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Abstract

Task-oriented dialogue systems are an impor-001
tant tool in conversational AI, relying on prede-002
fined dialogue flows to guide user-agent inter-003
actions. Currently, these flows are either man-004
ually created by domain experts or generated005
through AI techniques, leading to variability006
in their quality. This lack of standardization007
poses a challenge for conversational design-008
ers and automated techniques. To address this009
issue, we propose a novel framework for evalu-010
ating the quality of these dialogue flows. Our011
framework focuses on the complexity of the012
flow structure and its representation of histor-013
ical data. To this end, we introduce FuDGE,014
a Fuzzy Dialogue-Graph Edit Distance metric015
that assesses the match between a flow and a set016
of real-world conversations. Through extensive017
experiments, we demonstrate the effectiveness018
of our framework and show that FuDGE can019
help standardize and improve dialogue flows020
for task-oriented dialogue systems.021

1 Introduction022

Conversational AI holds great promise in the field023

of Customer Service Automation, where the aim024

is to create a task-oriented dialogue system that025

can effectively address customer queries without026

requiring human intervention. These systems are027

often built on a knowledge base or backend systems028

to provide the necessary information to assist the029

customer. Over the past few years, various frame-030

works have been developed to make the creation of031

task-oriented dialogue systems easier, including Di-032

alogflow CX1, Rasa2, and Amazon Lex3, which are033

based on dialogue flows composed of user intents,034

agent actions, and other metadata.035

There are two primary methods for building di-036

alogue flows for task-oriented dialogue systems.037

The first is through handcrafting by conversation038

1https://cloud.google.com/dialogflow/cx/docs/basics
2https://rasa.com
3https://aws.amazon.com/lex/

Figure 1: Illustration of a dialogue flow (left) used to
configure a task-oriented dialogue agent for "Everycloth-
ing", and a customer inquiring about canceling their
order shown in the chat widget (right).

designers, involving an iterative process of histori- 039

cal data analysis to identify and define the dialogue 040

flows that meet customers’ concerns. This process 041

can result in different dialogue flows due to various 042

factors, including the designer’s skill and experi- 043

ence, the time spent on development, and the his- 044

torical dialogue transcripts. The second approach 045

involves utilizing flow discovery algorithms, which 046

enable the identification of dialogue flows from 047

historical human-human dialogues (Bouraoui et al., 048

2019; Martínez and Nugent, 2022). Although this 049

approach is critical for building task-oriented dia- 050

logue agents, it remains largely unexplored. Flow 051

discovery methods comprise different hyperparam- 052

eters, which contribute to the emergence of various 053

dialogue flow types. The resulting dialogue flows 054

are represented as directed acyclic graphs (DAGs) 055

that may differ in terms of the number of user in- 056

tents, the sequence of intents and actions, or the 057

number of paths within the graph. To illustrate the 058

concept of a dialogue flow and its corresponding 059

task-oriented dialogue agent, refer to Figure 1. 060

Despite the variability of the dialogue flows, 061

there has been limited attention in natural language 062

processing (NLP) research on evaluating these 063

flows with respect to historical dialogues. While 064
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some studies have improved task-oriented dialogue065

agents through better intent discovery (Zhang et al.,066

2022; Shi et al., 2018; Perkins and Yang, 2019),067

which is a sub-problem in the dialogue flow discov-068

ery process, there is a need for automated evalua-069

tion of dialogue flows with respect to historical dia-070

logue transcripts. In this paper, we present a novel071

evaluation framework to assess flow discovery algo-072

rithms and guide conversation designers in building073

flows. Our framework assigns a score to a dia-074

logue flow and enables comparison between flows075

generated from the same corpus. When designing076

dialogue flows, there is a trade-off between com-077

pression and the amount of information retained.078

A graph containing all conversations potentially079

covers the entire corpus, but strictly imitates his-080

torical conversations and does not generalize well081

to unseen dialogues. Conversely, a simple graph082

such as “start -> Hello -> Goodbye” is083

still a dialogue flow, but it loses most of the infor-084

mation about the corpus. Our proposed evaluation085

framework aims to balance the compression and086

complexity of dialogue flows to ensure that impor-087

tant and representative conversations are covered088

while minimizing information loss. We propose089

FuDGE, Fuzzy Dialogue-Graph Edit distance, an090

algorithmic way to compute the distance between091

a conversation and a given flow path, measuring092

how well dialogues are represented and covered by093

the flow. We combine the FuDGE score with the094

complexity of the DAG representing the flow to095

produce the Flow-F1 (FF1) score, which captures096

the compression-complexity trade-off. Overall, our097

contributions are as follows:098

1. We present a novel dialogue flow evaluation099

framework that quantifies the quality of a di-100

alogue flow generated from a corpus while101

considering the trade-off between flow com-102

plexity and information content.103

2. We propose the FuDGE distance, an efficient104

edit-distance metric and show that can be used105

in any dialogue evaluation task and effectively106

separates within-task and out-of-task conver-107

sations for a given set of dialogues.108

3. We demonstrate that FF1 score can help hy-109

perparameter tuning, ranking, and pruning the110

dialogue flows to identify the most optimal111

flows for a given dialogue corpus.112

2 Preliminaries 113

This section first defines key terms related to di- 114

alogue flows and presents the core concept be- 115

hind automatic dialogue flow discovery methods. 116

We then describe the Levenshtein distance algo- 117

rithm (Levenshtein et al., 1966) as the basis for the 118

FuDGE algorithm. 119

2.1 Automatic Flow Discovery 120

Automatic flow discovery involves obtaining a dia- 121

logue flow from a dialogue corpus, which is a col- 122

lection of N dialogues, each containing a sequence 123

of user and agent utterances. A dialogue flow is a 124

directed acyclic graph (DAG) that represents the 125

corpus in the form of nodes, where each node is 126

a user intention/request or an agent response. A 127

naive approach to obtain a graph from a dialogue 128

corpus would be to assign a node to every utterance 129

and connect the consecutive nodes. This would 130

result in a graph that captures all the noise inherent 131

in human-human conversations, making it imprac- 132

tical for initializing a dialogue agent or manual 133

configuration. Moreover, it would be too large for 134

practical, real-world datasets. 135

To create more condensed representations of 136

the graph, automatic flow discovery techniques 137

broadly follow two steps. The first step in- 138

volves identifying the type of agent responses 139

and user requests and assigning an intent label to 140

each utterance. An intent label “book hotel” 141

might include user utterances like “I want to 142

book a hotel”, “Need a room in the 143

Marriott for next month”, and “Need 144

accommodation this weekend”. Various 145

techniques can be employed to achieve this, such 146

as training a classifier on manually annotated user 147

and agent utterances or using unsupervised or semi- 148

supervised methods when annotated data is limited 149

(Forman et al., 2015; Lin et al., 2020; Zhang et al., 150

2021). The second step involves using AI tech- 151

niques to convert the conversation paths into a more 152

condensed graph. This can be done by employing 153

flow ranking strategies that discover the most im- 154

portant paths, and pruning strategies that remove 155

less important nodes or edges from the graph. 156

While there is a strong desire for automatic flow 157

discovery, the number of available discovery al- 158

gorithms is limited. Graph2Bot, a discovery algo- 159

rithm described in (Bouraoui et al., 2019), can de- 160

tect large, complex graphs, but its over-generation 161

of paths results in loops that make the dialogue 162
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flows unsuitable for a dialogue system, despite the163

possibility of filtering. An alternative approach,164

presented in (Martínez and Nugent, 2022), involves165

creating an NFA by treating user utterances as166

states and the agent intents as transitions between167

states. The algorithm groups user utterances dur-168

ing graph minimization and employs several rank-169

ing and pruning techniques to create a more com-170

pressed graph. In this work, we use both the NFA-171

based algorithm described in (Martínez and Nugent,172

2022) and another proprietary automatic flow dis-173

covery method to obtain dialogue flows. Our goal174

is to generate a dialogue flow that resembles the175

one depicted in Figure 1. We can use annotated176

data, such as agent and user utterance intent la-177

bels, or a clustering method to assign labels to the178

utterances for both algorithms.179

2.2 Levenshtein Distance180

The Levenshtein distance, also known as edit dis-181

tance, is a fundamental concept in various search182

algorithms. It measures the minimum number183

of operations required to transform one string,184

a = a1a2a3 . . . an, into another string, b =185

b1b2b3 . . . bm, where each sequence comprises in-186

dividual characters. To compute the edit distance187

between substrings a1:r and b1:s, we define dr,s as188

the minimum number of operations required. We189

can recursively calculate dr,s by considering the190

following three possibilities:191

1. delete ar, match a1:r−1 with b1:s.192

2. insert bs at the end of a1:r, match193

a1a2 . . . arbs with b1b2 . . . bs−1bs or equiva-194

lently a1:r and b1:s−1.195

3. substitute ar with bs, match a1:r−1 and b1:s−1.196

The minimum number of operations dr,s is the min-197

imum cost of the three previous steps:198

dr,s = min


dr−1,s + cdel(ar), case. 1
dr,s−1 + cins(bs), case. 2
dr−1,s−1 + csub(ar, bs), case. 3

(1)199

Where cdel, cins, csub are the deletion, insertion200

and substitution cost respectively.The substitution201

cost csub, is 0 if the characters being compared are202

the same and 1 otherwise. The initial cases, d0,s203

and dr,0, represent the cost of converting an empty204

string to a full string and a full string to an empty205

string, respectively. They are defined as follows: 206

d0,s =

s∑
t=0

cins(bt), dr,0 =

r∑
t=0

cdel(at) (2) 207

The final edit distance between a and b is dm,n, 208

and it can be calculated efficiently using dynamic 209

programming with complexity O(mn). Further- 210

more, tracking the steps at each iteration gives us 211

the alignment between two strings, where each 212

character of the first string is either matched with 213

another character or a gap in the other string. 214

2.3 Problem Definition 215

In this paper, a dialogue flow is represented by a 216

Directed Acyclic Graph (DAG) denoted by G = 217

(V,E) with its root node Gr. The graph G con- 218

tains multiple paths starting from the root node, 219

each representing a possible scenario of interaction 220

between a user and an agent in a dialogue system. 221

Every node in the graph is linked to an intent bucket 222

Bi ∈ B = {B1, B2, . . . , BM}, where a bucket 223

Bi = (actor, utterances) consists of a group of 224

utterances conveying the same semantic meaning 225

associated with either a user intent (actor = user) 226

or an agent action (actor = agent). Through- 227

out the paper, the term ’intent’ is used for both 228

users and agents. The root node Gr is associ- 229

ated with a dummy bucket and is assumed to be 230

the beginning of all conversations. A flow path 231

P = ⟨GrP1P2...Pn⟩ is defined as a path in the 232

graph G, where Pi ∈ V and (Pi, Pi+1) is an edge 233

in E. To generate a dialogue flow, human experts 234

or automated dialogue flow discovery methods use 235

a dialogue corpus C = {C1, C2, . . . , CN} that 236

contains N recorded conversations between users 237

and agents in a service center. 238

3 Methodology 239

Given a dialogue flow graph G = (V,E) obtained 240

from a dialogue corpus C = {C1, C2, . . . , CN}, 241

we evaluate the flow from two perspectives: (i) how 242

well does the flow represent the dialogue corpus (in- 243

formation loss) (ii) how well is the representation 244

compressed/denoised (complexity). 245

3.1 Information Loss 246

Information loss measures the similarity between a 247

dialogue corpus and the discovered flow from the 248

corpus. It is calculated by determining the average 249

distance between each dialogue in the corpus and 250
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the flow. Essentially, the more similar the conversa-251

tions in the corpus are to the paths in the flow, the252

lower the amount of information loss. To formally253

define this metric, we assume that Ci ∈ C is a254

dialogue, and FG = {P k = ⟨GrP
k
1 P

k
2 ...P

k
nk
⟩}K255

is the set of all flow paths in G starting at the root256

node Gr and ending at a leaf node. The fuzzy257

dialogue-graph distance between Ci and G is then258

defined as the minimum distance between Ci and259

any flow path P k ∈ FG:260

FuDGE(Ci, G) = min
Pk∈FG

dist(Ci, P k) (3)261

Where dist(Ci, P k) denotes the edit distance be-262

tween a dialogue and a single flow path, and is263

computed by pairing each node intent in the flow264

with an utterance in the conversation using inser-265

tion, deletion, or substitution operations of nodes266

in the path. Unlike the Levenshtein distance for267

strings, this process is challenging because a dia-268

logue is a sequence of utterances while a flow path269

is a sequence of intents (which is a collection of270

utterances), instead of being a sequence of unit271

characters. The FuDGE algorithm takes into ac-272

count the unique characteristics of dialogues and273

efficiently calculates the distance between a dia-274

logue and a flow. We will provide more details275

about this algorithm in Section 4. The distance276

between the dialogue flow G and corpus C is then277

calculated as the average FuDGE distance across278

all N dialogues in the corpus:279

f(C,G) =
1

N

N∑
i=1

FuDGE(Ci, G) (4)280

3.2 Complexity281

The complexity of the representation can be defined282

as the complexity of the graph representing the283

dialogue flow. Depending on the application, there284

are various ways to calculate the complexity of a285

graph. Here we define complexity as the number286

of nodes of a graph.287

3.3 Flow-F1 Score (FF1)288

To capture the trade-off between the information289

loss and the complexity, we propose using the har-290

monic mean of the normalized complexity and the291

FuDGE score. To normalize the complexity, we292

divide it by the total number of utterances in the dia-293

logue corpus, which represents the upper bound for294

graph size if each utterance is a node. We normal-295

ize the FuDGE score by the average conversation296

length in the dialogue corpus, as the maximum 297

score one can get is from an empty graph by insert- 298

ing every utterance. The Flow-F1 (FF1) is: 299

FF1 =
2(1− nc)× (1− nf)

(1− nc) + (1− nf)
(5) 300

where nc and nf are normalized complexity and 301

normalized average FuDGE score (Equation 4). 302

4 Fuzzy Dialogue-Graph Edit Distance 303

Motivated from the Levenshtein distance, we focus 304

on aligning a flow path with a dialogue. This is par- 305

ticularly challenging as we need to match a given 306

utterance in the dialogue with an intent in the flow 307

path. Intuitively, an utterance is a good match with 308

an intent if it is semantically close to the majority 309

of the utterances associated with the intent. 310

More precisely, given a dialogue flow G = 311

(V,E), its set of flow paths FG = {P k = 312

⟨GrP
k
1 P

k
2 ...P

k
nk
⟩}K , and a conversation Ci = 313

⟨ui1ui2 . . . uim⟩, we start with finding the edit dis- 314

tance between Ci = ⟨ui1ui2 . . . uim⟩ and a specific 315

flow path P j = ⟨GrP
j
1P

j
2 ...P

j
nj ⟩. Conversation 316

Ci is a sequence of utterances ⟨ui1ui2 . . . uim⟩ pro- 317

duced by a set of actors ⟨ai1ai2 . . . aim⟩, and flow 318

path P j = ⟨GrP
j
1P

j
2 ...P

j
nj ⟩ is a sequence of nodes, 319

where each node P j
r is associated with an intent 320

bucket Br = (actor, utterances). The dialogue 321

flow path edit distance follows the logic described 322

in the preliminaries section. It is similar to Equa- 323

tion 1, except that we need to define the substitution 324

cost between an utterance and an intent. Once the 325

distance between a single flow path and a dialogue 326

is determined, the FuDGE distance can be com- 327

puted using the formula in Equation 3. 328

4.1 Fuzzy Substitution Cost 329

To match an intent with an utterance, we need to 330

ensure that the utterance is semantically similar to 331

the utterances in the intent bucket. If the utterance 332

and the intent are not similar, the intent should 333

be replaced. However, we cannot simply replace 334

an intent with an utterance. Instead, we propose 335

to replace the intent with the nearest intent to the 336

utterance in the set of universal intent buckets B. 337

Intuitively, if the current node intent is dissimilar 338

to u, it should be replaced with the most similar 339

intent to u. 340

To find the most similar intent, we define B∗ 341

as the intent closest to the utterance. If the cur- 342

rent node intent is dissimilar to the utterance, it 343
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will be replaced with the most similar intent to the344

utterance. We define the substitution cost as the345

sum of two distances: the distance between the346

current intent bucket and the utterance (d1(Br, u)),347

and the distance between the current intent bucket348

and the most similar intent bucket (d2(Br, B∗)).349

The final substitution cost is then defined as the350

weighted sum of the two distances, with the weight351

determined by the hyperparameter α:352

costsub(B
r, u) = α(d1(B

r, u) + d2(B
r, B∗))

(6)353

Where α is set to 0.5 here to keep the substitution354

cost between 0 and 1.355

We define the intent-utterance and intent-intent356

distance as a function of their distance in a se-357

mantic space. Namely we encode an utterance358

u and the intent utterances Br.utterances =359

{ur1, . . . , url } into distributional representations eu,360

and {e1, e2, . . . , el} using Sentence Bert Encoder361

(Reimers and Gurevych, 2019). We use the intent362

centroid as a representation for the intent, obtained363

by taking the average of the embeddings of all the364

utterances in the intent, i.e. eBr = 1
l

∑l
j=1 e1.365

We define intent-utterance distance in two ways:366

(i) by calculating the cosine distance between an367

utterance embedding and an intent centroid, and (ii)368

by calculating the cosine distance between the ut-369

terance embedding and the nearest utterance within370

the intent. The intent-intent distance is calculated371

using the cosine distance between the centroids of372

two intents. A detailed explanation of these mathe-373

matical formulations can be found in the Appendix.374

375

Actor Alignment. To ensure that an utterance376

produced by a user is not matched with an intent377

associated with an agent, and vice versa, we set the378

intent-intent and intent-utterance distance to ∞ if379

the actors mismatch. For example, we calculate the380

intent-intent distance, d2(Br, Bs), using the cosine381

similarity between the embedding vectors eBr and382

eBs , but only if the actors for the two intents match.383

If the actors do not match, we set the intent-intent384

distance to ∞.385

4.2 Efficient FuDGE Implementation &386

Complexity Analysis387

The original edit distance algorithm uses dynamic388

programming to compute the Levenstein distance.389

In dynamic programming, the computed solutions390

to subproblems (e.g., di,j in Equation 1) are stored391

in a memoization table so that these don’t have to392

Figure 2: Efficient memoization used for FuDGE

be recomputed. Even with a memoization table, 393

computing the formula in Equation 3 results in a 394

O(TKm) running time if we separately compute 395

the distance between every single path in the flow 396

FG = {P k = ⟨GrP
k
1 P

k
2 ...P

k
nk
⟩}K , nk ≤ T and a 397

conversation of length m. Calculating the distance 398

between a dialogue corpus of size N with a flow 399

graph (Equation 4) results in running time com- 400

plexity of O(TKNm). This makes it impractical 401

to calculate the distance between complex dialogue 402

flows with many paths and large dialogue corpora. 403

To optimize the memoization process, we utilize 404

the structure of a flow DAG. Our approach is based 405

on the idea that paths in a dialogue graph often 406

share overlapping sub-paths, which can be lever- 407

aged to improve efficiency. For example, in Figure 408

2, node P3 has two children, P4 and P6, and the two 409

paths stemming from it, root->...->P3->P4 410

and root->...->P3->P6 share the same pre- 411

fix root->...->P3, up to the node P3. As a 412

result, both paths require the same memoization in- 413

formation for calculating case 2 and 3 in Equation 414

1. Instead of using a regular memoization table, we 415

keep an array for each node that contains the edit 416

distance between a conversation and all paths that 417

start from the root and end at that node. 418

Our approach combines dfs-traversal with mem- 419

oization, using the parent edit distance array for 420

the calculation in the current node. It is also impor- 421

tant to note that a node may have multiple distance 422

arrays, since multiple paths may end at a certain 423

node (e.g., node P5 in Figure 2). We compute the 424

distance between a dialogue and all paths in the 425

dialogue flow by taking the entire DAG into consid- 426

eration, rather than looking at each path separately. 427

The complexity of computing the FuDGE distance 428
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between all flow paths and a conversation with429

length n is O((|V |+ |E|)n). The implementation430

details of both the naive and efficient algorithms are431

provided in Algorithm 1 and Algorithm 2 in the Ap-432

pendix. By exploiting the overlapping sub-paths in433

a flow DAG, we can optimize the memoization pro-434

cess and improve the efficiency of our algorithm.435

5 Experiments436

In this section, we explain the automatic flow dis-437

covery techniques, dialogue corpora, and evalua-438

tion datasets used to evaluate the performance of439

FuDGE and FF1.440

5.1 Flow Discovery Methods441

We utilized two existing automatic discovery al-442

gorithms to obtain dialogue flows from a dialogue443

corpus, as there are only a few algorithms available444

for this purpose. One of the discovery methods we445

used is the NFA-based discovery method proposed446

in (Martínez and Nugent, 2022), denoted as ALG1.447

Additionally, we used another proprietary software,448

currently unpublished, denoted as ALG2. Both al-449

gorithms make use of a set of user and agent intents,450

and can use fully annotated intents when available.451

In the absence of human-annotated intents, an in-452

tent discovery method is employed to find intent453

clusters. The ALG1 method only requires agent454

intents initially, and user utterances are grouped455

as a by-product of graph minimization. In this456

work, we generated dialogue flows both with and457

without human-annotated intents, which we refer458

to as supervised and unsupervised flows, respec-459

tively. Both discovery algorithms utilize a sentence460

encoder for intent discovery and intent detection,461

and we used the same encoding method for con-462

sistency across both algorithms. The intent-intent463

and intent-utterance distances were also computed464

using this same encoder.465

5.2 Datasets466

In this work, we use two datasets, each consisting467

of a set of dialogues, where each dialogue is a con-468

versation between two actors (i.e., user and agent)469

that consists of a sequence of turns. A turn is an470

utterance produced by one of the actors. Ideally,471

the best way to evaluate our framework is to com-472

pare a set of manually crafted gold flows, perfect473

in both coverage and compression, with automat-474

ically discovered flows from the dialogue corpus.475

To our knowledge, there is no public dataset with476

FINANCE STAR

Conversations 447 527
Utterances 7392 7352
Tasks 12 5
Agent intents 55 41
User intents 47 -

Table 1: Dataset Statistics

gold standard flows. Therefore, we propose to im- 477

pose a level of supervision with human-annotated 478

utterances. Many dialogue state tracking datasets 479

(Williams et al., 2014; Bouraoui et al., 2019; Tian 480

et al., 2021; Qi et al., 2022) have human anno- 481

tated dialogue act utterances, none of which have 482

fully annotated user intents. A dialog act is an 483

utterance that serves as a function in the dialog, 484

such as a question, a statement, or a request. In 485

contrast, intents are more fine-grained and cate- 486

gorize a user intention. For example, “I want 487

to book a hotel room” and “I would 488

like to order pizza” have the same dia- 489

logue act request while their intents are differ- 490

ent. Our first dataset, Finance, is a dataset with 491

fully annotated agents and user intents. It con- 492

stitutes the conversations between a user and the 493

customer service of a financial agency. Our second 494

dataset is created from STAR (Mosig et al., 2020), 495

which is the only publicly available dialogue state 496

tracking dataset partially annotated with agent in- 497

tents. STAR is a schema-guided task-oriented dia- 498

log dataset consisting of 127,833 utterances across 499

5,820 task-oriented dialogs in 13 domains, from 500

which we pick two domains, “Hotel” and “Bank” 501

since they contain the most number of dialogues. 502

We processed the dialogues in the STAR dataset 503

and removed those with unlabeled agent utterances. 504

Table 1 contains our datasets’ statistics, including 505

the number of dialogues, utterances, tasks, and in- 506

tents. A complete list of tasks for each dataset is 507

provided in the Appendix. 508

5.3 FuDGE Evaluation 509

This experiment aims to evaluate the effectiveness 510

of FuDGE as a distance metric. More specifi- 511

cally, given a dialogue flow created for a specific 512

task, a good distance metric should provide lower 513

scores for conversations that belong to the task than 514

the out-of-task conversations. We picked “Make 515

Payment” task from the Finance dataset with 150 516

conversations and “Bank Fraud Report” and 517

“Hotel Book” from the STAR dataset, with 180 518
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Make Payment Hotel Book Bank Report Fraud

Model Positves Negatives Positves Negatives Positves Negatives

ALG1-Centroid 0.27± 0.12 0.51± 0.13 0.40± 0.21 0.63± 0.22 0.42± 0.18 0.67± 0.22
ALG1-Min 0.21± 0.12 0.47± 0.13 0.34± 0.20 0.60± 0.21 0.33± 0.18 0.61± 0.22
ALG2-Centroid 0.14± 0.03 0.48± 0.16 0.08± 0.03 0.59± 0.18 0.09± 0.04 0.63± 0.19
ALG2-Min 0.08± 0.03 0.44± 0.16 0.04± 0.04 0.57± 0.19 0.02± 0.04 0.60± 0.20

Table 2: Average FuDGE score for within-task (Positives) vs out-of-task (Negative) conversations, indicating a clear
separation.

and 145 conversations. We generated separate di-519

alogue flows for each of these tasks using ALG1520

and ALG2. For each task, we also randomly sam-521

pled 50% of the in-task conversations and added522

the same number of out-of-task conversations. We523

evaluated each task-flow with the corresponding524

dialogue corpus and obtained the average FuDGE525

score for each dialogue corpus. The results are526

summarized in Table 2. The average score for527

within-task dialogues (positives) is significantly528

smaller than the out-of-task (negatives) dialogues.529

It can segregate within-task conversations from out-530

of-task conversations. These results suggest that531

FuDGE is an effective distance metric that can be532

used independently in any application involving533

the distance between a dialogue and any predefined534

DAG structured dialogue scheme. The Appendix535

provides examples of the dialogues and the best-536

matched flow path.537

5.4 Parameter Optimization With FF1538

Automatic flow discovery usually involves multiple539

steps, including clustering the utterances, creating540

the graph, ranking important paths, and pruning the541

graph accordingly. Each of these steps may add542

different hyperparameters to the entire discovery543

pipeline. The simplest clustering algorithms, such544

as K-means, require k as the number of clusters.545

While hyperparameter selection can drastically im-546

pact the quality of the final discovered flows, it547

has been done mainly by manual trial and error.548

In this experiment, we show that the FF1 score549

is a practical framework for choosing the optimal550

set of hyperparameters. For this experiment, we551

use ALG1 as the flow discovery algorithm. This552

algorithm consists of a ranking strategy that ranks553

the paths based on their importance and later keeps554

the k top-ranked paths as the discovered flow. In555

both supervised and unsupervised setup, we run556

ALG1 task over the Make Payment task from557

the Finance dataset. We generate multiple flows558

for different values of k ranging from 1 to the max-559
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Figure 3: Parameter tuning with FF1 for ALG1 and
“Make Payment” task. The left column is the scores
from an unsupervised discovered flow, and the right
column corresponds to the supervised flow. The optimal
k is smaller for the supervised flow, indicating a better
compression.

imum number of paths in the complete graph. The 560

top row of Figure 3 shows the normalized FuDGE 561

score obtained for each flow versus k. First, we 562

can see the clear segregation between the within- 563

task and out-of-task dialogues. Moreover, as more 564

paths get added, the FuDGE score asymptotically 565

decreases to a minima. The middle row depicts the 566

normalized complexity score for different k values, 567

which indicates a monotonic increase in the com- 568

plexity, which is expected as we add more paths, 569

and, thus, more nodes to the graph. The bottom 570

row is the final FF1 score. We see that the scores 571

go up to an optimal point as we add more paths, 572

but it starts declining. The peak in the graph is 573

almost aligned with the point where the FuDGE 574

score starts to stay constant. 575

5.5 FF1 Evaluation 576

In this section, we compare dialogue flows with 577

and without annotated intents. The discovery algo- 578

rithms need to use a clustering method to generate 579

the intents without the labeled data. This process 580

imposes some noise on the flow discovery, lead- 581
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STAR FINANCE

Supervised Unsupervised Supervised Unsupervised

Model FF1 FuDGE Complexity FF1 FuDGE Complexity FF1 FuDGE Complexity FF1 FuDGE Complexity

ALG1-Min 0.75 0.27 0.23 0.79 0.24 0.18 0.86 0.21 0.07 0.81 0.23 0.15ALG1-Centroid 0.71 0.35 0.73 0.34 0.82 0.27 0.78 0.27

ALG2-Min 0.59 0.08 0.57 0.73 0.26 0.28 0.90 0.03 0.16 0.77 0.03 0.36ALG2-Centroid 0.58 0.12 0.71 0.34 0.87 0.09 0.75 0.09

Table 3: Results of FF1 flow comparison between supervised and unsupervised discovered flow.

ing to lower quality dialogue flows. This experi-582

ment aims to show that our evaluation approach583

can capture this phenomenon. We generated com-584

plete flows by running ALG1 and ALG2 over the585

entire dialogue corpus for both datasets. Then, we586

calculated the average FuDGE score and the com-587

plexity of each discovered flow and computed the588

FF1 score. Table 3 summarizes the results of this589

experiment. As shown, for the Finance dataset, the590

score for the supervised discovered flows is higher591

than the unsupervised discovered flows, with only592

one exception. However, the FF1 score for the593

unsupervised flows discovered by ALG2 is signifi-594

cantly higher than the supervised flows. A manual595

investigation of the flows showed that the anno-596

tated labels were too fine-grained. Clustering led597

to more high-level intents, which eventually pro-598

cessed better-quality dialogue flows. We provide599

more discussion about this case in the Appendix.600

6 Related Work601

Related work for our work is relatively sparse. Al-602

though automatic evaluation of dialogue systems is603

an active field of research (Yeh et al., 2021; Khalid604

and Lee, 2022), most of the metrics and approaches605

focus on evaluating a dialogue in utterance level606

(Sun et al., 2021; Ghazarian et al., 2020). How-607

ever, our work focuses on the evaluation of the dia-608

logues in conversation level, mostly produced by609

an AI algorithms, such as Graph2Bot introduced by610

Bouraoui et al. (2019) and is a tool for assisting con-611

versational agent designers. It could extract a graph612

representation from human-human conversations613

using unsupervised learning. More recently, (Qiu614

et al., 2020) used a Variational Recurrent Neural615

Network model with discrete latent states to learn616

dialogue structure in an unsupervised fashion. They617

evaluate their method by using Structure Euclidean618

Distance (SED) and Structure Cross-Entropy (SCE)619

based on the transition probabilities between nodes620

but found them to be unstable. SED and SCE also621

do not consider the semantic similarity between the 622

node and the original conversation. 623

Word Confusion Networks (WCNs) (Mangu 624

et al., 2000) has been used extensively to model the 625

hypothesis of automatic speech recognition (ASR). 626

Just like the dialogue flows, WCNs can also be rep- 627

resented as DAGs. A popular metric for identifying 628

the quality of ASR has been word error rate which 629

incorporates ideas of edit distance that can be de- 630

rived through each path in the WCN that represents 631

an ASR hypothesis. Lavi et al. (2021) introduced 632

the notion of using edit distance (Wagner and Fis- 633

cher, 1974) for dialog-dialog similarity. In their 634

work, they used sentence-level embeddings (Cer 635

et al., 2018; Reimers and Gurevych, 2019) to deter- 636

mine the similarity between two utterances within a 637

dialogue and defining the edit distance substitution 638

cost. 639

7 Conclusion 640

This paper presents a novel evaluation framework 641

for a crucial task necessary for building task- 642

oriented dialogue agents. This framework can be 643

used with any flow discovery method and dialogue 644

corpora as long as the generated dialogue flows can 645

be represented as a DAG. We introduced the FF1 646

metric, a harmonic mean of flow complexity and 647

FuDGE distance, and demonstrated its efficacy as 648

a tool to select hyperparameters of a flow discovery 649

algorithm or process. We envisage it to be a useful 650

guide for human conversational designers or as a 651

measure to optimize an automatic flow discovery 652

process. We also propose an efficient implemen- 653

tation of FuDGE distance with O((|V | + |E|)n), 654

allowing it to scale to large datasets. This approach 655

delivers a consistent baseline, thereby better ver- 656

sioning and tracking the progress of flows and cor- 657

responding automation with time. In the future, we 658

hope to incorporate utterance characteristics for the 659

insertion and deletion cost to account for the actual 660

semantic cost of the operation. 661
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8 Limitations662

In this section, we discuss the limitations of our663

approach. Our implementation in FuDGE only as-664

signs deletion and insertion costs as 0 or 1, without665

taking into account the characteristics of the utter-666

ance or intent. Additionally, we acknowledge that667

the current unavailability of the Finance dataset668

and a detailed description of the second discov-669

ery method limits the reproducibility of our work.670

However, we are optimistic that our work will pro-671

vide valuable insights and lead to future research672

in this area.673

References674

Jean-Leon Bouraoui, Sonia Le Meitour, Romain Carbou,675
Lina M. Rojas Barahona, and Vincent Lemaire. 2019.676
Graph2Bots, unsupervised assistance for designing677
chatbots. In Proceedings of the 20th Annual SIGdial678
Meeting on Discourse and Dialogue, pages 114–117,679
Stockholm, Sweden. Association for Computational680
Linguistics.681

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,682
Nicole Limtiaco, Rhomni St John, Noah Constant,683
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,684
et al. 2018. Universal sentence encoder. arXiv685
preprint arXiv:1803.11175.686

George Forman, Hila Nachlieli, and Renato Keshet.687
2015. Clustering by intent: a semi-supervised688
method to discover relevant clusters incrementally.689
In Joint European Conference on Machine Learn-690
ing and Knowledge Discovery in Databases, pages691
20–36. Springer.692

Sarik Ghazarian, Ralph Weischedel, Aram Galstyan,693
and Nanyun Peng. 2020. Predictive engagement:694
An efficient metric for automatic evaluation of open-695
domain dialogue systems. In Proceedings of the696
AAAI Conference on Artificial Intelligence, vol-697
ume 34, pages 7789–7796.698

Baber Khalid and Sungjin Lee. 2022. Explaining dia-699
logue evaluation metrics using adversarial behavioral700
analysis. In Proceedings of the 2022 Conference701
of the North American Chapter of the Association702
for Computational Linguistics: Human Language703
Technologies, pages 5871–5883.704

Ofer Lavi, Ella Rabinovich, Segev Shlomov, David705
Boaz, Inbal Ronen, and Ateret Anaby-Tavor. 2021.706
We’ve had this conversation before: A novel ap-707
proach to measuring dialog similarity. arXiv preprint708
arXiv:2110.05780.709

Vladimir I Levenshtein et al. 1966. Binary codes capa-710
ble of correcting deletions, insertions, and reversals.711
In Soviet physics doklady, volume 10, pages 707–710.712
Soviet Union.713

Ting-En Lin, Hua Xu, and Hanlei Zhang. 2020. Dis- 714
covering new intents via constrained deep adaptive 715
clustering with cluster refinement. In Proceedings 716
of the AAAI Conference on Artificial Intelligence, 717
volume 34, pages 8360–8367. 718

Lidia Mangu, Eric Brill, and Andreas Stolcke. 2000. 719
Finding consensus in speech recognition: word error 720
minimization and other applications of confusion 721
networks. Computer Speech & Language, 14(4):373– 722
400. 723

Javier Miguel Sastre Martínez and Aisling Nugent. 2022. 724
Inferring ranked dialog flows from human-to-human 725
conversations. In Proceedings of the 23rd Annual 726
Meeting of the Special Interest Group on Discourse 727
and Dialogue, pages 312–324. 728

Johannes EM Mosig, Shikib Mehri, and Thomas Kober. 729
2020. Star: A schema-guided dialog dataset for trans- 730
fer learning. arXiv preprint arXiv:2010.11853. 731

Hugh Perkins and Yi Yang. 2019. Dialog intent induc- 732
tion with deep multi-view clustering. In Proceedings 733
of the 2019 Conference on Empirical Methods in Nat- 734
ural Language Processing and the 9th International 735
Joint Conference on Natural Language Processing 736
(EMNLP-IJCNLP), pages 4016–4025, Hong Kong, 737
China. Association for Computational Linguistics. 738

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan, 739
Chenghu Zhou, Xinbing Wang, Quanshi Zhang, and 740
Zhouhan Lin. 2022. Rasat: Integrating relational 741
structures into pretrained seq2seq model for text-to- 742
sql. arXiv preprint arXiv:2205.06983. 743

Liang Qiu, Yizhou Zhao, Weiyan Shi, Yuan Liang, Feng 744
Shi, Tao Yuan, Zhou Yu, and Song-Chun Zhu. 2020. 745
Structured attention for unsupervised dialogue struc- 746
ture induction. arXiv preprint arXiv:2009.08552. 747

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: 748
Sentence embeddings using siamese bert-networks. 749
arXiv preprint arXiv:1908.10084. 750

Chen Shi, Qi Chen, Lei Sha, Sujian Li, Xu Sun, 751
Houfeng Wang, and Lintao Zhang. 2018. Auto- 752
dialabel: Labeling dialogue data with unsupervised 753
learning. In Proceedings of the 2018 Conference on 754
Empirical Methods in Natural Language Processing, 755
pages 684–689, Brussels, Belgium. Association for 756
Computational Linguistics. 757

Weiwei Sun, Shuo Zhang, Krisztian Balog, Zhaochun 758
Ren, Pengjie Ren, Zhumin Chen, and Maarten de Ri- 759
jke. 2021. Simulating user satisfaction for the evalu- 760
ation of task-oriented dialogue systems. In Proceed- 761
ings of the 44th International ACM SIGIR Confer- 762
ence on Research and Development in Information 763
Retrieval, pages 2499–2506. 764

Xin Tian, Liankai Huang, Yingzhan Lin, Siqi Bao, 765
Huang He, Yunyi Yang, Hua Wu, Fan Wang, and 766
Shuqi Sun. 2021. Amendable generation for dialogue 767
state tracking. arXiv preprint arXiv:2110.15659. 768

9

https://doi.org/10.18653/v1/W19-5915
https://doi.org/10.18653/v1/W19-5915
https://doi.org/10.18653/v1/W19-5915
https://doi.org/10.18653/v1/D19-1413
https://doi.org/10.18653/v1/D19-1413
https://doi.org/10.18653/v1/D19-1413
https://doi.org/10.18653/v1/D18-1072
https://doi.org/10.18653/v1/D18-1072
https://doi.org/10.18653/v1/D18-1072
https://doi.org/10.18653/v1/D18-1072
https://doi.org/10.18653/v1/D18-1072


Robert A Wagner and Michael J Fischer. 1974. The769
string-to-string correction problem. Journal of the770
ACM (JACM), 21(1):168–173.771

Jason D Williams, Matthew Henderson, Antoine Raux,772
Blaise Thomson, Alan Black, and Deepak Ramachan-773
dran. 2014. The dialog state tracking challenge series.774
AI Magazine, 35(4):121–124.775

Yi-Ting Yeh, Maxine Eskenazi, and Shikib Mehri. 2021.776
A comprehensive assessment of dialog evaluation777
metrics. arXiv preprint arXiv:2106.03706.778

Hanlei Zhang, Hua Xu, Ting-En Lin, and Rui Lyu. 2021.779
Discovering new intents with deep aligned clustering.780
In Proceedings of the AAAI Conference on Artificial781
Intelligence, volume 35, pages 14365–14373.782

Yuwei Zhang, Haode Zhang, Li-Ming Zhan, Xiao-Ming783
Wu, and Albert Lam. 2022. New intent discovery784
with pre-training and contrastive learning. arXiv785
preprint arXiv:2205.12914.786

10



A Mathematical Formulations787

This section provides the exact mathematical for-788

mulation to calculate the fuzzy substitution cost.789

For the representation of an intent bucket, we aver-790

age the embedding of the utterances in the bucket.791

eBr =
1

|Br.utterances|
∑

uj∈Br.utterances

euj (7)792

The distance between an intent Br and utterance793

u is d1 and is defined as:794

d1(B
r, u) =

{
ϕ(Br, u) Br.actor = u.actor
∞, otherwise

(8)795

Where ϕ is a function of intent and utterance em-796

beddings and is defined in two ways:797

1. Min. The minimum distance between u and798

the nearest utterance in Br.utterances.799

ϕ(Br, u) = min
uj∈Br.utterances

cosine(euj , eu)800

2. Centroid. The cosine distance between eBr801

and eu.802

ϕ(Br, u) = cosine(eu, eBr)803

While the Min approach often produces a smaller804

FuDGE score, and therefore larger FF1 (Table 2,805

Table 3), the Centroid method is more robust to806

the effect of outliers in the intent clusters. For807

the intent-intent distance d2 we use the formula in808

Equation 7 to obtain two intent representation, d2809

then is:810

d2(B
r, Bs) =

{
φ(Br, Bs) Br.actor = Bs.actor
∞, otherwise

(9)811

Where φ(Br, Bs) is defined as the cosine distance812

between the bucket representations eBr and eBs .813

B Dataset Detail814

Table 4 contains the dataset tasks and the number815

of conversations per task. The tasks with the most816

number of conversations are selected for the sec-817

ond and third sections in the experiments section.818

We are publishing the STAR dataset, including the819

dialogue corpora used for flow discovery and eval-820

uation, and the discovered flows from the STAR821

dialogue corpus using ALG1 and ALG2.822

Finance

Make Payment 150
Investigate Charges 66
Check Card Balance 51
Credit Limit Request 36
Replace Card 36
Loan Status Request 24
Lock Card Request 24
Lost Card 12
Activate Card 12
Lost Card 12
Unlock Card 12
Card Status 12

STAR

Bank Fraud Report 180
Hotel Book 145
Hotel Search 108
Bank Balance 43
Hotel Service Request 31

Table 4: Tasks in each datasets with the number of
conversation within each task

C Implementation Detail 823

In 1, we provide a detailed explanation of the 824

naive implementation of the FuDGE score. The 825

FUZZYEDITDISTANCE function calculates the 826

edit distance between a single dialogue path and 827

a given dialogue. As a result, the naive im- 828

plementation calculates the edit distance score 829

separately for each pair of dialogue and flow 830

path. In contrast, the efficient algorithm de- 831

scribed in Section 4, as demonstrated in 2, com- 832

bines memoization with dfs-traversal. The experi- 833

ments were conducted using a CPU with a 3.5 834

GHz Dual-Core Intel Core i7 and 16 835

GB 2133 MHz LPDDR3 memory. We con- 836

ducted runtime analysis for two tasks. The first task, 837

“Bank Fraud Report”, involved 180 conver- 838

sations with an average conversation length of 15.6 839

(number of sentences) that generated a DAG with 840

1635 nodes. The total runtime for this task was 4 841

minutes and 41 seconds, and the average runtime 842

per conversation was 1.56 seconds. For the second 843

task, “Hotel Book”, we used 144 conversations 844

with an average conversation length of 14.9 (num- 845

ber of sentences), resulting in a DAG with 1309 846

nodes. The total runtime for this task was 3 min- 847

utes and 3 seconds, and the average runtime per 848

conversation was 1.27 seconds. 849
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Algorithm 1: Naive Fudge
input: Ci (Dialogue);

FG = {P k = rP k
1 P

k
2 ...P

k
nk
}k (A set of

dialogue flow paths );
FUZZYEDITDISTANCE (function: returns
the fuzzy edit distance between a dialogue and
a single path)

1 def NaiveFUDGE(Ci, FG):
2 min_dist←∞
3 for j ← 1 to k do
4 dist←

FUZZYEDITDISTANCE(Ci, P j)
5 if min_dist < d then
6 min_dist← dist
7 return min_dist

D Flow Investigation850

In this section, we provide a more detailed discus-851

sion of the results in Table 3 and the reason why852

for the STAR dataset, the ff1 score is higher for853

the unsupervised flows compared to the supervised854

flows. After a manual investigation, we concluded855

that the agent labels were too fine-grained. Table856

5 is providing an example of this scenario. The857

three intents in the supervised setup are clustered858

together by the clustering algorithm in the unsuper-859

vised setup. This is often the case that these three860

intents occur in a different order within a conversa-861

tion; therefore, having one intent instead of three862

results in a more compact denoised flow. In the sup-863

plementary material in folder data/nfa_flows,864

we are providing a visualization of the flows, gen-865

erated by ALG2. We provide flow visualization for866

both supervised and unsupervised settings referred867

to as labeled and unlabeled.868

E Examples Of Matched Paths869

This section provides some examples of conver-870

sations, the path picked up by the FuDGE algo-871

rithm, and the operations and costs needed to con-872

vert a path to a conversation. The best-matched873

path to a conversation is a path selected from the874

paths that start from the root node, end at one875

of the leaf nodes, and have the lowest FuDGE876

score. To find the best-matched paths, we look877

into the distance array kept for each leaf node at878

node2dist map. (refer to Algorithm 2, and we879

peak the node with the smallest edit distance at880

node2dist[leaf][-1]. After we picked the881

leaf node with the smallest distance, we tracked the882

path by reversing the steps from the child node to883

the parent node until the root node. Table 6 con-884

tains examples of three conversations with their885

Algorithm 2: Efficient Fudge
input: Ci = ui

1u
i
2...u

i
n (Dialogue); G = (V,E) (A

set of dialogue flow paths );
node2dist← {} (A map of dialogue flow
nodes to a list of tuples (l, d) with l being path
length from root to the node and d the
path-conversation edit distance.); r ← G.r
(Current node in dfs traversal); p← NAN
(Current node’s parent in dfs traversal)

1 def FUDGE(C, G, r, p, node2dist):
2 DFSEditDistance(C,G,G.r,NAN,node2dist)
3 min_dist← FindMinPath(G,node2dist)
4 return min_dist
5

6 def DFSEditDistance(C, G, r, p, node2dist):
if p = NAN then

7 dist← []
8 n← len(C)
9 for i← 1 to n+ 1 do

10 dist← dist+ [i]
11 node2dist[r]← [(0, dist)]
12 else
13 for l, d in node2dist[p] do
14 dist← [l + 1]

15 for u← ui
1 to ui

n do
16 dist← min(d[i+ 1] +

del_cost(r.intent),dist[−1]+
insert_cost(u), d[i] +
subs_cost(r.intent, u))

17 node2dist[r]←
node2dist[r] + [(l + 1, dist)]

18 for c in r.children do
19 DFSEditDistance(C,G,c,r,node2dist)
20 return

best-matched paths. More examples can be found 886

in the supplementary directory alignment. 887
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Unsupervised Intent Supervised Intent Utterances

date birth
bank_ask_mothers_maiden_name What was your mother’s maiden name?
bank_ask_dob Could you provide your date

of birth, please?
bank_ask_childhood_pet_name And what was the name of the

pet you had as a child?

Table 5: Tasks in each dataset with the number of conversations within each task

Conversation Path Intent Names Operations Cost

u.Hi there, I need to reserve a hotel room! Reserve Hotel Room replace 0.346
a.What hotel would you like to stay at? Hotel Like Stay replace 0.346
u.Good question. I wanted to say the Hilton, but my
friend recommends the Old Town Inn, so lets try that

Town Inn replace 0.407

a.When are you arriving? Arriving Arriving replace 0.407
u.12-May May 12 Arrive replace 0.513
a.When will you be leaving again? Leaving Leaving replace 0.513
u.Actually never mind the Old Town Inn, my
personal favorite blog says the Hyatt is the
bees knees. Let’s do that instead

Hyatt Bees Knees replace 0.513

a.When will you be leaving again? When Will You replace 0.513
u.Oh yeah the 24th, this blog is the bomb! 24Th Blog Bomb replace 0.513
a.May I have your name, please? May Name Please replace 0.540
u.Would you believe this.... my wife just sent me a
text saying my brother in law is getting married in
London, ironically on the 24th... so scratch this
month and lets do the 8th to the 26th next month.

Getting Married
London

replace 0.540

a.May I have your name, please? May Name Please replace 0.566
u.Oh yeah sorry Ben with a B Yeah Sorry Ben replace 0.566
a.Alright, the Hyatt Hotel ticks all of your
boxes, can I book this room for you?

Alright Hyatt Hotel replace 0.566

u.Yes please. Let’s be honest here nobody
really likes weddings right?

Really Likes Weddings replace 0.566

a.OK, I’ve successfully completed this
Hotel booking for you!

Successfully
Completed Hotel

replace 0.566

u.Ok great thanks a lot Ok Great Thanks replace 0.886

a.Hello I need to reserve a room. My
friend is having a big party.

town inn replace 0.383

u.Hello Hello Hello Hello replace 0.387
a.Hello, how can I help? Hello Help replace 0.387
u.I need to reserve a room. My friend
is having a big party.

Want Resevation replace 0.959

a.May I have your name, please? May Name Please replace 0.985
u.Angela John Angela Alexis replace 1.259
a.What hotel would you like to stay at? Hotel Like Stay replace 1.259
u.Old Town Inn is my favorite. Hopefully
it is available.

Hilton Hyatt Hyatt replace 1.826

a.When are you arriving? Arriving Arriving
Arriving

replace 1.826

u.May 8th. It is also my birthday. I
am a stubborn Taurus.

Arriving 11Th replace 2.319

a.When will you be leaving again? When Will You replace 2.319
u.May 23rd I will be leaving. Request Extra Towels replace 2.759
a.Do you have any special requests? Do you have any

special requests?
insert 3.759

u.No. I am a simple earth sign. No. I am a simple
earth sign.

insert 4.759

a.I’m very sorry, but there is no room available
at the Old Town Inn for your requested dates.

Hotels Match Search replace 5.298

u.That is okay Thanks for trying. Goodbye. Birth Hospital
Goodbye

replace 5.893

a.Thank you and goodbye. Thank Goodbye replace 5.893

Table 6: Alignment of a conversation with a flow path. Intent names are generated with NGrams from the a cluster
utterance set
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