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Abstract
Recent advancements in federated learning (FL)
seek to increase client-level performance by fine-
tuning client parameters on local data or personal-
izing architectures for the local task. Existing
methods for such personalization either prune
a global model or fine-tune a global model on
a local client distribution. However, these ex-
isting methods either personalize at the expense
of retaining important global knowledge, or pre-
determine network layers for fine-tuning, result-
ing in suboptimal storage of global knowledge
within client models. Enlightened by the lottery
ticket hypothesis, we first introduce a hypothesis
for finding optimal client subnetworks to locally
fine-tune while leaving the rest of the parameters
frozen. We then propose a novel FL framework,
FedSelect, using this procedure that directly per-
sonalizes both client subnetwork structure and
parameters, via the simultaneous discovery of op-
timal parameters for personalization and the rest
of parameters for global aggregation during train-
ing. We show that this method achieves promising
results on CIFAR-10.

1. Introduction
Federated Learning (FL) (McMahan et al., 2017) is a ma-
chine learning paradigm which utilizes multiple clients that
collaborate to train models under the supervision of a central
aggregator, usually referred to as the server. Unlike tradi-
tional centralized methods which required the assemblage
of data at the central server, FL methods require that only
parameter updates are communicated in order to coordinate
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the FL training process, such that any number of clients
can learn from the decentralized data without direct transfer
of data. This allows for maintenance of local data privacy
while also providing stronger model performances than what
participants could have achieved locally. Accordingly, FL
has been adapted to many privacy-sensitive tasks, such as
medical data classification (Sheller et al., 2020). One of the
main challenges in FL is the presence of data heterogene-
ity, where clients’ local data distributions vary significantly
from one another.

This problem of data heterogeneity is most commonly ad-
dressed by personalized federated learning (pFL), which
adapts clients models to local distributions. Most techniques
use full model personalization, where clients train both a per-
sonalized and a global model. However, this requires twice
the computational cost of standard FL (Dinh et al., 2020; Li
et al., 2021a) and is impractical in some settings. Partial
model personalization alleviates this by splitting clients into
shared and personalized parameters (Pillutla et al., 2022),
where only the shared parameters are updated globally, but
typically results clients that overfit to local distributions and
reduced performance. Additionally, the personalized archi-
tecture needs to be manually designed before training and
cannot be adapted to specific settings.

To address this, we propose FedSelect, where we adapt both
both architecture and parameters for each client to its local
distribution during training. Our method is based on the
intuition that individual client models should choose only
a necessary subset of shared parameters to encode global
information for their local task, since it may not be optimal
to reuse all global information from any full layer(s). We
achieve this through the Lottery Ticket Hypothesis (LTH),
originally proposed to prune models by finding optimal
subnetworks, or lottery ticket networks (LTNs) (Frankle &
Carbin, 2019). However, instead of pruning the remaining
parameters to zero, we reuse them as personalized param-
eters. We observe improved performance on CIFAR-10
compared to pruning-based LTH-FL approaches (Li et al.,
2020; Mugunthan et al., 2022) and other personalized FL
approaches (Liang et al., 2020; Arivazhagan et al., 2019;
Collins et al., 2021; Li et al., 2021a; Oh et al., 2022) as well
as reduced communication costs compared to partial model
personalization.

Related Works. Partial model personalization seeks to
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improve the performance of client models by altering a sub-
set of their structure or weights to better suit their local
tasks. It also addresses the issue of “catastrophic forgetting”
(McCloskey & Cohen, 1989), an issue in personalized FL
where global information is lost when fine-tuning a client
model on its local distribution from a global initialization
(Kirkpatrick et al., 2017; Pillutla et al., 2022). It does this
by forcefully preserving a subset of parameters, u, to serve
as a fixed global representation for all clients. However, ex-
isting methods introduced for partial model personalization
(Pillutla et al., 2022; Collins et al., 2021) require hand-
selected partitioning of these shared and local parameters,
and choose u as only the input or output layers for their
experiments.

LotteryFL (Li et al., 2020) learns a shared global model
via FedAvg (McMahan et al., 2017) and personalizes client
models by pruning the global model via the vanilla LTH. Im-
portantly, parameters are pruned to zero according to their
magnitude after an iteration of batched stochastic gradient
updates. However, due to a low final pruning percentage
in LotteryFL, the lottery tickets found for each client share
many of the same parameters, and lack sufficient personal-
ization (Mugunthan et al., 2022).

2. Methods
2.1. Problem Definition

We consider a standard FL setting with N clients and one
server. The set C denotes the set of client devices, where
N = |C|. In particular, ck ∈ C denotes the kth client whose
data distribution is given by Dck = {xk

i , y
k
i }

Nk
i=1. Let s be

the number of classes assigned to the clients c1, . . . , cN .
Next, let θ denote the vector of parameters defined by the
client model architecture. Then the loss of the kth client
model for each data point x is fk(θk, x), where θ denotes
the model parameters.

While the classical FL objective shown in Equation 1
(McMahan et al., 2017) seeks to minimize loss across all
clients with respect to a global parameter vector θG, we
focus on partial model personalization.

min
θG

1

N

N∑
k=1

Nk∑
i=1

fk(θG, x
k
i ) (1)

Partial model personalization refers to the procedure in
which model parameters are partitioned into shared and
local parameters, denoted u and v, for averaging and local
fine-tuning.

We consequently define θk = (u, vk), where u denotes a set
of shared global parameters, and vk the personalized client
parameters. The pFL objective following this formulation is

given by:

min
u,{vk}N

k=1

N∑
k=1

αk

Nk

Nk∑
i=1

fk((u, vk), x
k
i ) (2)

where αk represents a constant weighting factor for aggre-
gation of client losses.

2.2. Motivation

Prior works involving fine-tuning during both transfer learn-
ing and federated learning under distributional shift selec-
tively fine-tune models layer-wise (Lee et al., 2023; Pillutla
et al., 2022; Liang et al., 2020; Li et al., 2021b; Collins
et al., 2021). In this work, we propose a novel hypothe-
sis describing that only parameters that change the most
during training are necessary for fine-tuning the model; the
rest can be frozen as initialized parameters. Thus, dras-
tic distributional changes in the fine-tuning task may be
better accommodated by preserving pretrained knowledge
parameter-wise rather than layer-wise. Following this we
propose the following hypothesis:

FL Gradient-based Lottery Ticket Hypothesis. When
training a client model on its local distribution during feder-
ated learning, parameters exhibiting minimal variation are
considered suitable for freezing and encoding shared knowl-
edge, while parameters demonstrating significant fluctua-
tion are deemed optimal for fine-tuning on local distribution
and encoding personalized knowledge.

The set of parameters selected for personalization will be
trained on local data and kept locally, while the rest of the
parameters that are identified as frozen will be initialized as
the global parameters, then locally updated, and finally sub-
mitted to the server for federated averaging to encode shared
knowledge across clients. GradLTN (Algorithm 1) describes
the process by which these candidate parameters for local
personalization and global updating are identified, respec-
tively. Then, FedSelect(Algorithm 2) utilizes GradLTN’s
output to perform federated averaging.

2.3. Algorithms

2.3.1. GRADLTN

GradLTN takes as input an initialization for the network
θ0, the number of total mask-pruning iterations L, and a
mask-pruning rate r. Since statistical heterogeneity is typ-
ical across client data distributions in FL, it is a common
goal to personalize client architectures or subnetworks to
better adapt their local distributions. GradLTN implements
this idea during the subnetwork search process, by freezing
parameters that change the least, and continually fine-tuning
the rest. By the end, two sets of parameters, θ0 ⊙ ¬mL

and θ0 ⊙mL, are identified for averaging and fine-tuning,
respectively. Although we run GradLTN for a fixed number
of iterations, there are many alternative choices for the stop-
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Algorithm 1 GradLTN: Gradient-based Lottery Tickets
Input: θ0, L, r
for i = 0 to L do

if i > 0 then
γ ← |θi − θi−1| ⊙mi−1 # Find new param change
mi ← binary mask for largest (1− r)% values in γ
θi ← θ0 # Reinitialize model

else
mi ← mask of all 1s

end if
for epoch j = 1 to E do
t← 0
for batch b ∈ B do

# Freeze params where mask is zero
gt ← ∇θi,t l(θi,t, b)⊙mi

θi,t+1 ⊙mi ← θi,t ⊙mi − ηgt
end for

end for
end for
# Return u and v based on mi

return θ0 ⊙ ¬mL, θ0 ⊙mL,mL

ping condition, i.e. setting fixed target pruning-rates and
target accuracy thresholds.

For convenience, we use the Hadamard operator ⊙ to be
an indexing operator for a binary mask m, rather than an
elementwise multiply operator. For example, θ⊙m assumes
θ and m have the same dimensions and returns a reference
to the set of parameters in θ where m is not equal to zero.

2.3.2. FEDSELECT

In FedSelect, the input parameters C, θ0G,K,R,L, and p
represent clients, the first global initialization, participation
rate, GradLTN iterations, and personalization rate, respec-
tively. The key step in FedSelect is performing LocalAlt
on the shared and local parameter partition identified by
GradLTN. By the end of GradLTN, vk is identified as the set
of appropriate parameters for dedicated local fine-tuning via
LocalAlt; u is also updated in LocalAlt and then averaged
for global knowledge acquisition and retention. LocalAlt
was introduced to update a defined set of shared and local
parameters, u and vk, by alternating full passes of stochastic
gradient descent between the two sets of parameters (Pil-
lutla et al., 2022). To the best of our knowledge, this is the
first method to choose parameters for alternating updates in
federated learning during training time.

However, averaging among the shared parameters uk only
occurs across parameters for which the corresponding mask
entry in mk is 0. This ensures that only non-LTN parameters
are averaged when client models have very different masks.
We store a global mask mG to facilitate updates for clients
not sampled during FL. As communication rounds progress,
we hypothesize that the global knowledge stored in θtG ⊙

Algorithm 2 FedSelect
Input: C = {c1, . . . , cN}, θ0G,K,R,L, p
Server Executes:

k ← max{N ·K, 1}
Initialize all client models {θ0i }Ni=1 with θ0G
for each round t in 1, 2, . . . , R do
St ← random sample of k clients from C
for each client ck ∈ St in parallel do

# Executed locally on client ck
ut
k, v

t
k,m

t
k ← GradLTN(θt−1

k , L, 1− p)
ut
k
+
, vtk

+ ← LocalAlt(ut
k, v

t
k)

end for
# Averaging occurs only across clients where the
mask is 1 for a given parameter’s position
θtG ← Average non-LTN parameters {ut

k
+}St

ck

mt
G ← Binary OR over client masks

∨St

ck
mt

k

for i = 1 to N do
if mt

i exists then
# Distribute global params to clients’ non-LTN
params, located via ¬mt

i

θti ⊙ ¬mt
i ← θtG ⊙ ¬mt

i

θti ⊙mt
i ← vti

+

else
θti ⊙mt

G ← θtG
end if

end for
end for

¬mt
i is refined, and that test accuracy due to personalization

will converge.

An important hyperparameter of FedSelect is the person-
alization rate p. For different client problem difficulties
(Hsieh et al., 2020), the rate of personalization p may affect
the level of test accuracy achieved. A nuance of our nota-
tion is that for a given p, (1 − p) × 100% parameters are
frozen during each of GradLTN’s iterations. Therefore we
let FedSelect (0.25) denote running FedSelect when 75%
of parameters are frozen in each iteration of GradLTN. So,
increasing p corresponds to fewer frozen parameters and
greater personalization. Additionally, since only uk is com-
municated between the server and clients, a greater p results
in reduced communication costs.

A byproduct of GradLTN is that the subnetwork search
process itself fine-tunes parameters in the final iterations of
the algorithm, which could be valuable as an initialization
for LocalAlt. Therefore, we aim to explore changing the
returned values from GradLTN from θ0 to θL to incorporate
this idea.

3. Experiments
Models & Datasets. In this work, we consider a cross-silo
setting in which the number of clients is low, but participa-
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Table 1. Mean test accuracies (%) after 200 communication rounds
in the full-participation, low-client setting, with 20 training sam-
ples and 100 testing samples per class for each client.

Method s = 2 s = 4

FedAvg 33.54 52.57
LG-FedAvg 59.95 51.35
LotteryFL 73.37 60.13
Ditto 74.50 48.85
FedBABU 35.65 53.03
FedPer 30.25 51.73
FedRep 82.70 65.33
FedSelect (0.25) 84.22 65.23
FedSelect (0.50) 85.64 65.88
FedSelect (0.75) 85.91 62.91

tion is high (Liu et al., 2022). We performed all experiments
using a ResNet18 (He et al., 2015) backbone pretrained on
ImageNet (Deng et al., 2009). We show results for our exper-
imental setting on non-iid samples from CIFAR-10. Each
client was allocated 20 training samples and 100 testing
samples per class.

Hyperparameters. We set the number of clients |C| =
N = 10 in all experiments. The participation rate K is
set to 1.0, and the number of classes per client is varied
from s = 2 and s = 4. In GradLTN, we perform 5 pruning
iterations, each with 5 local epochs of training. However,
the personalization rate p was varied from 0.25, 0.50, and
0.75. Finally, 5 epochs of personalized training via LocalAlt
are performed.

Comparisons to Prior Work. We compare our results to
FedAvg (McMahan et al., 2017), LotteryFL (Li et al., 2020),
FedBABU (Oh et al., 2022), FedRep (Collins et al., 2021),
FedPer (Arivazhagan et al., 2019), Ditto (Li et al., 2021a),
and LG-FedAvg (Liang et al., 2020). To fairly compare the
performance of these methods, we fix the number of local
epochs across all methods to 5. All other hyperparameters
(learning rate, momentum, etc.) follow the recommended
settings by the authors of the respective works.

Evaluation Metric. For all methods, the mean accuracy of
the final model(s) across individual client data distributions
calculated at the final communication round is reported. For
FedAvg, accuracy is reported for a single global model.
However, for other methods that learn personalized client
models, the final average accuracy is reported by averaging
individual client model accuracies.

3.1. Performance Comparison

We observe in Table 1 that FedSelect outperforms all other
baselines in the CIFAR-10 in a low-client, full-participation
setting. FedAvg learns a global model for all clients, result-
ing in reduced accuracy when confronted with increased
non-IIDness. Conversely, highly personalized FL algo-
rithms exhibit resilience to non-IIDness due to the ease
of a client’s local task. FedBABU and FedPer appear to

Figure 1. Intersection-over-union overlap between all pairs of
client masks found by FedSelect for the final ResNet18 linear
layer, for p = 0.50. Both the s = 2 masks (left) and s = 4 masks
(right) exhibit significant diversity.

Figure 2. Average test accuracies of FedSelect on non-iid client
partitions of CIFAR-10 when varying the GradLTN personalization
rate p for s = 2 (left) and s = 4 (right).

suffer the same as FedAvg, despite personalizing a small set
of parameters.

Illustrated in Figure 1, the set of masks found in ResNet18’s
linear layer during GradLTN are significantly different from
one another, indicating a high degree of personalization
between clients. The resulting increased performance of
FedSelect suggests that personalizing individual parameters
as opposed to full layers is beneficial for FL.

3.2. Effect of Personalization Rate

In Figure 2, we find that in the s = 2 task, there is minimal
variation in test accuracy when changing the personaliza-
tion rate during FedSelect. It is possible that the process by
which personalizable parameters are identified via GradLTN
and LocalAlt is performed may be strong enough to perform
well in the s = 2 task despite the low data regime. However,
for s = 4, both high (p = 0.75) and low (p = 0.25) person-
alization rates perform slightly worse than p = 0.50. Al-
though the rate does not directly reflect the final percentage
of parameters frozen/personalized, p = 0.5 may represent
a middle ground for which personalizing and averaging a
similar number of parameters is optimal.

4. Conclusion & Future Directions
We propose FedSelect, a method for personalized federated
learning that personalizes client architectures during training
with the Gradient-Based Lottery Ticket Hypothesis. We
demonstrate promising results on CIFAR-10, surpassing
prior personalized FL and pruning-based LTH approaches
in the full-participation, low-client setting. For future work,
we aim to expand our method and perform extensive studies
on varying the personalization rate under different settings,
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and apply this technique to additional datasets, such as
EMNIST (Cohen et al., 2017), Fashion MNIST (Xiao et al.,
2017), and CINIC10 (He et al., 2020).

5. Acknowledgements
We would like to thank the anonymous reviewers for their
valuable comments. We are thankful for the help of Chulin
Xie and Wenxuan Bao for their valuable advising and sup-
port on this project. This research is part of the Delta re-
search computing project, which is supported by the Na-
tional Science Foundation (award OCI 2005572), and the
State of Illinois. Delta is a joint effort of the University of
Illinois at Urbana-Champaign and its National Center for
Supercomputing Applications. We would also like to thank
Amazon, Microsoft, and NCSA for providing conference
travel funding, as well as ICML for providing registration
funding.

References
Arivazhagan, M. G., Aggarwal, V., Singh, A. K., and Choud-

hary, S. Federated learning with personalization layers,
2019.

Cohen, G., Afshar, S., Tapson, J., and van Schaik, A. Emnist:
extending mnist to handwritten letters. In 2017 Interna-
tional Joint Conference on Neural Networks (IJCNN),
2017.

Collins, L., Hassani, H., Mokhtari, A., and Shakkottai, S.
Exploiting shared representations for personalized feder-
ated learning. In International Conference on Machine
Learning, pp. 2089–2099. PMLR, 2021.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 248–255, 2009. doi:
10.1109/CVPR.2009.5206848.

Dinh, T. C., Tran, N., and Nguyen, J. Personalized federated
learning with moreau envelopes. In Advances in Neural
Information Processing Systems, volume 33, pp. 21394–
21405, 2020.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In Interna-
tional Conference on Learning Representations, 2019.

He, C., Li, S., So, J., Zhang, M., Wang, H., Wang, X.,
Vepakomma, P., Singh, A., Qiu, H., Shen, L., Zhao, P.,
Kang, Y., Liu, Y., Raskar, R., Yang, Q., Annavaram,
M., and Avestimehr, S. Fedml: A research library and
benchmark for federated machine learning. CoRR, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition, 2015.

Hsieh, K., Phanishayee, A., Mutlu, O., and Gibbons, P. B.
The non-iid data quagmire of decentralized machine learn-
ing, 2020.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho,
T., Grabska-Barwinska, A., Hassabis, D., Clopath, C.,
Kumaran, D., and Hadsell, R. Overcoming catastrophic
forgetting in neural networks. Proceedings of the Na-
tional Academy of Sciences, 114(13):3521–3526, mar
2017. doi: 10.1073/pnas.1611835114. URL https:
//doi.org/10.1073%2Fpnas.1611835114.

Lee, Y., Chen, A. S., Tajwar, F., Kumar, A., Yao, H., Liang,
P., and Finn, C. Surgical fine-tuning improves adaptation
to distribution shifts, 2023.

Li, A., Sun, J., Wang, B., Duan, L., Li, S., Chen, Y., and Li,
H. Lotteryfl: Personalized and communication-efficient
federated learning with lottery ticket hypothesis on non-
iid datasets, 2020.

Li, T., Hu, S., Beirami, A., and Smith, V. Ditto: Fair
and robust federated learning through personalization.
In International Conference on Machine Learning, pp.
6357–6368. PMLR, 2021a.

Li, X., JIANG, M., Zhang, X., Kamp, M., and Dou, Q.
Fedbn: Federated learning on non-iid features via local
batch normalization. In International Conference on
Learning Representations, 2021b.

Liang, P. P., Liu, T., Ziyin, L., Allen, N. B., Auerbach, R. P.,
Brent, D., Salakhutdinov, R., and Morency, L.-P. Think
locally, act globally: Federated learning with local and
global representations. arXiv preprint arXiv:2001.01523,
2020.

Liu, Z., Hu, S., Wu, Z. S., and Smith, V. On privacy and
personalization in cross-silo federated learning, 2022.

McCloskey, M. and Cohen, N. J. Catastrophic interfer-
ence in connectionist networks: The sequential learning
problem. Psychology of Learning and Motivation, 24:
109–165, 1989.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Proc. of Int’l Conf.
Artificial Intelligence and Statistics (AISTATS), Apr 2017.

Mugunthan, V., Lin, E., Gokul, V., Lau, C., Kagal, L., and
Pieper, S. Fedltn: Federated learning for sparse and per-
sonalized lottery ticket networks. In Avidan, S., Brostow,
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