FP#"i"¢(g)) and the tractable VI LP F?“2" and VI CVX FP"e,

Fig. 2 shows the effect of stochasticity in the estimation of the utility [Left] and the next best action
[Right]. For high stochasticity, VBP, even if approximate, dominates all other types of inference.
The concave upper bounds Ffli%m”g and FP™" also improve over exact MMAP but not as much
as VBP. For low stochasticity, exact MAP and MMAP dominate VBP. The (intractably optimal)
SOGBOFA-LC* remains close to the exact MMARP. These results agree well with the theory and
observations laid out in Section [d] We see good correlation between the accuracy of the utility
estimation and the quality of the planning choices ([Left] and [Right] panels). ARollout and exact
marginal seem to be an exception to this; this is explained in Section[d.2} for pure planning problems,
with low stochasticity both methods are a constant away from the right utility and make good choices.

Reactivity avoidance We craft a multi-entity MDP in which the agent controls the level of reactivity
(see Section @]) needed to solve the environment, but is penalized for lower ones. VBP keeps the
reactivity at a maximum, to achieve a reward of 1. SOGBOFA-LC* “aware” that it cannot plan
reactively (despite replanning), takes step to reduce it, getting a reward of 0.33. See Appendix

International probabilistic planning competition tasks (IPPC) We follow (Wu and Khardon,
2022) and compare on the same tasks and with the same methods. We use the 6 different domains
from IPPC2011, each with 10 instances (factored MDPs) of increasing difficulty, with given dynamics
and (stationary) rewards, 40-step episodes, and mildly stochastic dynamics. As baselines, we use
~ . U

MFVI-Bwd (Wu and Khardon, 2022)), CSVI-Bwd (Wu and Khardon, [2022), ARollout (F;\":gmal ,
see Cui et al., 2015), and SOGBOFA-LC (F}\V%AP, see Cui et al., 2019). We provide details about
these competing methods in Appendix From our proposed variational framework, we use[] VILP
(EPe) and VBEf] (F72e).

Fig. 3] shows the average cumulative reward for all domains and methods. Four domains are highly
deterministic (Hypp < 0.05), but planning inference manages to be competitive wrt the best baselines.

"Code athttps://github.com/google-deepmind/what_type_of _inference_is_planning,
8Setting A = 0 can result in degeneracy problems, so we use a small value instead, see Appendix


https://github.com/google-deepmind/what_type_of_inference_is_planning
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Figure 3: Cumulative rewards on 6 problem domains from the ICAPS 2011 IPPC. A small horizontal
jitter was introduced in all data points for visual clarity. Each cumulative reward is averaged over
30 simulations per instance. Datasets are ordered from left to right and top to bottom by increasing
normalized entropy levels. Only the last two have a significant stochasticity level >5%.

The other two are Game of Life and SysAdmin, which have an average Hypp of 0.18 and 0.23
respectively. We notice a significant advantage of our proposals wrt the most sophisticated method,
SOGBOFA-LC (FYMAP) This is consistent with our expectation of MMAP degrading with increased
stochasticity (see Section[d). Elevators is well known for its challenging rewards (Cui et al.,
and the only one for which ARollout performs noticeably worse. In this domain, VBP manages to
match or exceed SOGBOFA-LC on most instances. Overall, we observe that VBP is more consistent
across varying stochasticities, matching the performance of the best method for each dataset. None
of these domains reach the larger stochasticity levels shown in Fig. 2] where VBP dominates. VI LP
also performs generally well, although not as well as VBP due to the missing mutual information
mentioned in Section[3.2] See Appendix [[.3]for details.

7 Discussion

The variational framework offers a powerful tool to analyze and understand how different existing
types of inference approximate planning, the key role of stochasticity, what the ideal type of inference
for planning is, and how to design new approximations. We hope that the introduced VI perspective
will further the understanding of existing methods and lead to novel planning algorithms.
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A Proof of the variational formulation of planning

In this proof we will use two identities, the first is the variational identity (Jordan et al.,|1999):

log»  f(,a) = = max (log f(2,@))g(a.a) + H(4(@, @) ©9)

x,a

and the second is

maXZ )log w(a) = max —H(q(a)) — KL(q(a)||r(a)) = Y q(a)logg(a), (10)

m(a) -

which follows because the term 7(a) is an arbitrary distribution that can make the KL divergence
exactly zero (by choosing 7(a) = ¢(a)). With this we can proceed to the main proof:

T—1 71
i 1
F/I\ﬂannmg =3 mgxlogZexp ()\ Z Rt($t>at,$t+1))P(Z‘1) H P(zii1|as, xe)me(adlze)
@ t=1 t=1
Eq. @ 1 1
q- —max<10g (P(m) H exp()\Rt(xt,at,xtﬂ))P(a:tH\at,xt)m(at\xt)» + H(q(z, a))
A t=1 a(a.a)
1 T—-1
=5 max (= Ba@) + Hlgl@ @) + 3 log (a2 o)
1 T—1
:X InéiX ( — E)\(Q) + Hq(l’l) + Z Hq(xt+17at|xt) + <H;—ax<10g ﬂ-t(a’t|xt)>q(at\mt)>q(mt))
t=1 t
Ei @ T-1
q.( ax ( — Ex(q) + Hy(x1) + Z Hy(41, ailwe) + ((log q(at]|2t)) g(ar|zr)) (It))
t=1
1 T—1
:Xmax(fEA( )+H I +ZH xt+17at|xt) (at‘xt))
! t=1
1 . )
:X max ( — EA(Q) + leannlng(q)) — max Fi)lanmng(q),
1 q

where we additionally see that we have chosen 7 (a¢|x:) = q(a¢|z), therefore, the optimal policy
will be 7 (a¢|z:) = q*(ai|z;) where ¢* is the value of ¢ that maximizes Fpl‘m“‘“g(q)_

B Proof that for A — 0 the variational bound turns into an LP

Let us rewrite the concave optimization functional Eq. (derived in Appendix [A) by combining the
energy and entropy terms into KL divergences:

i 1 nnin 1
Y (q) =5 (= Bx(q) + H'™¥(q)) = £ ( = KL(g(a1)||P(x1))
T-1
— Y (KL(g(@isa]ee, an) || P(@ralee, ar)) gger.an) + AR (@0 a1 2041 g(an e, at))
=1
T—
Z Rt mtyatyxt+l)>q(act+1,zt,at)
=1
 KL(g(@1)||P(21)) + 35 (KL(g(@ep 21, a0 [[P(@r1]20, 00)) g(arna)
A
It is clear that if any of the KL terms are larger than 0, then lim,_,+ FP*"™"(q) = —oo (for bounded

rewards), whereas if all KL terms are O, the limit is finite. That means that to maximize the bound
wrt g in the A\ — 0T limit, we will choose g(x1) = P(x1) and q(xs11|7s, ar) = P(wei1|2e, az),
which allows to remove the KL terms and results in the (constrained) LP optimization of Corollary
(which also explicitly includes the marginalization constraints g € M).
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C Derivation of the planning Bethe entropy for factored MDPs

The standard Bethe entropy of a factored MDP (Yedidia et al.,[2003)), such as the one in Fig.[4] is:

N. T-1 N. _
leanei;ima](q) = ZHq(x:(ll)) + Z (HBethe(th,at) - Z Hq(xz(tZ))
=1 t=1 =1
N, _
+ Z H (xvgzzlv xgd(l)v at) - Hq(mgd(l)7 at)>7
i=1

where we use z} Pa(0) 1o refer to the * ‘parent” variables. To simplify notation, when: € 1,..., N, xﬁa(i)

is the collection variables on which the distribution of xi _21 depends according to the dynamlcs model,

but wheni € N. +1,...,N. + N,, xt Pa(?) js the collection of variables on which the (i — N,)-th
reward depends. See also Fig. [d]for clarification on the notation of parents of dynamics and rewards.

The Bethe entropy above was defined, for conciseness, in terms of the Bethe entropy of a subset of
the variables in a single time slice (current state and action, but not next state):

N, Ne+N,
Hpene(drp,0,) =(1 = NeYHy(ar) + 3 Hy(al" P a) + Y Hy (@)
=1 i=Ne+1
Ne+N, N, .
-3 T me e )
=1 kéepa(i) =1
Finally, the Bethe entropy of the states of factored MDP is
N. Ne+N,
~ i i k
Hoene@en) = 3 Hofal”) + 3 (M@ = > By
i=1 =1 kéepa(i)
N, , Ne+N,
=Y Hy(w) = Y L)

(@)

pa(i)) is the mutual information among the parents of variable x; /.

where I, (x;
Note that all the Bethe entropy definitions are linear combinations of standard Shannon en-
tropies defined over subsets of variables in the factor graph. The subsets are defined by the
factor graph, as groups of variables connected by the same factor. The idea of the Bethe en-
tropy approximation is to sum the entropies of all such subsets and then discount the “over-
counted” entropy corresponding to variables that appear in multiple subsets. The pseudo-marginals
qg= {q(xﬁjl,xlga“ Lap) fl Li=Ne U {g(a? pa( )) Zf::f\\t:f\“ are all the local distributions that
correspond to each factor. The pseudo- marglnals are locally consistent at the variables, i.e., two
pseudo-marginals that contain the same variable should provide the same marginal for that vari-
able. However, there is no further need for consistency, and in particular, they do not need to
correspond to the marginals of global joint distribution. The (convex) domain of pseudo-marginals
contains the (also convex) domain of the marginals, but it is larger, so switching from marginals to
pseudo-marginals in any optimization problem relaxes it and provides an upper bound on the original
optimization problem. See (Weller et al., 2014) for more details. For convenience, we have also

defined some subsets of the pseudo-marginals: Gz, o, = {g(z5*™, a,)}=N U {q(x pd(r)ﬂi%ﬁii\h
and g, = {g(a}") 2

Since the planning entropy is a linear combination of the standard entropy of the factor graph
H™einal(q) and two local entropies per time step, we can simply approximate each Shannon entropy
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by its corresponding Bethe entropy to get the Bethe planning entropy

leanning(q) _ Hmarginal(q) + Z Hq(xt) — Hq(xt,at)

T-1
~ H];nei]rinal + Z HBethe qu) HBeme(qxt,at)
t=1
Ne Ne Ne+N,
’L a(z lanni
=3 Haal?) + Z (Sl ) = 3 1)) = M@,
= i= i=1

Note that we sometlmes use the superscrlpt marginal for consistency with the main text, but the
marginal entropy is simply the standard entropy so that superscript can be safely dropped.

D Value BP message updates

We are interested in optimizing the cost function
1 1 1
Jmae (= EA(@) + cHE™ (@) + (1 - ) HEG™ (@)

As we saw in Appendixl H>eml () and HE™"2 () are linear combinations of local entropies
over small subsets of variables defined by the factor graph, therefore so is their linear combination.
This score function can be seen as a standard Bethe free energy with non-standard entropy weightings.
We can directly derive LBP-like message updates by using these modified weights instead (Hazan
and Shashua, 2010), resulting in the following VBP message updates

D a) = 3" my ()l |28, ar)

517521

() = ( QP an® (an)?)’

a

a(i) : .
m® (a,) = ( 3 <Q(x5 pdéf)l;)> mf(xlza(i))mb(xga(i)))

2D myp(x
a) = H m(k)(at)
k#i
1
i i © a(i)
7 Q xpa( )7a )n(v) a ) a(1 7 p({E |xP 9 )
mi(efly) = 30 (GO ) (o) (a2 U—”lpa( )
pa(i) mb(xt ) Q(xt 9 a’t)
P Z) H n (k)
kepa(i)

nEi) (xgj )) = mf(xgj )) H nlgk) (xij )) towards parents of entity i
k|jepa(k),k#i
nl(f) (:cgj)) = Z my (xlt)a(i)) H nlgi) (J:Ek)) from parents of entity ¢
(ot iz g
, 2, (3
m(e) = I mP @)

k|j€pa(k)

The following messages should be held constant
mp(28* ) = exp(AR(zP))) Vi > N,
mi(z) = P(a}”)
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See Fig. @] to track the correspondence between the above messages and the factor graph of the
factored MDP. Note that most updates correspond exactly with standard loopy BP, and only a few (the
ones involving €) are specific to VBP. These messages updates should be iterated until convergence
or for a fixed number of iterations. Two tricks to improve convergence are (a) damping the message
updates in log space; (b) as the iterations progress, anneal between LBP (¢ = 1) and VBP (very small
€). We typically use both, with a damping of 0.5 (i.e., the mean of the old and the new message in log
space) and anneal by using as e(iter) = max{0.01, 1.0/iter}, where “iter” is the iteration number.
Scheduling also plays a role in convergence. We propagate the messages by alternating backward
and forward schedules in an outer loop, and solving each time slice to convergence in an inner loop.
We did observe a correlation between the quality of the solutions and VBP converging.

b

&w\ W

o 2D (5D
2 >m b L2 )
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Figure 4: Correspondence between the message passing updates and the factorized MDP.

E The connection with maximum entropy reinforcement learning

If we assume, as we have done throughout this paper, that the reward and dynamics functions are
known, maximum entropy reinforcement learning (MERL) corresponds to finding the policy that
maximizes a weighted combination of the reward and the policy entropy, averaged over the trajectories
induced by such policy. In this restricted setting, some of the main difficulties of RL disappear (e.g.,
how to efficiently explore and discover the reward and dynamics functions), and “MaxEnt planning”
might be a more precise term. However, we stick in this section to the more common term MERL as
used in the literature (e.g., Levine,[2018), even when only discussing planning. MERL maximizes
the following objetive:

max(R(z, a) + aH(n(a|2))) p(z|a)r(ale) = max(R(z, a) — alogn(a|2)) p(z|a)x(alx),

where « controls the policy regularization level. For oo = 0 we recover standard planning, and as
a — 00, the optimal policy tends to the uniform policy.

We can define a A-generalized version of MERL.:

1
F)I\\/IERL =3 max log(exp(A[R(x,a) — alog 7r(a|a:)])>p(w|a)w(a‘w).

With this definition, when A — 01, we recover the standard MERL objective, and when o — 0t, we
recover Eq. (), standard planning with an exponential utility function parameterized by \.
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Following the same steps as in Appendix [A] but including the “policy regularization” term
—alog 7(alx), we can find the corresponding variational form of the A-generalized MERL:

1
F;\VIERL =5 max log(exp(A[R(x, a) — alogm(a|)])) p(x|a)r(a|z)
1 . .
= S (= Bx(@) + (1 — HPE(g) + ™ (q)) = max Y™ (q)

where we use the shorthand € = a\ and need to assume € < 1 for the above equality to hold (or
equivalently, « < 1/)). This is an interesting result that shows that policy regularization corresponds
to a variational objective that interpolates between planning and marginalization, with both entropies
being precisely defined in Table[I] This in turn means that, when the A-generalized MERL uses a
finite A > 0, there is a policy regularization level o = 1/ for which the variational posterior for
M-generalized MERL coincides exactly with marginal inference.

One can view the smoothed value BP message-passing updates from Appendix [D]from two alternative
but perfectly equivalent perspectives: In one, we smooth the planning entropy (which can lead to
ill-defined messages) with the standard marginal entropy from belief propagation. In the other, the
smoothing comes from regularizing the reward with the policy, i.e., from performing generalized
MaxEnt planning instead of standard planning. This is still true when A — 07, the case typically
considered in the literature when talking about MERL (Ziebart,|2010; Levine, [2018]).

E.1 The connection with Sergey Levine’s “RL as probabilistic inference” (the A — 0T case)

In the common case in which rewards are additive, we have that A — 0% and « is unconstrained. To
analyze this case, we first rewrite the A\-generalized MERL variational objective using KL divergences,
as we did in Appendix [B|for the planning variational objective:

F;\\/[ERL(Q) =<R(£L‘, a)>q(m,a) + qu(a|m)

_ KL(g(@1)||P(@1)) + 302, (KL(q(@s41 |z, o) [|P (w1 |24, a1)) g a0
: :

Following the same reasoning as in Appendix since the KL terms are non-negative, the only way
for FY'ERL(g) to have a finite value as A — 07 is to set ¢(z¢41|@s, ar) = P(441|7e, ar) VE, which
cancels the KL term and removes the dependence on A. Thus,

MERL __ MERL
FAHOJr - mgX FAHOJr (q)

= mgx(R(ax a))g(x.a) + aHg(alx) s.t. q(vey1]2e, ar) = P(vepa|2e, a) VE, (1)

which is a policy-regularized version of Corollary [I.T] We implicitly assume q to be constrained to
the space of density functions, instead of including all the linear constraints that guarantee this, as we
explicitly did in Corollary [T.1] This objective is concave with linear constraints and therefore has a

single maximum, the MERL with additive rewards, F)'ERL .

Observe that Eq. (IT)) corresponds exactly with the structured variational inference from (Levine,
2018), including the constrained form of the posterior (compare with Eq. (19) within (Levine, [2018)),
where they have used o = 1).

We can further show that the optimal posterior can also be found by performing marginal inference
with a constrained variational posterior on the graphical model with A = 1/a, which is not im-
mediately intuitive. Indeed, the optimal solution to problem Eq. (TT) is maintained if we scale it.
Assuming o > 0, we can write

MERL

1
MERL
max FYo0i(g) =« max EF

A0+ (Q) - <10g Q(w|a) —log P(aj|a)>q(m,a)
st q(@pr1|@e, ar) = Plxeya|ze, ar) Vi

= amgx(R(w, a)/a+log P(x|a))y(x,a) + He(T, a)
st q(@gr1]@e, ar) = Pxeya|ze, ap) Vi

= ozmqax F ;\Iflg;r:l( )

s.t. q(xeq1|2e, ar) = P(xep1|2e, ar) V.
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The first equality is correct because logg(x|a) — log P(x|a) = 0, under the assumption

q(ze41)zt, ar) = P(x441]xe, ar) Vi, and therefore the added term is 0. The last expression corre-

sponds to standard (marginal) variational inference for the graphical model exp(R(x, a)/«)P(x|a).

In other words, the optimal g can be obtained by two seemingly unconnected routes: either maximiz-
marginal

ing F' ;"E‘& with no constraints on the form of the posterior, or maximizing F, 7 /o constraining the

posterior dynamics to match the prior dynamics. This is what is done in (Levine, 2018), where they
implicitly use A = a = 1. In the special case of deterministic dynamics, the constraint of posterior
dynamics matching prior dynamics is already enforced by marginal inference, so it does not need to
be separately enforced. For this reason, in (Levine, 2018) it is said that for fixed dynamics MERL
corresponds to vanilla marginal inference.

E.2 Maximum-entropy value belief propagation (MaxEnt VBP)

We are interested in optimizing the cost function

FERL — %mqax ( — EX(G) + aXHpet™ () + (1 - aA)HBP‘;;gmg(q)) with o\ < 1.
which is exactly the same cost function as in Appendix [D] but with ¢ = .\ so as to explicitly
correspond to generalized MERL. The message updates are essentially the same as in Appendix
but explicitly revealing the influence of A on € allows us to define a different message (power-) scale
to obtain message updates that are well-defined as A becomes closer to zero. Here are the re-scaled
messages, and the updates defined in terms of those re-scaled messages:

a(e 9 a(i v
Q(af ( ),at)l//\ = Q(x} ( ) ( Z M mt+1 le\x )’at)>

75t+1

(O = (2) = (3@, aa® (@) )

ki
@@ g,y g ,
(i) Q™" a)n'" (ay) pa(i)\ — / pa(i) W) |2
me(z; 1) = ( e me(xy )y () T ap
Z mb<x‘;“> Q"
pa(z H TL
kepa(i)

n{ 29y = me(2) H ﬁl(,k) (x> towards parents of entity i
k|jepa(k),k#1
o N , , 1/2
w0 @ =) = (30wl [Ln @) trom parents ofentiy

‘ .
{2 i ki

my(a) N =) = T w0 @)

k|j€pa(k)

The following messages should be held constant
(28 ) = exp(R(22*?)) Vi > N,
mi(z}) = P(a}?)
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It is trivial to obtain these updates from Appendix [D]and setting the smoothing ¢ = aA. This message
updates correspond to maximum-entropy VBP, where A controls the exponential utility (from additive
to multiplicative and beyond) and « the degree of policy entropy regularization.

E.3 MaxEnt VBP with additive rewards (the A\ — 07 case)

If we take the limit A — 0% in the previous updates, we are specializing them to the additive rewards
case, which is the standard setting in planning and reinforcement learning, while still keeping a
parameter « that controls the degree of policy entropy regularization. When the graphical model is a
non-factored MDP, MaxEnt VBP with A — 0% coincides with the dynamical programming updates
proposed in (Levine, 2018 Section 3).

Thus, the updates below can be seen as an extension of the dynamic programming approach from
(Levine, [2018)) to factored MDPs:

QU ar) = exp (Y plaf oV, ar) logmy(a(),))

) mb(l'
70 (ay) = [T m® )
ki
i Q@™ a)a®(ar) | *
mf(xgjzﬂ - Z ( t‘ ;a(z’) t mi( ( ))p(xtﬂ P ) at)
pu(i) mb(l't )
pa z) H ’fl (k)
kepa(z)
A (2)) = exp ( Z (log i (22°)Y) H mf(xﬁk))) from parents of entity i
(2" bt ket
_ j —_(k j
mn(a) = [ a4 @)
k|j€epa(k)

The following messages should be held constant
mp(22*) = exp(R(z2*™)) Vi > N,
mi(ey”) = P(a;”)

These are obtained directly from the ones in the previous subsection, simply by taking the limit
A — 0T, which remains well-defined.

E.4 Empirical results using MaxEnt VBP with additive rewards

We provide here a repetition of the IPPC experiments from Section [6] but this time using MaxEnt
VBP with additive rewards (A — 07). Results are similar, but the logic of the message passing is
greatly simplified due to A having vanished analytically rather than numerically. The corresponding
code is also included at https://github. com/google-deepmind/what_type_of_inference_
is_planning,
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Figure 5: Cumulative rewards on 6 problem domains from the ICAPS 2011 IPPC. A small horizontal
jitter was introduced in all data points for visual clarity. Each cumulative reward is averaged over
30 simulations per instance. Datasets are ordered from left to right and top to bottom by increasing
normalized entropy levels. Only the last two have a significant stochasticity level >5%.

F Entropy terms for other inference types

The entropy terms for inference types other than the “planning inference” were introduced in prior
work and are compiled here for convenience.

First we will derive a general variational expression that depends on an inverse temperature 3. The
function f(x, a) will be an (unnormalized) factor graph, with the structure of Fig. Left].

1 1 f(iB U/)ﬂ tight Jensen 1 f(w a)ﬁ
~ 1o z,a)’ ==1lo T,a)———— T =" max — xz,a)log ———
E g;ﬂ U g;“ S 4@.a) q(m)ﬁ’;q( N8 @ a)
1
= o (108 /(2. @) w5 Hol2:0) )

Marginal inference This is the standard VI problem, see e.g., (Jordan et al.,|1999), and can be
recovered from Eq. (I2) by setting 5 = 1. Then we get

long(a:,a) = max)(log f(x,a))qz,a) + Hy(x,a). (13)

za q(x,a
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Since f(x, a) forms a chain in our application of interest (see Fig. Left]), we know that the optimal
posterior will as well. We can thus decompose H,(x, a) using the chain rule to obtain the expression

from Table [t} H™¥m!(q) = H, (1) + Y/, Hy (w041, arlar).

Maximum-a-posterior (MAP) inference MAP inference can be recovered from Eq. (I2)) by setting
B — o0

1 1
rgglxlogf(w,a) =ﬁlgngoglogw§;f(w,a)5 = qr(r;f}g)ﬂogf(:v,a)>q<m,a>+ﬂlggo BHq(iv,a), (14)

where limg_, o %H 4(x, a) produces the term HMAP(g) = 0 from Table The maximization is an
LP problem, see (Weiss et al.,2012). This problem can be relaxed into a local polytope, giving rise to
most well-known methods for approximate MAP inference, such as dual decomposition. See e.g.,

(Sontag et al., 2011). An optimal distribution solving this problem is a Dirac delta centered at one of
the MAP solutions of the problem.

Marginal maximum-a-posterior (MMAP) inference MMAP combines the previous two types of
inference, see (Liu and Ihler, [2013) for detailed (approximate) solution methods. We can reuse the
previous results to obtain the variational expression

maxlog 3" f(z, @) ““L¥ max max (log f (2, ) y(aja) + H(g(z|a))

a q(x|a)

Eq_(%) qr(nmas)ﬂog f(@,a))g(e,a) + Hy(z,a) — Hy(a)
T-1
= max (log f(x, a))q(z,a) + Hy(T,a) — Z H,(at)

q(z,a)

To understand the last equality, first note that ZtT:zl H,(a;) > Hy(a), since the latter is the joint
entropy. This means that the last expression is necessarily lower than or equal to the previous one. It
is not yet clear why equality is always achievable. To see this note that, analogously to the previous
section, the optimal ¢(a) will be a Dirac delta centered at an optimal sequence a. That means that

the optimal variational distribution of MMAP factorizes as g(x,a) = ¢(x) H:;F:_ll g(at). This in

turn means that, for the optimal distribution Zz:ll H,(a:) = Hy(a). So the last expression can
always match the previous one, and given that is also a lower bound, it must have the same optimal
distribution and value.

Just like we did for marginal inference, we can now decompose H,(x, a) using the chain rule to
obtain the expression from Table HMAP () — H (1) 4+ 1" Hy(xi11, arlar) — Hy(ay).

G Proof of the bounding relationships among different inference types

We want to prove that for an arbitrary variational distribution g
Fi\\/[ AP(q) < FMMAP < Fplanning < Fmarginal
i o (< FX (@) < FY (@) < FY™°(q)
A

and that, when we assume that dynamics are deterministic (which we also take to imply that the first
state follows a deterministic distribution, i.e., it is known), the optimal values of the above bounds
wrt q satisfy the following relationships

.U . .
marginal MAP _ MMAP __ r-planning marginal
Fy SENTT =R = FY < Fy :

Since the energy terms are identical for all these bounds, we will simply have to prove the relationship
between the corresponding entropies, as given in Table[I]

Proof that F{""""(q) < F}™*""(q)
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The marginal entropy term

T-1
Hmarginal(q) _ Hq(xl) + Z Hq($t+1,at|$t)

t=1
clearly upper bounds the “planning inference” entropy term

T-1

leanning(q) = Hy(z1) + Z Hy(xiq1l|ae, )
t=1

since
Hy(zey1, ailwe) = Hy(zpg1|ar, ©0) + Hy(ag]zy),
and entropies are non-negative.

Proof that FYMAP(q) < FPRM™IN8(gy (and FMMAP — pPIaMIng o deterministic dynamics)

The “planning inference” entropy term

T—1
leanning(q) = Hy(21) + Z Hy(z41]ae, )
t=1
clearly upper bounds the MMAP entropy term
T—1
HYA(q) = Hy(21) + Z Hy(zi41, ailwe) — Hy(ar)
t=1
T—1
= Hy(x1) + > Hy(wera|oe, ar) + (Hy(arlawy) — Hylar))
t=1
T—1

= Hy(z1) + ) Hy(wepr|e, ar) — Iy(w ar)

t=1

since the mutual information I, (2¢; a;) is non-negative.

In exact MMAP variational inference (Liu and Ihler, |2013)), at the optimal solution, the variational
distribution factorizes as ¢(x,a) = q(x) HtT;ll q(a;), as we mentioned in Appendix [F| This is
because MMAP finds a single, deterministic, optimal sequence of actions. Therefore I,(x; a;) = 0
when evaluated at the g that maximizes F’ /I\VIMAP (q). Setting that term to zero in the MMAP entropy
results in the same expression as the “planning inference” entropy. However, in “planning inference”,
the optimal variational distribution does not need to factorize in the way it does for MMAP, so a
richer variational distribution is possible, and FP*™™ can be strictly larger than FMMAP for some
problems.

However, when dynamics are deterministic and the first state x; is known, the optimal plan is a
deterministic sequence of states and actions, and the optimal “planning” variational distribution is a
Dirac delta at those states and actions. Therefore, the optimal distribution for planning also factorizes

as q(x,a) = q(x) HtT;ll g(a;) when the dynamics are deterministic. Therefore, in that case the

lanning
F?
A

optimal values coincide = FMMAP (and so do the optimal variational distributions).

We can also show that at the optimal g value the entropies of both bounds are zero. P(x;41]|as, x;)
(and P(z1)) are deterministic, q(z¢+1]|at, 2:) = P(x¢41|at, z¢) (and g(x1) = P(z1)) for both of
these bounds to be larger than —oo (see Section @]) Since these are deterministic distributions,
Hy(z¢41|ag, 7)) = 0 and H,(x1) = 0, which in turn makes HP'*™in8(q) = 0 at the optimal q. Le.,
HPlaming — () Since I, (745 a,) = 0, also HMMAP = 0,

Proof that F)AP(g) < FMMAP (and FMAP = FMMAP(g) for deterministic dynamics)
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The MMAP entropy can be rearranged in the following form

T-1
HMMAP(Q) = Hy(21) + Z Hy(2e41, arlwe) — Hy(ar)
t=1
T-1
= Hq(xl,al, ey T 1, aT_l,xT) — Z Hq(at)
t=1

T
= Iy(z1;015. .., 2r_viar_v;or) + > Hy(y) >0,
t=1

where the last equality follows because the mutual information and entropy are non-negative. This
clearly upper bounds the MAP entropy term HMAP(q) = 0.

When dynamics are deterministic and the first state 7 is known, we can reuse the results of the
previous proof. We know that in that case, the optimal variational distribution for MMAP and
planning is a Dirac delta at the optimal sequence of states and actions, and that the bound only
contains the energy terms (since the entropy terms for any Dirac delta distribution will be zero).
The problem of finding such distribution is exactly the MAP energy minimization problem. Thus,
if dynamics are deterministic the optimal values coincide FYMAP = FMAP (and so do the optimal
variational distributions).

Proof that F’ arginal (q) < FYMAP(q)
The MMAP entropy term

T-1
HMMAP(Q) = Hy(z1) + Z(Hq(xﬂrh at|zy) — Hy(ar))

t=1
clearly upper bounds H Marginal” (q),ie.,

T-1
HMarginalU(Q) = Hy(z1) + Z(Hq(xtJrlv at|z) — log Na)

t=1

since Hy(at) < log N,, with equality being attained when ¢(a;) is uniform.

areinal®
Proof that F}™"®™" < FMAP for deterministic dynamics
We can rewrite the entropy corresponding to the marginal bound with uniform prior as

T-1
arginal’
HME () = Hy(21) + Z(Hq(mt-s-l,at\xt) —log N,)

N o~
— =

:HQ(x1)+ (Hq(xt—&-l‘at,-ft)+Hq(at|$t) —logNa).
t

I
—

When dynamics are deterministic and the first state x; is known, we know from the previous proofs

that at the optimal value q of F/I\nargi“alu(q) we have H,(z1) = 0 and Hy(z¢11]at,z:) = 0. The
remaining terms, of the form H,(a.|z;) — log IV, are trivially non-positive (the conditional entropy
over the actions cannot be larger than the log of the cardinality of the action space). This means that

at the maximum value of F\" arginal (q) wrt g we have HMa2in” (g) < 0. Since HMAP(g) = 0, we

.U
know that with deterministic dynamics F/I\nargmall < FYAP

H An application of VI for planning: bounding determinization in hindsight

In the planning literature, many algorithms make the assumption of a deterministic environment
(Geffner and Bonet, 2022; Hoffmann and Nebel, 2001; Helmert, 2006; etc). In order to extend
these algorithms to the case of stochastic dynamics, the idea of determinization in hindsight has
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been developed (Yoon et al.,2008)). It starts by factoring out all the stochasticity from the transition

probability into the random variables v = { iif‘l

P($t+1|$t,at) = ZPdet($t+1|$t,at,%)P(’Yt) = <Pdet(xt+1‘xtaata'Yt)>P(7t)-
Yt

This factorization is always possible, and -y is known as the collection of exogenous variables in
structural equation modeling (Pearl, 2012} Bareinboim and Pearl, 2016; Rubenstein et al.,[2017). We
will define Py (x|a, ) = Paer(z1|70) HtT;ll Pyer(zy 41|, ar,v¢). Then we can use it to obtain an
upper bound on the exact utility

lannin,
FZ™ = log max((exp(R(, @))) pu(ala,v)w(alz) P(y)

det. plannin
< log(max(exp(R(@, ))) pu(@layn(ale) ) Ply) = Aot

that has a natural interpretation: the dynamics of a stochastic environment depends on random
variables = that get drawn at each time step, if we knew their value ahead of time, we could treat
the environment as deterministic, find an optimal plan and estimate its utility. Because we have
hindsight, i.e., the deterministic planner can see the value of future ; ahead of time, it can make
better choices than if these were revealed online, so the utility estimation, if exact, upper bounds the
original quantity. See (Yoon et al.,[2008) for more details.

H.1 Upper bounding determinization for standard MDPs

The above process uses a sample average to compute the determinization objective: it alternates
between sampling v ~ P(+) and running a deterministic planner, with the exact value being
attainable only in the infinite limit. Using the variational framework for planning it is possible to
find and upper bound for ng'lp]‘m"mg as the maximum of a concave function that is computable in

polynomial time.

First, let us expand the determinization bound

nning Eq.
Fj\iezhlpla g q:@l’ 131(2))(<1og m;a,x(exp(R(m, a))>pda(w|a7,y)ﬂ(a‘w) + log P('y)>q(7) + Hq (‘Y)
= r;l(g))dFi"i'}";"gM(w) + (log P(7)) () + Hq(7)

in terms of our exact planning utility for a given future -, Fflzanlni,:g. This quantity and the correspond-

ing bound are defined in the usual way, but conditioned on ~:

planning __ planning
F)\:L'y = ml?XF,\:1 (qlv)

with
F,l\ﬂ:anlning(Q|7) :<10g Pdet(x1|70)>q(:c1h)
T—1
+ Z (Ri(wr, ap, wp41) + 108 Paet(Ti41]%e, @ty V1)) g(wrsr wranly) - (15)
t=1

Since the conditional dynamics are now deterministic, log Pyet(zt+1|t, at,y:) can only take the
values 0 and —co. When maximizing over g, it is obvious we must choose g(x¢11|z¢, at,y) =
Pyer(wyy1|xe, ar,v¢) VE and g(x1]7y) = Pye(z1]|70), to avoid putting any mass on the —oo value of
the previous term, which would result in the whole score function becoming —oo. For such choice
the planning entropy vanishes, since dynamics are deterministic.
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The expectation (F2""(q|))4(~) initially seems to depend on the entire distribution (). How-
ever, only the marginals () are actually relevant for its computation:

lannin
<F,I\’i1 g(‘]|’)’)>q('y) =(log Pdet(xl|’)’0)>q(w1\’~/)q(’7)
T—1
+ Z(Rt(xt, at, Teq1) +108 Paet( 41Tt Gty Vo)) g(wisr wesas v )a ()
=1
=(log Paet(%1170)) g(1 1v0)a(0)
T-1

+ Z <Rt (-Tt7 ag, xtJrl) + 1Og Pdet(-rtJrl |xt> ag, 'yt)>q(mt+1,mt,at [ve)q(ve)
t=1

So far all computations are exact. If we now upper bound the entropy of the exogenous variables,
Hy(v) < ZtT;()l H,(vt), we can upper bound the determinization objective. Putting it all together,
we have that determinization for multiplicative exponentiated rewards can be upper bounded by a
concave variational bound of the form

;

det. planning det. planni lanning
F)\‘“«:tlpannng> < F)\e:tlpannng UB _ H;%XFi):dnlnné(q’y) + <10gP(%)>q(%) + Hq(’Yt) (16)
t=—

(=)

st Y glwr,a,m) =Y Paal(@i]70)a(30)
Yo

ai,v1

Z q(Ti41, @1, Ver1) = Z Paei(@es1|@e, ar, ve)q(ze, ar, vi)

At4+1,YVt+1 Tt,Qt,Yt
gz, ) =Yl ae, ) Y qlaeany) > 0V,
Qg
where we have defined
T-1

lanning
F,[\):dqmné(qV) = Z(Rt(l‘t, at’xt+1)>Pdcl(:Et+1‘ztyat»'}/t)q(mtqata')/t)
t=1

as a simplification of (F§"""%(q|y)) () When the above constraints are met. We have additionally
defined g, = {q(2+, as,v)} 1" Uq(0).

H.2 The factored MDP case

In the case of a standard MDP, it is trivial to see that determinization, which provides an upper bound

on the exact utility, cannot improve on our VI bound F?*7"™  since the latter is exact. In this section

we will show that this is also the case for factored MDPs in which the deterministic MAP problem is
solved using an LP MAP relaxation.

First, we will show that F} 21" can be rewritten in a more convenient way to compare with
determinization, in the standard, non-factored case. We expand

FREP™ = max Y™ (q) = max —Ex-(q) + H""(q)
and substitute

log P(z441]xe, ar) = max (<log Paet(Te41|me, at,%8)) q(ve|2es aesa0)
q(ve|Te1,me,ae)

T
= " KL(g(ulzess, 2, a0 P(n))

t=1
inside E\—1(q) to get

T-1

FR — smax(FPT™ (q17)) i) + Y (108 P(3))ata) + Halwrsr, wla, 1)
t=0
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where q(x¢11|2s, ap,v:) = Paet(Te41]2e, ag,y) Vi for the same reasons as above. To compact
notation, we use the convention that H,(x1, Yo|zo, a0) = Hy(x1,70) (since xg, ap are not defined),
and similarly H,(vo|zo0,a0) = Hy(0). Noting that Hy (2411, Velar, x1) = Hy(xes1|Te, ar, ve) +
H,(vtlas, x¢) and that Hy(z411|x, ar, 7¢) = 0 because g(zy41|z¢, ar, v ) is deterministic, we get

T-1
prplaming _ max Frlming gy o Z (log P(¢)) g0y + Hq(vt|as, 1) (17)
7 t=0
st Y glwr,a,m) =Y Paal(@i]70)a(v0)
ai,v1 Yo
Z q(@e41, Qg1 Ve41) = Z Paed(@eq1|ze, ap, ve)a(@e, az, vi)
At4+1,YVt+1 Tt,Qt, Yt

q(xe,ve) = ZCI(xtaata%) Vo, vt q(me, ar,ve) > 0 VL
Qg

Compare Eqgs. (T6) and (T7). Although we already knew this, with this particular formulation it

1s very easy to see that Fflar;m“g < Fdet 1pla“m“g UB since they are identical except for the terms

H,(velar, x¢) < Hy(vy:) Vt. This holds for the same g, but also establishes a relationship between
both upper bounds at their maximum wrt q.

With this result, we can return to the factored MDP case. As in the main text, here we will consider R
to be only a function of z;. We can take Egs. (I6) and (I7) and relax g, from the marginal polytope

M to the local polytope £, using the pseudo-marginals G, = {q(z?"", a;,~{") Z{i_:lii:Ne U

{q(v (Z))} = U{q(z pa()y :sz::fvvifv’" For Eq. (T6), and substituting the value from Eq. (T3)), this
produces a factored MDP upper bound corresponding to determinization with A = 1

Ne+N,. Ne

Frdet. planning UB i

F/\=t1p = maXZ( Z (zp) z) (mi““)) + Z<10g P(7§31)>q(7§?1) +H (’Yt(Z)1)>

t=1 ¢=N.+1 i=1
S.t.
> ) ) ZPd (217 1")a(r”) Vi
al»’Yi 9

Z q(ngzl’at+1a7t(Jr)1) Z Pdet(nggﬂxpa(z)a ’%f’t)) ( Pa(Z), ,’Vt(Z)) Vt7i € ]-a-“»Ne

arrn D OO
t+15Ye 41 Ty A5t

and pseudo-marginal constraints,

which can be interpreted as an outer maximization over ¢(+y) and an inner MAP optimization of the
(conditional on «y) deterministic dynamics problem, solved with an LP relaxation (Sontag et al.,|[2011).
For Eq. (T7), and also substituting the value from Eq. (T3)), this results in a different formulation of
the problem Eq. (7)

T  N.+N, N.
~planning i i
PP = max Y0 (D7 (@), ooy + D (108 POy0)) o0, + Hyrf s, i)
7 t=1 §=N.+1 i=1
S.t.
Z q(xg aala’h Zpdet x1)|’70 ( )
(i)
ai,y,
Z Q(xglvatﬂﬂt(i)l) = Z Pdet(l't+1|l'pd( at,vt( )) (z} (),at,%(’)) Vt,iel,...,N,
(i) pa(i) (3)
At+1,Y44q Ty At

and pseudo-marginal constraints.

In the same way as for the non-factorized MDP, it is easy to see that FP“7""8 < fodet planning Uy pije

both upper bound the exact FP™"" This means that in the case of (exponentiated) multiplicative
rewards (A = 1) our proposed bound should be no worse than the provided upper bound on
determinization.
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I Empirical validation: details

I.1 Synthetic MDPs

The synthetic MDPs use binary state and actions, 7" = 4 time steps and follow the connectivity scheme
of Fig. [[[Right]. The stochasticity level of the MDPs is controlled by generating their dynamics
according to P(zi41|we,ar) = P}, | 4, a,/Zxs,a, Where Py, 2,4, ~ U[0,1] and choosing the
exponent s and the divisor Z;, 4, to obtain normalized distributions of the desired total normalized
entropy Hypp. Each entity has two parent entities and we provide a single reward of 1 for reaching
the state O of entity 1 at the last step 7". Having a single reward allows comparing methods with
arbitrary \ and create a pure planning problem (see Section 4.2).

I.2 Reactivity avoidance of MAP and MMAP inference

As discussed in Section[d.2] a common flaw among all inference types (other than planning inference)
is that they cannot anticipate reacting to the environment. Even the tightest one, MMAP, makes
plans assuming that it will only be able to take a predefined sequence of actions. This can severely
underestimate the value of an action if, to extract future reward, reacting to the environment state is
necessary. In other words, MMAP is optimal only when the best policy m;(a:|z;) ignores the state
and can be represented as 7;(a;). MAP inference shares that limitation, and additionally lacks path
integration. L.e., MAP inference makes decisions based on the score of a single action-state trajectory,
rather than a combination of these.

In order to analyze the behavior of different inference types of inference with reactivity, we create an
MDP with two entities, each with categorical states 0, ..., 5. We use a horizon of 7' = 7 time steps,
placing reward only on the last time step. There are a total of 8 actions.

The first entity describes the location of the agent, and has a special goal state “0” that needs to be
reached at the last time step. The second entity describes the dynamics of the first entity and the
reward achieved at the goal. Actions 0, . .., 5 allow the agent to move to any location in a single step.
Actions 6, 7 allow the agent to modify the dynamics of the first entity, respectively decreasing or
increasing the needed level of reactivity of a planner.

In more detail, the second entity has deterministic dynamics and acts as a knob that the agent can
freely turn up or down at each time step:

2P —1, ifa=6and0 < 2\?
22 =02 11, ifa=7and2® <5

x§2) , otherwise.

The values of that knob x§2) alter the dynamics of the first entity, requiring more or less reactivity:

if2{ =0o0r6<a ~ UL, 5]

1 _ (1) . e (2)
T i xil) £0and0<a <6 z; +a mod6 w%th probab?l?ty x; /5(2)
with probability 1 — z;”’ /5

In words, if the agent is at the goal state O or the reactivity of the environment is modified, it will

jump to a random non-goal state. If the agent is not at the goal state and I£2) = 9, it can use the

actions 0, ..., 5 to jump to any desired state with absolute certainty. As the value of the knob x?) is
reduced, the agent starts losing control of where it is going, and it is instead more likely to jump to
the goal. Now, the final ingredient, the reward, is:

1.0, if xﬁl) = 0 and x§2) =bandt =T

Ri(z{". o) ={033, itz” =0andz!® <5andt =T
0.0, otherwise.

When we put all these pieces together, we have the following situation: to achieve the maximum
reward, we want to keep the the knob x?) at its “maximum reactivity” value of 5. But when we do

that, the action that will take the agent to the goal depends on the state it is located at. Therefore, the
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agent needs to react to the location that it is at. And when planning ahead, to properly choose the
best first action to take, the agent needs to score the options according to this future ability to react to
actions. By turning the knob :c§2) all the way down to 0, we can jump to the goal by taking any action
0,...,06, regardless of where we are, i.e., we do not need any reactivity.

We present this factored MDP, initialized at xél) =0, 3382) = 5 to both VBP and SOGBOFA-LC*.

Their behavior is very different. VBP is aware that it can jump to the goal state x(Tl )= 0at any

time as long as it is not there yet. So it just idles in the other states, keeping the reactivity at the
maximum level, until the last time step, in which it jumps to the goal, capturing a reward of 1.0.
SOGBOFA-LC*, even though it is replanning at each state, can only evaluate the possible actions
by considering a single best sequence of non-reactive actions at a time. Since the reactive plans that
VBP prefers are not “visible” to SOGBOFA-LC#*, it decides to use the first 5 actions to reduce the
reactivity of the environment all the way down to x(TQL = 0. In that way, it is guaranteed to be able to
jump to the goal in the last instant without having to be reactive, even if only capturing a reward 0.33.

This example highlights how SOGBOFA-LC* (and MMAP planning in general) struggle with reactive
environments in which the best future actions cannot be known at the current time step. Essentially, the
agent is myopic to the fact that it will be able to replan and chooses to be conservative and reactivity
avoidant, proposing sequences of actions that will be guaranteed to work in any scenario, even if
this reduces the obtained reward. We can make the difference between VBP and SOGBOFA-LC*’s
performance arbitrarily large simply by increasing the number of states and planning horizon.

MAP inference presents the same non-reactivity problems as MMAP, combined with the lack of
integration across multiple paths. On this problem, the average reward achieved by a perfect MAP
inference agent is ~ 0.13.

1.3 Experimental Details on ICAPS 2011 International Probabilistic Planning Competition
Problems

1.3.1 Experimental Settings

Six different inference approaches, MFVI-Bwd, CSVI-Bwd, ARollout, SOGBOFA-LC, VI LP, VBP,
and a random agent are evaluated on 6 different domains (Crossing traffic, Elevators, Game of life,
Skill teaching, Sysadmin, and Traffic) used in the ICAPS 2011 International Probabilistic Planning
Competition (Sanner, 2011). Figure [3|shows the average cumulative reward of all domains. Table
[2] shows the corresponding objective and reference for each approach. There are 10 instances for
each domain. All instances have a horizon of 40 and a discount factor of 1. The cumulative reward
is averaged over 30 simulations for each instance and the plotted error bar shows its standard error
of the mean. Given the current state z;, the transition probability P(z:41|a, 2¢), and the reward
function R, each approach infers the best next action a; at each time step. The reward function for all
6 domains only depend on the state x. The cumulative reward is the sum of the rewards of the initial
state and the following 39 states.

For all inference approaches, we run with a look ahead horizon of both 4 and 9. We follow the
settings in (Wu and Khardon, 2022)) where the look ahead horizon is truncated if it extends beyond
the remaining time steps. The horizon with the higher average cumulative reward is then selected
for each instance. The experiment evaluates over two look ahead horizons due to the observation
that for some domain instances a longer horizon may lead to worse estimates. For each simulated
run, the same set of random numbers are applied to the simulated environment to reduce noise when
comparing different inference approaches. All experiments were run on CPU machines in the cloud.

1.3.2 MFVI-Bwd

The backward mean field variational inference approach (MFVI-Bwd) is based on the implementation
in (Wu and Khardon, 2022|— url: https://github. com/Zhennan-Wu/AISPFS), in which the mean
field approximation g is the product of independent factors. gy, is first obtained by maximizing the
ELBO of the true posterior under the condition that the maximum accumulated reward is reached
using the EM algorithm. The action is then selected based on the marginal g4 (a). In the experiment,
the maximum number of iterations is set to 100 and the convergence threshold is set to 0.1 for the
EM algorithm. MFVI-Bwd experiments were ran on a single CPU machine with 32 virtual cores. All
30 simulations were ran in parallel for each task instance.
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Table 2: Six different inference approaches used for comparison in the ICAPS 2011 International
Probabilistic Planning Competition problems and their corresponding objective and reference.

Inference Approach  Objective  Reference

MFVI-Bwd — (Wu and Khardon, 2022)

CSVI-Bwd — (Wu and Khardon, 2022)

ARollout Fraenal®(Cyj et al., 2015% Cui and Khardon, 2016)
SOGBOFA-LC FMMAP - (Cuj et al., 2019)

VILP FPIEmnE Ours

VBP FPanming - Ours

1.3.3 CSVI-Bwd

The backward collapsed variational inference approach (CSVI-Bwd) is proposed in (Wu and Khardon,
2022). It uses collapsed variational inference to effectively marginalizes out variables other than
the actions to achieve a tighter ELBO. The authors have shown that this approach out performs
MFVI-Bwd. CSVI-Bwd experiments were ran with the same hardware setup as MFVI-Bwd.

1.3.4 ARollout

The Algebraic Rollout Algorithm (ARollout) introduced in Cui et al., 2015|is equivalent to belief
propagation when conditioned on actions as shown in Cui et al.,[2018| In our experimental setting
which the search depth is fixed with no computation time limit, ARollout is equivalent to the original
SOGBOFA (symbolic online gradient based optimization for factored actions) approach introduced
in (Cui and Khardon, 2016)). While ARollout performs approximate aggregate rollout simulations
to evaluate each action, SOGBOFA uses the gradient of the accumulated reward to update actions
for exploration and can be advantageous when the action space is large given a computation time
constraint. In this experiment, we use the results of forward belief propagation to represent ARollout.

For each time step, the action with the highest estimated accumulated reward is selected. The esti-
mated accumulated reward is calculated by running a forward pass on the factored MDP representing
the problem conditioned on the next action. ARollout experiments were ran on CPU machines with 2
virtual cores. All simulations were ran in parallel.

1.3.5 SOGBOFA-LC

SOGBOFA-LC is based on the Lifted Conformant SOGBOFA implemented in (Cui et al.,|[2019|— url:
https://github.com/hcui01/S0GBOFA). SOGBOFA-LC has two differences over the original
SOGBOFA. First, it uses a lifted graph that saves computation by identifying same operations. This
improvement in computation speed doesn’t have an effect in our experiment result since we provide
enough computation time for the given maximum search depth. Second, it uses conformant solutions,
which the evaluation of the next action is based on a linear rollout plan that best supports the action.
This is achieved by calculating the gradient with respect to all actions within the search depth.

In our experiment, the search depth is set to 9 or 4 based on the look ahead horizon. The number
of gradient updates is set to 500 following the experimental setting in Wu and Khardon, 2022 The
allowed time is set to 50000 per iteration, which is sufficient for 500 updates given the assigned depth.
SOGBOFA-LC experiments were ran on CPU machines with 4 virtual cores sequentially.

Note that the RDDL files in the repository (https://github.com/hcuiO1/SO0GBOFA|or https://
github.com/Zhennan-Wu/AISPFS/tree/master/SOGBOFA) have different initial states from the
original competition for some instances in the elevator and skill teaching domains. These differences
were corrected to match the original competition settings in our experiments. Modifications were
also made to use the same random numbers in the environment as other experiments and to measure
the standard error of the mean instead of the standard deviation.
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1.3.6 VILP

The Variational Inference Linear Programming (VI LP) approach uses the GLOP solver in Google’s
OR-Tools (Perron and Furnon, [2024)) to solve the linear programming (LP) problem derived from
each task instance with the target of maximizing the expected accumulated reward. Constraints on
states that are specified in the original RDDL problem is added to the LP problem. Among the six
domains only the elevator and crossing traffic domains have such constraints. These constraints
specify that the elevator/robot cannot be at different floors/locations at the same time step.

The solver is run for each next action at each time step. The next action that has the highest estimated
expected accumulated reward based on the solver is selected. See Section for more details of
this approach. VI LP experiments were run on CPU machines with 16 virtual cores. All simulations
were run in parallel. For each iteration, LP solvers for each next action were run concurrently with
multiprocessing.

1.3.7 VBP

Note that setting a value for A is meaningless if the reward can have arbitrary scaling (and for the case
of IPPC in which rewards are additive, the scaling is indeed arbitrary). Therefore, we first normalize
all rewards to have a maximum point-to-point variation of 1.0. A is chosen as a reward multiplier on
top of that normalization. The closer to O that we set \ then, the closer we are to the additive limit.
Although outside the scope of this work, it is actually possible to set A to exactly zero in VBP (the
problem remains non-convex, but the message updates within each time step become an LP problem).
However, at least in a straightforward implementation, we observed such message updates to not
result in a good optimization of our score function, and often not converging. We attribute this to the
degeneracy of the solutions in the limit. Using instead a small value of A = 0.3 had a favorable effect
on convergence, while remaining close enough to the additive limit. Empirically, we found that most
problems were not very sensitive to the choice of .

For each time step, VBP messages are propagated concurrently for a maximum of 150K iterations
with 0.1 damping. The € value is annealed every 300 iterations from a value of 1 to 0.01 based on the
formula described in Appendix [D] The next action with the highest expected accumulated reward is
then selected. See Section [3.1]and Appendix [D|for more details of this approach. VBP experiments
were ran on CPU machines with 2 virtual cores. All simulations were run in parallel.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We provided proofs and experimental results to justify the claims.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In section4.2] we mention settings in which other approaches may outperform
our proposed approach. In Figure 2] we show when our proposal perform worse than existing
methods. This work very much focuses on discussing and comparing the limitations of
different approaches to inference.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Complete proofs can be found in Appendix [A] [B] [C] D} refapp:bounding, and
H

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The experimental details can be found in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We plan to release the code for our proposed approaches, VI LP and VBP, with
the camera-ready version of the paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All experimental detail and parameters are specified in Appendix[l]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We reported standard errors of the mean over multiple evaluation seeds.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: We provided detail information of the type of compute worker used for
the experiment but did not record the time of execution. The main contribution of this
work is to provide a theoretical framework for comparing different planning algorithm.
The different approaches ran in the experiment uses different hardware and programming
language, therefore the measured time of computation may not be directly comparable. Our
experimental setting on the IPPC 2011 competition is based on experiments in (Wu and
Khardon, 2022), which there are no limit to the run time and the goal is to understand the
quality of decisions.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our experiments do not include human subjects and all experiment are based
on simulated environments. Our main contribution is providing a theoretical framework
for analyzing different planning approaches and we do not expect to have immediate social
impacts.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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11.

12.

Answer:

Justification: Our main contribution in this paper is providing a theoretical framework for
analyzing different planning approaches. We do not expect social impacts at this stage of
development.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No trained model or dataset for training is used in this work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All approaches used for comparison in experiments are cited properly.
Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are released with this submission.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
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paperswithcode.com/datasets

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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