Towards Automatic Evaluation Of Task-Oriented Dialogue Flows

Anonymous ACL submission

Abstract

Task-oriented dialogue systems are an impor-
tant tool in conversational Al, relying on prede-
fined dialogue flows to guide user-agent inter-
actions. Currently, these flows are either man-
ually created by domain experts or generated
through Al techniques, leading to variability
in their quality. This lack of standardization
poses a challenge for conversational design-
ers and automated techniques. To address this
issue, we propose a novel framework for evalu-
ating the quality of these dialogue flows. Our
framework focuses on the complexity of the
flow structure and its representation of histor-
ical data. To this end, we introduce FuDGE,
a Fuzzy Dialogue-Graph Edit Distance metric
that assesses the match between a flow and a set
of real-world conversations. Through extensive
experiments, we demonstrate the effectiveness
of our framework and show that FuDGE can
help standardize and improve dialogue flows
for task-oriented dialogue systems.

1 Introduction

Conversational Al holds great promise in the field
of Customer Service Automation, where the aim
is to create a task-oriented dialogue system that
can effectively address customer queries without
requiring human intervention. These systems are
often built on a knowledge base or backend systems
to provide the necessary information to assist the
customer. Over the past few years, various frame-
works have been developed to make the creation of
task-oriented dialogue systems easier, including Di-
alogflow CX', Rasa’, and Amazon Lex?, which are
based on dialogue flows composed of user intents,
agent actions, and other metadata.

There are two primary methods for building di-
alogue flows for task-oriented dialogue systems.
The first is through handcrafting by conversation

"https://cloud.google.com/dialogflow/cx/docs/basics
Zhttps://rasa.com
3https://aws.amazon.com/lex/

Figure 1: Illustration of a dialogue flow (left) used to
configure a task-oriented dialogue agent for "Everycloth-
ing", and a customer inquiring about canceling their
order shown in the chat widget (right).

designers, involving an iterative process of histori-
cal data analysis to identify and define the dialogue
flows that meet customers’ concerns. This process
can result in different dialogue flows due to various
factors, including the designer’s skill and experi-
ence, the time spent on development, and the his-
torical dialogue transcripts. The second approach
involves utilizing flow discovery algorithms, which
enable the identification of dialogue flows from
historical human-human dialogues (Bouraoui et al.,
2019; Martinez and Nugent, 2022). Although this
approach is critical for building task-oriented dia-
logue agents, it remains largely unexplored. Flow
discovery methods comprise different hyperparam-
eters, which contribute to the emergence of various
dialogue flow types. The resulting dialogue flows
are represented as directed acyclic graphs (DAGs)
that may differ in terms of the number of user in-
tents, the sequence of intents and actions, or the
number of paths within the graph. To illustrate the
concept of a dialogue flow and its corresponding
task-oriented dialogue agent, refer to Figure 1.
Despite the variability of the dialogue flows,
there has been limited attention in natural language
processing (NLP) research on evaluating these
flows with respect to historical dialogues. While

some studies have improved task-oriented dialogue
agents through better intent discovery (Zhang et al.,
2022; Shi et al., 2018; Perkins and Yang, 2019),
which is a sub-problem in the dialogue flow discov-
ery process, there is a need for automated evalua-
tion of dialogue flows with respect to historical dia-
logue transcripts. In this paper, we present a novel
evaluation framework to assess flow discovery algo-
rithms and guide conversation designers in building
flows. Our framework assigns a score to a dia-
logue flow and enables comparison between flows
generated from the same corpus. When designing
dialogue flows, there is a trade-off between com-
pression and the amount of information retained.
A graph containing all conversations potentially
covers the entire corpus, but strictly imitates his-
torical conversations and does not generalize well
to unseen dialogues. Conversely, a simple graph
such as “start —-> Hello -> Goodbye”is
still a dialogue flow, but it loses most of the infor-
mation about the corpus. Our proposed evaluation
framework aims to balance the compression and
complexity of dialogue flows to ensure that impor-
tant and representative conversations are covered
while minimizing information loss. We propose
FuDGE, Fuzzy Dialogue-Graph Edit distance, an
algorithmic way to compute the distance between
a conversation and a given flow path, measuring
how well dialogues are represented and covered by
the flow. We combine the FuDGE score with the
complexity of the DAG representing the flow to
produce the Flow-F1 (FF1) score, which captures
the compression-complexity trade-off. Overall, our
contributions are as follows:

1. We present a novel dialogue flow evaluation
framework that quantifies the quality of a di-
alogue flow generated from a corpus while
considering the trade-off between flow com-
plexity and information content.

2. We propose the FuDGE distance, an efficient
edit-distance metric and show that can be used
in any dialogue evaluation task and effectively
separates within-task and out-of-task conver-
sations for a given set of dialogues.

3. We demonstrate that FF'] score can help hy-
perparameter tuning, ranking, and pruning the
dialogue flows to identify the most optimal
flows for a given dialogue corpus.

2 Preliminaries

This section first defines key terms related to di-
alogue flows and presents the core concept be-
hind automatic dialogue flow discovery methods.
We then describe the Levenshtein distance algo-
rithm (Levenshtein et al., 1966) as the basis for the
FuDGE algorithm.

2.1 Automatic Flow Discovery

Automatic flow discovery involves obtaining a dia-
logue flow from a dialogue corpus, which is a col-
lection of N dialogues, each containing a sequence
of user and agent utterances. A dialogue flow is a
directed acyclic graph (DAG) that represents the
corpus in the form of nodes, where each node is
a user intention/request or an agent response. A
naive approach to obtain a graph from a dialogue
corpus would be to assign a node to every utterance
and connect the consecutive nodes. This would
result in a graph that captures all the noise inherent
in human-human conversations, making it imprac-
tical for initializing a dialogue agent or manual
configuration. Moreover, it would be too large for
practical, real-world datasets.

To create more condensed representations of
the graph, automatic flow discovery techniques
broadly follow two steps. The first step in-
volves identifying the type of agent responses
and user requests and assigning an intent label to
each utterance. An intent label “book hotel”
might include user utterances like “I want to
book a hotel”, “Need a room in the
Marriott for next month”, and “Need
accommodation this weekend”. Various
techniques can be employed to achieve this, such
as training a classifier on manually annotated user
and agent utterances or using unsupervised or semi-
supervised methods when annotated data is limited
(Forman et al., 2015; Lin et al., 2020; Zhang et al.,
2021). The second step involves using Al tech-
niques to convert the conversation paths into a more
condensed graph. This can be done by employing
flow ranking strategies that discover the most im-
portant paths, and pruning strategies that remove
less important nodes or edges from the graph.

While there is a strong desire for automatic flow
discovery, the number of available discovery al-
gorithms is limited. Graph2Bot, a discovery algo-
rithm described in (Bouraoui et al., 2019), can de-
tect large, complex graphs, but its over-generation
of paths results in loops that make the dialogue

flows unsuitable for a dialogue system, despite the
possibility of filtering. An alternative approach,
presented in (Martinez and Nugent, 2022), involves
creating an NFA by treating user utterances as
states and the agent intents as transitions between
states. The algorithm groups user utterances dur-
ing graph minimization and employs several rank-
ing and pruning techniques to create a more com-
pressed graph. In this work, we use both the NFA-
based algorithm described in (Martinez and Nugent,
2022) and another proprietary automatic flow dis-
covery method to obtain dialogue flows. Our goal
is to generate a dialogue flow that resembles the
one depicted in Figure 1. We can use annotated
data, such as agent and user utterance intent la-
bels, or a clustering method to assign labels to the
utterances for both algorithms.

2.2 Levenshtein Distance

The Levenshtein distance, also known as edit dis-
tance, is a fundamental concept in various search
algorithms. It measures the minimum number
of operations required to transform one string,
a4 = @1a203...a,, into another string, b =
b1babs . .. by,, where each sequence comprises in-
dividual characters. To compute the edit distance
between substrings a1., and by., we define d,. 5 as
the minimum number of operations required. We
can recursively calculate d,. s by considering the
following three possibilities:

1. delete a,., match aq.,,—1 with by.g.

2. insert by at the end of aq.., match
aias . ..apbs with b1bs ...bs_1bs or equiva-
lently ay., and by.5—1.

3. substitute a, with bg, match aq.,—1 and by.s_1.

The minimum number of operations d,. 5 is the min-
imum cost of the three previous steps:

drfl,s + Cdel(ar)a case. 1

drs = min } dys—1 + Cins(bs), case. 2

drfl,sfl + Csub(ara bs)a case. 3
(D
Where cgei, Cins, Csup are the deletion, insertion
and substitution cost respectively.The substitution
cost cgyp, 1 0 if the characters being compared are
the same and 1 otherwise. The initial cases, do_s
and d,. o, represent the cost of converting an empty
string to a full string and a full string to an empty

string, respectively. They are defined as follows:

dO,s = Z Cins(bt)a dr‘,O = Z Cdel(at) (2)
t=0 t=0

The final edit distance between a and b is d,y, ,,
and it can be calculated efficiently using dynamic
programming with complexity O(mn). Further-
more, tracking the steps at each iteration gives us
the alignment between two strings, where each
character of the first string is either matched with
another character or a gap in the other string.

2.3 Problem Definition

In this paper, a dialogue flow is represented by a
Directed Acyclic Graph (DAG) denoted by G =
(V, E) with its root node G,. The graph G con-
tains multiple paths starting from the root node,
each representing a possible scenario of interaction
between a user and an agent in a dialogue system.
Every node in the graph is linked to an intent bucket
B' € B = {B',B?,...,BM}, where a bucket
B' = (actor, utterances) consists of a group of
utterances conveying the same semantic meaning
associated with either a user intent (actor = user)
or an agent action (actor = agent). Through-
out the paper, the term ’intent’ is used for both
users and agents. The root node G, is associ-
ated with a dummy bucket and is assumed to be
the beginning of all conversations. A flow path
P = (G,P1P,...P,) is defined as a path in the
graph G, where P; € V and (P;, P;11) is an edge
in E. To generate a dialogue flow, human experts
or automated dialogue flow discovery methods use
a dialogue corpus C = {C',C?% ... CN} that
contains N recorded conversations between users
and agents in a service center.

3 Methodology

Given a dialogue flow graph G = (V, E) obtained
from a dialogue corpus C = {C*,C?,...,CN},
we evaluate the flow from two perspectives: (i) how
well does the flow represent the dialogue corpus (in-
formation loss) (ii) how well is the representation
compressed/denoised (complexity).

3.1 Information Loss

Information loss measures the similarity between a
dialogue corpus and the discovered flow from the
corpus. It is calculated by determining the average
distance between each dialogue in the corpus and

the flow. Essentially, the more similar the conversa-
tions in the corpus are to the paths in the flow, the
lower the amount of information loss. To formally
define this metric, we assume that C* € C is a
dialogue, and Fy = {P* = (G, PFPy...Pk)}
is the set of all flow paths in G starting at the root
node G, and ending at a leaf node. The fuzzy
dialogue-graph distance between C* and G is then
defined as the minimum distance between C* and
any flow path P* € Fi:

FuDGE(C',G) = min dist(C', P*) (3)

PkeFg

Where dist(C?, P*) denotes the edit distance be-
tween a dialogue and a single flow path, and is
computed by pairing each node intent in the flow
with an utterance in the conversation using inser-
tion, deletion, or substitution operations of nodes
in the path. Unlike the Levenshtein distance for
strings, this process is challenging because a dia-
logue is a sequence of utterances while a flow path
is a sequence of intents (which is a collection of
utterances), instead of being a sequence of unit
characters. The FuDGE algorithm takes into ac-
count the unique characteristics of dialogues and
efficiently calculates the distance between a dia-
logue and a flow. We will provide more details
about this algorithm in Section 4. The distance
between the dialogue flow G and corpus C is then
calculated as the average FuDGE distance across
all N dialogues in the corpus:

N
f(C,G) = % Y FuDGE(C',G) 4

i=1
3.2 Complexity

The complexity of the representation can be defined
as the complexity of the graph representing the
dialogue flow. Depending on the application, there
are various ways to calculate the complexity of a
graph. Here we define complexity as the number
of nodes of a graph.

3.3 Flow-F1 Score (FF1)

To capture the trade-off between the information
loss and the complexity, we propose using the har-
monic mean of the normalized complexity and the
FuDGE score. To normalize the complexity, we
divide it by the total number of utterances in the dia-
logue corpus, which represents the upper bound for
graph size if each utterance is a node. We normal-
ize the FuDGE score by the average conversation

length in the dialogue corpus, as the maximum
score one can get is from an empty graph by insert-
ing every utterance. The Flow-F1 (FF1) is:

2(1 —nc) x (1 —nf)

FEL= (1 =nc)+ (1 —nf)

&)

where nc and n f are normalized complexity and
normalized average FuDGE score (Equation 4).

4 Fuzzy Dialogue-Graph Edit Distance

Motivated from the Levenshtein distance, we focus
on aligning a flow path with a dialogue. This is par-
ticularly challenging as we need to match a given
utterance in the dialogue with an intent in the flow
path. Intuitively, an utterance is a good match with
an intent if it is semantically close to the majority
of the utterances associated with the intent.

More precisely, given a dialogue flow G =
(V,E), its set of flow paths Fgz = {PF =
(G PFPS..PF)}k, and a conversation C' =
(ubub ... ul)), we start with finding the edit dis-
tance between C* = (ujub ... ul,) and a specific
flow path P/ = (G, P{Pj...P},). Conversation
C" is a sequence of utterances (u}ub ... ut,) pro-
duced by a set of actors (ajaj...ay,), and flow
path P/ = (G, P] P ...P},) is a sequence of nodes,
where each node P/ is associated with an intent
bucket B" = (actor, utterances). The dialogue
flow path edit distance follows the logic described
in the preliminaries section. It is similar to Equa-
tion 1, except that we need to define the substitution
cost between an utterance and an intent. Once the
distance between a single flow path and a dialogue
is determined, the FuDGE distance can be com-
puted using the formula in Equation 3.

4.1 Fuzzy Substitution Cost

To match an intent with an utterance, we need to
ensure that the utterance is semantically similar to
the utterances in the intent bucket. If the utterance
and the intent are not similar, the intent should
be replaced. However, we cannot simply replace
an intent with an utterance. Instead, we propose
to replace the intent with the nearest intent to the
utterance in the set of universal intent buckets B.
Intuitively, if the current node intent is dissimilar
to u, it should be replaced with the most similar
intent to u.

To find the most similar intent, we define B*
as the intent closest to the utterance. If the cur-
rent node intent is dissimilar to the utterance, it

will be replaced with the most similar intent to the
utterance. We define the substitution cost as the
sum of two distances: the distance between the
current intent bucket and the utterance (d; (B", u)),
and the distance between the current intent bucket
and the most similar intent bucket (dy(B", B*)).
The final substitution cost is then defined as the
weighted sum of the two distances, with the weight
determined by the hyperparameter o:

costsup(B",u) = a(dy(B",u) + do(B", BY))
(6)
Where « is set to 0.5 here to keep the substitution
cost between 0 and 1.

We define the intent-utterance and intent-intent
distance as a function of their distance in a se-
mantic space. Namely we encode an utterance
v and the intent utterances B".utterances =
{ul,...,u]} into distributional representations e,
and {ej, eq, ..., e} using Sentence Bert Encoder
(Reimers and Gurevych, 2019). We use the intent
centroid as a representation for the intent, obtained
by taking the average of the embeddings of all the
utterances in the intent, i.e. egr = % Zé‘:1 el.

We define intent-utterance distance in two ways:
(1) by calculating the cosine distance between an
utterance embedding and an intent centroid, and (ii)
by calculating the cosine distance between the ut-
terance embedding and the nearest utterance within
the intent. The intent-intent distance is calculated
using the cosine distance between the centroids of
two intents. A detailed explanation of these mathe-
matical formulations can be found in the Appendix.

Actor Alignment. To ensure that an utterance
produced by a user is not matched with an intent
associated with an agent, and vice versa, we set the
intent-intent and intent-utterance distance to oo if
the actors mismatch. For example, we calculate the
intent-intent distance, d2(B", B®), using the cosine
similarity between the embedding vectors epr and
eps, but only if the actors for the two intents match.
If the actors do not match, we set the intent-intent
distance to oc.

4.2 Efficient FuDGE Implementation &
Complexity Analysis

The original edit distance algorithm uses dynamic
programming to compute the Levenstein distance.
In dynamic programming, the computed solutions
to subproblems (e.g., d; j in Equation 1) are stored
in a memoization table so that these don’t have to

{ root J
L L dq[root][0:n]

2d memoization [P—l‘ D:l:lj:l:l
table.) / \ d,[P,][0:n]
L2 & (11T
" dy[P,][0: 1]
B T
Py | P | d4[P5][0:n]
LPs J [Ps J { P,]
dG[P3][0:n\ EI:D:I:}D
CITTTT]

() dspaio:n] [CITHE]
S dlpe)fo:n] [T [[[]

Figure 2: Efficient memoization used for FuDGE

be recomputed. Even with a memoization table,
computing the formula in Equation 3 results in a
O(T Km) running time if we separately compute
the distance between every single path in the flow
Fg ={P* = (G,PfP}..PF)}k, ny < T and a
conversation of length m. Calculating the distance
between a dialogue corpus of size N with a flow
graph (Equation 4) results in running time com-
plexity of O(T K N'm). This makes it impractical
to calculate the distance between complex dialogue
flows with many paths and large dialogue corpora.

To optimize the memoization process, we utilize
the structure of a flow DAG. Our approach is based
on the idea that paths in a dialogue graph often
share overlapping sub-paths, which can be lever-
aged to improve efficiency. For example, in Figure
2, node Pj has two children, P, and P, and the two

paths stemming from it, root->...->P3—>Fy
and root—->...->P3—>F; share the same pre-
fix root->...->Ps, up to the node P;5. As a

result, both paths require the same memoization in-
formation for calculating case 2 and 3 in Equation
1. Instead of using a regular memoization table, we
keep an array for each node that contains the edit
distance between a conversation and all paths that
start from the root and end at that node.

Our approach combines dfs-traversal with mem-
oization, using the parent edit distance array for
the calculation in the current node. It is also impor-
tant to note that a node may have multiple distance
arrays, since multiple paths may end at a certain
node (e.g., node Ps in Figure 2). We compute the
distance between a dialogue and all paths in the
dialogue flow by taking the entire DAG into consid-
eration, rather than looking at each path separately.
The complexity of computing the FuDGE distance

between all flow paths and a conversation with
length n is O((|V'| + | E|)n). The implementation
details of both the naive and efficient algorithms are
provided in Algorithm 1 and Algorithm 2 in the Ap-
pendix. By exploiting the overlapping sub-paths in
a flow DAG, we can optimize the memoization pro-
cess and improve the efficiency of our algorithm.

5 Experiments

In this section, we explain the automatic flow dis-
covery techniques, dialogue corpora, and evalua-
tion datasets used to evaluate the performance of
FuDGE and FFI.

5.1 Flow Discovery Methods

We utilized two existing automatic discovery al-
gorithms to obtain dialogue flows from a dialogue
corpus, as there are only a few algorithms available
for this purpose. One of the discovery methods we
used is the NFA-based discovery method proposed
in (Martinez and Nugent, 2022), denoted as ALG1.
Additionally, we used another proprietary software,
currently unpublished, denoted as ALG2. Both al-
gorithms make use of a set of user and agent intents,
and can use fully annotated intents when available.
In the absence of human-annotated intents, an in-
tent discovery method is employed to find intent
clusters. The ALG1 method only requires agent
intents initially, and user utterances are grouped
as a by-product of graph minimization. In this
work, we generated dialogue flows both with and
without human-annotated intents, which we refer
to as supervised and unsupervised flows, respec-
tively. Both discovery algorithms utilize a sentence
encoder for intent discovery and intent detection,
and we used the same encoding method for con-
sistency across both algorithms. The intent-intent
and intent-utterance distances were also computed
using this same encoder.

5.2 Datasets

In this work, we use two datasets, each consisting
of a set of dialogues, where each dialogue is a con-
versation between two actors (i.e., user and agent)
that consists of a sequence of turns. A turn is an
utterance produced by one of the actors. Ideally,
the best way to evaluate our framework is to com-
pare a set of manually crafted gold flows, perfect
in both coverage and compression, with automat-
ically discovered flows from the dialogue corpus.
To our knowledge, there is no public dataset with

\ FINANCE STAR
Conversations 447 527
Utterances 7392 7352
Tasks 12 5
Agent intents 55 41
User intents 47 -

Table 1: Dataset Statistics

gold standard flows. Therefore, we propose to im-
pose a level of supervision with human-annotated
utterances. Many dialogue state tracking datasets
(Williams et al., 2014; Bouraoui et al., 2019; Tian
et al., 2021; Qi et al., 2022) have human anno-
tated dialogue act utterances, none of which have
fully annotated user intents. A dialog act is an
utterance that serves as a function in the dialog,
such as a question, a statement, or a request. In
contrast, intents are more fine-grained and cate-
gorize a user intention. For example, “I want
to book a hotel room” and “I would
like to order pizza” have the same dia-
logue act request while their intents are differ-
ent. Our first dataset, Finance, is a dataset with
fully annotated agents and user intents. It con-
stitutes the conversations between a user and the
customer service of a financial agency. Our second
dataset is created from STAR (Mosig et al., 2020),
which is the only publicly available dialogue state
tracking dataset partially annotated with agent in-
tents. STAR is a schema-guided task-oriented dia-
log dataset consisting of 127,833 utterances across
5,820 task-oriented dialogs in 13 domains, from
which we pick two domains, “Hotel” and “Bank”
since they contain the most number of dialogues.
We processed the dialogues in the STAR dataset
and removed those with unlabeled agent utterances.
Table 1 contains our datasets’ statistics, including
the number of dialogues, utterances, tasks, and in-
tents. A complete list of tasks for each dataset is
provided in the Appendix.

5.3 FuDGE Evaluation

This experiment aims to evaluate the effectiveness
of FuDGE as a distance metric. More specifi-
cally, given a dialogue flow created for a specific
task, a good distance metric should provide lower
scores for conversations that belong to the task than
the out-of-task conversations. We picked “Make
Payment” task from the Finance dataset with 150
conversations and “Bank Fraud Report” and
“Hotel Book” from the STAR dataset, with 180

Make Payment Hotel Book Bank Report Fraud
Model | Positves Negatives | Positves Negatives | Positves Negatives
ALGI1-Centroid | 0.27+0.12 0.514+0.13 | 0.404+0.21 0.63£0.22 | 0.42+0.18 0.67+0.22
ALG1-Min 0.214+£0.12 0474+0.13 | 0.34£0.20 0.60+0.21 | 0.33£0.18 0.61 +0.22
ALG2-Centroid | 0.14 +0.03 0.484+0.16 | 0.08+0.03 0.59+£0.18 | 0.09+0.04 0.63+0.19
ALG2-Min 0.084+0.03 0.444+0.16 | 0.04 £0.04 0.574+0.19 | 0.024£0.04 0.60 4 0.20

Table 2: Average FuDGE score for within-task (Positives) vs out-of-task (Negative) conversations, indicating a clear

separation.

and 145 conversations. We generated separate di-
alogue flows for each of these tasks using ALG1
and ALG2. For each task, we also randomly sam-
pled 50% of the in-task conversations and added
the same number of out-of-task conversations. We
evaluated each task-flow with the corresponding
dialogue corpus and obtained the average FuDGE
score for each dialogue corpus. The results are
summarized in Table 2. The average score for
within-task dialogues (positives) is significantly
smaller than the out-of-task (negatives) dialogues.
It can segregate within-task conversations from out-
of-task conversations. These results suggest that
FuDGE is an effective distance metric that can be
used independently in any application involving
the distance between a dialogue and any predefined
DAG structured dialogue scheme. The Appendix
provides examples of the dialogues and the best-
matched flow path.

5.4 Parameter Optimization With FF1

Automatic flow discovery usually involves multiple
steps, including clustering the utterances, creating
the graph, ranking important paths, and pruning the
graph accordingly. Each of these steps may add
different hyperparameters to the entire discovery
pipeline. The simplest clustering algorithms, such
as K-means, require k as the number of clusters.
While hyperparameter selection can drastically im-
pact the quality of the final discovered flows, it
has been done mainly by manual trial and error.
In this experiment, we show that the FFI score
is a practical framework for choosing the optimal
set of hyperparameters. For this experiment, we
use ALG1 as the flow discovery algorithm. This
algorithm consists of a ranking strategy that ranks
the paths based on their importance and later keeps
the k top-ranked paths as the discovered flow. In
both supervised and unsupervised setup, we run
ALG1 task over the Make Payment task from
the Finance dataset. We generate multiple flows
for different values of k ranging from 1 to the max-

out-of-task — total

Wwb

0.85
I
L 0.80
075

0 20 20

—— within-task
1.00

0.50 L

—_—

FuDGE

Complexity
o o
o o
o (e

o
o
@

40 60 0 10
K (controls the number of paths)

Figure 3: Parameter tuning with FFI for ALG1 and
“Make Payment” task. The left column is the scores
from an unsupervised discovered flow, and the right
column corresponds to the supervised flow. The optimal
k is smaller for the supervised flow, indicating a better
compression.

imum number of paths in the complete graph. The
top row of Figure 3 shows the normalized FuDGE
score obtained for each flow versus k. First, we
can see the clear segregation between the within-
task and out-of-task dialogues. Moreover, as more
paths get added, the FuDGE score asymptotically
decreases to a minima. The middle row depicts the
normalized complexity score for different &k values,
which indicates a monotonic increase in the com-
plexity, which is expected as we add more paths,
and, thus, more nodes to the graph. The bottom
row is the final FFI score. We see that the scores
g0 up to an optimal point as we add more paths,
but it starts declining. The peak in the graph is
almost aligned with the point where the FuDGE
score starts to stay constant.

5.5 FF1 Evaluation

In this section, we compare dialogue flows with
and without annotated intents. The discovery algo-
rithms need to use a clustering method to generate
the intents without the labeled data. This process
imposes some noise on the flow discovery, lead-

STAR FINANCE
| Supervised Unsupervised | Supervised Unsupervised
Model ‘FFI FuDGE Complexity FF1 FuDGE Complexity‘FFl FuDGE Complexity FF1 FuDGE Complexity
ALGI-Min 0.75 0.27 0.79 024 0.86 0.21 0.81 0.23
ALGl-Centroid|[0.71 035 °2 073 o34 013 ‘0.82 027 %97 o738 027 OB
ALG2-Min 0.59 0.08 0.73 0.26 0.90 0.03 0.77 0.03
ALG2-Centroid |0.58 0.12 0.57 0.71 0.34 0.28 ‘0.87 0.09 0.16 0.75 0.09 0.36

Table 3: Results of FF1 flow comparison between supervised and unsupervised discovered flow.

ing to lower quality dialogue flows. This experi-
ment aims to show that our evaluation approach
can capture this phenomenon. We generated com-
plete flows by running ALG1 and ALG2 over the
entire dialogue corpus for both datasets. Then, we
calculated the average FuDGE score and the com-
plexity of each discovered flow and computed the
FF1 score. Table 3 summarizes the results of this
experiment. As shown, for the Finance dataset, the
score for the supervised discovered flows is higher
than the unsupervised discovered flows, with only
one exception. However, the FFI score for the
unsupervised flows discovered by ALG2 is signifi-
cantly higher than the supervised flows. A manual
investigation of the flows showed that the anno-
tated labels were too fine-grained. Clustering led
to more high-level intents, which eventually pro-
cessed better-quality dialogue flows. We provide
more discussion about this case in the Appendix.

6 Related Work

Related work for our work is relatively sparse. Al-
though automatic evaluation of dialogue systems is
an active field of research (Yeh et al., 2021; Khalid
and Lee, 2022), most of the metrics and approaches
focus on evaluating a dialogue in utterance level
(Sun et al., 2021; Ghazarian et al., 2020). How-
ever, our work focuses on the evaluation of the dia-
logues in conversation level, mostly produced by
an Al algorithms, such as Graph2Bot introduced by
Bouraoui et al. (2019) and is a tool for assisting con-
versational agent designers. It could extract a graph
representation from human-human conversations
using unsupervised learning. More recently, (Qiu
et al., 2020) used a Variational Recurrent Neural
Network model with discrete latent states to learn
dialogue structure in an unsupervised fashion. They
evaluate their method by using Structure Euclidean
Distance (SED) and Structure Cross-Entropy (SCE)
based on the transition probabilities between nodes
but found them to be unstable. SED and SCE also

do not consider the semantic similarity between the
node and the original conversation.

Word Confusion Networks (WCNs) (Mangu
et al., 2000) has been used extensively to model the
hypothesis of automatic speech recognition (ASR).
Just like the dialogue flows, WCNs can also be rep-
resented as DAGs. A popular metric for identifying
the quality of ASR has been word error rate which
incorporates ideas of edit distance that can be de-
rived through each path in the WCN that represents
an ASR hypothesis. Lavi et al. (2021) introduced
the notion of using edit distance (Wagner and Fis-
cher, 1974) for dialog-dialog similarity. In their
work, they used sentence-level embeddings (Cer
et al., 2018; Reimers and Gurevych, 2019) to deter-
mine the similarity between two utterances within a
dialogue and defining the edit distance substitution
cost.

7 Conclusion

This paper presents a novel evaluation framework
for a crucial task necessary for building task-
oriented dialogue agents. This framework can be
used with any flow discovery method and dialogue
corpora as long as the generated dialogue flows can
be represented as a DAG. We introduced the FF1
metric, a harmonic mean of flow complexity and
FuDGE distance, and demonstrated its efficacy as
a tool to select hyperparameters of a flow discovery
algorithm or process. We envisage it to be a useful
guide for human conversational designers or as a
measure to optimize an automatic flow discovery
process. We also propose an efficient implemen-
tation of FuDGE distance with O((|V| + |E|)n),
allowing it to scale to large datasets. This approach
delivers a consistent baseline, thereby better ver-
sioning and tracking the progress of flows and cor-
responding automation with time. In the future, we
hope to incorporate utterance characteristics for the
insertion and deletion cost to account for the actual
semantic cost of the operation.

8 Limitations

In this section, we discuss the limitations of our
approach. Our implementation in FuDGE only as-
signs deletion and insertion costs as 0 or 1, without
taking into account the characteristics of the utter-
ance or intent. Additionally, we acknowledge that
the current unavailability of the Finance dataset
and a detailed description of the second discov-
ery method limits the reproducibility of our work.
However, we are optimistic that our work will pro-
vide valuable insights and lead to future research
in this area.

References

Jean-Leon Bouraoui, Sonia Le Meitour, Romain Carbou,
Lina M. Rojas Barahona, and Vincent Lemaire. 2019.
Graph2Bots, unsupervised assistance for designing
chatbots. In Proceedings of the 20th Annual SIGdial
Meeting on Discourse and Dialogue, pages 114-117,
Stockholm, Sweden. Association for Computational
Linguistics.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

George Forman, Hila Nachlieli, and Renato Keshet.
2015. Clustering by intent: a semi-supervised
method to discover relevant clusters incrementally.
In Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, pages
20-36. Springer.

Sarik Ghazarian, Ralph Weischedel, Aram Galstyan,
and Nanyun Peng. 2020. Predictive engagement:
An efficient metric for automatic evaluation of open-
domain dialogue systems. In Proceedings of the
AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7789-7796.

Baber Khalid and Sungjin Lee. 2022. Explaining dia-
logue evaluation metrics using adversarial behavioral
analysis. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 5871-5883.

Ofer Lavi, Ella Rabinovich, Segev Shlomov, David
Boaz, Inbal Ronen, and Ateret Anaby-Tavor. 2021.
We’ve had this conversation before: A novel ap-

proach to measuring dialog similarity. arXiv preprint
arXiv:2110.05780.

Vladimir I Levenshtein et al. 1966. Binary codes capa-
ble of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10, pages 707-710.
Soviet Union.

Ting-En Lin, Hua Xu, and Hanlei Zhang. 2020. Dis-
covering new intents via constrained deep adaptive
clustering with cluster refinement. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 8360-8367.

Lidia Mangu, Eric Brill, and Andreas Stolcke. 2000.
Finding consensus in speech recognition: word error
minimization and other applications of confusion
networks. Computer Speech & Language, 14(4):373—
400.

Javier Miguel Sastre Martinez and Aisling Nugent. 2022.
Inferring ranked dialog flows from human-to-human
conversations. In Proceedings of the 23rd Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 312-324.

Johannes EM Mosig, Shikib Mehri, and Thomas Kober.
2020. Star: A schema-guided dialog dataset for trans-
fer learning. arXiv preprint arXiv:2010.11853.

Hugh Perkins and Yi Yang. 2019. Dialog intent induc-
tion with deep multi-view clustering. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 40164025, Hong Kong,
China. Association for Computational Linguistics.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Chenghu Zhou, Xinbing Wang, Quanshi Zhang, and
Zhouhan Lin. 2022. Rasat: Integrating relational
structures into pretrained seq2seq model for text-to-
sql. arXiv preprint arXiv:2205.06983.

Liang Qiu, Yizhou Zhao, Weiyan Shi, Yuan Liang, Feng
Shi, Tao Yuan, Zhou Yu, and Song-Chun Zhu. 2020.
Structured attention for unsupervised dialogue struc-
ture induction. arXiv preprint arXiv:2009.08552.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Chen Shi, Qi Chen, Lei Sha, Sujian Li, Xu Sun,
Houfeng Wang, and Lintao Zhang. 2018. Auto-
dialabel: Labeling dialogue data with unsupervised
learning. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 684—689, Brussels, Belgium. Association for
Computational Linguistics.

Weiwei Sun, Shuo Zhang, Krisztian Balog, Zhaochun
Ren, Pengjie Ren, Zhumin Chen, and Maarten de Ri-
jke. 2021. Simulating user satisfaction for the evalu-
ation of task-oriented dialogue systems. In Proceed-
ings of the 44th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 2499-2506.

Xin Tian, Liankai Huang, Yingzhan Lin, Siqi Bao,
Huang He, Yunyi Yang, Hua Wu, Fan Wang, and
Shuqi Sun. 2021. Amendable generation for dialogue
state tracking. arXiv preprint arXiv:2110.15659.

https://doi.org/10.18653/v1/W19-5915
https://doi.org/10.18653/v1/W19-5915
https://doi.org/10.18653/v1/W19-5915
https://doi.org/10.18653/v1/D19-1413
https://doi.org/10.18653/v1/D19-1413
https://doi.org/10.18653/v1/D19-1413
https://doi.org/10.18653/v1/D18-1072
https://doi.org/10.18653/v1/D18-1072
https://doi.org/10.18653/v1/D18-1072
https://doi.org/10.18653/v1/D18-1072
https://doi.org/10.18653/v1/D18-1072

Robert A Wagner and Michael J Fischer. 1974. The
string-to-string correction problem. Journal of the
ACM (JACM), 21(1):168-173.

Jason D Williams, Matthew Henderson, Antoine Raux,
Blaise Thomson, Alan Black, and Deepak Ramachan-
dran. 2014. The dialog state tracking challenge series.
Al Magazine, 35(4):121-124.

Yi-Ting Yeh, Maxine Eskenazi, and Shikib Mehri. 2021.
A comprehensive assessment of dialog evaluation
metrics. arXiv preprint arXiv:2106.03706.

Hanlei Zhang, Hua Xu, Ting-En Lin, and Rui Lyu. 2021.
Discovering new intents with deep aligned clustering.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 14365-14373.

Yuwei Zhang, Haode Zhang, Li-Ming Zhan, Xiao-Ming
Wu, and Albert Lam. 2022. New intent discovery
with pre-training and contrastive learning. arXiv
preprint arXiv:2205.12914.

10

A Mathematical Formulations

This section provides the exact mathematical for-
mulation to calculate the fuzzy substitution cost.
For the representation of an intent bucket, we aver-
age the embedding of the utterances in the bucket.

>

uJ € BT utterances

1
| B".utterances|

eBr euj (7)

The distance between an intent B™ and utterance
u 18 dq and is defined as:

B".actor = u.actor
otherwise

BT’
d\(B",u) = {¢()
w?
(&)
Where ¢ is a function of intent and utterance em-
beddings and is defined in two ways:
1. Min. The minimum distance between u and
the nearest utterance in B".utterances.
¢(B",u)

= min

. cosine(e,i, ey)
ul € BT .utterances

2. Centroid. The cosine distance between epr
and e,,.

d(B",u) = cosine(ey,epr)

While the Min approach often produces a smaller
FuDGE score, and therefore larger FFI (Table 2,
Table 3), the Centroid method is more robust to
the effect of outliers in the intent clusters. For
the intent-intent distance dy we use the formula in
Equation 7 to obtain two intent representation, do
then is:

@(B", B®)

0, otherwise

ds(B",B®) = {
(©))
Where ¢(B", B®) is defined as the cosine distance

between the bucket representations egr and eps.

B Dataset Detail

Table 4 contains the dataset tasks and the number
of conversations per task. The tasks with the most
number of conversations are selected for the sec-
ond and third sections in the experiments section.
We are publishing the STAR dataset, including the
dialogue corpora used for flow discovery and eval-
uation, and the discovered flows from the STAR
dialogue corpus using ALG1 and ALG2.

BT".actor = B*.actor

11

Finance
Make Payment 150
Investigate Charges 66
Check Card Balance ol
Credit Limit Request 36
Replace Card 36
Loan Status Request 24
Lock Card Request 24
Lost Card 12
Activate Card 12
Lost Card 12
Unlock Card 12
Card Status 12

STAR
Bank Fraud Report 180
Hotel Book 145
Hotel Search 108
Bank Balance 43
Hotel Service Request 31

Table 4: Tasks in each datasets with the number of
conversation within each task

C Implementation Detail

In 1, we provide a detailed explanation of the
naive implementation of the FuDGE score. The
FuzzvyEpIiTDIsTancE function calculates the
edit distance between a single dialogue path and
a given dialogue. As a result, the naive im-
plementation calculates the edit distance score
separately for each pair of dialogue and flow
path. In contrast, the efficient algorithm de-
scribed in Section 4, as demonstrated in 2, com-
bines memoization with dfs-traversal. The experi-
ments were conducted using a CPU with a 3.5
GHz Dual-Core Intel Core 17 and 16
GB 2133 MHz LPDDR3 memory. We con-
ducted runtime analysis for two tasks. The first task,
“Bank Fraud Report”, involved 180 conver-
sations with an average conversation length of 15.6
(number of sentences) that generated a DAG with
1635 nodes. The total runtime for this task was 4
minutes and 41 seconds, and the average runtime
per conversation was 1.56 seconds. For the second
task, “Hotel Book”, we used 144 conversations
with an average conversation length of 14.9 (num-
ber of sentences), resulting in a DAG with 1309
nodes. The total runtime for this task was 3 min-
utes and 3 seconds, and the average runtime per
conversation was 1.27 seconds.

Algorithm 1: Naive Fudge

Algorithm 2: Efficient Fudge

input: C* (Dialogue);
Fg = {P* =rPIP}...P} }i (Asetof
dialogue flow paths);
FuzzyEp1TDI1sTANCE (function: returns
the fuzzy edit distance between a dialogue and
a single path)

1 def NaiveFUDGE(C", Fg):

2 min_dist < oo

3 for j < 1to k do

4 dist ¢
FuzzYEp1TDIsTANCE(CY, PY)

5 if min_dist < dthen

6 \ min_dist < dist

7 returnmin_dist

D Flow Investigation

In this section, we provide a more detailed discus-
sion of the results in Table 3 and the reason why
for the STAR dataset, the ff1 score is higher for
the unsupervised flows compared to the supervised
flows. After a manual investigation, we concluded
that the agent labels were too fine-grained. Table
5 is providing an example of this scenario. The
three intents in the supervised setup are clustered
together by the clustering algorithm in the unsuper-
vised setup. This is often the case that these three
intents occur in a different order within a conversa-
tion; therefore, having one intent instead of three
results in a more compact denoised flow. In the sup-
plementary material in folder data/nfa_flows,
we are providing a visualization of the flows, gen-
erated by ALG2. We provide flow visualization for
both supervised and unsupervised settings referred
toas labeled and unlabeled.

E Examples Of Matched Paths

This section provides some examples of conver-
sations, the path picked up by the FuDGE algo-
rithm, and the operations and costs needed to con-
vert a path to a conversation. The best-matched
path to a conversation is a path selected from the
paths that start from the root node, end at one
of the leaf nodes, and have the lowest FuDGE
score. To find the best-matched paths, we look
into the distance array kept for each leaf node at
node2dist map. (refer to Algorithm 2, and we
peak the node with the smallest edit distance at
node2dist[leaf] [-1]. After we picked the
leaf node with the smallest distance, we tracked the
path by reversing the steps from the child node to
the parent node until the root node. Table 6 con-
tains examples of three conversations with their

12

input: C* = viu...u, (Dialogue); G = (V, E) (A
set of dialogue flow paths);
node2dist < {} (A map of dialogue flow
nodes to a list of tuples (I, d) with 1 being path
length from root to the node and d the
path-conversation edit distance.); r < G.r
(Current node in dfs traversal); p < NaN
(Current node’s parent in dfs traversal)

1 def FUDGE(C, G, r, p, node2dist):
2 DFSEditDistance(C,G,G.r,NAN, node2dist)
3 min_dist « FindMinPath(G,node2dist)
4 returnmin_dist
5
¢ def DFSEditDistance(C, G, r, p, node2dist):
if p = NaN then
7 dist «]
8 n < len(C)
9 fori < 1ton+ 1do

10 | dist < dist+ [

1 node2distr] + [(0, dist)]
12
13
14

else

for [, din node2dist[p] do

dist « [I+ 1]

for u < uf to uf, do

dist < min(d[i + 1] +

del_cost(r.intent),dist[—1]+
insert_cost (u),d[i] +
subs_cost(r.intent,u))

node2dist[r]

node2dist[r] 4+ [(I 4+ 1, dist)]
for cin r.childrendo
DFSEditDistance(C,G,c,r,node2dist)

15
16

17

18
19 |
20 return

best-matched paths. More examples can be found
in the supplementary directory alignment.

Unsupervised Intent ~ Supervised Intent Utterances

bank_ask_mothers_maiden_name What was your mother’s maiden name?

date birth bank_ask_dob

Could you provide your date

of birth, please?

bank_ask_childhood_pet_name And what was the name of the

pet you had as a child?

Table 5: Tasks in each dataset with the number of conversations within each task

Conversation Path Intent Names Operations Cost

WwHi there, I need to reserve a hotel room! Reserve Hotel Room replace 0.346

aWhat hotel would you like to stay at? Hotel Like Stay replace 0.346

u.Good question. I wanted to say the Hilton, but my Town Inn replace 0.407

friend recommends the 0ld Town Inn, so lets try that

aWhen are you arriving? Arriving Arriving replace 0.407

u.l2-May May 12 Arrive replace 0.513

aWWhen will you be leaving again? Leaving Leaving replace 0.513

u.Actually never mind the 0ld Town Inn, my Hyatt Bees Knees replace 0.513

personal favorite blog says the Hyatt is the

bees knees. Let’s do that instead

aWWhen will you be leaving again? When Will You replace 0.513

u.0h yeah the 24th, this blog is the bomb! 24Th Blog Bomb replace 0.513

a.May I have your name, please? May Name Please replace 0.540

wWould you believe this.... my wife just sent me a Getting Married replace 0.540

text saying my brother in law is getting married in London

London, ironically on the 24th... so scratch this

month and lets do the 8th to the 26th next month.

a.May I have your name, please? May Name Please replace 0.566

u.0h yeah sorry Ben with a B Yeah Sorry Ben replace 0.566

a.Alright, the Hyatt Hotel ticks all of your Alright Hyatt Hotel replace 0.566

boxes, can I book this room for you?

u.Yes please. Let’s be honest here nobody Really Likes Weddings replace 0.566

really likes weddings right?

a.0K, I’ve successfully completed this Successfully replace 0.566

Hotel booking for you! Completed Hotel

u.0k great thanks a lot Ok Great Thanks replace 0.886

a.Hello I need to reserve a room. My town inn replace 0.383

friend is having a big party.

uHello Hello Hello Hello replace 0.387

a.Hello, how can I help? Hello Help replace 0.387

u.I need to reserve a room. My friend Want Resevation replace 0.959

is having a big party.

a.May I have your name, please? May Name Please replace 0.985

u.Angela John Angela Alexis replace 1.259

aWhat hotel would you like to stay at? Hotel Like Stay replace 1.259

u.0ld Town Inn is my favorite. Hopefully Hilton Hyatt Hyatt replace 1.826

it is available.

aWhen are you arriving? Arriving Arriving replace 1.826
Arriving

uMay 8th. It is also my birthday. I Arriving 11Th replace 2.319

am a stubborn Taurus.

aWWhen will you be leaving again? When Will You replace 2.319

uMay 23rd I will be leaving. Request Extra Towels replace 2.759

a.Do you have any special requests? Do you have any insert 3.759
special requests?

uNo. I am a simple earth sign. No. I am a simple insert 4.759
earth sign.

a.I’'m very sorry, but there is no room available Hotels Match Search replace 5.298

at the 0ld Town Inn for your requested dates.

u.That is okay Thanks for trying. Goodbye. Birth Hospital replace 5.893
Goodbye

a.Thank you and goodbye. Thank Goodbye replace 5.893

Table 6: Alignment of a conversation with a flow path. Intent names are generated with NGrams from the a cluster

utterance set

13

