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Abstract
Convolution, a fundamental operation in deep
learning for structured grid data like images, can-
not be directly applied to point clouds due to
their irregular and unordered nature. Many ap-
proaches in literature that perform convolution
on point clouds achieve this by designing a con-
volutional operator from scratch, often with lit-
tle resemblance to the one used on images. We
present two point cloud convolutions that natu-
rally follow from the convolution in its standard
definition popular with images. We do so by re-
laxing the indexing of the kernel weights with
a “soft” dictionary that resembles the attention
mechanism of the transformers. Finally, exper-
imental results demonstrate the effectiveness of
the proposed relaxations on two benchmark point
cloud classification tasks.

1. Introduction
Convolutional neural networks (CNNs) [1] have revolution-
ized numerous computer vision tasks due to their ability
to extract hierarchical features from structured grid data
like images. However, applying CNNs directly to 3D point
clouds, which represent objects as unordered sets of points,
proves challenging. Unlike images, point clouds lack inher-
ent structure and ordering, making standard convolution op-
erations inapplicable. This hurdle has motivated researchers
to develop specialized convolution approaches for point
cloud data. The pioneering work of Qi, Su, Mo, et al. [2]
paved the way for deep learning on point clouds. Their
approach bypassed the need for traditional convolutions
altogether, proposing instead an invariant operator based
on set abstraction. Many follow-up works, such as Point-
net++ [3] and DGCNN [4], also proposed different convo-
lution operators on point clouds that share little with the
one performed on images or voxel grids. In this paper, we
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derive instead two relaxations—continuously differentiable
approximations—of the convolution operation on grid data
that is applicable to unordered sets of points. We achieve
this by substituting the indexing of the kernel weights per-
formed by the convolution with a “soft” dictionary that
resembles the attention mechanism of the transformers [5].
We test both relaxations and their depthwise variants on two
standard point cloud classification datasets, on which they
obtain comparable results with respect to common point
cloud convolution baselines from literature.

2. Generalizing Convolution to Point Clouds
Given the tensors X ∈ Rb1×···×bd×f , Z ∈
R(b1−c1+1)×···×(bd−cd+1)×g, and K ∈ Rc1×···×cd×f×g, a
d-dimensional multi-channel convolution [1] can be defined
as1

Zi1,...,id,k =
[
conv(X,K)

]
i1,...,id,k

=
∑

j1,...,jd,h

Xi1+j1,...,id+jd,h · Kj1,...,jd,h,k,
(1)

where X, Z, and K, represent, respectively, the input, the
output, and the kernel tensors. Using a vectorial notation
of the indices (all tensor indices start from 0), where Xi =
Xi1,...,id with i = [i1, . . . , id]

⊤, we can rewrite Equation (1)
as

Zi =
[
conv(X,K)

]
i
=

∑
j∈C

Xi+j · Kj, (2)

where C = [c1] × · · · × [cd], with [c] = {0, 1, . . . , c − 1}.
Notice that Zi ∈ Rg, Xi+j ∈ Rf , and Kj ∈ Rf×g, for all
j ∈ C. Another way to see Equation (2) is by obtaining the
output entries by means of the neighbouring ones, that is,

Zi =
[
conv(X,K)

]
i
=

∑
h∈N(i)

Xh · Kh−i, (3)

where N(i) = {i+ j | j ∈ C} denotes the set of neighbour-
ing indices of i.

From Equations (2) and (3) we can derive two relaxations,
that allow us to generalize convolution to (possibly irregular,
non-grid-like) point clouds.

1Equation (1) should be called “cross-correlation” instead, but
in a learning setting it makes no difference whether the kernel is
flipped or not.
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First relaxation. Equation (2) can be also represented
as a point cloud convolution, as follows. Let V = [n]

with n =
∏d

i=1 bi and assume w.l.o.g. that the convo-
lution is “centered”, that is, that the convolution size is
odd and uniform across all the dimensions, i.e., C =
{−c,−c+ 1, . . . , 0, . . . , c− 1, c}d for some constant c ∈
N, and that the input is properly zero-padded (all these as-
sumption can be replaced by a using a suitable metric and
a proper transformation of the indices). Instead of using
vector indices, we can vectorize (or “flatten”) the tensors up
to their d-th dimensions, obtaining X ∈ Rn×f , Z ∈ Rn×g ,
and K ∈ R|C|×f×g, and store instead the d-dimensional
vector indices in the auxiliary matrix P ∈ Rn×d, such that
XPv

= Xv for all v ∈ V . This is a common scenario in
point cloud tasks, where P is used to store the geometric
information of the points, also referred as coordinate matrix,
while X contains instead other attributes of the points and is
generally referred as feature matrix. In our setting, similarly
to the coordinate matrix, we also define the offset matrix
C ∈ R|C|×d containing all the elements of C. We can now
reformulate Equation (2) as follows,

Zv =

|C|−1∑
i=0

Xu∗Ki s.t. Pu∗ = Pv +Ci. (4)

We still cannot apply straightforwardly Equation (4) to a
generic point cloud, since Pu +Ci may not correspond to
any point in P. Hence, we can look for the nearest point
available, as follows

Zv =

|C|−1∑
i=0

Xu∗Ki

s.t. u∗ = argmin
u

δ(Pv +Ci,Pu),

(5)

where δ : Rd ×Rd → R is any distance function, such as
δ(x,y) = ∥x − y∥. We can further relax Equation (5) by
making it smoothly differentiable by substituting the argmin
with a softmin, as follows,

Zv =

|C|−1∑
i=0

∑
u∈V

e− δ(Pv+Ci,Pu)∑
w e− δ(Pv+Ci,Pw)

XuKi. (6)

In this way, C ∈ R|C|×n can also be parametrical, allowing
the offsets to be learned adaptively from data. With this
last step, we completely replaced the “indexing” performed
by convolutions in Equation (2) with an attention mecha-
nism [5], where the keys are formed by the point coordinates
P, the values are the point features X, and the queries are
instead the neighboring points defined by Pv + Ci. To
avoid computing an attention matrix of size O(n2), which
prevents this formulation to scale to large point clouds, we
can “mask” distant points and compute the softmin only on

the k nearest ones, as follows,

Zv =

|C|−1∑
i=0

∑
u∈N [v]

e− δ(Pv+Ci,Pu)∑
w e− δ(Pv+Ci,Pw)

XuKi, (7)

where N [v] = k-NN(v,P) is the k-nearest neighbors of v
in P, containing v itself.

Second relaxation. We can derive a similar relaxation
by starting instead from Equation (3), as follows. First, we
reformulate the definition of neighboring nodes, by adopting
instead a closed ball around the “central” node,

Zv =
∑

u∈Bc[v]

XuKi∗ s.t. Ci∗ = Pu −Pv, (8)

where Bc[v] = {u ∈ N | ∥Pu −Pv∥∞ ≤ c}. Notice that
we adopted the infinity norm inside the ball to mimic the
“(hyper-)cubic” shape of the convolution’s receptive field,
but we could also use any other form of neighbourhood such
as a 2-norm ball or the k-nearest neighbors. Notice also that,
again, we still cannot apply straightforwardly Equation (8)
to a generic point cloud, since the offset Pu −Pv may not
lie in C. We can then apply a first relaxation to Equation (8)
by assigning every neighbor displacement to the nearest
available offset, as follows

Zv =
∑

u∈Bc[v]

XuKi∗

s.t. i∗ = argmin
i

δ(Pu −Pv,Ci).

(9)

We can further relax Equation (9) by making it smoothly
differentiable, as follows,

Zv =
∑

u∈Bc[v]

|C|−1∑
i=0

e− δ(Pu−Pv,Ci)∑
j e

− δ(Pu−Pv,Cj)
XuKi. (10)

In this way, we allow again C ∈ R|C|×n to be parametrical,
so that the offsets are learned adaptively from data. In this
case, differently from the previous relaxation, the “indexing”
performed by convolutions in Equation (3) is replaced by
an attention mechanism, where the keys are formed by the
offsets in C, the values are the filters K, and the queries are
instead the neighbors’ offsets Pu −Pv .

Depthwise convolution. The two relaxation only affect
the way the kernels are averaged together but not do affect
instead how they are applied to the feature matrix, i.e., the
XuKi part remains untouched throughout the relaxations.
This allows us to generalize the two relaxations also to other
kinds of operations, such as the depthwise convolution [6].
In the depthwise convolution, defined as

Zi1,...,id,k =
[
dw-conv(X,K)

]
i1,...,id,k

=
∑

j1,...,jd

Xi1+j1,...,id+jd,k · Kj1,...,jd,k,
(11)
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the input and output tensors have the same number of fea-
tures f , and the kernel tensor has shape K ∈ Rc1×···×cd×f .
In the point cloud setting, we have K ∈ R|C|×f and, if we
go over the first relaxation steps again, we obtain

Zv =

|C|−1∑
i=0

∑
u∈N [v]

e− δ(Pv+Ci,Pu)∑
w e− δ(Pv+Ci,Pw)

Xu ◦Ki, (12)

where ◦ denotes the element-wise product. A similar formu-
lation can be obtained also for the second relaxation.

3. Related Works
The seminal work of PointNet by Qi, Su, Mo, et al. [2] intro-
duced a novel approach to directly process point cloud data
without the need for voxelization or other preprocessing
steps. PointNet’s architecture leverages symmetric func-
tions to ensure permutation invariance, making it highly
effective for classification and segmentation tasks. Build-
ing upon PointNet, PointNet++ [3] improved the ability to
capture local structures by using a hierarchical approach,
combining local and global features to better handle vary-
ing point densities. Graph-based methods have also gained
traction for point cloud processing. Wang, Sun, Liu, et al.
[4] proposed Dynamic Graph CNN (DGCNN), which dy-
namically constructs graphs in each layer of the network to
capture local geometric relationships.

To bridge the gap between traditional convolutional net-
works and point cloud processing, researchers have de-
veloped convolution-like operations for point clouds that
closely resemble our second relaxation. In Point-wise
CNN [7], the authors proposed a convolution operator that
binned the neighboring points into kernel cells having differ-
ent kernel weights. FeaSTNet (Feature-Steered Graph Con-
volution) [8] generalized the convolution by averaging the
kernel weights through a (soft-maxed) linear transformation
of the local feature vectors. Atzmon, Maron, and Lipman
[9] proposed instead a point convolution based on extension
and restriction operators, mapping point functions to con-
tinuous volumetric functions which are then convolved and
restricted back to the point space. Wu, Qi, and Fuxin [10] in-
troduced PointConv, which extends convolution operations
to irregular point sets by defining density-aware convolution
kernels. Specifically, the authors average the kernel parame-
ters using a kernel density estimation. Similarly, Thomas,
Qi, Deschaud, et al. [11] proposed KPConv (Kernel Point
Convolution), which defines convolutional operations di-
rectly in the Euclidean space, averaging the kernels via a
linear correlation. In a similar fashion, PAConv (Position
Adaptive Convolution) [12] holds the kernel weights in a
specialized matrix (which they called it “weight bank”) and
assigns a kernel to every neighbor point by means of a neural
network (called “score net”).

Driven by the success of transformer architectures in natural
language processing, the use of the attention mechanism
can also be found in the point cloud processing literature.
Notable examples are the graph attention network [13], [14]
and the point transformer, in all of its variants [15]–[18].

On a final note, the idea of trainable offsets, even if applied
to images, can be dated back to deformable convolution [19].
In their paper, the authors proposed a convolution with vari-
able spacings, similar to our first relaxation, but where the
features where aggregated via a bilinear interpolation kernel.
A similar work was proposed also by Hassani, Pellegrini,
and Masquelier [20].

4. Experiments
We tested both relaxations on two standard point clouds
classification tasks from literature, ModelNet40 [21]
and ScanObjectNN [22]. In the experiments, we used
DGCNN [4] as a backbone classifier, where every of its
dynamic edge convolution layer was substituted by a re-
laxed convolution having the same number of channels.
The training was performed following the SimpleView [23]
protocol: random translation and scaling of the training
samples, cross-entropy loss with label smoothing (0.2), and
fixed-number of points per sample (1024, with no resam-
pling). As in SimpleView, the final models were obtained
after a pre-fixed number of epochs (60), with no feed-back
from the test set. To speed up convergence, we used cosine
annealing with a warm restart after 20 epochs. In both relax-
ations we used a k-nearest neighbors with k = 8 and we set
the number of offsets to 8. These settings were chosen after
a preliminary evaluation on a validation split (10% of the
training dataset). In Table 1 we report the average accuracy
and balanced accuracy obtained by our relaxations on 10
train/test runs for every model. The relaxations were also
tested in their depthwise variant (DW), and in the “inverted
residual” variant (Mobile), as proposed in MobileNetV2 [6],
were the depthwise convolution is preceded by an expansion
layer (6× channels) and followed by a reduction one. We
also restate the accuracies of four common baselines (Sim-
pleView, PointNet/++, DGCNN) as reported in the original
paper of the SimpleView training protocol [23]. Missing
values were not reported in the paper.

We can see from the results in Table 1 that our relaxations
produced results comparable to the given baselines. Our
relaxation is superior to the lowest performing one (Point-
Net) almost everywhere, while obtaining a similar result to
the backbone model (DGCNN) only when using the first
relaxation with the inverted residual setting. Depthwise
convolution alone seem to worsen the performance of both
relaxations, while it obtained the best results in the mobile
setting when combined with the first relaxation. Overall,
most baselines obtained better results with respect to our re-
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ModelNet40 ScanObjectNN

Accuracy Bal. Acc. Accuracy Bal. Acc. Param.

SimpleView 93.0± 0.4 90.5± 0.8 79.5± 0.5 —±— 0.8M
PointNet 89.2± 0.9 85.1± 0.6 68.2±— —±— 3.5M
PointNet++ 92.7± 0.1 90.0± 0.3 77.9±— —±— 1.7M
DGCNN 91.9± 0.3 89.1± 0.3 78.1±— —±— 1.8M

First Relaxation 91.40± 0.31 88.15± 0.58 72.18± 0.81 66.62± 1.04 2.1M
First Rel. (DW) 91.32± 0.25 87.57± 0.43 71.93± 0.75 66.48± 1.20 1.7M
First Rel. (Mobile) 91.77± 0.25 88.58± 0.48 74.13± 0.92 69.28± 1.10 2.2M

Second Relaxation 90.82± 0.20 86.53± 0.52 67.41± 1.11 63.29± 1.31 2.1M
Second Rel. (DW) 90.36± 0.35 85.51± 0.54 67.92± 0.51 64.08± 0.91 1.7M
Second Rel. (Mobile) 90.18± 0.28 84.85± 0.51 65.16± 0.76 57.18± 0.98 2.2M

Table 1. Classification accuracy, balanced accuracy (mean ± std) and number of parameters of each model.

laxations, which may indicate that their informed inductive
bias plays favorably in point clouds tasks compared to one
of the general classical convolution.

5. Conclusions
This paper proposes two significant relaxations of the stan-
dard convolution operation, specifically tailored for un-
ordered point cloud data. These relaxations address the
inherent limitations of classical convolutions, which strug-
gle with the irregular structure of point clouds. The core idea
lies in substituting the rigid indexing of kernel weights with
a soft attention mechanism. This enables the convolutions
to adaptively focus on relevant neighboring points or offsets
between points, leading to more robust feature extraction.
The experimental evaluation shows that the proposed relax-
ations achieve comparable performance to existing point
cloud convolution methods. This indicates that the relax-
ations offer a viable alternative framework for applying
convolutions to unordered data, while potentially opening
doors for further exploration of generalizable convolution
operations on such data structures.
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