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ABSTRACT
Pairwise ranking models have been widely used to address recom-

mendation problems. The basic idea is to learn the rank of users’

preferred items through separating items into positive samples if

user-item interactions exist, and negative samples otherwise. Due

to the limited number of observable interactions, pairwise ranking

models face serious class-imbalance issues. Our theoretical analysis
shows that current sampling-based methods cause the vertex-level

imbalance problem, which makes the norm of learned item em-

beddings towards infinite after a certain training iterations, and

consequently results in vanishing gradient and affects the model in-

ference results. We thus propose an efficient Vital Negative Sampler
(VINS) to alleviate the class-imbalance issue for pairwise ranking

model, in particular for deep learning models optimized by gradient

methods. The core of VINS is a bias sampler with reject probability

that will tend to accept a negative candidate with a larger degree

weight than the given positive item. Evaluation results on sev-

eral real datasets demonstrate that the proposed sampling method

speeds up the training procedure 30% to 50% for ranking models

ranging from shallow to deep, while maintaining and even improv-

ing the quality of ranking results in top-N item recommendation.

CCS CONCEPTS
• Information systems→ Personalization; Learning to rank.
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1 INTRODUCTION
Offering personalized service to users is outstanding as an impor-

tant task, for example, ranking the top-N items that a user may

like. Solutions to such kind of problems are usually designed on

a bipartite graph G = (V ,E), where vertex set V = U ∪ I contains
user set U and item set I, and E denotes the edge set. Each edge

eui ∈ E denotes an observed interaction between user u and item

i. Users’ preference on items is modeled by pairwise loss functions
with the assumption that items with interactions from a user are of

more interest to this user than those without interactions. The loss

function thus involves pairwise comparison between an observed

(positive) edge eui ∈ E and an unobserved (negative) edge euj < E.
The optimization process thus suffers from the class-imbalance is-
sue, because in practical scenario, the number of observed (positive)
edges are always much less than the unobserved (negative) ones.
The imbalance between eui ∈ E and euj < E can be regarded as the

edge-level imbalance issue.

Pioneering works dealing with the class-imbalance problem can

be categorized into two main families: using stationary sampling

or using dynamic sampling. Approaches in the former family usu-

ally start from the edge-level class-imbalance issue through under-

sampling negative edges from a pre-defined stationary distribu-

tion [16, 17], or over-sampling positive edges by creating instances

through the social connection [1]. However, they ignore that class-

imbalance issue also exists in vertex side because each vertex can

appear in both positive and negative edges. Through some basic

statistical analysis, we acquire some interesting findings, that is, the

vertex degree has positive impact on vertex-level imbalance prob-
lem. If we sample negative instances from a stationary distribution,

https://doi.org/10.1145/3511808.3557218
https://doi.org/10.1145/3511808.3557218
https://doi.org/10.1145/3511808.3557218
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Figure 1: Illustration of finding useful negative items for
pairwise loss optimization: (a) is the initial stage of optimiza-
tion when it’s easy to get one negative item; (b) shows that
useful negative items aremore difficult to get as the learning
process moves forwards; (c) sampling negative items from
uniform distribution equals to do unbiased randomwalk on
fully connected item-item graph; (d) presents an alternative
solution depending on a bias random walk.

those popular vertexes with degree greater than average vertex

degree are under-sampled as negative samples, while long-tailed

vertexes with degree less than average degree are over-sampled.

Moreover, they can’t capture the dynamics of relative ranking or-

der between positive and negative samples, as shown in Figure

1(a) and 1(b). From Figure 1(a) we can see that it’s easy to find

an order-violated item for pairwise loss optimization at the initial

state, because there are many negative items ranking higher than

the positive item. However, as the learning process moves forward,

massive number of negative items are distinguished well from the

positive item, shown in Figure 1(b). At this time, a large portion

of the negative items are useless for pairwise loss optimization,

because they already rank lower than the positive item.

In the last few years, adaptive sampling approaches [23, 25, 30,

31] have shown significant advantages by considering the hardness

of sampling a negative sample. However, existing dynamic methods

have several drawbacks: 1) they lack systematically understanding

their connection to class-imbalance issue, leading to only sampling

candidate from uniform distribution; 2) they have to find a violated

negative sample through searching massive candidates, causing

high computation complexity (over ten times higher than sampling

from stationary distribution).

In this work, we aim at finding clues that can help to design a

faster dynamic negative sampler for the personalized ranking

task. We find that sampling from uniform distribution can be re-

garded as a random walk with a transition probability matrix P for

arbitrary node pair in a fully connected item-item graph, which is

presented in Figure 1(c). Intuitively, nodes (items) are different in

their nature (e.g., degree, betweenness). A biased transition matrix

P∗ might be more helpful on finding the desired negative items,

than a uniform random P, as shown in Figure 1(d). Through theo-

retical analysis, we find that one of the potential solutions to decode

the biased transition process and walking with a biased transition

matrixP∗ is to tackle the class-imbalance issue. To achieve this goal,

it is essential to first dissect the impact of class-imbalance issue.

More specifically, we mainly investigate the three questions: Q1)

how the class-imbalance problem is reflected in current sampling-

based pairwise ranking approaches? Q2) what is the impact of the

imbalance problem on learning optimal pairwise ranking model?

Q3) how can we resolve the class-imbalance issue and design a

faster dynamic sampling approach to boost ranking quality? We

answer the above questions with theoretical analysis in Section 3.

The brief summary is, to Q1, if negative instances are sampled from

a uniform distribution (e.g., in [17]), vertexes with high degrees

are under-sampled as negative samples, while “cold-start" vertexes

with low degrees are over-sampled. To Q2, we theoretically show

that the class-imbalance issue will result in frequency gathering

phenomenon where the learned embeddings of items with close

popularity will gather together, and cause gradient vanishment at

the output loss. Based on the above insights, for Q3, we propose an

efficient Vital Negative Sampler (VINS), which explicitly considers

both edge- and vertex-level class-imbalance issue. In summary, our

contributions of this work are as follows:

• We indicate out edge- and vertex-level imbalance problem raised

in pairwise learning loss, and provide theoretical analysis that the

imbalance issue could lead to frequency gathering phenomenon

and vanishing gradient at the output loss.

• To address the class-imbalance and vanishing gradient problem,

we design an adaptive negative sampling method with a reject

probability based on items’ degree differences.

• Thoroughly experimental results demonstrate that the proposed

method can speed up the training procedure 30% to 50% for

shallow and deep ranking models, compared with the state-of-

the-art dynamic sampling methods.

2 RELATEDWORK
Pairwise comparison usually happens between an observed (pos-
itive) and an unobserved (negative) edge, when the interactions

between users and items are represented as a bipartite graph. Such

an idea results in a serious class-imbalance issue due to the pairwise
comparison between a small set of interacted items (positive as
minority class) and a very large set of all remaining items (negative
as majority class). Pioneering work proposed in [17] presented an

under-sampling approach via uniformly sampling a negative edge

for a given positive edge. Following the idea in [17], [33] proposed

an over-sampling method by employing social theory to create

synthetic positive instances. [3] augmented pairwise samples with

view data. However, these sampling strategies discard a fact that

each item has its own properties, e.g., degree, betweenness. [16]
considered vertex properties and proposed to sample a negative

instance from an exponential function over the order of vertex de-

gree. Despite of the effectiveness and efficiency of sampling from a

stationary distribution (e.g., uniform, or power function over vertex

popularity), they ignore the impact of relative order between posi-

tive and negative samples during the learning processes, as shown

in Figure 1(a) and 1(b).

Recently dynamic sampling approaches [2, 9, 15, 26, 27, 29, 30]

aiming at estimating the rank order of positive samples have shown

significant contribution of selecting vital negative instances. As a

pioneering work, [25] proposed the WARP loss aiming at playing

less attention to well-learned positives, but more emphasis on the

low-rank ones. However, along with the growing of iterations, sam-

pling a violated negative items become very difficult [7]. LFM-W

[30] advances WARP with a normalization term. However, esti-

mating the rank-aware weight from a uniform distribution makes

LFM-W need lots of steps to find a violated sample. Moreover, LFM-

W might find sub-optimal negative sample without considering
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Figure 2: Maximum (solid line) and minimum (dash line)
imbalance value along with different decay parameter β on
Yelp and Amazon Movies&Tv datasets.

the class-imbalance issue. Besides considering ranking order, [21]

regarded dynamic sampling as a minmax game. VINS also inherits

the basic ideas from WARP but modifies the target distribution and

proposes to estimate it through an importance sampling method

after theoretically investigating the existing class-imbalance issue

and its potential influence. LFM-W can be regarded as a special case

of the proposed VINS with a proper setting.

3 CLASS IMBALANCED ANALYSIS
Let’s use G = (V ,E) to represent a user-item interaction graph,

where vertex setV = U ∪I contains users U and items I, and eui ∈ E
denotes an observed interaction (e.g. click, purchase behaviors)

between user u and item i. The relationship between user u and

item i can be measured by a factorization focused method, known as

xui = Pu · Pi , where Pu = f (u |θu ) ∈ R
d
and Pi = д(i |θi ) ∈ R

d
are

the representations of user u and item i generated by deep neural

network f (·) and д(·) with parameters θu and θi , respectively. To
learn vertex representation that can be used to accurately infer

users’ preferences on items, pairwise ranking approaches usually

regard the observed edges eui as positive pairs, and all the other

combinations euj ∈ (U × I \ E) as negative ones. Then a set of

triplets D = {(u, i, j)|eui ∈ E, euj ∈ (U × I \ E)} can be constructed

based on a general assumption that the induced relevance of an

observed user-item pair should be larger than the unobserved one,

that is, xui > xuj . To model such contrastive relation, one popular

solution is to induce pairwise loss function as follows:

L(G) =
∑

(u,i, j)∈D

wui · ℓ
u
i j (xui − xuj ), (1)

where ℓui j (x) = lnσ (x) = ln
1

1+e−x and xui or xuj represents the

specific prediction score. wui is the a weight factor which will

be 1 for sampling methods without explicit definition on it. The

optimization of Equation (1) involves an extreme class-imbalance

issue, because in practical scenario, the number of unobserved

interactions euj < E (negative) is usually extremely larger than

the observed eui ∈ E (positive). The imbalance between eui ∈ E
and euj < E in pairwise loss can be regarded as the edge-level
imbalance issue. Since the class-imbalance problem is caused by

the majority of negative edges, under-sampling majority euj < E
from an expected sampling distribution (e.g. a static distribution
π = {π (i), i ∈ I }, where π (i) = d

β
i , β ∈ [0, 1] denotes a weight

function of item degree di .) [14, 17] is a practical solution for it.

In most of pairwise ranking models, how to select effec-
tive pairwise comparison samples plays an indispensable role
in boosting the ranking performance. In the following, we’d

like to present the challenges raised by the class-imbalance issue on

selecting pairwise comparison samples, and how to address them

with an adaptive sampling method.

3.1 Vertex-level Imbalance from Sampling (Q1)
Under-sampling approach can well solve the edge-level imbalance

issue. However, it will introduce vertex-level imbalance issue,

which has not been aware of, and initiates our study.

Definition 3.1 (Vertex-level Imbalance). A vertex can appear in

either positive or negative edges. In our case, item i appears as a
positive one for user u, but can be a negative one for other users.

Vertex-level imbalance happens when the number of times that

a vertex appears in observed edges is extremely smaller or larger

than that in the unobserved ones.

Assuming that in each iteration of optimizing Equation (1), we

will sample one negative edge for each observed edge eui . With a

given graph G with |E | observed edges, item i can only appear in

di edges as positive samples. In other words, item i could appear as
negative in the other |E | −di edges with probability p(i) when sam-

pling with a static distribution π defined as p(i) = π (i)/
∑
j ∈I π (j).

Then, the expected number of times that the item i acts as a negative
sample is p(i) · (|E | −di ). Afterwards, we define the imbalance value

(IV ) of item i as: IV (i) = di
p(i)·( |E |−di )

=
d1−β
i ·

∑
j∈I π (j)

|E |−di
. Through

theoretical analysis, we find that imbalance value is positively cor-

related to item degree.

Theorem 3.2. By sampling negative items with a static distribu-
tion π = {π (i) = d

β
i |β ∈ [0, 1], i ∈ I }, for two items with di > dj ,

the imbalance value of item i is larger than item j.

The complete proof for theorem 3.2 can be found in Appendix

A. The above analysis shows that the degree of the most popular

and long-tailed item will determine the upper and lower bound

of item imbalance value for a given graph G. As a special case, if

β = 0, we have IV (i) = di · |I |
|E |−di

. Let’s set IV (i) = 1, we can see

that di =
|E |
|I |+1 ≈

|E |
|I | , which is exact the average item degree. If

an item’s degree is larger than the average degree, it will have an

imbalance value larger than 1, while for those item with degree

lower than average degree, their imbalance value will be smaller

than 1. This implies that popular vertexes are under-sampled as

negative samples, while long-tail vertexes are over-sampled. For

different setting of β , the situation will be different. We illustrate

the maximum and minimum imbalance value in Figure 2, obtained

by the empirically calculated IV (i) from two real datasets with

different decay factor β . We can see that a proper choice of decay

factor β can reduce the maximum imbalance, meanwhile increase

the minimum value.

3.2 Impact of Class-imbalance (Q2)
We next move to the question “what is the impact of the class-
imbalance problem on pairwise ranking optimization?". Be-
fore answering this question, we first introduce an imbalanced item

theorem inspired by the Popular Item Theorem [12], which proves

that the norm of latent vector of the popular items will be towards
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Figure 3: Visualizing the projection of learned embeddings
with the classical uniform sampling and the proposed sam-
pler VINS by the T-SNE algorithm into two-dimensional
space (colored by vertex degree levels, red–top 25%, blue–
bottom 25%, green–the rest).
infinite after a certain number of iterations. We extend the theorem

as follows (with complete proof presented in the Appendix B):

Theorem 3.3. [Imbalanced Item Theorem] Suppose there exists an
imbalanced item i with IV (i) ≫ 1, such that for all neighbor users
u ∈ Ni , xui ≥ xuj for all other observed item j of useru. Furthermore,
after certain iterations τ , the representation Pu ,u ∈ Ni converges to
certain extent. That is, there exists a vector P̂ t in all iteration t > τ ,
inner-product (P̂ t , Pτu ) > 0. Then the norm of Pi of the imbalanced

item i will tend to grow to infinity if
∂ℓui j
∂xui

> 0 for all i with xui > xuj .

Frequency gathering phenomenon.The Imbalanced Item The-
orem implies that the learned embeddings of items will appear a

certain pattern that is closely related to item’s imbalance value. To

confirm that, we optimize logistic pairwise loss function by sam-

pling negative samples from a uniform distribution and also by

using the proposed method VINS on the experimental data. From

Figure 3, we can see that the learned embeddings of items by the

uniform sampling approach appear clear frequency gathering phe-

nomenon, where items with similar degree values gather together.

The more popular items tend to have larger embedding norms,

which matches the statement in the Imbalanced Item Theorem. We

further study the embeddings learned by the proposed approach

VINS that explicitly considers vertex-level class-imbalance, and

find that those bottom items tend to spread across the frequency

margins. We also explore a special case β = 1 for sampling from a

static distribution π , with which the vertex-level imbalance can be

perfectly mitigated. However, comparing with the setting β = 0, it

can significantly downgrade the prediction performance, because

the learned item embeddings can not keep their structure role and

proximity very well. It suggests that controlling the class-imbalance

problem might help to improve the ranking performance, but still

need to achieve a trade-off between keeping the graph structures

and alleviating the negative impact of class-imbalance problem.

Gradient Vanishment. Besides the frequency gathering phe-

nomenon, another issue caused by the infinite norm is the gradient

vanishment in pairwise loss optimization. Following the under-

sampling method described in Section 3, gradient update for model

parameters can be carried out for a given pairwise sample (u, i, j).
After t > τ iterations, the model parameters θi can be updated with

stochastic gradient descent method: θ t+1i = θ ti +η ·λ
u
i j ·

∂xui
∂θi

, where

λui j =
∂ℓui j
∂xui

, and η denotes the learning rate, and
∂xui
∂θi

represents

a gradient backpropagation operation according to the chain rule.

The value of λui j depends on the type of loss function. If we use

logistic loss as an instance, ℓui j (xui ,xuj ) = lnσ (xui − xuj ), where

Figure 4: Illustration to show the connection between class-
imbalance and gradient vanishment. The rank index stands
for the ranking position of imbalance value (IV) in ascend-
ing order.Weuse average gradientmagnitude λ as the y-axis.

σ (x) is the sigmoid function and λui j = (1−σ (xui −xuj )). According

the Imbalanced Item Theorem, the norm of learned embeddings of

those imbalanced items will become extremely large. Let’s fold out

xui = Pu · Pi = | |Pu | | · | |Pi | | · cos(Pu , Pi ). If positive item i suffers
from imbalanced issue and has a large norm, i.e., | |Pi | | ≫ ||Pj | |,
the relevance prediction for user u will be dominated by the norm

of item i’s embedding. While popular items take up a large por-

tion of the observed edges, most of the training samples will have

λui j → 0 according to Theorem 3.2 and Theorem 3.3. It suggests
that massive number of pairwise samples are meaningless
for updating the model, and only a small number of them
are valuable. From the results shown in Figure 4, we can see that

gradient magnitude of most of training cases tend to be close to

zero, meanwhile we find that items with larger imbalance value

tend to have smaller gradient magnitude on average.

4 VITAL NEGATIVE SAMPLER
In this section, we will introduce the proposed method, namely

Vital Negative Sampler (VINS). We first introduce RejectSampler

which is the key component of VINS, then present VINS.

4.1 Sampling with Reject Probability
(RejectSampler)

Combining Theorem 3.2 and the frequency gathering phenomenon,

we find that there exists a positive connection between item
degree and the learned embeddings. We thus design a negative

sampling approach which tends to sample a negative item j with a

larger degree than the positive item i, rather than a negative item

with a smaller degree than item i . With such strategy, it’s help-

ful to control the class-imbalance issue by reducing the imbalance

value of popular items, but increase the imbalance value of long-

tailed items. More specifically, for a given positive sample eui , we

sample a negative item j with reject probability 1 -min{ π (j)π (i) , 1}.

With this reject probability, we can increase the chances of pop-

ular items exposed as negative samples while downgrading the

chances of long-tailed items. We can see that the RejectSampler

actually equals to a biased random walk as shown in Figure 1(d)

to choose the next step with a given transition matrix P∗, where

P∗i j =

{
min{ π (j)π (i) , 1} i f i , j

1 −
∑
v,i P

∗
iv i f i = j

. In fact, RejectSampler can

adapt beyond the item degree information to define the reject prob-

ability, resulting a different transition matrix P∗. The detail of

RejectSampler is illustrated in Algorithm 1. In fact, RejectSampler
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Algorithm 1: RejectSampler

1 Input: item i , max shot s , weight distribution π

2 Output: selected item j

3 selected_j = -1, maxi_deg = -1

4 for iter ← 1 to s do
5 j = randint(|I |);

6 // in case of the extreme popular item i

7 if π (j) > maxi_deд then
8 maxi_deд = π (j);

9 selected_j = j;

10 reject_ratio = 1 - min {
π (j)
π (i) , 1};

11 if random.uniform() > reject_ratio then
12 selected_j = j;

13 break;

14 return selected_j;

Algorithm 2: VINS

1 Input: G = (V ,E), max step κ, positive pair (u, i), max shot s,

margin ϵ
2 Output: negative item j, andwui (ri )

3 selectedj = −1,max j = −in f

4 for K ← 1 to κ do
5 curStep = i

6 do
7 j = RejectSampler (curStep, s,π )

8 curStep = j

9 while euj ∈ E;
10 xuji = xuj + ϵ − xui
11 if xuj > max j then
12 max j = xuj
13 selectedj = j

14 if xuji > 0 then
15 break;

16 ri = ⌊
Z

min(K,κ) ⌋;

17 return selectedj ,wui (ri ); //wui (ri ) refers to Equation (2)

can adapt beyond the item degree information to define the reject

probability, resulting a different transition matrix P∗. In this work,

we focus on the degree, but leave for future the exploration of other

graph properties that might also have positive effect on alleviating

the class-imbalance problem.

4.2 Adaptive Negative Sampling
The RejectSampler can help to alleviate the class-imbalance issue.

We next introduce the full VINS approach, which considers the

dynamic relative rankposition of positive andnegative items

for finding more informative negative samples avoiding λui j → 0

as much as possible, which is very important for dealing with the

mentioned gradient vanishment issue in Section 3.2. Algorithm 2

presents VINS in details. Specifically, to generate a negative sample,

RejectSampler is firstly used to sample an item that is not connected

to user u (line 5 to 7 in the algorithm 1). Note that item j sampled

from RejectSampler is not guaranteed to be negative for user i .
Therefore RejectSampler is re-called if j is connected to u (euj ∈ E).
The next step is to evaluate if the sampled item j is a violated one,

which satisfies ϵ + xuj ≥ xui , where ϵ is a margin (line 8 to 13

in the algorithm). In fact, there can be a set of violated negative

samples, noted asVu
i = {j |ϵ + xuj ≥ xui , euj < E}. The hardness

of searching a violated negative sample increases when the positive

item i is ranked higher. This hardness is reflected as the weight

factor wui in Equation (1). For the positive item i with a relative

high rank position, we should generate a small weightwui , while

give large weights to those lower-ranked ones. We thus define the

weight as wui (ri ), where ri =
∑
j ∈V u

i
π (j)I(ϵ + xuj ≥ xui ) is the

rank-aware variable of item i . I(x) is an indicator function. From

the definition of ri , we can see that the smaller ri is, the high-rank
position of item i is. Previous work [25] takes a truncated Harmonic

Series function to generate the weightwui (ri ) =
∑ri
s=1

1

s . We can

see that Harmonic Series weighting method needs calculate the

summation term for each given estimated rank position, which has

the worst complexity O(|I |) for each sample. Inspired by the lower

bound of truncated Harmonic Series (shown in Lemma 4.1), we

derive a efficient way to calculate thewui (ri ) with complexityO(1).

Lemma 4.1. For a givenk ∈ N, truncated Harmonic Series
∑
2
k

s=1
1

s ≥

1 + k
2
. When k = 0, the equality holds.

Proof.

2
k∑

s=1

1

s
= 1 +

1

2

+
1

3

+
1

4

+
1

5

+
1

6

+
1

7

+
1

8

+ · · · +
1

2
k

≥ 1 +
1

2︸︷︷︸
1

+(
1

4

+
1

4︸ ︷︷ ︸
2
1

) + (4 ×
1

8︸︷︷︸
2
2

) · · · (
2
k−1

2 × 2k−1︸     ︷︷     ︸
2
k−1

)

≥ 1 +
k
2

□

According to this lemma, we divide the rank list into k chunks,

each of which has size 2
k−1

(growing with the chunk number k),
and is attached with a weight (i.e. 0.5). For the rank variable ri , we
can derive the chunk number based on the Geometric progression

formulation, which leads to

⌈
log

2
(ri + 1)

⌉
. Since first chunk has

weight 1, we subtract 1 in the definition. More specifically, we

definewui (ri ) as follows:

wui (ri ) =
1 + 0.5 · (

⌈
log

2
(ri + 1)

⌉
− 1)

1 + 0.5 · (
⌈
log

2
(Z + 1)

⌉
− 1)
, (2)

where 0.5 is the weight for each chunk with size 2
k−1

, and Z =∑
i ∈I π (i). However, ri =

∑
j ∈V u

i
π (j) is difficult to attain. We use an

item buffer bu f f erui with size κ to store every sampled negative

candidate j. Then, ri can be approximated as ri ≈ ⌊
Z

min(K,κ) ⌋,

where K is the number of steps to find item j . The final informative

negative item j to update model parameters will be selected from

the top of the sorted bu f f erui in descending order based on xuj , as
shown in Algorithm 2. With the selected negative item j by VINS,

we can construct pairwise sample (u, i, j) to train the ranking model.
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The employment of RejectSampler in VINS has two benefits. First,

it considers the class-imbalance issue and tends to select the useful

negative items than doing randomly, given the fact that items with

large imbalance values usually have large norm that makes them

difficult to be distinguished from positive items. Second, it reduces

the size of negative item candidate set to explore through selecting

the useful negative samples.

4.3 Discussion on VINS
4.3.1 Complexity Discussion. The most computationally expensive

part of the proposed VINS model is the relative-order sampling pro-

cedure (line 4 to 13 in Algorithm 2). As discussed previously, finding

a violated sample needs iterative comparison of the prediction value

between a positive item and a negative item candidate. For each

negative sample, the computation complexity is O(d), where d is

the embedding size. Assume that the average number of steps to

obtain a violated negative item is h′ and the maximum number of

chances to reject a sampled item from the RejectSampler is s, then
the time complexity of VINS will beO(|E | ·(d+s)·h′). Usually, s ≪ d
can be a very small number. Therefore, comparing the proposed

approach with the state-of-the-art dynamic sampling method [30],

the time complexity difference will be the average number of steps

h′ to find a violated item. From the experimental analysis, we find

that the proposed RejectSampler significantly speeds up searching

a violated sample.

4.3.2 Connection to Existing Approaches. Most of negative sam-

pling approaches assume that the negative items follow a pre-

defined distribution Q(j). According to the strategies to obtain

a negative item, we can summarize the main kinds of negative

samplers into three categories: user-independent, user-dependent,

edge-dependent. The proposed approach (VINS) can be regarded

as a general version of several methods by controlling the setting

of hyper-parameters {κ, β}.
user-independent: As the representatives, UNI [17] and POP [14]

initialize the Q(j) as a static distribution π . VINS can actually im-

plement these two methods by setting κ = 1, β = 0 for UNI, and

κ = 1, β ∈ [0, 1] for POP.
user-dependent: This type of methods usually define a conditional

distribution Q(j |u) which can capture the dynamics of learning

procedure to some extent. Sampling from the exact distribution

Q(j |u)will cost massive number of time in large-scale item database.

Most of methods turn to defining a sub-optimal distribution based

on a small number of candidate set. Representative approaches

include but not limited to DNS [32] which greedily selects the

item with the largest predicted score xuj from the candidate set,

Self-adversarial (SA) [19] method which calculate the weight of

candidate through a softmax(xuj ) distribution, PRIS [13]. Different
from SA, PRIS tries to estimate the distribution Q(j |u) through a

importance sampling approach.

edge-dependent: The methods mentioned above do not consider

a fact that the ranking position of positive item i evolves as the
learning procedure move forwards, in other words, the informative

negative item set also changes. The edge-dependent methods aim

at selecting informative negatives from distribution Q(j |u, i). As
an initial study, Weston et al. [25] proposed the WARP loss by

designing a rank-aware distribution ri =
∑
j ∈V u

i
I(ϵ + xuj ≥ xui ).

Table 1: Statistical information of the datasets.

Data #Users #Items #Observation Sparsity

Yelp 113,917 93,850 3,181,432 99.97%

Movies&Tv 40,928 51,509 1,163,413 99.94%

CDs&Vinyl 26,876 66,820 770,188 99.95%

Steam 20,074 12,438 648,202 99.74%

However, it’s impossible to get the exact ri for every single training
sample (u,i) during the training stage. Fortunately the negative item
j can be obtained through estimating a geometric distribution P(X =
k) parameterized with p = ri

|I | . There’re many works that are based

onWARP and all of them follow the same idea as WARP to estimate

the P(X = k) from a uniform distribution. VINS also inherits the

basic ideas from WARP but modifies the target distribution as ri =∑
j ∈V u

i
π (j)I(ϵ + xuj ≥ xui ), and proposes to estimate it through

an importance sampling method after theoretically investigating

the existing class-imbalance issue and its potential influence. As

the state-of-the-art variant of WARP loss, LFM-W advances WARP

with a normalization term. However, estimating the geometric

distribution from a uniform distribution makes LFM-W need lots of

steps to find a violated sample. Moreover, LFM-W might find sub-

optimal negative sample without considering the class-imbalance

issue. LFM-W can be equivalent to VINS by setting β = 0 and

replacing the weight function wui (ri ) as a truncated Harmonic

Series function, i.e.wui (ri ) =
∑ ⌈ri ⌉
z=1

1

z .

5 EXPERIMENTAL EVALUATION
In this section, we report results to answer the following questions:

RQ1 How will the item imbalance value evolve when using differ-

ent sampling strategies?

RQ2 What are the advantages of VINS, comparing with the state-

of-the-art baselines?

RQ3 How VINS can improve the computationally expensive mod-

els by sampling the most useful training data?

5.1 Experimental Setting
5.1.1 Datasets. To validate the proposed sampling method, we use

four publicly available datasets, from Yelp Challenge (13th round)
1
,

Amazon
2
and Steam [10], with statistics information in Table 1.

Following the processing in [5, 20], we discard inactive users and

items with fewer than 10 feedback since cold-start recommendation

usually is regarded as a separate issue in the literature [5, 18]. For

each dataset, we convert star-rating into binary feedback regardless

of the specific rating values since we care more about the appli-

cations without explicit user feedback like ratings [4, 6]. We split

all datasets into training and testing set by holding out the last

20% review behaviors of each user into the testing set, the rest as

the training data. We evaluate all of algorithms by top-N ranking

metrics including F1 [11], NDCG [24].

5.1.2 Baselines/Negative Samplers & Pairwise Loss. In this work,

we mainly study the state-of-the-art sampling methods in terms of

their effectiveness and efficiency. To uncover the features of differ-

ent samplers, we consider representative recommendation methods

1
https://www.yelp.com/dataset/challenge

2
http://jmcauley.ucsd.edu/data/amazon/
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Figure 5: Evolution of maximum and minimum imbalance value of different sampling methods.
Table 2: Ranking performance when using different sampling methods with MF as the recommender for top-10 recommenda-
tion. The best is marked with underline, the second best is marked by *.

Method Sampler Yelp Movies&Tv CDs&Vinyl Steam

F1@10 NDCG@10 F1@10 NDCG@10 F1@10 NDCG@10 F1@10 NDCG@10

Item-KNN 0.0153 0.0205 0.0178 0.0258 0.0191 0.0261 0.0296 0.0409

MF

Uni 0.0135 0.0168 0.0146 0.0186 0.0195 0.0249 0.0338 0.0457

POP 0.0129 0.0161 0.0179 0.0232 0.0229 0.0301 0.0333 0.0472

AOBPR 0.0140 0.0173 0.0153 0.0197 0.0211 0.0278 0.0334 0.0463

CML 0.0177 0.0216 0.0133 0.0179 0.0205 0.0276 0.0239 0.0317

PRIS 0.0158 0.0210 0.0184 0.0239 0.0252 0.0331 0.0374 0.0502

SA 0.0161 0.0199 0.0159 0.0206 0.0243 0.0326 0.0347 0.0483

IRGAN 0.0188 0.0235 0.0206 0.0269 0.0263 0.0348 0.0358 0.0512

DNS *0.0197 *0.0247 *0.0211 *0.0276 *0.0275 *0.0366 0.0398 0.0551

LFM-D 0.0187 0.0234 0.0204 0.0267 0.0269 0.0354 *0.0406 *0.0561

LFM-W 0.0202 0.0255 0.0236 0.0313 0.0301 0.0401 0.0414 0.0569

VINS (ours) 0.0222 0.0281 0.0245 0.0326 0.0310 0.0410 0.0429 0.0594

Improvement
ours vs best 9.9% 10.2% 3.81% 4.15% 2.99% 2.24% 3.62% 4.39%

ours vs second 12.7% 13.7% 16.1% 18.1% 12.7% 12.0% 5.66% 5.88%

as the base encoders including factorization models (Matrix Fac-
torization (MF) [17] and Factorizing Personalized Markov Chains
(FPMC) [18]) and one state-of-the-art deep model (MARank [28])

which can capture users’ temporal dynamic preferences.

We mainly consider the following state-of-the-art negative sam-

pling methods as baselines, including two sampling methods from

static distribution, Uni [17] sampling a negative item from uniform

distribution, POP [14] sampling negative items from a given dis-

tribution π , relative-order sampling methods, Dynamic Negative
Sampling (DNS) [32],LFM-D [30] andLFM-W [30],AOBPR [16],

CML [8], PRIS [13], self-adversarial (SA) method [19], and IR-
GAN [22]. Since the samplers are independent of the specific recom-

menders to work with, we take MF as the base model to study
their features, then switch to more complicated models (i.e.,
FPMC, MARank).

5.2 Item Imbalance Value Evaluation (RQ1)
To evaluate the item imbalance value when applying different sam-

pling methods, we count the number of appearance in positive and

negative samples for each item. Then we track the evolution of

the maximum and minimum imbalance value. Due to the charac-

teristics of adversarial methods themself like SA and IRGAN, it’s

difficult to catch the evolution of items’ imbalance value. Therefore,

we discard them and focus on the other methods. It is expected that

non-uniform sampling methods can downgrade the maximum but

increase the minimum imbalance value comparing with the UNI

method. From the results shown in Figure 5, we can find that most

of baselines reach the expectation. The proposed method VINS

does not ideally increase the minimum class-imbalance value in

Steam data. However, VINS keeps imbalance value larger than the

other methods except POP, and with the help of adaptive sampling

strategy, VINS achieves better performance than the baselines from

the results shown in Table 2. Combining with the overall perfor-

mance shown in Table 2, we can see that most of the methods have

better recommendation performance than the UNI method. From

this point of view, alleviating the class-imbalance issue has positive

effect on the performance of learned model. It’s also consistent with

our theoretical analysis in previous sections.

5.3 Advantages of VINS (RQ2)
We evaluate the advantages of VINS on ranking performance in

different metrics, and training time efficiency.

5.3.1 Ranking Performance. Table 2 summarizes the ranking per-

formance of different samplingmethods when applied to optimizing
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Table 3: Time complexity analysis: number of average steps
h′ to find a negative sample by LFM-W and VINS. The term
behind ± stands for the standard variance.

Epoch 5 10 20 50 150

Yelp

LFM-W 10.2±26.4 17.0± 52.2 19.8± 59.4 21.5± 63.2 21.7±65.2

VINS 8.7±14.5 11.8± 17.4 14.6± 19.7 16.2±21.0 16.3±21.0

Movies&Tv

LFM-W 3.2±8.0 6.5±24.7 12.0±42.7 18.4±60.9 19.0±62.9

VINS 3.4±7.6 6.2±12.2 9.8±16.1 14.9±20.0 16.2±20.7

CDs&Vinyl

LFM-W 3.5±15.1 10.0±40.6 17.1±58.2 28.5±83.3 29.3±85.5

VINS 3.8±10.1 7.9±14.8 12.8±18.8 21.4±23.2 23.4±23.9

Steam

LFM-W 3.2±5.7 4.1±8.8 5.0±11.1 6.2±16.0 6.3±16.7

VINS 2.8±5.6 3.5±7.0 4.3±8.4 5.4±9.8 5.8±10.6

Table 4: Time complexity comparison with different data
scale in terms of average running time per epoch inminutes
and relative time complexity to the simplest method “Uni".

Sampler Steam (smallest) CDs&Vinyl Movies&Tv Yelp (largest)

Uni 0.07 (1x) 0.1 (1x) 0.16 (1x) 0.47 (1x)

POP 0.09 (1.28x) 0.13 (1.3x) 0.2 (1.25x) 0.58 (1.23x)

AOBPR 0.05 (0.71x) 0.23 (2.3x) 0.32 (2x) 1.98 (4.21x)

CML 0.33 (4.71x) 0.33 (3.3x) 0.5 (3.1x) 1.23 (2.61x)

PRIS 1.12 (16x) 1.38 (13.8x) 2.07 (12.9x) 6.25 (13.3x)

SA 0.48 (6.85x) 0.66 (6.6x) 0.92 (5.75x) 2.76 (5.87x)

IRGAN 3.85 (55x) 4.54 (45.4x) 5.6 (35x) 23.4 (49.8x)

DNS 0.28 (4x) 0.44 (4.4x) 0.72 (4.5x) 2.1 (4.46x)

LFM-D 0.38 (5.42x) 0.49 (4.9x) 1.1 (6.87x) 1.86 (3.95x)

LFM-W 0.35 (5x) 1.58 (15.8x) 1.65 (10.3x) 4.78 (10.1x)

VINS 0.25 (3.57x) 1.08 (10.8x) 1.12 (6.37x) 3.05 (6.48x)

Table 5: Performances with different buffer size.

Buffer Size 8 16 32 64 128 1024

Yelp-NDCG@10

LFM-W 0.0185 0.0204 0.0224 0.0238 0.0251 0.0255

VINS 0.0209 0.0234 0.0253 0.0281 0.0284 0.0281

Movies&Tv-NDCG@10

LFM-W 0.0252 0.0279 0.0295 0.0301 0.0305 0.0313

VINS 0.029 0.0302 0.0308 0.0326 0.0325 0.0326

CDs&Vinyl-NDCG@10

LFM-W 0.0328 0.0352 0.0365 0.0392 0.0398 0.0401

VINS 0.0361 0.0376 0.0397 0.0402 0.041 0.0412

Steam-NDCG@10

LFM-W 0.0533 0.0547 0.0552 0.0566 0.0568 0.0569

VINS 0.0567 0.0588 0.0603 0.0601 0.0601 0.0603

the same objective function. Dynamic sampling methods LFM-W

and VINS significantly outperform the other baselines with a clear

margin. While, the proposed sampler VINS is superior to the state-

of-the-art method LFM-W. This validates the effectiveness of VINS

Figure 6: Time complexity according to the growth ofmodel
complexity.

Figure 7: Performance of rankingmodels ranging from shal-
low to deep models.

which selects the negative candidates with reject probability moti-

vated by class-imbalance issue.

5.3.2 Time Complexity. From Table 4, we can see that as the data

scale up in size, all samplers will need more time. Especially, LFM-

W needs over 10x more time comparing with stationary sampling

methods, while VINS is more efficient than LFM-W. The average

number of steps to find a violated negative sample is the key for the

time complexity analysis. As discussed in Section 2, time complexity

of dynamic sampling approaches like LFM-W and VINS heavily

depends on the search of a proper negative sample from massive

trials. To further investigate the sampling process, we use the buffer

technology for both methods to show the connection between the

model performance convergence and maximum steps to sample a

violated item. The results shown in Table 5 demonstrate that VINS

can converge to stable performance with less trials for each positive

sample, while LFM-W needs a larger buffer with at least 1024 slots.

The results suggest κ=64 for VINS, to keep a balance between

training efficiency and model performance. VINS can converge to

the better solution than LFM-W, meanwhile needs only a small

number of trials to find a violated shown in Table 3. In terms of

training efficiency, the proposed method saves over 30% training

time comparing with LFM-W, shown in Table 4.

5.4 Analysis on Deep Models (RQ3)
By far, we only apply the dynamic sampling methods on a linear

recommendation model (MF). It is also interesting to evaluate their

performance on more complicated models, for example FPMC and

MARank, for next-item prediction. From the experimental results

shown in Figure 6 and 7 we can find that VINS can save more

training time (from 30% to 50%) than LFM-W when applying to

shallowmodel FPMC, and also deep attentive model MARank, while

reaching the best recommendation performance. This significant

acceleration of recommendation model training verifies that VINS

is an effective dynamic negative sampling method. Especially for
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deep neural models training, VINS is a promising tool to select

the most useful negative samples for achieving both significant

reduction of training time and improvement of inference capability.

6 CONCLUSIONS
In this work, we systematically study the class-imbalance problem

in pairwise ranking optimization for recommendation tasks. We

indicate out the edge- and vertex-level imbalance problem, and

show its connection to sampling a negative item from static dis-

tribution. To tackle the challenges raised by the class-imbalance

problem, we propose a two-phase sampling approach to alleviate

the imbalance issue by tending to sample a negative item with

a larger degree and close prediction score to the given positive

sample. We conduct thorough experiments to show that the biased

sampling method with reject probability can help to find violated

samples more efficiently, meanwhile having a competitive or even

better performance with state-of-the-art methods. The proposed

method VINS can help to reduce the number of steps to find a neg-

ative sample, therefore reduce the computation cost. Due to this

appealing feature of VINS, we can bring its advantages to learn

more powerful deep neural models for different tasks that will take

pairwise loss as the optimization objective.

APPENDIX
A. Proof for Theorem 3.2

Proof. With the given user-item graph G, both
∑
j ∈I π (j) and

|E | are constant. Let’s define a function f (x) = x 1−β ·c1
c2−x , where

c1 =
∑
j ∈I π (j) and c2 = |E |. Thenwe can have first-order derivative

∇f (x) > 0, which means IV (i) > IV (j) if di > dj . □

B. Proof of Theorem 3.3
Given latent space with d dimensions, there exists d - 1 mutu-

ally orthogonal vectors ®c2, ®c3, · · · , ®cd and ®c1 = P̂τ . Let ∆+i (t) =∑
u ∈Ni

∂ℓui j
∂xui

P tu denote the gradients received when item i acted

as a positive sample, and ∆−i (t) = −
∑
u ∈N−i

∂ℓui j
∂xui

P tu denote the

gradients received when acting as a negative sample. It’s noted

that if item i has a large imbalance value, the size of |Ni | is usu-

ally ≫ |N−i |, and vice versa. Then for any iteration n > τ , the
embedding of item i is updated with gradient descent method as:

Pni = P
τ
i + η

∑
n≥t>τ

(∆+i (t ) + ∆
−
i (t ))

Then we can perform coordinate axis transform on P ti and P tu to

c1, · · · , cd .

⇒ Pni = α
1

i ®c1 + · · · + α
d
i ®cd

+ η
∑

n≥t>τ

∑
u∈Ni

∂ℓui j

∂xui
(t )(β 1

u ®c1 + · · · + β
d
u ®cd )

− η
∑

n≥t>τ

∑
u∈N−i

∂ℓui j

∂xui
(t )(γ 1

u ®c1 + · · · + γ
d
u ®cd )

Now we have Pτi = α1i ®c1 + · · · + α
d
i ®cd and P tu = β1u ®c1 + · · · + β

d
u ®cd ,

∂ℓui j
∂xui
(t) > 0, β1u > 0 as inner-product < P tu , ®c1 > = < P tu , P̂

τ
u >, and

all other variables ∈ R.

⇒ Pni = α1i ®c1 + · · · + α
d
i ®cd +

∑
n≥t>τ

λ1(t)®c1 + · · · + λd ®cd ,

where λk (t) = η
( ∑

u ∈Ni
∂ℓui j
∂xui
(t)βku −

∑
u ∈N−i

∂ℓui j
∂xui
(t)γku

)
for k ∈

[1,d]. Since coordinates ®c1, ®c2, · · · , ®cd are manually orthogonal.

⇒ lim

n→∞
| |Pni | |

2 = lim

t→∞
(α 1

i +
∑

n≥t>τ
λ1(t ))2 | | ®c1 | |2 + · · ·

+ (αdi +
∑

n≥t>τ
λd (t ))

2 | | ®cd | |
2

≥ lim

n→∞
(α 1

i +
∑

n≥t>τ
λ1(t ))2 | | ®c1 | |2

≥ lim

n→∞
(α 1

i + (n − τ ) ·minn≥t>τ λ1(t ))2 | | ®c1 | |2

And we have

λ1(t ) = η
( ∑
u∈Ni

∂ℓui j

∂xui
(t )β 1

u −
∑
u∈N−i

∂ℓui j

∂xui
(t )γ 1

u
)
,

where
∂ℓui j

∂xui
(t )β 1

u > 0

For imbalanced items, the value of λ1(t) will be dominated by the

size of Ni and N
−
i . If an imbalanced item with a very large im-

balance value, then we could have λ1(t) > 0 with a relative high

probability. We have lim

n→∞
(α1i + (n−τ ) ·minn≥t>τ λ1(t))

2 | |®c | |2 = ∞.

C. Reproductivity
We share the parameter setting of the optimizer for all baselines

and experiments in this work, with default learning rate η = 0.001.

We use grid search to examine the hyper-parameters, including the

embedding size from {16, 64, 128}, λ from {0.0005, 0.001, 0.005, 0.01}.

Different baselines have their own hyper-parameters. For decay

factor β in POP sampler, the search space includes {0.25, 0.5, 0.75, 1}.

Both CML and DNS need a number of negative candidates. In this

work, a small number e.g., 10 or 20 gives good enough results as sug-
gested by the authors [8, 32]. LFM-D needs two hyper-parameters,

the number of negative candidates, and the expected sampling posi-

tion. For the first one, it is the same as DNS, but usually needs a little

larger number, e.g., 20 in this work. The expected sampling position

can be obtained by multiplying the number of negative candidates

with a ratio factor ρ. The search space for ρ was {0.01, 0.05, 0.1, 0.5},

and ρ = 0.1 gives the best results. AOBPR also needs to set the

ratio factor ρ, and produces best results with ρ = 0.1. LFM-W only

has a margin parameter ϵ besides the optimizer parameters and

regularization term. This parameter actually varies as the type of

employed optimizer and the validation model. We search the best

choice ϵ from {1, 2, 3, 4} for both LFM-W and VINS. For VINS, we

need to search the best choice for buffer size κ and decay factor β .
In this work, we find that κ = 64 or 128 is good enough according to

the analysis results. In terms of IRGAN, we implement this method

with the published code
3
and suggested setting. In self-adversarial

method (SA)
4
, the discriminator and generator are the same model.

It creates an adversarial item by aggregating a number of negative

items. In this work, we tried different settings from {64, 128, 256},

and select the best value i.e. 256.

3
https://github.com/geek-ai/irgan

4
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
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