
On the Unreasonable Effectiveness of
Feature Propagation in Learning on Graphs

with Missing Node Features

Anonymous Author(s)
Affiliation
Address
email

Abstract

While Graph Neural Networks (GNNs) have recently become the de facto standard1

for modeling relational data, they impose a strong assumption on the availability of2

the node or edge features of the graph. In many real-world applications, however,3

features are only partially available; for example, in social networks, age and4

gender are available only for a small subset of users. We present a general approach5

for handling missing features in graph machine learning applications that is based6

on minimization of the Dirichlet energy and leads to a diffusion-type differential7

equation on the graph. The discretization of this equation produces a simple, fast8

and scalable algorithm which we call Feature Propagation. We experimentally show9

that the proposed approach outperforms previous methods on seven common node-10

classification benchmarks and can withstand surprisingly high rates of missing11

features: on average we observe only around 4% relative accuracy drop when 99%12

of the features are missing. Moreover, it takes only 10 seconds to run on a graph13

with ∼2.5M nodes and ∼123M edges on a single GPU.14

1 Introduction15

Graph Neural Networks (GNNs) [6, 19, 21, 30, 40, 47] have been successful on a broad range16

of problems and in a variety of fields [13, 14, 17, 38, 43, 54, 60]. GNNs typically operate by a17

message-passing mechanism [3, 20], where at each layer, nodes send their feature representations18

(“messages”) to their neighbors. The feature representation of each node is initialized to their original19

features, and is updated by repeatedly aggregating incoming messages from neighbors. Being able to20

combine the topological information with feature information is what distinguishes GNNs from other21

purely topological learning approaches such as random walks [22, 36] or label propagation [58], and22

arguably what leads to their success.23

GNN models typically assume a fully observed feature matrix, where rows represent nodes and24

columns feature channels. However, in real-world scenarios, each feature is often only observed for a25

subset of the nodes. For example, demographic information can be available for only a small subset26

of social network users, while content features are generally only present for the most active users. In27

a co-purchase network, not all products may have a full description associated with them. With the28

rising awareness around digital privacy, data is increasingly available only upon explicit user consent.29

In all the above cases, the feature matrix contains missing values and most existing GNN models30

cannot be directly applied.31

While classic imputation methods [29, 32, 55] can be used to fill the missing values of the feature32

matrix, they are unaware of the underlying graph structure. Graph Signal Processing, a field attempting33

to generalize classical Fourier analysis to graphs, offers several methods that reconstruct signals on34

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Feature
Propagation GNN

Known Feature

Unknown Feature

Prediction

Reconstructed Feature

Figure 1: A diagram illustrating our Feature Propagation framework. On the left, a graph with
missing node features. In the initial reconstruction step, Feature Propagation reconstructs the missing
features by iteratively diffusing the known features in the graph. Subsequently, the graph and the
reconstructed node features are fed into a downstream GNN model, which then produces a prediction.

graphs [34]. However, they do not scale beyond graphs with a few thousand nodes, making them35

infeasible for practical applications. More recently, SAT [10], GCNMF [44] and PaGNN [26] have36

been proposed to adapt GNNs to the case of missing features. However, they are not evaluated at high37

missing features rates (> 90%), which occur in many real-world scenarios, and where we find them38

to suffer. Moreover, they are unable to scale to graphs with more than a few hundred thousand nodes.39

At the time of writing, PaGNN is the state-of-the-art method for node classification with missing40

features.41

Contributions We present a general approach for handling missing node features in graph machine42

learning tasks. The framework consists of an initial diffusion-based feature reconstruction step43

followed by a downstream GNN. The reconstruction step is based on Dirichlet energy minimization,44

which leads to a diffusion-type differential equation on the graph. Discretization of this differential45

equation leads to a very simple, fast, and scalable iterative algorithm which we call Feature46

Propagation (FP). FP outperforms state-of-the-art methods on six standard node-classification47

benchmarks and presents the following advantages:48

49
• Theoretically Motivated: FP emerges naturally as the gradient flow minimizing the Dirichlet50

energy and can be interpreted as a diffusion equation on the graph with known features used as51

boundary conditions. This contributes to the promising direction of building continuous-time52

models on graphs.53

• Robust to high rates of missing features: FP can withstand surprisingly high rates of missing54

features. In our experiment, we observe on average around 4% relative accuracy drop when up to55

99% of the features are missing. In comparison, GCNMF and PaGNN have an average drop of56

53.33% and 21.25% respectively. This finding has important implications especially in scenarios57

where the cost of sampling (observing features on nodes) is high or sampling is not possible58

altogether.59

• Generic: FP can be combined with any GNN model to solve the downstream task; in contrast,60

GCNMF and PaGNN are specific GCN-type models.61

• Fast and Scalable: FP takes only around 10 seconds for the reconstruction step on OGBN-62

Products (a graph with ∼2.5M nodes and ∼123M edges) on a single GPU. GCNMF and PaGNN63

run out-of-memory on this dataset.64

2 Preliminaries65

Let G = (V,E) be an undirected graph with n× n adjacency matrix A and a node feature vector166

x ∈ Rn. The graph Laplacian is an n × n positive semi-definite matrix ∆ = I − Ã, where67

Ã = D−
1
2 AD−

1
2 is the normalized adjacency matrix and D = diag(

∑
j a1j , . . . ,

∑
j anj) is the68

diagonal degree matrix.69

1For convenience, we assume scalar node features. Our derivations apply straightforwardly to the case of
d-dimensional features represented as an n× d matrix X.

2

Denote by Vk ⊆ V the set of nodes on which the features are known, and by Vu = V c
k = V \ Vk the

unknown ones. We further assume the ordering of the nodes such that we can write

x =

[
xk

xu

]
A =

[
Akk Aku

Auk Auu

]
∆ =

[
∆kk ∆ku

∆uk ∆uu

]
.

Because the graph is undirected, A is symmetric and thus A>ku = Auk and ∆>ku = ∆uk. We will70

tacitly assume this in the following discussion.71

Graph feature interpolation is the problem of reconstructing the unknown features xu given the72

graph structure G and the known features xk. The interpolation task requires some prior on the73

behavior of the features of the graph, which can be expressed in the form of an energy function74

`(x, G). The most common assumption is feature homophily (i.e., that the features of every node are75

similar to those of the neighbours), quantified using a criterion of smoothness such as the Dirichlet76

energy. Since in many cases the behavior of the features is not known, the energy can possibly be77

learned from the data.78

Learning on a graph with missing features is a transductive learning problem (typically node-79

wise classification or regression using some GNN architecture) where the structure of the graph80

G is known while the labels and node features are only partially known on the subsets Vl and Vk81

of nodes, respectively (that might be different and even disjoint). Specifically, we try to learn a82

function f(xk, G) such that fi ≈ yi for i ∈ Vl. Learning with missing features can be done by a83

pre-processing step of graph signal interpolation (reconstructing an estimate x̃ of the full feature84

vector x from xk) independent of the learning task, followed by the learning task of f(x̃, G) on the85

inferred fully-featured graph. In some settings, we are not interested in recovering the features per se,86

but rather ensuring that the output of the function f on these features is correct – arguably a more87

‘forgiving’ setting.88

3 Feature Propagation89

We assume to be given xk and attempt to find the missing node features xu by means of interpolation90

that minimizes some energy `(x, G). In particular, we consider the Dirichlet energy `(x, G) =91
1
2x>∆x = 1

2

∑
ij ãij(xi − xj)2, where ãij are the individual entries of the normalized adjacency92

Ã. The Dirichlet energy is widely used as a smoothness criterion for functions defined on the nodes93

of the graph and thus promotes homophily. Functions minimizing the Dirichlet energy are called94

harmonic; without boundary conditions, it is minimized by a constant function.95

While the Dirichlet energy is convex and it is possible to derive its minimizer in a closed-form, as96

shown in Appendix A.2, its computational complexity makes it unfeasible for graphs with many97

nodes with missing features. Instead, we consider the associated gradient flow ẋ(t) = −∇`(x(t))98

as a differential equation with boundary condition xk(t) = xk whose solution at the missing nodes,99

xu = limt→∞ xu(t), provides the desired interpolation.100

Gradient flow. For the Dirichlet energy, ∇x` = ∆x and the gradient flow takes the form of the
standard isotropic heat diffusion equation on the graph,

ẋ(t) = −∆x(t) (IC) x(0) =

[
xk

xu(0)

]
(BC) xk(t) = xk

where IC and BC stand for initial conditions and boundary conditions respectively. By incorporating101

the boundary conditions, we can compactly express the diffusion equation as102 [
ẋk(t)
ẋu(t)

]
= −

[
0 0

∆uk ∆uu

] [
xk

xu(t)

]
= −

[
0

∆ukxk + ∆uuxu(t)

]
. (1)

As expected, the gradient flow of the observed features is 0, given that they do not change during the103

diffusion.104

The evolution of the missing features can be regarded as a heat diffusion equation with a constant105

heat source ∆ukxk coming from the boundary (known) nodes. Since the graph Laplacian matrix is106

3

0 500 1000 1500 2000 2500
Eigenvalue Index

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

Sp
ec

tra
l C

oe
ffi

cie
nt Original Feature

Reconstructed Feature (30% missing)
Reconstructed Feature (60% missing)
Reconstructed Feature (99% missing)

Figure 2: Graph Fourier transform magnitudes of the original Cora features (red) and those recon-
structed by FP for varying rates of missing rates (we take the average over feature channels). Since
FP minimizes the Dirichlet energy, it can be interpreted as a low-pass filter, which is stronger for a
higher rate of missing features.

positive semi-definite, the Dirichlet energy ` is convex. Its global minimizer is given by the solution107

to the closed-form equation∇xu
` = 0 and by rearranging the final |Vu| rows of Equation 1 we get108

the solution xu = −∆−1uu∆>kuxk. This solution always exists as ∆uu is non-singular, by virtue of109

the following:110

Proposition 3.1 (The sub-Laplacian matrix of an undirected connected graph is invertible). Take111

any undirected, connected graph with adjacency matrix A ∈ {0, 1}n×n, and its Laplacian ∆ =112

I − D−1/2AD−1/2, with D being the degree matrix of A. Then, for any principle sub-matrix113

Lu ∈ Rb×b of the Laplacian, where 1 ≤ b < n, Lu is invertible.114

Proof: See Appendix A.2. Also, while the proposition assumes that the graph is connected, our115

analysis and method generalize straightforwardly in the case of a disconnected graph as we can116

simply apply Feature Propagation to each connected component independently.117

However, solving a system of linear equations is computationally expensive (incurring O(|Vu|3)118

complexity for matrix inversion) and thus intractable for anything but only small graphs.119

Iterative scheme. As an alternative, we can discretize the diffusion equation (1) and solve it by an120

iterative numerical scheme. Approximating the temporal derivative as forward difference with the121

time variable t discretized using a fixed step (t = hk for step size h > 0 and k = 1, 2, . . .), we obtain122

the explicit Euler scheme:123

x(k+1) = x(k) − h
[

0 0
∆uk ∆uu

]
x(k) =

(
I−

[
0 0

h∆uk h∆uu

])
x(k) =

[
I 0

−h∆uk I− h∆uu

]
x(k)

For the special case of h = 1, we can use the following observation

Ã = I−∆ =

[
I 0
0 I

]
−
[
∆kk ∆ku

∆uk ∆uu

]
=

[
I−∆kk −∆ku

−∆uk I−∆uu

]
,

to write the iteration formula as124

x(k+1) =

[
I 0

Ãuk Ãuu

]
x(k). (2)

The Euler scheme is the gradient descent of the Dirichlet energy. Thus, applying the scheme decreases125

the Dirichlet energy and results in the features becoming increasingly smooth. Iteration (2) can be126

interpreted as successive low-pass filtering. Figure 2 depicts the magnitude of the graph Fourier127

coefficients of the original and reconstructed features on the Cora dataset, indicating that the higher128

the rate of missing features, the stronger the low-pass filtering effect.129

The following results shows that the iterative scheme with h = 1 always converges and its steady130

state is equal to the closed form solution. Importantly, the solution does not depend on the initial131

values x
(0)
u given to the unknown features.132

4

Proposition 3.2. Take any undirected and connected graph with adjacency matrix A ∈ {0, 1}n×n,133

and normalised Adjacency Ã = D−1/2AD−1/2, with D being the degree matrix of A. Let x =134

x(0) ∈ Rn be the initial feature vector and define the following recursive relation135

x(k) =

[
I 0

Ãuk Ãuu

]
x(k−1).

Then this recursion converges and the steady state is given to be136

lim
n→∞

x(n) =

[
xk

−∆−1kk Ãukxk

]
.

Proof: See Appendix A.3.137

Algorithm 1 Feature Propagation

1: Input: feature vector x, diffusion matrix Ã
2: y← x
3: while x has not converged do
4: x← Ãx . Propagate features
5: xk ← yk . Reset known features
6: end while

Feature Propagation Algorithm. We can no-138

tice that the update in Equation 2 is equivalent to139

first multiplying the feature vector x by the orig-140

inal diffusion matrix Ã, and then resetting the141

known features to their true value. This gives us142

Algorithm 1, an extremely simple and scalable143

iterative algorithm to reconstruct the missing fea-144

tures on a graph, which we refer to as Feature145

Propagation (FP). While xu can be initialized146

to any value, in practice we initialize xu to zero147

and find 40 iterations to be enough to provide148

convergence for all datasets we experimented149

on. At each iteration, the diffusion occurs from the nodes with known features to the nodes with150

unknown features as well as among the nodes with unknown features.151

4 Related Work152

Label Propagation. The proposed algorithm bears some similarity with Label Propagation [58]153

(LP), which predicts a class for each node by propagating the known labels in the graph. Differently154

from our setting of diffusion of continuous node features, they deal with discrete label classes directly,155

resulting in a different diffusion operator. However, the key difference between them lies in how they156

are used. Importantly, LP is used to directly perform node classification, taking into account only157

the graph structure and being unaware of node features. On the other hand, FP is used to reconstruct158

missing features, which are then fed into a downstream GNN classifier. FP allows a GNN model to159

effectively combine features and graph structures, even when most of the features are missing. Our160

experiments show that FP+GNN always outperforms LP, even in cases of extremely high rates of161

missing features, suggesting the effectiveness of FP. Also, the derived scheme is a special case of162

Neural Graph PDEs [8], which are in turn related to the iterative scheme presented in [56].163

Matrix completion. Several optimization-based approaches [7, 25] as well as learning-based164

approaches [29, 32, 55] have been proposed to solve the matrix completion problem. However, they165

are unaware of the underlying graph structure. Graph matrix completion [27, 33, 37, 46] extends166

the above approaches to make use of an underlying graph. Similarly, Graph Signal Processing167

offers several methods to interpolate signals on graphs. [34] prove the necessary conditions for a168

graph signal to be recovered perfectly, and provide a corresponding algorithm. However, due to169

the optimisation problems involved, most above approaches are too computationally intensive and170

cannot scale to graphs with more than ∼1,000 nodes. Moreover, the goal of all above approaches is171

to reconstruct the missing entries of the matrix, rather than solving a downstream task.172

Extending GNNs to missing node features. SAT [10] consists of a Transformer-like model for173

feature reconstruction and a GNN model to solve the downstream task. GCNMF [44] adapts GCN [30]174

to the case of missing node features by representing the missing data with a Gaussian mixture model.175

PaGNN [26] is a GCN-like model which uses a partial message-passing scheme to only propagate176

observed features. While showing a reasonable performance for low rates of missing features, these177

methods suffer in regimes of high rates of missing features, and do not scale to large graphs.178

5

Other related GNN works. Several papers investigate how to augment GNNs when no node179

features are available [12], as well as investigating the performance of GNNs with random features [1,180

39]. Dirichlet energy minimization has been widely used as a regularizer in several graph-related181

tasks [49, 56, 59]. Discretizion of continuous diffusion on graphs has already been explored in [8]182

and [51]. Propagation on the graph has also been studied as a solution to the different problem of183

node regression on multi-relational graphs [4]. Other methods have investigated propagating node184

features [9, 18, 50], however not in the scenario of missing features. The boundary conditions given185

by the available features in FP’s diffusion equation (enforced by resetting the known feature after186

each iteration in the algorithm) is what makes it different from other propagation approaches and187

makes it an effective solution to the missing features problem. While [9, 18, 50] assume to observe188

all features, and then modify all features, FP assumes to observe only a subset of the features and189

modifies only the unobserved ones.190

5 Experiments and Discussion191

Datasets. We evaluate on the task of node classification on several benchmark datasets: Cora,192

Citeseer and PubMed [41], Amazon-Computers, Amazon-Photo [42] and OGBN-Arxiv [24]. To193

test the scalability of our method, we also test it on OGBN-Products (2,449,029 nodes, 123,718,280194

edges). We report dataset statistics in table 3 (Appendix).195

Baselines. We compare to two strong feature-agnostic baselines: Label Propagation [58], which196

only makes use of the graph structure by propagating labels on the graph, and Graph Positional197

Encodings [15], which consist in computing the top k eigenvectors of the Laplacian matrix and198

treating them as node features in input to a GNN. We additionally compare to feature-imputation199

methods that are graph-agnostic, such as setting the missing features to 0 (Zero), a random value from200

a standard Gaussian (Random), or the global mean of that feature over the graph (Global Mean) 2. We201

also compare to a simple graph-based imputation baseline, which sets a missing feature to the mean202

(of that same feature) over the neighbors of a node (Neighbor Mean). We additionally experiment with203

MGCNN [33], a geometric graph completion method which learns how to reconstruct the missing204

features by making use of the observed features and the graph structure. For all the above baselines,205

as well as for our Feature Propagation, we experiment with both GCN [30] and GraphSage with206

mean aggregator [23] as downstream GNNs. We also compare to recently state-of-the-art methods207

for learning in the missing features setting (GCNMF [44] and PaGNN [26]). For GCNMF we use208

the publicly available code.3 We could not find publicly available code for PaGNN so use our own209

implementation for this comparison. We do not compare to other commonly used imputation based210

methods such as VAE [29] or GAIN [55], nor to the Transformer-based method SAT [10], as they211

have previously been shown to consistently underperform GCNMF and PaGNN [26, 44].212

Experimental Setup. We report the mean and standard error of the test accuracy, computed over 10213

runs, in all experiments. Each run has a different train/validation/test split (apart from OGBN datasets214

where we use the provided splits) and mask of missing features4. The splits are generated at random215

by assigning 20 nodes per class to the training set, 1500 nodes in total to the validation set and the216

rest to the test set, similar to [31]. For a fair comparison, we use the same standard hyperparameters217

for all methods across all experiments. We train using the Adam [28] optimizer with a learning rate218

of 0.005 for a maximum of 10000 epochs, combined with early stopping with a patience of 200.219

Downstream GNN models (as well as GCNMF and PaGNN) use 2 layers with a hidden dimension of220

64 and a dropout rate of 0.5 for all datasets, apart from OGBN datasets where 3 layers and a hidden221

dimension of 256 are used. For OGBN-Arxiv we also employ the Jumping Knowledge scheme [53]222

with max aggregation. Feature Propagation uses 40 iterations to diffuse the features, as we found this223

to be enough to reach convergence on all datasets. We want to emphasize that we did not perform224

any hyperparameter tuning, and FP proved to perform consistently with any reasonable choice of225

hyperparameters. We use neighbor sampling [23] when training on OGBN-Products. All experiments226

are conducted on an AWS p3.16xlarge machine with 8 NVIDIA V100 GPUs with 16GB of memory227

each, and took around 4 GPU days in total to perform.228

2If a feature is not observed for any of the node’s neighbors, we set it to zero.
3https://github.com/marblet/GCNmf
4Each entry of the feature matrix is independently missing with a probability equal to the missing rate.

6

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.3

0.4

0.5

0.6

0.7

0.8
T

es
t

A
cc

ur
ac

y

Cora

Label Propagation

Positional Encodings

Random

Zero

Global Mean

Neighbors Mean

MGCNN

FP (Ours)

GCNMF

PaGNN

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

T
es

t
A

cc
ur

ac
y

CiteSeer

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.4

0.5

0.6

0.7

0.8

T
es

t
A

cc
ur

ac
y

PubMed

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t
A

cc
ur

ac
y

Photo

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t
A

cc
ur

ac
y

Computers

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.2

0.3

0.4

0.5

0.6

0.7

T
es

t
A

cc
ur

ac
y

OGBN-Arxiv

Figure 3: Test accuracy for varying rate of missing features on six common node-classification
benchmarks. For methods that require a downstream GNNs, a 2-layer GCN [30] is used. On
OGBN-Arxiv, GCNMF goes out-of-memory and is not reported.

Dataset Full Features 50.0% Missing 90.0% Missing 99.0% Missing

Cora 80.39% 79.70%(-0.86%) 79.77%(-0.77%) 78.22%(-2.70%)
CiteSeer 67.48% 65.74%(-2.57%) 65.57%(-2.82%) 65.40%(-3.08%)
PubMed 77.36% 76.68%(-0.89%) 75.85%(-1.96%) 74.29%(-3.97%)
Photo 91.73% 91.29%(-0.48%) 89.48%(-2.46%) 87.73%(-4.36%)
Computers 85.65% 84.77%(-1.04%) 82.71%(-3.43%) 80.94%(-5.51%)
OGBN-Arxiv 72.22% 71.42%(-1.10%) 70.47%(-2.43%) 69.09%(-4.33%)
OGBN-Products 78.70% 77.16%(-1.96%) 75.94%(-3.51%) 74.94%(-4.78%)
Average 79.08% 78.11%(-1.27%) 77.11%(-2.48%) 75.80%(-4.10%)

Table 1: Performance of Feature Propagation (combined with a GCN model) for 50%, 90% and
99% of missing features, and relative drop compared to the performance of the same model when
all features are present. On average, our method loses only 2.50% of relative accuracy with 90% of
missing features, and 4.12% with 99% of missing features.

Dataset GCNMF PaGNN Label Prop. Pos. Enc. FP (Ours)

Cora 34.54±2.07 58.03±0.57 74.68±0.36 76.33±0.26 78.22±0.32
CiteSeer 30.65±1.12 46.02±0.58 64.60±0.40 65.87±0.37 65.40±0.54
PubMed 39.80±0.25 54.25±0.70 73.81±0.56 73.70±0.29 74.29±0.55
Photo 29.64±2.78 85.41±0.28 83.45±0.94 83.45±0.26 87.73±0.27
Computers 30.74±1.95 77.91±0.33 74.48±0.61 75.77±0.47 80.94±0.37
OGBN-Arxiv OOM 53.98±0.08 67.56±0.00 65.08±0.04 69.09±0.06
OGBN-Products OOM OOM 74.42±0.00 OOM 74.94±0.07

Table 2: Performance of GCNMF, PaGNN and FP(+GCN) with 99% of features missing, as well
as Label Propagation and Positional Encodings (which are feature-agnostic). GCNMF and PaGNN
perform respectively 58.33% and 21.25% worse in terms of relative accuracy in this scenario compared
to when all the features are present. In comparison, FP has only a 4.12% drop.

Node Classification Results. Figure 3 shows the results for different rates of missing features229

(x-axis), when using GCN as a downstream GNN (results with GraphSAGE are reported in Figure 6230

of the Appendix). FP matches or outperforms other methods in all scenarios. Both GCNMF and231

PaGNN are consistently outperformed by the simple Neighbor Mean baseline. This is not completely232

unexpected, as Neighbor Mean can be seen as a first-order approximation of Feature Propagation,233

where only one step of propagation is performed (and with a slightly different normalization of the234

7

diffusion operator). We elaborate on the relation between Neighbor Mean and Feature Propagation235

as well as on the results of the other baselines in Section A.5 of the Appendix. Interestingly, most236

methods perform extremely well up to 50% of missing features, suggesting that in general node237

features are redundant, as replacing half of them with zeros (Zero baseline) has little effect on238

the performance. The gap between methods opens up from around 60% of missing features, and239

is particularly large for extremely high rates of missing features (90% or 99%): FP is the only240

feature-aware method which is robust to these high rates on all datasets (see Table 2). Moreover,241

FP outperforms or matches Label Propagation and Positional Encodings on all datasets, even in the242

extreme case of 99% missing features. On some datasets, such as Cora, Photo, and Computers, the243

gap is especially significant. We conclude that reconstructing the missing features using FP is indeed244

useful for the downstream task. We highlight the surprising results that, on average, FP with 99%245

missing features performs only 4.12% worse (in relative accuracy terms) than the same GNN model246

used with no missing features, compared to 58.33% and 21.25% worse for GCNMF and PaGNN247

respectively.248

FP (Ours) PaGNN GCNMF
0

5

10

15

20

25
R

un
ni

ng
T

im
e

(s
)

7.89

24.12 23.87

Computers

FP (Ours) PaGNN GCNMF
0

50

100

150

200

250

R
un

ni
ng

T
im

e
(s

)

98.45

271.85

OOM

OGBN-Arxiv

Figure 4: Run-time (in seconds) of FP, PaGNN and GCNMF. FP is
3x faster than both other methods. GCNMF goes out-of-memory
(OOM) on OGBN-Arxiv.

Run-time analysis. Feature249

Propagation scales to extremely250

large graphs, as it only consists251

of repeated sparse-to-dense ma-252

trix multiplications. Moreover,253

it can be regarded as a pre-254

processing step, and performed255

only once, separately from256

training. In Figure 4 we compare257

the run-time to complete the258

training of the model for FP,259

PaGNN and GCNMF. The time260

for FP includes both the feature261

propagation step to reconstruct262

the missing features, as well as training of a downstream GCN model. FP is around 3x faster than263

PaGNN and GCNMF. The propagation step of FP takes only a fraction of the total running time, and264

the vast majority of the time is spent in training of the donwstream model. The feature propagation265

step takes only ∼0.6s for Computers, ∼0.8s for OGBN-Arxiv and ∼10.5s for OGBN-Products using266

a single GPU. Both PaGNN and GCNMF go out-of-memory on OGBN-Products.267

6 Conclusion268

We have introduced a novel approach for handling missing node features in graph-learning tasks.269

Our Feature Propagation model can be directly derived from energy minimization, and can be270

implemented as an efficient iterative algorithm where the features are multiplied by a diffusion matrix,271

before resetting the known features to their original value. Experiments on a number of datasets272

suggest that FP can reconstruct the missing features in a way that is useful for the downstream273

task, even when 99% of the features are missing. FP outperforms recently proposed methods by a274

significant margin on common benchmarks, while also being extremely scalable.275

Limitations. While our method is designed for homophilic graphs, a more general learnable276

diffusion could be adopted to perform well in low homophily scenarios, as discussed in Section A.1.277

Feature Propagation is designed for graphs with only one node and edge type, however it could be278

extended to heterogenous graphs by having separate diffusions for different types of edges and nodes.279

Finally, Feature Propagation treats feature channels independently. To account for dependencies,280

diffusion with channel mixing should be used.281

References282

[1] R. Abboud, İ. İ. Ceylan, M. Grohe, and T. Lukasiewicz. The surprising power of graph neural283

networks with random node initialization. In Proceedings of the Thirtieth International Joint284

Conference on Artificial Intelligence, IJCAI-21, pages 2112–2118, 2021.285

8

[2] S. Abu-El-Haija, B. Perozzi, A. Kapoor, H. Harutyunyan, N. Alipourfard, K. Lerman, G. V.286

Steeg, and A. Galstyan. Mixhop: Higher-order graph convolution architectures via sparsified287

neighborhood mixing. In International Conference on Machine Learning (ICML), 2019.288

[3] P. Battaglia, J. B. C. Hamrick, V. Bapst, A. Sanchez, V. Zambaldi, M. Malinowski, A. Tacchetti,289

D. Raposo, A. Santoro, R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer, G. E. Dahl,290

A. Vaswani, K. Allen, C. Nash, V. J. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli,291

M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu. Relational inductive biases, deep learning, and292

graph networks. arXiv preprint arXiv:1806.01261, 2018.293

[4] E. Bayram. Propagation on multi-relational graphs for node regression. In R. M. Benito,294

C. Cherifi, H. Cherifi, E. Moro, L. M. Rocha, and M. Sales-Pardo, editors, Complex Networks295

& Their Applications X, pages 155–167, Cham, 2022. Springer International Publishing.296

[5] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM,297

1994.298

[6] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning:299

Going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.300

[7] E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of301

Computational mathematics, 9(6):717–772, 2009.302

[8] B. P. Chamberlain, J. R. Rowbottom, M. I. Gorinova, S. Webb, E. Rossi, and M. M. Bronstein.303

GRAND: Graph neural diffusion. In International Conference on Machine Learning (ICML),304

2021.305

[9] M. Chen, Z. Wei, B. Ding, Y. Li, Y. Yuan, X. D. Du, and J.-R. Wen. Scalable graph neural306

networks via bidirectional propagation. 2020.307

[10] X. Chen, S. Chen, J. Yao, H. Zheng, Y. Zhang, and I. Tsang. Learning on attribute-missing308

graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, PP, 2020.309

[11] F. R. K. Chung. Spectral Graph Theory. Number 92. American Mathematical Soc., 1997.310

[12] H. Cui, Z. Lu, P. Li, and C. Yang. On positional and structural node features for graph neural311

networks on non-attributed graphs. International Workshop on Deep Learning on Graphs312

(DLG-KDD), 2021.313

[13] A. Derrow-Pinion, J. She, D. Wong, O. Lange, T. Hester, L. Perez, M. Nunkesser, S. Lee,314

X. Guo, P. W. Battaglia, V. Gupta, A. Li, Z. Xu, A. Sanchez-Gonzalez, Y. Li, and P. Veličković.315

Traffic Prediction with Graph Neural Networks in Google Maps. 2021.316

[14] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel,317

A. Aspuru-Guzik, and R. P. Adams. Convolutional networks on graphs for learning molecu-318

lar fingerprints. In Proceedings of the 28th International Conference on Neural Information319

Processing Systems, pages 2224–2232, 2015.320

[15] V. P. Dwivedi, C. K. Joshi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson. Benchmarking321

graph neural networks. arXiv preprint arXiv:2003.00982, 2020.322

[16] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR323

Workshop on Representation Learning on Graphs and Manifolds, 2019.324

[17] P. Gainza, F. Sverrisson, F. Monti, E. Rodolà, M. M. Bronstein, and B. E. Correia. Deciphering325

interaction fingerprints from protein molecular surfaces. Nature Methods, 17(2):184–192, 2020.326

[18] J. Gasteiger, A. Bojchevski, and S. Günnemann. Combining neural networks with personalized327

pagerank for classification on graphs. In International Conference on Learning Representations,328

2019.329

[19] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing330

for quantum chemistry. In International conference on machine learning, pages 1263–1272.331

PMLR, 2017.332

9

[20] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for333

quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning,334

volume 70 of Proceedings of Machine Learning Research, pages 1263–1272, 2017.335

[21] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In336

Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,337

pages 729–734. IEEE, 2005.338

[22] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Proceedings339

of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,340

pages 855–864, 2016.341

[23] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs. In342

Proceedings of the 31st International Conference on Neural Information Processing Systems,343

pages 1025–1035, 2017.344

[24] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. Open Graph345

Benchmark: Datasets for machine learning on graphs. arXiv preprint arXiv:2005.00687, 2020.346

[25] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In 2008347

Eighth IEEE International Conference on Data Mining, pages 263–272, 2008.348

[26] B. Jiang and Z. Zhang. Incomplete graph representation and learning via partial graph neural349

networks. arXiv preprint arXiv:2003.10130, 2021.350

[27] V. Kalofolias, X. Bresson, M. M. Bronstein, and P. Vandergheynst. Matrix completion on351

graphs. ArXiv preprint arXiv:1408.1717, 2014.352

[28] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd International353

Conference on Learning Representations, ICLR, 2015.354

[29] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In International Conference355

on Learning Representations, ICLR, 2014.356

[30] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.357

In International Conference on Learning Representations, ICLR, 2017.358

[31] J. Klicpera, S. Weißenberger, and S. Günnemann. Diffusion improves graph learning. In359

Conference on Neural Information Processing Systems (NeurIPS), 2019.360

[32] X. Liu, X. Zhu, M. Li, L. Wang, E. Zhu, T. Liu, M. Kloft, D. Shen, J. Yin, and W. Gao. Multiple361

kernel k-means with incomplete kernels. IEEE Transactions on Pattern Analysis and Machine362

Intelligence, 42(5):1191–1204, 2020.363

[33] F. Monti, M. M. Bronstein, and X. Bresson. Geometric matrix completion with recurrent364

multi-graph neural networks. In Proceedings of the 31st International Conference on Neural365

Information Processing Systems, NIPS’17, page 3700–3710, 2017.366

[34] S. K. Narang, A. Gadde, and A. Ortega. Signal processing techniques for interpolation in367

graph structured data. In 2013 IEEE International Conference on Acoustics, Speech and Signal368

Processing, pages 5445–5449, 2013.369

[35] K. Oono and T. Suzuki. Graph neural networks exponentially lose expressive power for node370

classification. In International Conference on Learning Representations, 2020.371

[36] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In372

Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and373

data mining, pages 701–710, 2014.374

[37] N. Rao, H.-F. Yu, P. K. Ravikumar, and I. S. Dhillon. Collaborative filtering with graph informa-375

tion: Consistency and scalable methods. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and376

R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28. Curran377

Associates, Inc., 2015.378

10

[38] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia. Learning379

to simulate complex physics with graph networks. In International Conference on Machine380

Learning (ICML), 2020.381

[39] R. Sato, M. Yamada, and H. Kashima. Random features strengthen graph neural networks. In382

Proceedings of the 2021 SIAM International Conference on Data Mining, SDM, pages 333–341.383

SIAM, 2021.384

[40] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural385

network model. IEEE transactions on neural networks, 20(1):61–80, 2008.386

[41] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad. Collective classifica-387

tion in network data. AI Magazine, 29(3):93–106, 2008.388

[42] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann. Pitfalls of graph neural network389

evaluation. Relational Representation Learning Workshop, NeurIPS, 2018.390

[43] J. Shlomi, P. Battaglia, and J.-R. Vlimant. Graph neural networks in particle physics. Machine391

Learning: Science and Technology, 2(2):021001, 2020.392

[44] H. Taguchi, X. Liu, and T. Murata. Graph convolutional networks for graphs containing missing393

features. Future Generation Computer Systems, 117:155–168, 2021.394

[45] M. Thorpe, T. M. Nguyen, H. Xia, T. Strohmer, A. Bertozzi, S. Osher, and B. Wang. GRAND++:395

Graph neural diffusion with a source term. In International Conference on Learning Represen-396

tations, 2022.397

[46] R. van den Berg, T. N. Kipf, and M. Welling. Graph convolutional matrix completion. arXiv398

preprint arXiv:1706.02263, 2017.399

[47] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention400

networks. International Conference on Learning Representations, ICLR, 2018.401

[48] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,402

P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,403

N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,404

E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,405

C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0406

Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature407

Methods, 17:261–272, 2020.408

[49] J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervised embedding. In409

Proceedings of the 25th International Conference on Machine Learning, pages 1168–1175,410

New York, NY, USA, 2008. Association for Computing Machinery.411

[50] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger. Simplifying graph convolutional412

networks. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International413

Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,414

pages 6861–6871. PMLR, 09–15 Jun 2019.415

[51] L.-P. Xhonneux, M. Qu, and J. Tang. Continuous graph neural networks. In International416

Conference on Machine Learning, pages 10432–10441. PMLR, 2020.417

[52] L.-P. A. C. Xhonneux, M. Qu, and J. Tang. Continuous graph neural networks. In Proceedings418

of the 37th International Conference on Machine Learning, ICML’20. JMLR.org, 2020.419

[53] K. Xu, C. Li, Y. Tian, T. Sonobe, K. ichi Kawarabayashi, and S. Jegelka. Representation learning420

on graphs with jumping knowledge networks. In J. Dy and A. Krause, editors, Proceedings of421

the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine422

Learning Research, pages 5453–5462. PMLR, 10–15 Jul 2018.423

[54] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph convolu-424

tional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM425

SIGKDD International Conference on Knowledge Discovery & Data Mining, page 974–983.426

Association for Computing Machinery, 2018.427

11

[55] J. Yoon, J. Jordon, and M. van der Schaar. GAIN: Missing data imputation using generative428

adversarial nets. In Proceedings of the 35th International Conference on Machine Learning429

(ICML), volume 80 of Proceedings of Machine Learning Research, pages 5689–5698. PMLR,430

2018.431

[56] D. Zhou and B. Schölkopf. A regularization framework for learning from graph data. In432

Workshop on Statistical Relational Learning (ICML), 2004.433

[57] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra. Beyond homophily in graph434

neural networks: Current limitations and effective designs. Advances in Neural Information435

Processing Systems (NeurIPS), 2020.436

[58] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propagation.437

In Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002.438

[59] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and439

harmonic functions. In Proceedings of the Twentieth International Conference on International440

Conference on Machine Learning, ICML’03, page 912–919. AAAI Press, 2003.441

[60] M. Zitnik, M. Agrawal, and J. Leskovec. Modeling polypharmacy side effects with graph442

convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.443

A Appendix444

A.1 Algorithm Discussion445

Extension to Vector-Valued Features. Algorithm 1 extends seamlessly to vector-valued features446

by simply replacing the feature vector x with a n × d feature matrix X, where d is the number of447

features. Multiplying the diffusion matrix A by the feature matrix X diffuses each feature channel448

independently. Interestingly, it would not be trivial to extend Equation 2 to vector-valued features449

without noticing its equivalence with Algorithm 1, as each node could have different missing features,450

leading to different sub-matrices Ãuk and Ãuu for each feature channel.451

Learning. One significant advantage of FP is that it can be easily combined with any graph452

learning model to generate predictions for the downstream task. Moreover, FP is not aimed at merely453

reconstructing the node features. Instead, by only reconstructing the lower frequency components454

of the signal, it is by design very well suited to be combined with GNNs, which are known to455

mainly leverage these lower frequency components [50]. Our approach is generic and can be used for456

any graph-related task for missing features, such as node classification, link prediction and graph457

classification. In this paper, we focus on node classification.458

Oversmoothing. Figure 2 shows that the more features are missing, the smoother the reconstruction459

produced by FP is. Despite this, FP does not suffer from oversmoothing [35], a term used when node460

representations converge to similar values. Oversmoothing is caused by repeated diffusion and occurs461

widely when stacking more than a few layers of the most popular GNNs such as GCN [30], GAT [47]462

or SGC [50]. However, the boundary conditions in the Feature Propagation diffusion equation prevent463

the reconstructed features from becoming overly smooth, even when using an extremely high number464

of diffusion steps. This has also been studied by CGNN [52] and GRAND++ [45], which require465

soft boundary conditions in the form of a source term to prevent oversmoothing, although not in the466

context of missing features.467

When does Feature Propagation work? Since FP can be interpreted as a low-pass filter that468

smoothes the features on the graph, we expect it to be suitable in the case of homophilic graph469

data (where neighbors tend to have similar attributes), and, conversely, to suffer in scenarios of low470

homophily. To verify this, we experiment on the synthetic dataset from [2], which consists of 10471

graphs with different levels of homophily. Figure 5 confirms our hypothesis: when the homophily472

is high, Feature Propagation with 99% of features missing performs similarly to the case when all473

the features are known. As the homophily decreases, the gap between the two widens to become474

extremely large in the case of zero homophily. In such scenarios, FP is only slightly better than475

12

0.0 0.2 0.4 0.6 0.8

Homophily

0.2

0.4

0.6

0.8

1.0

T
es

t
A

cc
ur

ac
y

50% Missing Features

0.0 0.2 0.4 0.6 0.8

Homophily

0.2

0.4

0.6

0.8

1.0

T
es

t
A

cc
ur

ac
y

80% Missing Features

0.0 0.2 0.4 0.6 0.8

Homophily

0.2

0.4

0.6

0.8

1.0

T
es

t
A

cc
ur

ac
y

99% Missing Features
No Missing Features

Zero

FP (Ours)

Figure 5: Test accuracy on the synthetic datasets from [2] with different levels of homophily. We use
GraphSage as downstream model as it is preferable to GCN on low homophily data [57].

setting the missing features to zero (Zero baseline). This observation calls for a different kind of476

non-homogeneous diffusion dependent on the features that can potentially be made learnable for477

low-homophily data. We leave this as future work.478

A.2 Closed-Form Solution for Harmonic Interpolation479

Given the Dirichlet energy `(x, G) = 1
2x>∆x, we want to solve for missing features xu =480

argminxu`, leading to the optimality condition ∇xu` = 0. From Eq. 1 we find ∇xu` = 0 to481

be the solution of ∆ukxk + ∆uuxu = 0. The unique solution to this system of linear equations482

is xu = −∆−1uu∆ukxk. We show this solution always exists by proving ∆uu is non-singular483

(Proposition 3.1). The proof of this result follows from the following Lemma.484

Lemma A.1. Take any undirected and connected graph with adjacency matrix A ∈ {0, 1}n×n, and485

normalised Adjacency Ã = D−1/2AD−1/2, with D being the degree matrix of A. Let Ãuu be the486

bottom right submatrix of Ã where 1 ≤ b < n. Then ρ(Ãuu) < 1 where ρ(·) denotes spectral radius.487

Proof. Define488

Ãup =

[
0u 0uk

0ku Ãuu

]
,

to be the matrix equal to Ãuu in the lower right b × b sub-matrix and padded with zero entries489

elsewhere. Clearly Ãup ≤ Ã elementwise and Ãup 6= Ã. Furthermore, Ãup + Ã represents490

an adjacency matrix of some strongly connected graph and is therefore irreducible [5, Theorem491

2.2.7]. These observations allow us to deduce that ρ(Ãup) < ρ(Ã) [5, Corollary 2.1.5]. Note that492

ρ(Ãup) = ρ(Ãuu) as Ãup and Ãuu share the same non-zero eigenvalues. Furthermore, ρ(Ã) ≤ 1493

as we can write Ã = I−∆ and ∆ is known to have eigenvalues in the range [0, 2] [11]. Combining494

these inequalities gives the result ρ(Ãuu) = ρ(Ãup) < ρ(Ã) ≤ 1.495

Proposition A.2 (The sub-Laplacian matrix of a undirected connected graph is invertible). Take496

any undirected, connected graph with adjacency matrix A ∈ {0, 1}n×n, and its Laplacian ∆ =497

I − D−1/2AD−1/2, with D being the degree matrix of A. Then, for any principle sub-matrix498

Lu ∈ Rb×b of the Laplacian, where 1 ≤ b < n, Lu is invertible.499

Proof. To prove ∆uu is non-singular it is enough to show 0 is not an eigenvalue. Note that ∆uu =500

I− Ãuu so 0 is not an eigenvalue if and only if Ãuu does not have an eigenvalue equal to 1, which501

follows from Lemma A.1.502

A.3 Closed-Form Solution for the Euler scheme503

Proposition A.3. Take any undirected and connected graph with adjacency matrix A ∈ {0, 1}n×n,504

and normalised Adjacency Ã = D−1/2AD−1/2, with D being the degree matrix of A. Let x =505

13

Dataset Nodes Edges Features Classes

Cora 2,485 5,069 1,433 7
CiteSeer 2,120 3,679 3,703 6
PubMed 19,717 44,324 500 3
Photo 7,487 119,043 745 8
Computers 13,381 245,778 767 10
OGBN-Arxiv 169,343 1,166,243 128 40
OGBN-Products 2,449,029 123,718,280 100 47

Table 3: Dataset statistics.

x(0) ∈ Rn be the initial feature vector and define the following recursive relation506

x(k) =

[
I 0

Ãuk Ãuu

]
x(k−1).

Then this recursion converges and the steady state is given to be507

lim
n→∞

x(n) =

[
xk

−∆−1kk Ãukxk

]
.

Proof. The recursive relation can be written in the following form508 [
x
(k)
k

x
(k)
u

]
=

[
Il 0ku

Ãuk Ãuu

][
x
(k−1)
k

x
(k−1)
u

]
=

[
x
(k−1)
k

Ãukx
(k−1)
k + Ãuux

(k−1)
u

]
.

The first l rows remain the same so we can write x
(k)
k = x

(k−1)
k = xk and consider just the509

convergence of the last u rows510

x(k−1)
u = Ãukxk + Ãuux(k−1)

u .

We can look at the stationary behaviour by unrolling this recursion and taking the limit to find511

stationary state512

lim
n→∞

x(n)
u = lim

n→∞
Ãn

uux(0)
u +

(
n∑

i=1

Ã(i−1)
uu

)
Ãukxk.

Using Lemma A.1 we find limn→∞ Ãn
uux

(0)
u = 0 and the geometric series converges giving us the513

following limit514

lim
n→∞

x(n)
u =

(
Iu − Ãuu

)−1
Ãukxk = −∆−1kk Ãukxk.

515

A.4 Baselines’ Implementation and Tuning516

Label Propagation We use the label propagation implementation provided in Pytorch-517

Geometric [16]. Since the method is quite sensitive to the value of the α hyperpa-518

rameter, we perform a gridsearch separately on each dataset over the following values:519

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99].520

Positional Encodings We compute the laplacian eigenvectors using SciPy [48] sparse eigenvectors521

routines. We use the top twenty eigenvectors as positional encodings.522

MGCNN We re-implement MGCNN [33] in Pytorch by taking inspiration from the authors’ public523

TensorFlow code 5. For simplicity, we use the version of the model with only graph convolutional524

layers and without an LSTM. For the matrix completion training process, we split the observed525

features into 50% input data, 40% training targets and 10% validation data. Once the MGCNN526

model is trained, we feed it the matrix with all the observed features to predict the whole feature527

matrix. This reconstructed features matrix is then used as input for a downstream GNN (as for the528

feature-imputation baselines).529

5https://github.com/fmonti/mgcnn

14

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.3

0.4

0.5

0.6

0.7

0.8
T

es
t

A
cc

ur
ac

y

Cora

Label Propagation

Positional Encodings

Random

Zero

Global Mean

Neighbors Mean

MGCNN

FP (Ours)

GCNMF

PaGNN

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

T
es

t
A

cc
ur

ac
y

CiteSeer

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.4

0.5

0.6

0.7

0.8

T
es

t
A

cc
ur

ac
y

PubMed

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t
A

cc
ur

ac
y

Photo

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t
A

cc
ur

ac
y

Computers

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.2

0.3

0.4

0.5

0.6

0.7

T
es

t
A

cc
ur

ac
y

OGBN-Arxiv

Figure 6: Test accuracy for varying rate of missing features on six common node-classification
benchmarks. For methods that require a downstream GNNs, a 2-layer GraphSAGE [23] is used. On
OGBN-Arxiv, GCNMF goes out-of-memory and is not reported.

A.5 Discussion Over Baselines’ Performance530

Neighborhood Averaging As for some intuition to why the simple Neighborhood Averaging per-531

forms competitively, let us assume to have a single feature channel and this feature to be homophilous532

over the graph. When a node has enough neighbors, the average of their features is a good estimate533

for the feature of the given node. However, as the rate of missing features increases, the feature may534

be present for only a few neighbors (or none at all), causing the estimate to have a higher variance.535

On the other hand, Feature Propagation allows information to travel longer distances in the graph by536

repeatedly multiplying by the diffusion matrix. Even if we do not observe the feature for any of a537

node’s neighbors, it is still possible to estimate it from nodes further away in the graph. This can be538

observed empirically: the gap between Neighborhood Averaging and Feature Propagation becomes539

increasingly significant for higher rates of missing features.540

Zero vs Random In models such as GCN and GraphSage, where node embeddings are computed541

as (weighted) average of neighbors embeddings, the effect of the Zero baseline is simply to reduce542

the norm of the average embeddings of all nodes (since all nodes have the same expected proportion543

of neighbors with missing features). On the other hand, the Random baseline corrupts this weighted544

average. More generally, while for a GNN model it could be relatively easy to learn to ignore features545

set to zero, and only focus on known (non-zero) features, it would be basically impossible for the546

model to do the same when setting the missing features to a random value.547

However, we find Random to perform better than Zero when all features are missing. This is in548

line with findings in the literature [1, 39], where Random features have been shown to work well549

in conjunction with GNNs as they act as signatures for the nodes. On the other hand, if all nodes550

have all zero vectors, it becomes basically impossible to distinguish them. After applying a GNN, all551

nodes will still have very similar embeddings and the task performance will be close to a random552

guess.553

15

	Introduction
	Preliminaries
	Feature Propagation
	Related Work
	Experiments and Discussion
	Conclusion
	Appendix
	Algorithm Discussion
	Closed-Form Solution for Harmonic Interpolation
	Closed-Form Solution for the Euler scheme
	Baselines' Implementation and Tuning
	Discussion Over Baselines' Performance

