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Abstract

We develop a regularized Nyström method for solving unconstrained optimization problems
with high-dimensional feature spaces. While the conventional second-order approximation
methods such as quasi-Newton methods rely on the first-order derivatives, our method lever-
ages the actual Hessian information. Additionally, Newton-sketch based methods employ a
sketch matrix to approximate the Hessian, such that it requires the thick embedding matrix
with a large sketch size. On the other hand, the randomized subspace Newton method
projects Hessian onto a lower dimensional subspace that utilizes limited Hessian informa-
tion. In contrast, we propose a balanced approach by introducing the regularized Nyström
approximation. It leverages partial Hessian information as a thin column to approximate the
Hessian. We integrate approximated Hessian with gradient descent and stochastic gradient
descent. To further reduce computational complexity per iteration, we compute the inverse
of the approximated Hessian-gradient product directly without computing the inverse of
the approximated Hessian. We provide the convergence analysis and discuss certain theo-
retical aspects. We provide numerical experiments for strongly convex functions and deep
learning. The numerical experiments for the strongly convex function demonstrate that it
notably outperforms the randomized subspace Newton and the approximation of Newton-
sketch which shows the considerable advancements in optimization with high-dimensional
feature space. Moreover, we report the numerical results on the application of brain tumor
detection, which shows that the proposed method is competitive with the existing quasi-
Newton methods that showcase its transformative impact on tangible applications in critical
domains.

1 Introduction

The optimization of various functions is a crucial and highly relevant topic in machine learning, particularly
due to the exponential growth in data volume. As a result, finding solutions to large-scale optimization
problems has become a pressing concern. In this paper, we propose a method to address this challenge by
approximating the Hessian matrix of the objective function using the Nyström approximation. Our approach
aims to solve a large-scale unconstrained optimization problem of the form:

min
w∈Rd

f(w) (1)

where f is twice continuously differentiable and f is convex.

The traditional second-order optimizers to solve (1), such as Newton’s method provide quadratic convergence.
However, these methods face limitations when dealing with high-dimensional optimization problems due
to their high per-iteration cost and memory requirements. To address this challenge, we provide a low-
rank Hessian approximation method that iteratively uses the Nyström method or more generally, a column
subset selection method to approximate the Hessian. By employing this approach, we aim to provide a
computationally efficient alternative that overcomes the limitations of traditional second-order optimizers
for high-dimensional problems.
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1.1 Background and contributions

To optimize (1), first-order optimization methods such as stochastic gradient descent (SGD) (Robbins
& Monro, 1951), AdaGrad, stochastic variance-reduced gradient (SVRG) (Johnson & Zhang, 2013),
Adam (Kingma & Ba, 2015), and the stochastic recursive gradient algorithm (SARAH), possibly augmented
with momentum, are preferred for large-scale optimization problems owing to their more affordable compu-
tational costs, which are linear in dimensions per epoch O(nd). However, the convergence of the first-order
methods is notably slow, and they are sensitive to hyperparameter choices and ineffective for ill-conditioned
problems.

In contrast, Newton’s method does not depend on the parameters of specific problems and requires only mini-
mal hyperparameter tuning for self-concordant functions, such as `2-regularized logistic regression. However,
Newton’s method involves a computational complexity of Ω(nd2 + d2.37) (Agarwal et al., 2017) per iteration
and thus is not suitable for large-scale settings. To reduce this computational complexity, the subsampled
Newton’s method and random projection (or sketching) are commonly used to reduce the dimensionality
of the problem and solve it in a lower-dimensional subspace. The subsampled (a.k.a mini-batch) Newton
method performs well for large-scale but relatively low-dimensional problems by computing the Hessian ma-
trix on a relatively small sample. However, it is time-consuming for high-dimensional problems. Randomized
algorithms (Lacotte et al., 2021; Pilanci & Wainwright, 2017) estimate the Hessian in Newton’s method us-
ing a random embedding matrix S ∈ Rm×n, HS(w) := (∇2f(w) 1

2 )>S>S(∇2f(w) 1
2 ). Specifically, their

approximation used the square root of the generalized Gauss-Newton (GGN) matrix as a low-rank approx-
imation instead of deriving it from actual curvature information, whereas S is a random projection matrix
of size (m × n). Moreover, the Newton sketch Pilanci & Wainwright (2017) requires a substantially large
sketch size which can be as big as the dimension d, which is not ideal and over-matches the objective of a
low-rank Hessian approximation.

Recently, Derezinski et al. (2021) proposed the Newton-LESS method which is based on the leverage score
specified embeddings. It sparsified the Gaussian sketching and reduced the computational cost with similar
convergence properties as the dense Gaussian sketching.

Gower et al. (2019) proposed the randomized subspace Newton (RSN) method. RSN is the randomized sub-
space Newton that computes the sketch of Hessian by sampling the embedding matrix S and approximating
the Hessian as S(S>HS)†S>.

Talwalkar (2010) proposed the Nyström logistic regression algorithm, where the Nyström method is used
to approximate the Hessian of the regularized logistic regression. Thus, it can be regarded as a variant of
Nyström-SGD. However, Talwalkar (2010) only considered the regularized logistic regression, in which the
Hessian can be explicitly obtained, with deterministic optimization. In contrast, we propose the regularized
Nyström method for the deterministic and stochastic optimization, such that the value of the regularizer
depends on the norm of gradient or stochastic gradient, respectively. We also show its theoretical aspects in
terms of rank and no. of randomly picked columns.

The limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm (Liu & Nocedal, 1989) is a
widely used quasi-Newton method. More specifically, it estimates the Hessian inverse using the past difference
of gradients and updates. The online BFGS (oBFGS) (Schraudolph et al., 2007) method is a stochastic
version of regularized BFGS and L-BFGS with gradient descent. Kolte et al. (2015) proposed two variants
of a stochastic quasi-Newton method incorporating a variance-reduced gradient. The first variant used a
sub-sampled Hessian with singular value thresholding. The second variant used the LBFGS method to
approximate the Hessian inverse. The stochastic quasi-Newton method (SQN) (Byrd et al., 2016) used
the Hessian vector product computed on a subset of each mini-batch instead of approximating the Hessian
inverse from the difference between the current and previous gradients, as in LBFGS. SVRG-SQN (Moritz
et al., 2016) also incorporated variance-reduced gradients.

Contributions: The contributions of this study are summarized as follows.

• We propose the (deterministic and stochastic) regularized Nyström approximated Hessian method
to solve the unconstrained optimization problem.
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• We propose to use the regularizer obtained by gradient information to regularize the Nyström ap-
proximation.

• We provide detailed proof of the convergence. Moreover, we present various theoretical aspects of
the proposed method.

• We empirically show numerical experiments of the proposed methods and compare them with those
of existing methods on the benchmark datasets.

• In addition, we consider a classification problem of tumor detection as an application for Brain MRI
and show the performance of the proposed method by comparing it with similar existing methods.

2 Nyström approximation and its properties

When dealing with large datasets, the computational complexity of second-order optimization methods poses
a significant challenge. As a result, there is a need to explore computationally feasible Hessian approxima-
tion techniques that offer theoretical guarantees. Over the past few decades, researchers have investigated
various matrix approximation methods. In recent years, a common approach involves obtaining a low-rank
approximation of a matrix by utilizing specific parts of the original matrix through various techniques. One
popular method in this context is the Nyström approximation (Drineas & Mahoney, 2005), initially intro-
duced for kernel approximation. The Nyström approximation is a low-rank approximation of a positive
semidefinite matrix that leverages partial information from the original matrix to construct an approximate
matrix of lower rank. The Nyström method can be categorized as a variant of the column subset selection
problem. Talwalkar (Talwalkar & Rostamizadeh, 2014) proposed minimizing the error using low-coherence
bounds of the Nyström method. Michel Derezinski (Derezinski et al., 2020) proposed improvements in the
approximation guarantees of column subset selection and the Nyström method using spectral properties.
Definition 1 (Nyström approximation). Let H ∈ Rd×d be a symmetric positive semi-definite matrix. Then,
choose m columns of H randomly to form a d ×m matrix C. Let m ×m be a matrix M such that it is
formed by the intersection of those m columns and corresponding m rows of H. Mk is the best k-rank
approximation of M . A k-rank Nyström approximation Nk of H can be defined as

Nk = CM †
kC>. (2)

where M †
k is a pseudo-inverse of Mk. Letting H = ∇2f(w) to be a Hessian matrix of the objective

function (1), following theorem shows the distance between the Hessian H and the Nyström approximation
N of H.
Theorem 1. (Drineas & Mahoney, 2005, Algorithm 2) Let H be a d× d matrix and let Nk = CM †

kC> be
a k-rank (k ≤ m) is a Nyström approximation by sampling m columns of H with probabilities {pi}di=1 such
that

pi = H2
ii∑d

i=1 H2
ii

. (3)

Let k = rank(M) and let Hk be the best k-rank approximation of the H. In addition, let ε > 0 and
ϑ = 1 +

√
8 log(1/%). If (a) m ≥ 64kϑ2/ε4, (b) m ≥ 4ϑ2/ε4, then with probability at least 1− %

‖H −Nk‖ν ≤ ‖H −Hk‖ν + ε

d∑
i=1

H2
ii, (4)

for (a) ν = F (Frobenius) and (b) ν = 2 (spectral), where ε > 0.

We denote above upper bound as UNys = ‖H −Hk‖ν + ε
∑d
i=1 H2

ii for the rest of paper.

An alternative way to define a k-rank Nyström approximation is via zero-one sampling matrix. Let H =
∇2f(w) be a Hessian of f(w) that has form of H = X>X, where X is an n×d matrix. If is always possible
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to assume that H = X>X because H is a symmetric positive semi-definite (SPSD). The zero-one matrix
W ∈ Rd×m can be constructed as follows.

W (i, j) =


1 if the i-th column is chosen in

the j-th random trail,
0 otherwise.

(5)

We can write the Nystöm approximation using zero-one matrix as follows:

C(Mk)†C> = (HW )(W>HW )†k(HW )>. (6)

Drineas & Mahoney (2005) shows that the uniform sampling case of scaled Nyström brings the same expres-
sion as the (6). It can be defined as follows:

C(Mk)†C> = (HW D)((W D)>HW D)†k(HW D)>

where D ∈ Rm×m is a scaling matrix that have diagonal entries 1/√mpil , pil is a probability P(il = i) = pi
given in (3) of the Theorem 1 and il is a column chosen in lth independent trail. Moreover, C := HW ,
which is the sampled column matrix of the true Hessian, and M := W>HW , which is the intersection
matrix in (2). However, if we let m = k and then in the case of uniform sampling, the probability pi = 1/d,
and scaling matrix have diagonal entries Dii =

»
d
m which obtain the approximation (2) that is exactly same

as the (6).

Remark 1. Consider an instance of a function f(w) = `(Aw), where A ∈ Rn×d and ` : Rn → R has
separable form such that `(Aw) =

∑n
i=1 `i(〈ai,w〉) the square-root of Hessian can be computed as X> =

∇1/2f(w) = diag{`′′

i }ni=1A.

Let S = W D and one can compute Nyström approximation using S. However, generalized Nyström
method analyzed in Frangella et al. (2021); Gittens (2011); Tropp et al. (2017) consider the theory with the
the Gaussian and various interesting random matrices S. Therefore, we also consider a Gaussian random
matrix.
Lemma 1. Fuji et al. (2022) Let S be a d×m random matrix such that sij are independently sampled from
the normal distribution N(0, 1/m), then there exists C > 0 such that

‖S>S‖ ≤ C d
m
.

with probability at least 1− 2 exp (−m), where C is an absolute constant.

One can prove above lemma from the (Vershynin, 2018, Theorem 4.6.1). For the rest of theoretical analysis,
we consider the matrix S to be a generalized random matrix given in Lemma 1.

3 Algorithmic framework

In this section, we first define a formulation of the Nyström approximation for the objective function (1) and
propose the regularized Nyström algorithm for the unconstrained optimization problem.

Let H = ∇2f(w) be a Hessian of the objective function, and we pick Ω ⊆ {1, 2, . . . , d} indices uniformly at
random such that m = |Ω| and compute the Nyström approximation as

Nk = CM †
kC> = ZZ>, (7)

where Z = CUkΣ−1/2
k ∈ Rd×k, and C ∈ Rd×m is a matrix consisting of m columns (m � d) of H, M is

m ×m intersection matrix, and the rank of M is k ≤ m. We obtain the best k rank approximation using
the singular value decomposition (SVD) of Mk as Mk = UkΣkU>k , where Uk ∈ Rm×k are singular vectors
and Σk ∈ Rk×k consisting k singular values. The pseudo-inverse can be computed as M †

k = UkΣ−1
k U>k .

Note that the number of columns m is a hyperparameter.
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3.1 Relation between `2 regularization and fixed rank Nyström approximation

Consider `2 regularized objective function

min
w∈Rd

{
f(w) :=

n∑
i=1

fi(w) + λ

2 ‖w‖
2

}
, (8)

where each fi are convex, twice continuously differentiable, and λ ≥ 0, and hence f is strongly con-
vex function. Then the Hessian of `2-regularized function can be given as H =

∑n
i=1∇2fi(w) + λI

and λmin(f(w)) ≥ λ. The formulation of column matrix C = S>
(∑n

i=1∇2fi(w)
)

+ λS>I and matrix
M = S>

(∑n
i=1∇2fi(w)

)
S + λS>S ∈ Rm×m. Since λ is used in the approximation, matrix M becomes

positive definite and hence it becomes the fixed ranked Nyström approximation, which also helps in the
convergence to get minimum eigenvalue of M−1. Hence, we can write it as

N = CM−1C>

for fixed rank Nyström approximation.

4 NysReg-gradient: Regularized Nyström-gradient method

Second-order optimization methods often utilize the regularized approximated Hessian. Regularized param-
eters can be obtained through approaches such as the trust-region method or by adaptively determining
the regularization parameter based on the gradient information. These approaches have been explored in
previous works such as Li et al. (2004); Ueda & Yamashita (2010); Tankaria et al. (2022), which propose
iterative formulations similar to:

wt+1 = wt − ηt(At + ρtI)−1∇f(wt), (9)

where, At represents a Hessian approximation, and ρt > 0 is a regularized parameter.

Now, consider At to be Nyström approximation N t in equation (9). To ensure the non-singularity and
obtain a descent direction, we compute a regularized Nyström approximation. Then we can write an iterate
of the regularized Nyström approximation as

wt+1 = wt − ηt(N t + ρtI)−1∇f(wt). (10)

Since we are approximating the Hessian using Nyström method augmented with a regularizer in a similar
quasi-Newton framework that uses the multiple of gradient in the search direction, we call our novel method
“NysReg-gradient: Regularized Nyström gradient method (NGD)”. The regularized parameter ρt > 0 is
determined based on the gradient information. Specifically, we set ρt = c1‖∇f(wt)‖γ as similar to Ueda &
Yamashita (2010), where c1 > 0. We consider ρt to be either c1

√
‖∇f(wt)‖ for γ = 1/2, c1‖∇f(wt)‖ for

γ = 1, or c1‖∇f(wt)‖2 for γ = 2 as shown in Table 1. We denote ∇f(wt) = gt for the rest of paper.

Table 1: Relation between proposed methods and value of γ

Proposed methods Value of γ Regularizer ρt Regularized Nyström
NGD γ = 1/2 ρt = c1‖gt‖1/2 N t + c1‖gt‖1/2

NGD1 γ = 1 ρt = c1‖gt‖1 N t + c1‖gt‖1

NGD2 γ = 2 ρt = c1‖gt‖2 N t + c1‖gt‖2

To efficiently compute the inverse of (N t + ρt) given in (10), we use the Sherman–Morrison–Woodbury
identity as

pt = (N t+ρtI)−1gt=
1
ρt

gt−QtZ
>
t gt, (11)
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where pt is search direction at tth iteration, N t is Nyström approximation computed at wt, gt is a gradient
computed at wt and Qt = 1

ρ2
t
Zt(Ik + 1

ρt
Z>t Zt)−1. Here, (Ik + 1

ρt
ZtZ

>
t ) ∈ Rk×k, and its inverse can be

computed much more quickly than the inverse of (N t + ρtI) directly. We use the backtracking line search
with Armijo’s line search rule that finds a step size ηt = α(`) = τα(`−1), starting from ` = 0, the initial step
size η0 = α(0), and finds the least positive integer ` ≥ 0 and increased ` by `+ 1 until the

f(wt + α(`)pt) ≤ f(wt) + α(`)βg>t pt, (12)

holds, where α, β ∈ (0, 1). Next, we introduce the main algorithm.

Algorithm 1 NysReg-gradient: Regularized Nyström-Gradient Algorithm
1: Initialize Initial parameters w0, desired rank |Ω| = m, α, β ∈ (0, 1), and maximum iterations tmax
2: t← 0
3: repeat
4: gt = ∇f(wt)
5: randomly pick indices set Ω ⊆ {1, 2, . . . , d} such that m = |Ω|
6: compute Ct (Ω columns of the Hessian)
7: compute Zt using (7) and compute ρt
8: Qt = 1

ρ2
t
Zt(Ik + 1

ρt
ZT
t Zt)-1

9: Compute (N t + ρtI)−1gt using (11)
10: Use backtracking line search with Armijo’s rule to find ηt using (12)
11: wt+1 = wt − ηtpt
12: t = t+ 1
13: until t = tmax or some termination criteria is satisfied
14: return wt

The efficiency of the method depends on both rank of Hessian and the choice of the sketching matrix S. For
example if the sketch size goes to one then method reduces to scaled gradient descent. Next, we see discuss
the computational complexity of the proposed algorithm.

4.1 Computational complexity

Here, we analyze the per-iteration computational complexity of the proposed method. The cost of matrix-
vector multiplication (N t + ρtI)−1gt, i.e., (11) is O(dk) at each iteration. The cost of computing Qt is
O(dk2) at each epoch. The cost of computing Zt is O(dmk). The computational cost of constructing the
matrix C is O(dm). Thus, over the course of all iterations, the construction of the matrix C is associated
with the highest computational cost; therefore, the overall time and space complexity are O(dm).

4.2 Regularized Nyström as Newton sketch

In this section, we introduce an alternate definition of the Nyström approximation. Nyström approxima-
tion can be obtained by sampling the embedding (random sketch) matrix. We further show that resultant
formulation of an alternate definition of the Nyström approximation and it can be interpreted as a Newton
sketch-based method (Pilanci & Wainwright, 2017; Lacotte et al., 2021). Consider the Nyström approxima-
tion and let H = X>d×nXn×d and zero-one d×m matrix W in (5) with CX = XW . Let SVD of XW is“U“Σ“V >, and M = (C>XCX) = “V “Σ2“V >. Then, similar to (Drineas & Mahoney, 2005, Lemma 4) we obtain,

C(Mk)†C> = (HW )(W>HW )†k(HW )>

= (X>CX)(C>XCX)†k(X>CX)>

= X>(“U“Σk
“V >)(“V “Σ−2

k
“V >)(“V “Σk

“U>)X.

= X>“Uk
“U>k X (13)
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where “Uk is k−rank matrix. The right-hand side of (13) is similar to the Newton sketch Pilanci &Wainwright
(2017) with two differences, 1) embedding matrix P depends on the size of n and not d, whereas the zero-
one matrix W ∈ Rd×m depends on the d and 2) the natural orthogonal matrix “Uk in proposed method is
replaced by a randomized embedding matrix P> ∈ Rn×m, which is expected to be orthogonal in principle.
i.e., E[P>P ] = I, whereas the proposed method produces the natural orthogonal matrix; i.e., “U“U> = I.
Consequently, Newton-sketch needs a large and thick column matrix P (assuming most data having n > d)
to approximate the Hessian.

If we let X = ∇2f(w)1/2 then, our approximation is of the form of

HW = X>“U“U>X + λI

= (∇2f(w)1/2)>“U“U>(∇2f(w)1/2) + ρI. (14)

More generally, the approximation given above can be written in the form of an embedding matrix as
follows. Let Y = ρId, and let Y 1/2 = √ρ · Id be a d × d matrix. Then, by defining the embedding matrix

S̄ =
ñ“U>m×n 0m×d

0d×n Id

ô
and partial Hessian H̄ =

ñ
∇2f(w)1/2

Y 1/2

ô
, we get

HS = H̄
>

S̄
>

S̄H̄

which is identical to the (14) and hence H−1
S is non-singular, where HS is the Nyström approximation for

HS . Note that X = ∇2f(w)1/2 can be computed as shown in the remark 1.

5 Convergence analysis

In this section, we provide the analysis that is based on selecting the number of columns m, in the Nyström
approximation. We investigate distance between the Newton’s direction and the NGD’s search direction
that is based on the rank of matrix M . We further prove the linear convergence of the proposed algorithm.
Moreover, in the last subsection, we discuss the closeness of the inverse of regularized Nyström with the
inverse of Hessian. This analysis offers insights into the overall convergence behavior of the algorithm. It is
important to note that our convergence analysis is based on the objective function defined in equation (8).

For local convergence, see section A given in the Appendix.

Next, we provide the convergence analysis. First, we need following assumptions.
Assumption 1. i) The objective function (8) is twice continuously differentiable and f is Lg-smooth, i.e.,

‖∇2f(wt)‖ ≤ Lg, ∀ wt ∈ Rd. (15)

ii) The objective function (8) is strongly convex.
Assumption 2. St is a random matrix whose entries are independently sampled Normal distribution with
mean 0 and variance 1/m, satisfies

‖S>S‖ ≤ C d
m
,

for some C > 0.
Assumption 3. For dimension d, we have a constraint on the value of m such that m = o(d).

Note that Assumption 3 is important as in the case where m = d, the Nyström approximation results into
the Hessian, i.e., HH†H = H and it turns out to be the Newton’s method.

In the next Lemma, we obtain lower bound of minimum eigenvalue and upper bound of maximum eigenvalue
of (N t + ρtI)−1.

Lemma 2. Suppose that Assumption 1, and 2 hold. Let wt iterate obtained by Algorithm 1, and for some
m, the maximum and minimum eigenvalues of (N t + ρtI)−1 are given as

λmin[(N t + ρtI)−1] ≥ 1
CL2

gd

mλ + c1‖gt‖γ
and λmax[(N t + ρtI)−1] = 1

c1‖gt‖γ
. (16)
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Proof. First we obtain the bound on minimum eigenvalue of (N t + ρI)−1.

λmin[(N t + ρtI)−1] = 1
λmax(N t + ρtI)

≥ 1
λmax(HtSt(S>HtS

†
t)S>Ht) + ρtI

≥ 1
‖Ht‖2‖S>t St‖‖(S>HtSt)−1‖+ ρt

≥ 1
L2
g

(Cd
m

) ( 1
λ

)
+ ρt

(17)

= 1
CL2

gd

mλ + c1‖gt‖γ

where the third inequality follows from the ‖H‖ ≤ Lg, Lemma 1, and since f is strongly convex and m� d,
(S>HS) � λI. Now we find obtain the bound on maximum eigenvalue of (N t + ρI)−1.

λmax[(N t + ρtI)−1] = 1
λmin(N t + ρtI)

= 1
ρt

= 1
c1‖gt‖γ

Since N t is positive semi-definite ρt is minimum eigenvalue of (N t + ρtI). This completes the proof.

5.1 Exactness of Nyström approximation

Here, we present a result to obtain the the distance between Hessian and Nyström approximation based on
the size of the number of columns m or rank of M . Kumar et al. (2009) showed a stronger result in the
following theorem that if the rank of M is the same as the rank of H, then Nyström approximation is exact.
Theorem 2. (Kumar et al., 2009, Theorem 3) Suppose H ∈ Rd×d is positive semi-definite matrix and
rank(H) = r ≤ d. Consider the Nyström approximation N = CM †C> and rank(M) = r ≤ m ≤ d, where
m is the number of columns picked randomly. Then the Nyström approximation is exact. i.e.,

‖H −N‖F = 0,

where ‖.‖F is the Frobenious norm.

Note that ‖A‖2 ≤ ‖A‖F for any matrix A. From the above theorem, it is easy to see that Nyström
approximation produces the exactly same singular values when rank(M) = r. Hence we can expect to
achieve the same convergence as the Newton’s method or superlinear convergence at least when the number
of columns chosen m ≥ r and rank(H) = rank(M) = r. Moreover, it tells that when rank(M) < r, then
we can not achieve the quadratic convergence since the distance between Hessian and Nyström is bounded
from above and not exactly zero.

Remark 2. To have the least possible value of m (i.e.,m = r) that satisfies the above theorem, we need
to choose exactly those r independent columns of H which is difficult due to the randomness involved in
choosing m. In short, when rank(H) = r, it becomes a feature selection problem to choose the r independent
columns that will form a Nyström approximation. The usual convergence gives a probabilistic convergence
due to the randomness involved inm and the convergence rate depends on the size of the number of randomly
chosen columns m = |Ω|.
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5.2 Bound on the difference between NysReg-gradient’s and Newton’s direction

Assumption 4. For all x,y, the gradient is Lipschitz, i.e.,

‖∇f(x)−∇f(y)‖ ≤ Lg‖x− y‖.

Lemma 3. Suppose that Assumption 1 holds. Let {w} be a sequence generated by Algorithm 1. If

m > 64kϑ/ε4

then
‖pt − pNt ‖ ≤

1
λ

(UNys + c1‖gt‖γ)‖pt‖,

with probability at least 1− %, where UNys is an upper bound of ‖Ht −N t‖ given in Theorem 1. Moreover,
if rank(M) = rank(H), then

‖pt − pNt ‖
‖pt‖

≤ c1

λ
‖gt‖γ ,

with probability at least 1− % given in Theorem 1.

Proof. Let direction of the Newton’s method be pNt = −∇2f(wt)−1gt and regularized Nyström direction is
pt = −(N t + ρtI)−1gt. Since f is strongly convex, λmin(∇2f(w)) ≥ λ, let ∇2f(w) = H. Then we have
‖H−1

t ‖ ≤ 1
λ for t > 0. Next the distance between the directions can be given as:

‖pt − pNt ‖ = ‖H−1
t (Htpt + gt) ‖

= ‖H−1
t (Ht − (N t + ρtI)) pt‖

≤ ‖H−1
t ‖‖ (Ht − (N t + ρtI)) pt‖

= ‖H−1
t ‖‖ (Ht −N t) pt − (ρtI)pt‖

≤ ‖H−1
t ‖‖ (Ht −N t) pt‖+ ‖H−1

t ‖‖ρtpt‖
≤ ‖H−1

t ‖‖Ht −N t‖‖pt‖+ c1‖H−1
t ‖‖gt‖γ‖pt‖ (18)

• case a) In this case, we discuss the distance ‖pt − pNt ‖, when m > 64kϑ/ε4 (Theorem 1) or
rank(M t) < rank(Ht).
Using Theorem 1 in the (18), we get

‖pt − pNt ‖ ≤ ‖H
−1‖‖Ht −N t‖‖pt‖+ c1‖H−1

t ‖‖gt‖γ‖pt‖

≤ 1
λ

(UNys + c1‖gt‖γ)‖pt‖

where ‖H−1
t ‖ ≤ 1

λ , and ‖Ht −N t‖ ≤ UNys.

• case b) For this case, we obtain a result when rank(M) = rank(H).
Using the Theorem 2 in (18), we get

‖pt − pNt ‖ ≤ ‖H
−1‖‖Ht −N t‖‖pt‖+ c1‖H−1

t ‖‖gt‖γ‖pt‖
= c1‖H−1

t ‖‖gt‖γ‖pt‖

Hence, we get
‖pt − pNt ‖
‖pt‖

≤ c1‖H−1‖‖gt‖γ ≤
c1

λ
‖gt‖γ

where ‖H−1
t ‖ ≤ 1

λ .

9
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This completes the proof.

Remark 3. H may not be the full rank matrix if f is not strongly convex function. Then disregarding
Assumption 1 for case (b) in above lemma holds for d = m if f strongly convex function and may be m < d
if f not strongly convex function.

5.3 Linear convergence

Next, we discuss a lemma related to search direction to obtain the linear convergence.
Lemma 4. Let pt be a descent direction of Algorithm 1 at iteration t, then

g>t pt ≤ −ρt‖pt‖2.

Proof. Let pt = −(N t + ρtI)−1gt be a search direction. Next, consider

−g>t pt = g>t (N t + ρtI)−1gt

= ((N t + ρtI)−1gt)>(N t + ρtI)(N t + ρtI)−1gt

= pt(N t + ρtI)pt
≥ ρt‖pt‖2,

where the last inequality comes from the fact that N t is positive semidefinite.
This completes the proof.

Finally, in the next theorem, we prove the linear convergence.
Theorem 3. Suppose that Assumption 1 - 4 hold. Let {w} be a sequence generated by Algorithm 1 and w∗
be the optimal point. Then there exists 0 < ξ < 1, with probability at least 1− 2 exp (−m), we have

f(wt+1)− f(w∗) ≤ ξ (f(wt)− f(w∗)).

where
ξ =
Ç

1− 4β(1− β) mλ2ρt
Lg(CdL2

g +mλρt)

å
.

Proof. Since ∇f is Lipschitz continuous, we have

f(wt+1) ≤ f(wt) + g>t (wt+1 −wt) + Lg
2 ‖wt+1 −wt‖2

= f(wt) + ηtg
>
t pt + η2

tLg
2 ‖pt‖2

Let u2 = −g>t pt, then using Lemma 4, we have ‖pt‖2 ≤ −g>
t pt
ρt

= u2

ρt
, and we get

f(wt+1) ≤ f(wt) + ηtg
>
t pt + η2

tLg
2 ‖pt‖2

≤ f(wt) + ηt(−u2) + η2
tLg
2ρt

u2

= f(wt)− ηt
Å

1− ηtLg
2ρt

ã
u2

Hence the exit condition of backtracking line search f(wt + ηtpt) ≤ f(wt) + βηtg
>
t pt satisfies if we takeÅ

1− ηtLg
2ρt

ã
= β,

10
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and step size ηt = 2(1− β)ρt/Lg. Therefore, it stops when ηt ≥ 2ρt/Lg and we have

f(wt+1) ≤ f(wt)− 2β(1− β) ρt
Lg
u2 (19)

Since u2 = −g>t pt, and from Lemma 2,

u2 = −g>t pt = g>t (N t + ρtI)−1gt ≥
mλ

CdL2
g +mλρt

‖gt‖2.

Hence, by (19) we get

f(wt+1) ≤ f(wt)− 2β(1− β) mλρt
Lg(CdL2

g +mλρt)
‖gt‖2. (20)

Subtracting f(w∗) from both sides of (20), and from strong convexity of f , we have ‖gt‖2 ≥ 2λ(f(wt) −
f(w∗)), which implies

f(wt+1)− f(w∗) ≤ f(wt)− f(w∗)− 4β(1− β) mλ2ρt
Lg(CdL2

g +mλρt)
(f(wt)− f(w∗))

=
Ç

1− 4β(1− β) mλ2ρt
Lg(CdL2

g +mλρt)

å
(f(wt)− f(w∗)).

This completes the proof.

5.4 Closeness to the Hessian inverse

In this subsection, we discuss the closeness of the inverse of regularized Nyström approximation with the
Hessian inverse. Let H be the Hessian of the objective function (1) and we consider the regularized Newton’s
method regularized by any ρ > 0. Then, the inverse of Hessian of is given by (H +ρI)−1

w = (∇2f(w)+ρI)−1

at w. Let the regularized Nyström at w be given by (ZwZ>w + ρI)−1. The distance of the regularized
inverse matrix is then given as

‖(ZwZ>w + ρI)−1 − (H + ρI)−1
w ‖ ≤

‖Jw‖
ρ(‖Jw‖+ ρ) , (21)

where 0 < ‖Jw‖ = ‖H − ZwZ>w‖ ≤ ‖H −Hk‖ + ε
∑d
i=1(Hii)2; which follows from (4), whereas (21)

follows from (Frangella et al., 2021, Proposition 3.1).

Note that the rank of Hessian can be possibly r when the objective function is not `2 regularized.

5.5 Global conververgence

In this subsection, we provide the global convergence analysis. First, we need following assumptions.
Assumption 5. i) The objective function (8) is twice continuously differentiable.
ii) Let w0 be an initial point and the level set of the objective function Γ := {w ∈ Rd : f(w) ≤ f(w0)} is
compact and {w} ∈ Γ.
iii) There exists a minimum fmin of f .

Since we are using Armijo’s backtracking rule to have f(wt+1) ≤ f(wt), for any t ∈ N, implies that
the sequence {wt} generated by the proposed algorithm 1 is included in the level set Γ. Similarly, from
Assumption 5(i) and (ii), there exists Lg > 0 such that for all w ∈ Γ,

‖∇2f(wt)‖ ≤ Lg, ∀t ∈ Γ. (22)

11
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Moreover, from Assumption 5(ii) it follows that there exists Ug > 0 such that

‖gt‖ ≤ Ug, ∀t ≥ 0, (23)

and assume that there exists ε > 0 such that ε ≤ ‖gt‖. Note that one can always assume ε > 0,

ε ≤ ‖gt‖, (24)

when wt 6= w∗.

First we get the maximum and minimum eigenvalues of the (N t + ρtI)−1.

In the next Lemma, we obtain lower bound of minimum eigenvalue and upper bound of maximum eigenvalue
of (N t + ρtI)−1.

Lemma 5. Suppose that Assumption 2 and 5 hold. Let wt iterate obtained by Algorithm 1, and for some
m, the maximum and minimum eigenvalues of (N t + ρtI)−1 are bounded

λmin[(N t + ρtI)−1] ≥ λm

L2
gCd+mλc1U

γ
g

and λmax[(N t + ρtI)−1] ≤ 1
c1εγ

. (25)

Proof. We use the (23) and (24) in Lemma 2 to obtain the eigenvalue bounds. First we obtain the bound
on minimum eigenvalue of (N t + ρI)−1.

λmin[(N t + ρtI)−1] ≥ 1
CL2

gd

mλ + c1‖gt‖γ

≥ λm

L2
gCd+mλc1U

γ
g

The last inequality comes from the fact that ‖gt‖ ≤ Ug. Now we find obtain the bound on maximum
eigenvalue of (N t + ρI)−1.

λmax[(N t + ρtI)−1] = 1
c1‖gt‖γ

≤ 1
c1εγ

(26)

Since N t is positive semi-definite ρt is minimum eigenvalue of (N t + ρtI). This completes the proof.

Remark 4. There are various method to obtain the c1 > 0, such as trust-region method, grid search, etc,
where c1 ∈ [cmin

1 ,∞]. It is important to note that ε > 0, and hence

lim
c1→∞

λmax[(N t + ρtI)−1] = 0.

Lemma 6. Suppose that Assumption 5 holds. Let iterate wt is obtained by Algorithm 1, and ‖pt‖ 6= 0.
Then

‖wt+1 −wt‖ ≤ ηt
‖gt‖
ρt

and ‖pt‖ ≤ c2‖gt‖1−γ . (27)

12
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Proof. Iterate from Algorithm 1 is of the form wt+1 = wt − ηt(N t + ρtI)−1gt,

‖wt+1 −wt‖ = ‖ηt(N t + ρtI)−1gt‖
= ηt‖(N t + ρtI)−1gt‖
≤ ηt‖(N t + ρtI)−1‖‖gt‖
= ηt(λmax(N t + ρtI)−1)‖gt‖

= ηt‖gt‖
λmin(N t + ρtI))

= ηt‖gt‖
ρt

.

Since N t is positive semidefinite and ρt > 0, the minimum eigenvalue of (N t + ρtI) is ρt = c1‖gt‖γ .

Hence, we get an upper bound on search direction pt as follows,

‖pt‖ ≤
‖gt‖
ρt

= ‖gt‖
c1‖gt‖γ

,

= c2‖gt‖1−γ (28)

where c2 = 1/c1 and γ ∈ {1/2, 1, 2}. Next, we provide an lower bound of ‖wt+1 −wt‖. This completes the
proof.

Lemma 7. Suppose that Assumption 5 holds. Assume that there exists ε > 0 such that ε ≤ ‖gt‖. Then the
search direction pt satisfies

‖pt‖ ≤ b(ε), (29)
where

b(ε) := c2 max
Å
U1−γ
g ,

1
εγ−1

ã
.

Proof. From (23), we have ‖gt‖ ≤ Ug and ε ≤ ‖gt‖. We prove this with two cases of of γ.

• case 1: γ ≤ 1. In this case, the search direction pt follows from the Lemma 6 and (36), we have

‖pt‖ ≤ c2‖gt‖1−γ

≤ c2U
1−γ
g

• case 2: γ > 1, implies 1− γ < 0, and hence we get

‖pt‖ ≤ c2‖gt‖1−γ

≤ c2

εγ−1 .

It follows from above cases that
‖pt‖ ≤ c2 max

Å
U1−γ
g ,

1
εγ−1

ã
. (30)

This completes the proof.

From above Lemma, we have wt + τpt ∈ Γ +B(0, b(ε)), ∀τ ∈ [0, 1]. The compactness of Γ +B(0, b(ε)) and
f is twice continuously differentiable, it follows that there exists UH > 0 such that

‖∇2f(w)‖ ≤ UH , ∀w ∈ Γ +B(0, b(ε)). (31)

Next, we obtain a step size that is related to a constant that satisfies the Armijo’s rule.

13
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Lemma 8. Suppose that Assumption 2, 3, and 5 hold, and there exists ε > 0 such that ‖gt‖ ≥ ε. Then, the
step size ηt > 0

ηt ≤
2(1− β)λmc2

1ε
2γ

(U2
Hc3d+mλc1U

γ
g )UH

(32)

satisfies Armijo’s rule (12).

Proof. Since f is twice continuously differentiable, we consider a 2nd order Taylor’s theorem, there exists
τt ∈ [0, 1] such that

f(wt + ηtpt) = f(wt) + ηtg
>
t pt + 1

2η
2
t p>t ∇2f(wt + τtηtpt)pt.

Adding βηtg>t pt both side and rearranging above equation, we get

f(wt)− f(wt + ηtpt) + βηtg
>
t pt

= (β − 1)ηtg>t pt −
1
2η

2
t p>t ∇2f(wt + τtηtpt)pt

= (1− β)ηtg>t (N t + ρtI)−1gt −
1
2η

2
t g>t (N t + ρtI)−1∇2f(wt + τtηtpt)(N t + ρtI)−1gt

≥ (1− β)ηtλmin[(N t + ρtI)−1]‖gt‖2 − η2
t

2 λmax[(N t + ρtI)−1]2λmax[∇2f(wt + τtηtpt)]‖gt‖2

≥ (1− β)ηtλm
U2
Hc3d+mλc1U

γ
g
‖gt‖2 − η2

tUH
2c2

1ε
2γ ‖gt‖

2

= ηtUH
2c2

1ε
2γ

Å 2(1− β)λmc2
1ε

2γ

(U2
Hc3d+mλc1U

γ
g )UH

− ηt
ã
‖gt‖2

≥ 0,

where the second inequality follows from the Lemma 2 and ‖∇2f(wt)‖ ≤ UH . This completes the proof.

Lemma 9. Suppose that Assumption 2, 3, and 5 hold and there exists ε > 0 such that ‖gt‖ ≥ ε. Then the
step size ηt satisfies the lower bound

ηt ≥ ηmin(ε), (33)

where
ηmin(ε) = min

Å
1, 2(1− β)αλmc2

1ε
2γ

(U2
Hc3d+mλc1U

γ
g )UH

ã
.

Proof. From the previous Lemma, if

2(1− β)λmc2
1ε

2γ

(U2
Hc3d+mλc1U

γ
g )UH

> 1

then it is clear that from the previous Lemma 8, the ηt = 1 satisfies the Armijo’s rule (12). Otherwise there
exists `t such that

α`t+1 <
2(1− β)λmc2

1ε
2γ

(U2
Hc3d+mλc1U

γ
g )UH

≤ α`t ,

and from Lemma 8, the ηt = α`t ≥ α`t+1 = αα`t satisfies the Armijo’s rule. Hence we obtain,

ηt ≥ min
Å

1, 2(1− β)αλmc2
1ε

2γ

(U2
Hc3d+mλc1U

γ
g )UH

ã
This completes the proof.

In the next lemma, when f(wt) 6= fmin, we provide a lower bound on the reduction in the difference between
two consecutive values of f .

14
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Lemma 10. Suppose that Assumption 2, 3, and 5 hold and there exists ε > 0 such that ‖gt‖ ≥ ε, then with
probability at least 1− 2 exp (−m), we have

f(wt)− f(wt+1) ≥ U1ε
2

where
U1 := βηmin(ε)λm

U2
Hc3d+mλc1U

γ
g

Proof. It is clear that Lemma 1 holds for all t with the probability 1 − 2 exp (−m). From Armijo’s rule, it
follows that

f(wt)− f(wt+1) ≥ −βηtg>t pt

= βηtg
>
t (N t + ρtI)−1gt

≥ βηmin(ε)λmin[(N t + ρtI)−1]‖gt‖2

≥ βηmin(ε)λm
U2
Hc3d+mλc1U

γ
g
‖gt‖2

≥ βηmin(ε)λm
U2
Hc3d+mλc1U

γ
g
ε2

= U1ε
2, (34)

where the second inequality comes from the Lemma 9, the third inequality comes from the Lemma 2, and
the third inequality comes from the fact that ‖gt‖ ≥ ε. This completes the proof.

Theorem 4. Suppose the Assumption 2, 3, and 5 hold. Then with the probability at least 1− 2z exp (−m),

lim inf
t→∞

‖gt‖ = 0

or there exists a z > 0, such that ‖gz‖ = 0.

Proof. We give this proof using contradiction. Suppose there exists ε > 0 such that ‖gt‖ ≥ ε for all k ≥ 0.
It then follows from the Lemma 10 that

f(w0)− f(wt) =
t−1∑
i=0

(f(wi)− f(wi+1))

≥
t−1∑
i=0

U1ε
2

= t U1ε
2. (35)

The right hand side of last equality goes to infinity when t→∞ and hence

lim
t→∞

f(wt) = −∞,

which contradicts the existence of fmin of the Assumption 5(ii). Hence, there exists a z ∈ Γ such that
‖gz‖ = 0. This completes the proof.

5.6 Global complexity analysis

Assumption 6. Furthermore, we assume the following:

(i) γ ≤ 1,

(ii) β ≤ 1/2,

15
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(iii) There exists LH > 0 such that

‖∇2f(a)−∇2f(b)‖ ≤ LH‖a− b‖, a, b ∈ Γ +B(0, r),

where r := c2U
1−γ
g .

Using Assumption 6(iii), the search direction pt is bounded above by r as follows, Since N t is positive
semidefinite and ρt > 0, the minimum eigenvalue of (N t + ρtI) is ρt = c1‖gt‖γ .

Hence, we get an upper bound on search direction pt as follows,

‖pt‖ ≤
‖gt‖
ρt

= ‖gt‖
c1‖gt‖γ

,

= c2‖gt‖1−γ (36)

Hence,
‖pt‖ ≤ c2‖gt‖1−γ ≤ c2U

1−γ
g = r. (37)

Note that the above bound does not depend on the ε. Hence,

wt + τpt ∈ Γ +B(0, r), ∀τ ∈ [0, 1].

In addition, f is twice continuously differentiable, and that Γ +B(0, r) is compact, there exists UH > 0 such
that

‖∇2f(w)‖ ≤ UH , ∀w ∈ Γ +B(0, r).

Next we prove the upper bound of the step size ηt using wt ∈ Γ +B(0, r).
Lemma 11. Suppose that Assumption 2, 3, 5 and 6 hold. Then step size ηt > 0 such that

ηt ≤
c1

LHU
1−γ
g

(
c1U

γ
g + c3

)
, (38)

where c3 = λmin
(
N t −∇2f(wt)

)
.

Proof. Since f is twice continuously differentiable, we consider a 2nd order Taylor’s theorem, there exists
τt ∈ [0, 1] such that

f(wt + ηtpt) = f(wt) + ηtg
>
t pt + 1

2η
2
t p>t ∇2f(wt + τtηtpt)pt.

Adding βηtg>t pt both side and rearranging above equation, we get

f(wt)− f(wt + ηtpt) + βηtg
>
t pt

= (1− β)ηtg>t (N t + ρtI)−1gt −
1
2η

2
t g>(N t + ρt)−1∇2f(wt + τtηtpt)(N t + ρtI)−1gt

≥ 1
2η

2
t g>t (N t + ρtI)−1gt −

1
2η

2
t g>(N t + ρt)−1∇2f(wt + τtηtpt)(N t + ρtI)−1gt

= 1
2η

2
t g>t (N t + ρtI)−1gt −

1
2η

2
t g>t (N t + ρtI)−1∇2f(wt)(N t + ρtI)−1gt

+ 1
2η

2
t g>t (N t + ρtI)−1∇2f(wt)(N t + ρtI)−1gt −

1
2η

2
t g>(N t + ρt)−1∇2f(wt + τtηtpt)(N t + ρtI)−1gt

= 1
2η

2
t g>t (N t + ρtI)−1 [I −∇2f(wt)(N t + ρtI)−1] gt

− 1
2η

2
t g>t (N t + ρtI)−1 [∇2f(wt + τtηtpt)−∇2f(wt)

]
(N t + ρtI)−1gt

:= (a)− (b) (39)
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where the first inequality comes from the fact 1 − β ≥ 1/2 ≥ ηt/2 and we separate the last term into two
terms (a) and (b) as denoted above.

Consider the term (a):

(a) = 1
2η

2
t g>t (N t + ρtI)−1 [I −∇2f(wt)(N t + ρtI)−1] gt

= 1
2η

2
t g>t (N t + ρtI)−2 [(N t + ρtI)−∇2f(wt)

]
gt

≥ 1
2η

2
t

(
c1‖gt‖γ + λmin

(
N t −∇2f(wt)

))
‖(N t + ρtI)−1gt‖2

≥ 1
2η

2
t (c1‖gt‖γ + c3) ‖(N t + ρtI)−1gt‖2 (40)

where c3 = λmin
(
N t −∇2f(wt)

)
. Next, consider the term (b) :

(b) = 1
2η

2
t g>t (N t + ρtI)−1 [∇2f(wt + τtηtpt)−∇2f(wt)

]
(N t + ρtI)−1gt

≤ 1
2η

2
t ‖∇2f(wt + τtηtpt)−∇2f(wt)‖‖(N t + ρtI)−1gt‖2

≤ 1
2LHη

3
t ‖pt‖‖(N t + ρtI)−1gt‖2 (41)

Continuing (a)− (b) from (39) using (40) and (41), we get

(a)− (b) ≥ 1
2η

2
t (c1‖gt‖γI + c3I) ‖(N t + ρtI)−1gt‖2 − 1

2LHη
3
t ‖pt‖‖(N t + ρtI)−1gt‖2

= 1
2η

2
t [c1‖gt‖γI + c3I − LHηt‖pt‖] ‖(N t + ρtI)−1gt‖2

= 1
2LHη

2
t ‖pt‖

ï
c1‖gt‖γ + c3

LH‖pt‖
− ηt
ò
‖(N t + ρtI)−1gt‖2

From the Assumption 6 and (37), we have

c1‖gt‖γ + c3

LH‖pt‖
≥ c1‖gt‖γ

c2LH‖gt‖1−γ + c3

c2LH‖gt‖1−γ

≥ c2
1

LH‖gt‖1−2γ + c1c3

LH‖gt‖1−γ

≥ c2
1

LHU
1−2γ
g

+ c1c3

LHU
1−γ
g

= c1

LHU
1−γ
g

(
c1U

γ
g + c3

)
From the above inequality, we finally get

f(wt)− f(wt + ηtpt) + βηtg
>
t pt ≥

1
2LHη

2
t ‖pt‖

ñ
c1

LHU
1−γ
g

(
c1U

γ
g + c3

)
− ηt

ô
‖(N t + ρtI)−1gt‖2 ≥ 0.

This completes the proof.

Corollary 1. Suppose that Assumption 2, 3, 5, and 6 hold. Then step size ηt > 0 satisfies the lower bound
such that

ηt ≥ ηmin

where
ηmin =

Ç
1, c1

LHU
1−γ
g

(
c1U

γ
g + c3

)å
.
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Lemma 12. Suppose that Assumption 2, 3, 5 and 6 hold. Let

U2 = βηminλm

L2
gCd+mλc1U

γ
g
.

Then, with probability at least 1− 2 exp(−m), we have

f(wt)− f(wt+1) ≥ U2‖gt‖2.

Proof. It is clear that Lemma 1 holds for all t with the probability 1 − 2 exp (−m). From Armijo’s rule, it
follows that

f(wt)− f(wt+1) ≥ −βηtg>t pt

= βηtg
>
t (N t + ρtI)−1gt

≥ βηminλmin[(N t + ρtI)−1]‖gt‖2

≥ βηminλm

L2
gCd+mλc1U

γ
g
‖gt‖2

where ηmin is comes from the Corollary 1. It is important to note that above bound U2, it does not depend
on the ε. This completes the proof.

Theorem 5. Suppose that Assumption 2, 5, and 6 hold. Let {w} be a sequence generated by NGD(s). Let
T1 be a first iteration to satisfy such that ‖gT1‖ ≤ ε. Then, with probability at least 1− 2t exp (−m), we have

T1 ≥
f(w0)− f(w∗)

U2
ε−2,

where U2 is a constant given in Lemma 12.

Proof. It follows from the Lemma 12,

f(w0)− f(w∗) ≥ f(w0)− f(wt)

=
t−1∑
i=0

(f(wt)− f(wt+1))

≥ U2

t−1∑
i=0
‖gi‖2

≥ t U2

Å
min

0≤i≤t−1
‖gi‖
ã2
.

Then, we have

min
0≤i≤t−1

‖gi‖ ≤
Å
f(w0)− f(w∗)

t U2

ã1/2
,

and hence
t ≥ f(w0)− f(w∗)

U2
ε−2,

which implies,
min

0≤i≤t−1
‖gi‖ ≤ ε.

It is clear that Assumption 2 holds for i ∈ {0, 1, . . . , t − 1} with given probability. This completes the
proof.
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Hence, the global complexity bound of the proposed method is O(ε−2). It is important to note that, if the
parameter c1 is large, the positive constant ηmin, as given in Corollary 1 is 1. In spite of the fact that of c1
can be large, it is important to note that the constant U2 does not become too small. This is largely due
to the common practice where λ is small. Therefore, the selection of parameters γ,m, c1 and λ holds the
significant importance in the implementation.

6 Stochastic variant of the regularized Nyström gradient method

In this section, we discuss the stochastic variant of the Nyström gradient. In the context of machine learning,
it is usual to work with a large number of samples, making it computationally challenging to compute the full
gradient at every iteration. To address this challenge, we employ the stochastic gradient with the Nyström
approximation. In this stochastic variant of the NGD, we compute the mini-batch stochastic gradient at
every iteration and compute the regularized Nyström N τ + ρτI, once per epoch with ρτ = c1‖gt−1,τ‖γ 9.
We call this variant NSGD. Furthermore, we use diminishing step size ηt for the stochastic variant NSGD.

Table 2: Search direction and γ in for NSGD

Proposed methods Regularizer ρ (Value of γ) Search direction
NSGD ρτ = c1‖gt−1,τ‖γ (γ = 1/2) pt−1 = (N τ + ρτ )−1gt−1,τ

Algorithm 2 NysReg-Stochastic gradient: NSGD Algorithm
Parameters: Update frequency ` and initial step size η0

1: Initialize w0, τ = 1
2: for t = 1, 2, . . . do
3: randomly pick batch B ∼ {1, . . . , n}
4: gt-1,τ = ∇fB(wt-1)
5: if (t− 1) mod ` = 0 then
6: randomly pick indices set Ω ⊆ {1, 2, . . . , d} such that m = |Ω|
7: compute Cτ (Ω columns of the Hessian) at wt−1
8: compute Zτ using (7) and compute ρτ
9: Qτ = 1

ρ2
τ

Zτ (I + 1
ρτ

ZT
τ Zτ )-1

10: τ = τ + 1
11: end if
12: Compute pt−1 using (11)
13: wt = wt−1 − ηtpt−1
14: end for

7 Numerical experiments

In this section, we demonstrate the numerical results for the proposed algorithms explained in the previous
sections.

First, we discuss the experiment setup for the numerical experiments. We performed Figure experiments on
MATLAB R2018a on Intel(R) Xeon(R) CPU E7-8890 v4 @ 2.20GHz with 96 cores and Figure on MATLAB
R2019a on Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz with 32 cores. We implemented the existing
and proposed methods in MATLAB using the SGDLibrary (Kasai, 2017). We solve on standard learning
problems, that is, the `2-logistic regression:

min
w
F (w) = 1

n

n∑
i=1

log
[
1 + exp(−biaTi w)

]
+ λ

2 ‖w‖
2,

9that the regularizer ρτ is stochastic gradient and not full gradient. We update the ρτ in the beginning of the epoch τ , with
∇fB(wt) of (τ − 1)th epoch.
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where ai ∈ Rd is feature vector and bi ∈ {±1} is target label of the i-th sample, and λ is a `2 regularizer.
We evaluated the numerical experiments on benchmark datasets given in Table 3. The datasets are binary
classification problems and all datasets are available on LIBSVM Chang & Lin (2011). We demonstrate the
performance of the proposed and existing methods on the `2-regularized logistic regression problem. We
optimize the constant c1 in regularizer ρt = c1‖gt‖γ using a grid search c1 ∈ {100, 10−1, 10−2, 10−3}. For
each method, the best-performing model was selected based on the minimum cost error on the training. For
the numerical experiments conducted on `2-regularized squared SVM, see Appendix section B.

Table 3: Details of the datasets used in the experiments

Dataset Dim Train Test Density
adult1 123 + 1 32,561 16,281 0.1128
gisette1 5, 000 + 1 6,000 1,000 0.9910
epsilon1 2, 000 + 1 50,000 50,000 1
real-sim1 20, 958 + 1 57,909 14,400 0.0024
w8a1 300 + 1 49,749 14,951 0.0388

First we study the performance of NGD, NGD1 and NGD2 to see the behaviour of different ρ = c1‖gt‖γ ,
where γ = 1/2 for NGD, γ = 1 for NGD1, and γ = 2 for NGD2. We computed the `2-regularized logistic
regression with λ = 10−5 on the ijcnn1 and adult datasets.
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Figure 1: First two figures(from left) shows the experiments on adult for m = 25 and last two figures shows
the experiments on ijcnn1 for m = 5. (a) and (c) shows the cost with respect to CPU time. (b) and (d)
shows the test error with respect to CPU time.

Figure 1 shows the training cost and test error with CPU time for adult and ijcnn1. Moreover, it shows
that NGD1 outperforms NGD and NGD2 for adult dataset and NGD outperforms NGD1 and NGD2 for
ijcnn1 dataset. Therefore, in the next subsection, we consider NGD and NGD1 to compare the behavior
with varying numbers of selected columns.

7.1 Comparison of strength for varying numbers of selected columns

In this subsection, we demonstrate the comparison of various sketch sizes (no. of selected columns) for
high-density data gisette and sparse data w8a on logistic regression with λ = 10−5 to observe the robustness
of the proposed methods. We keep the same c1 in ρt for each dataset to compare the different numbers
of selected columns. Figure 2 shows the numerical performance for the gisette dataset and computed the
NGD1 for m = 50(1%), 250(5%), 500(10%) and m = 1000(20%). As shown in Figure 2, due to high density
only m = 250(5%) of columns are sufficient to get the minimum value of the objective function within the
comparative CPU time. Also, similar behavior can be observed in the test error as well. When m = 1000,
the decrement in the value of the gradient norm surpasses all cases of m < 1000. Additionally, m = 250 and
m = 500 perform a similar reduction in the value of the norm of the gradient.

1Available at LIBSVM (Chang & Lin, 2011) https://www.csie.ntu.edu.tw/cjlin/libsvm/
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Figure 2: Column comparison on gisette dataset
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Figure 3: Column comparison on w8a dataset

Figure 3 shows the numerical performance on the w8a dataset and computed NGD for m =
30(10%), 60(20%), 100(33%) and m = 150(50%). Figure 3 shows that due to sparse data, it requires picking
more numbers columns to obtain the minimum value of the objective function in the comparative CPU time.
All cases of m exhibit almost similar test error. When m = 150 and m = 100, the decrement in the value
of the norm of gradient is comparable, whereas for the cases m = 30 and m = 60, it does not decrease
significantly.

7.2 Comparison with randomized subspace Newton

In this subsection, we compare the NGDs with the randomized subspace Newton (RSN) (Gower et al., 2019).
RSN computes the iterate with wt+1 = wt − (1/L)St(S>t HtSt)†S>t gt with a sketch matrix St ∈ Rd×m.
To have a fair comparison of the subspace Newton, we compute the RSN with the Armijo’s rule with
backtracking line search (instead of 1/L) and compute RSN exactly as given in (Gower et al., 2019, definition
4) for generalized linear models. Also, we keep the same value of m for both NGDs and RSN. We compute
the logistic regression with λ = 10−5. We compare NGDs and RSN in Figure 4 for realsim data with
m = 2000, Figure 5 for gisette data m = 250, and Figure 6 for w8a data with m = 30. As shown in Figure 4
to 6, RSN is unable to outperform the proposed methods. For the realsim data, as shown in the Figure 4,
NGD1 outperforms all methods in terms of achieving the minimum cost and NGD2 outperforms all methods
in terms of test error. For the gisette data, In Figure 5, NGD1 outperforms all methods in terms of achieving
minimum cost and test error. Finally, for w8a dataset, Figure 6, NGD outperforms all methods in terms of
achieving minimum cost and NGD1 outperforms at the later stage in terms of test error. In conclusion, it
is observable that the Nyström approximation is better than the approximation of RSN because RSN only
captures a limited set of m2 elements from the Hessian, whereas Nyström captures a substantially larger set
of dm elements of the Hessian. This makes Nyström approximation more comprehensive and accurate of the
Hessian matrix.

7.3 Comparison of Newton Sketch and Nyström approximation

In this subsection, we compare the NGDs with the Newton sketch(NS) (Pilanci & Wainwright, 2017). As
explained in Section 4.2, the proposed method can be represented as the NS method with certain structure
modifications. Hence, we compare the raw Nyström with the Hessian approximation of NS in terms of
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Figure 4: Comparison with RSN for realsim dataset with m = 2000

0 10 20 30

CPU time (seconds)

10
-5

10
0

0 5 10

Iterations

10
-5

10
0

0 5 10

Iterations

10
-4

10
-2

T
e
s
t 
E

rr
o
r 

(l
o
g
 s

c
a
le

)
0 5 10

Iterations

0.86

0.88

0.9

0.92

0.94

0.96

0.98

T
e
s
t 
A

c
c
u
ra

c
y

Figure 5: Comparison with RSN for gisette dataset with m = 250
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Figure 6: Comparison with RSN for w8a dataset with m = 30

closeness with the Hessian. NS computes the Hessian approximation as (∇2f(w)1/2)>P>P (∇2f(w)1/2),
and it is important to note that the P ∈ Rm×n, where n is the number of samples and m is the sketch
size. In this comparison, we keep the same value of m for both Nyström and NS. In Figure 7 we conduct
numerical experiments on w8a, realsim and gisette datasets. We provide the comparison of norm difference
with Hessian and its CPU time as m increases. We conduct these numerical experiments on the logistic
regression. It is important to note that we use the logistic regression for the realsim, and gisette without `2
regularization. For the w8a dataset, we keep the `2-regularized logistic regression with λ = 10−5. Hence the
rank of H for w8a data is full. In Figure 7, (a) and (d) show the performance on w8a dataset, (b) and (e)
show the performance on the realsim dataset, and (c) and (f) shows the performance on the gisette dataset.
The top row shows the CPU time of computing the Nyström approximation and Newton sketch and the
bottom row shows the distance with Hessian as m increases, where H is the Hessian.

As shown in Figure 7 (a) and (d), Nyström approximation outperforms the Newton sketch as m increases
with the less CPU time for w8a in lesser CPU time compared to NS. Similarly, in the Figure 7(b) and
(e), the Nyström approximation can approach the Hessian as m increases, specifically, after m = 8000.
Since, Nyström involves the inverse of m ×m matrix, it takes more CPU time after m = 5000. Whereas
in Figure 7(c) and (f), the norm of distance between Hessian and Nyström decreases significantly when
m ≈ 1000 and takes more CPU time after m ≈ 1000 compared to NS. However, we do not need to compute
Nyström for large number of m, as we have seen in Figure 2 and 3 that about 5% to 15% of d can give
sufficient decrease in the objective function.
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Figure 7: Comparison between Nyström and Newton sketch

From performance illustrated in Figure 7, two significant observations can be made. Firstly, one can observe
in Figure 7(d) that the Theorem 2 pertaining Nyström bound of exactness holds true practically and becomes
almost zero as the number of columns m covers the all of the columns (i.e., rank of H). Secondly, it is
worth noting that the random matrix in the Newton sketch P ∈ Rm×n depends on the n which is usually
larger than dimension d, whereas Newton sketch (Pilanci & Wainwright, 2017) usually requires thick random
matrix as compare to the thin random matrix S of Nyström approximation.

7.4 Comparison with existing deterministic methods

We compared the proposed methods NGD, NGD1, and NGD2 with the existing classical first-order gradient
descent, and the state of the art second-order Hessian approximation method L-BFGS method Liu &
Nocedal (1989). The memory used in the L-BFGS method was set to 20. We report the training cost on the
training dataset and testing set (test error) for iteration and CPU time cost per iteration. Also, we show the
norm of the gradient with respect to iterations. Figure 8 shows the performance of experiments on logistic
regression with λ = 10−5 on giestte dataset with m = 500. As shown in Figure 8, NGD1 outperforms all
other methods in terms of both CPU time and iterations in terms of both training cost and the norm of
gradient. L-BFGS takes more CPU time compared to all variants of NGDs till the cost of 10−5. Also, GD
shows improvements after the 20th iteration and outperforms in terms of the test error and NGD2 shows
some increment in the test accuracy after the 30th iteration. In Figure 9, we conduct the experiments on
logistic regression with λ = 10−5 on epsilon dataset with m = 200. Figure 9 shows that the NGDs are
performing almost similarly and outperform the L-BFGS and GD in terms of the training cost, testing error,
and test accuracy. Also, NGD and NG1 outperform all of the methods in terms of the norm of gradient.
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Figure 8: Experiments on the gisette dataset with m = 500.
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Figure 9: Comparison for epsilon dataset with m = 200

7.5 Numerical experiments for stochastic regularized Nyström gradient

We compare the proposed stochastic variant NSGD with stochastic gradient descent method and stochastic
second order approximation optimization methods, namely, SVRG-LBFGS (Kolte et al., 2015), SVRG-
SQN (Moritz et al., 2016), and SQN (Byrd et al., 2016). The memory used in the L-BFGS method was set
to 20, which is a commonly used value (Kolte et al., 2015; Byrd et al., 2016). Figure 10 shows that NSGD
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Figure 10: First two from left shows the experiments on a8a dataset and two from right shows the experiments
on epsilon dataset

outperforms existing methods in terms of the training cost for a8a dataset. However, it could not achieve
a better test error compared to SVRG-SQN and SVRG-LBFGS. Moreover, SVRG-SQN outperforms NSGD
and other existing methods in terms of both training cost and test error for epsilon dataset.

7.6 Numerical experiments for deep learning

We also evaluated the performance of the Nyström SGD on the well-known deep models on the Imagenet
dataset.

Experimental Setup: We compared our method with the first-order methods
SGD and the well-known approximate second-order method KFAC Martens & Grosse
(2015) on ResNet152 He et al. (2016) and EfficientNet Tan & Le (2019) models.
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Figure 11: Effect of the
ρ on the test accuracy
for ResNet18 on imagenet
dataset. x-axis denote the
number of epochs.

For Nyström SGD, we used ρ = 0.1 and fixed the m = log2 |w|, where |w| is
the number of parameters in the respective model. We used a batch size of
128. We used a random sample of size of min{6400, n × 0.01} to compute the
partial Hessian C for Nyström SGD. The update frequency used to re-estimate
the preconditioner in KFAC and its variants is set to 200, as used in their
experiments. The ImageNet results were computed on a Quadro RTX 8000
GPU.

Results: Figure 12 presents the results of the ResNet152 and EfficientNet
on the ImageNet dataset. The proposed method outperformed both the SGD
and KFAC for both the models in terms of training loss as well as test accuracy,
showing the better optimization and generalization ability of the trained models.
Table 4 shows the computational time comparison of methods. The per update
computational time of the Nyström SGD on ResNet152 is 1.703 seconds which
is slightly slower than SGD and KFAC. To further speed up the Nyström SGD
is an interesting future work. Figure 11 shows the effect of the ρ parameter for
ResNet18. As can be seen, the ρ parameter affects the model performance. We
found setting ρ = 0.1 performs well in practice.

Table 4: Per iteration computational time (seconds). [*For KFAC on EfficientNet with batch size 128 could
not fit into memory]

Model Method Batch Update Time Hessian
SGD 128 1.006 -

ResNet152 KFAC 128 1.064 -
NSGD 128 1.060 0.643
SGD 128 0.341 -

EfficientNet KFAC 64* 1.173 -
NSGD 128 0.347 2.620
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Figure 12: Results on Imagenet using ResNet152 and EfficientNet, respectively.

8 Application: Tumor detection

Brain MRI is the most standard test for the diagnosis of various brain diseases including tumor detection.
Given the complexity of the diagnosis process, researchers are shifting towards deep neural networks. First-
order optimizers are the most preferable choice in deep learning. However, with the limited sample sizes,
it is difficult to train a stable and generalized model with a large number of parameters using first-order
optimizers. We consider studying the brain MRI images for brain tumor detection. This data contains 253
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MRI images where 155 cases have tumors and 98 cases are of the healthy brain. We use a transfer learning

Figure 13: Sample Images from MRI dataset dat (2020), Top row: Tumor, Bottom row: Healthy

approach to detect the tumor. Transfer learning is widely used in brain MRI and biological problems where
the number of samples is limited. In deep models, bottom layers perform generic tasks such as edge detection.
Whereas, the top layers are task specific. Hence the common practice is to fine-tune the top layers only.
Goal is to minimize the objective function

min
w
f(w), where f(w) =

n∑
i=1

fi (w),

where w ∈ Rd and, f : Rd → R, and fi is the loss function corresponding to ith sample is the logistic regression
for brain tumor classification problem. i.e., The data has d dimension and n samples. We propose an NGD
algorithm for fine-tuning the top layers of pre-trained deep networks. Specifically, we compute a partial
column Hessian of size (d × m) with m � d uniformly randomly selected variables (d is the number of
parameters), then use the Nyström method to approximate the full Hessian matrix.
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Figure 14: Comparison of NGDs with existing methods on MRI dataset

Figure 14 shows that NGD1 outperforms other methods in terms of training cost in the least CPU time.
Newton’s method outperforms in terms the decreasing the norm of the gradient. Additionally, all NGDs are
giving competitive behavior to each other in terms of the norm of gradient. GD and L-BFGS are not able
to give competitive results in terms of test accuracy and test error. Also, all NGDs and Newton’s method
have the upper hand in achieving better test accuracy and test error.
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9 Summary

In this paper, we introduce the regularized Nyström method to approximate Hessian and propose both
deterministic and stochastic optimization methods to solve the objective function. We present the com-
prehensive convergence analysis and certain results using the distance between the Hessian and Nyström
approximation. Furthermore, we conducted extensive numerical experiments to evaluate the performance of
the proposed methods with RSN (Gower et al., 2019), NS (Pilanci & Wainwright, 2017), and other existing
first and quasi-Newton methods. From the numerical results, the proposed methods demonstrate robust-
ness, efficiently approximating the Hessian by selecting approximately 5%(in high-density scenarios) and
15-20%(in high-sparsity scenarios) of the dimension. Moreover, we prolong the experiments to the domain of
deep learning and we employ our proposed method for an application involving brain tumor detection. The
results in this application highlight the promising impact of our proposed methods in real-world scenarios.
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